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Abstract Recently, interest has been growing to under-

stand the underlying dynamic directional relationship

between simultaneously activated regions of the brain

during motor task performance. Such directionality analy-

sis (or effective connectivity analysis), based on non-in-

vasive electrophysiological (electroencephalography—

EEG) and hemodynamic (functional near infrared spec-

troscopy—fNIRS; and functional magnetic resonance

imaging—fMRI) neuroimaging modalities can provide an

estimate of the motor task-related information flow from

one brain region to another. Since EEG, fNIRS and fMRI

modalities achieve different spatial and temporal

resolutions of motor-task related activation in the brain, the

aim of this study was to determine the effective connec-

tivity of cortico-cortical sensorimotor networks during

finger movement tasks measured by each neuroimaging

modality. Nine healthy subjects performed right hand fin-

ger movement tasks of different complexity (simple finger

tapping-FT, simple finger sequence-SFS, and complex

finger sequence-CFS). We focused our observations on

three cortical regions of interest (ROIs), namely the con-

tralateral sensorimotor cortex (SMC), the contralateral

premotor cortex (PMC) and the contralateral dorsolateral

prefrontal cortex (DLPFC). We estimated the effective

connectivity between these ROIs using conditional Granger

causality (GC) analysis determined from the time series

signals measured by fMRI (blood oxygenation level-de-

pendent-BOLD), fNIRS (oxygenated-O2Hb and deoxy-

genated-HHb hemoglobin), and EEG (scalp and source

level analysis) neuroimaging modalities. The effective

connectivity analysis showed significant bi-directional

information flow between the SMC, PMC, and DLPFC as

determined by the EEG (scalp and source), fMRI (BOLD)

and fNIRS (O2Hb and HHb) modalities for all three motor

tasks. However the source level EEG GC values were

significantly greater than the other modalities. In addition,

only the source level EEG showed a significantly greater

forward than backward information flow between the

ROIs. This simultaneous fMRI, fNIRS and EEG study has

shown through independent GC analysis of the respective

time series that a bi-directional effective connectivity

occurs within a cortico-cortical sensorimotor network

(SMC, PMC and DLPFC) during finger movement tasks.
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Introduction

In recent years combinations of different electrophysio-

logical and hemodynamic neuroimaging modalities have

emerged as tools for non-invasively measuring functional

brain activation and connectivity of cortical networks

during motor and cognitive tasks in healthy and clinical

populations (Biswal et al. 1995; Ferrari and Quaresima

2012; Shibasaki 2008; Xiong et al. 1999). Electrophysio-

logical measurement techniques such as electroen-

cephalography (EEG) and magnetoencephalography

(MEG) measure functional brain activity directly by

detecting the variations of electrical (Blinowska and

Malinowski 1991; Leuchter et al. 1992; Niedermeyer and

da Silva 2005; Schelter et al. 2006) or magnetic (Andres

and Gerloff 1999; Cohen 1968; Nikouline et al. 2001;

Schnitzler and Gross 2005) fields, respectively. On the

other hand, hemodynamic measurement techniques such as

functional magnetic resonance imaging (fMRI) and func-

tional near infrared spectroscopy (fNIRS) measure func-

tional brain activity indirectly via changes in the fMRI

blood oxygenation level-dependent (BOLD) signal, or via

changes in fNIRS oxygenated (O2Hb) and deoxygenated

(HHb) hemoglobin concentrations. These hemodynamic

measurements are related to an increase in regional cere-

bral blood flow subsequent to increased neuronal activity

(i.e., a consequence of neurovascular coupling) (Attwell

and Iadecola 2002).

The functional network of cortical regions of interest

(ROIs) involved in rhythmic and sequential finger move-

ments in healthy subjects has been analyzed using EEG

(Muthuraman et al. 2012), MEG (Pollok et al. 2004), fMRI

(Nedelko et al. 2010; Wu and Hallett 2005) and fNIRS

(Leff et al. 2011) separately, and the SMC, PMC and

DLPFC are three core regions of the cortical sensorimotor

network for movement control (Witt et al. 2008). Our

previous case study (Muthalib et al. 2013) has shown the

feasibility of simultaneously measuring contralateral SMC

activation by EEG, fMRI and fNIRS measurements during

right hand finger movement tasks and also showed that a

good correlation between the time series signals of the

three neuroimaging modalities can be obtained. Although

detecting activation of a specific region of the brain during

task performance can provide information on how for

example motor task speed influences the SMC activation, it

does not provide information on how different ROIs in a

sensorimotor network communicate with each other during

performance of the motor task. Functional connectivity of

cortical networks refers to the task-related interactions

between spatially different cortical ROIs, which can be

measured by covariance analyses of time series signals

extracted from both electrophysiological and

hemodynamic neuroimaging techniques (Büchel and Fris-

ton 1997; Engel et al. 2001; Shibasaki 2008). Additionally

another robust way of attesting functional connectivity in

the human cortical motor system could be cortical–cortical

evoked potential (Matsumoto et al. 2007). However,

functional connectivity does not explain the direction of

information flow between the cortical ROIs; it only gives

the correlation between them. Recent advances in neu-

roimaging signal analysis have enabled researchers to

estimate directional coupling of information flow between

cortical ROIs, which is referred to as effective connectivity

or functional causality (Ewald et al. 2012; Friston et al.

2003). Various algorithms have been proposed to measure

the effective connectivity between different cortical ROIs

and applied to both hemodynamic-based (fMRI, fNIRS)

and electrophysiology-based (EEG) modalities (Baccalá

and Sameshima 2001; Baccalá et al. 2007; Kaminski and

Blinowska 1991; Korzeniewska et al. 2003). The condi-

tional Granger causality (GC) analysis is one such method

which can determine the effective connectivity of func-

tional networks by analysis of time series signals recorded

from different ROIs in the brain (Granger 1969). Calcula-

tion of GC is built on multivariate autoregressive (MVAR)

modeling, and the idea behind GC is based on the fact that

one time series is useful in predicting another time series.

The network of effective connectivity interactions between

cortical ROIs namely SMC, PMC, DLPFC during a finger

tapping task in healthy subjects has been presented in

earlier studies using MEG or EEG source analysis

(Muthuraman et al. 2012; Pollok et al. 2004, 2006). A

number of previous studies have successfully applied GC

analysis to fMRI data during motor and cognitive tasks

(Abler et al. 2006; Anwar et al. 2012; Hwang et al. 2010;

Wen et al. 2012). The GC analysis has also been applied to

fNIRS data to determine the effective connectivity between

cortical ROIs in animal (Im et al. 2010; Yuan 2013) and

human (Bajaj et al. 2014) experiments. In the above-

mentioned studies, using one or two neuroimaging

modalities simultaneously have shown bi-directional or

uni-directional information flow patterns between the

SMC, PMC and DLPFC ROIs. However, to the best of our

knowledge no previous study has utilized fNIRS, EEG and

fMRI neuroimaging approaches simultaneously to deter-

mine the effective connectivity of the same cortico-cortical

sensorimotor networks (SMC, PMC, and DLPFC) during

different finger movement tasks. Since EEG, fNIRS and

fMRI modalities achieve different spatial and temporal

resolutions of motor-task related activation in the brain; we

surmise that an integrated multimodal neuroimaging

approach may also be able to provide a unique perspective

to understand the properties of the complex networks of the

human brain during motor tasks.

                              

   



Therefore, the present study aimed at applying GC

analysis to the EEG, fMRI and fNIRS time series signals in

order to determine the effective connectivity of the con-

tralateral cortico-cortical sensorimotor network (SMC,

PMC, and DLPFC) during simple and complex finger

movement tasks of the right hand. We expect that the

cortico-cortical directional coupling determined indepen-

dently by the three-neuroimaging modalities (fMRI, fNIRS

and EEG) provide bi-directional information flow pattern

between the contralateral SMC, PMC and DLPFC ROIs

during simple and complex finger movement tasks.

Materials and methods

Subjects

Nine healthy subjects (mean age 27 years, range

21–38 years, five female) volunteered to participate in the

study. All subjects were right handed as determined by the

Edinburgh handedness questionnaire (Oldfield 1971). The

study conformed to the recommendations of the local

Human Research Ethics Committee in accordance with the

Declaration of Helsinki. All participants provided written

consent prior to participating in the study.

Finger Movement Tasks

The finger movement tasks included simple finger tapping

(FT), simple finger sequence (SFS) and complex finger

sequence (CFS) tasks. Tapping the index finger in a

rhythmic fashion to have at least 2–5 finger taps per second

was the FT task. Sequential tapping of the index, middle,

ring and fourth finger against the thumb was the SFS task;

while the CFS task was performed by sequential tapping of

the index, ring, middle and fourth finger against the thumb.

A block design was used in which subjects were asked to

perform the finger movement tasks for 30 s followed by

30 s rest. Hence ten complete (task-rest) blocks were

obtained for each finger movement task resulting in 10 min

per task. A 2 min rest period separated each movement

task. In order to help subjects with the timing and sequence

of the finger movements, a visual stimulus was presented

on a screen in the fMRI scanner (see Sect. 2.2.1. for details)

using E-prime software (Psychology Software Tools, Inc.,

Sharpsburg, USA) (Kikuchi et al. 2012). The rhythmic

finger movement rates were checked from each subject by

inspecting the electromyography (EMG) activity (see

Sect. 2.2.2 for details) online to have at least 2–5 finger

taps per second.

Simultaneous Neuroimaging Measurements

fMRI

BOLD-sensitive MRI was performed with a 3-Tesla MR

scanner (Philips Achieva, Philips, Best, The Netherlands)

and a standard 8-channel SENSE head coil. T1 MRI images

were acquired with a standard MP-RAGE sequence with an

isotropic voxel resolution of 1 mm. A single-shot T2*-

weighted, gradient-echo planar imaging sequence was used

for fMRI (TR = 2500 ms, TE = 45 ms, 32 slices, 64 9 64

matrix, slice thickness = 3.5 mm, FOV = 200 mm, flip

angle = 90�). The sampling rate was 0.4 Hz, such that 240

brain volume images were acquired during 10 min of

recording for each motor task (Anwar et al. 2012).

Preprocessing of fMRI scans and time series extraction

were performed using (MATLAB R2013a, 8.1.0.604, The

Mathworks Inc., MA, USA software with SPM8 http://

www.fil.ion.ucl.ac.uk/spm) toolbox. Realignment was first

performed to remove movement related artifacts in fMRI

time series. In order to realign, the first image from the

recording was specified as the reference image and all

subsequent images were realigned to it. In addition to

realignment, scans were normalized to align all the sub-

jects’ specific MR sequences into the standard Montreal

Neurological Institute (MNI) space. The scans were

smoothed by convolving them with a Gaussian kernel of

fixed width (full width half maximum 8 9 8 9 8 mm) to

suppress noise and effects due to differences in functional

and gyral anatomy.

For the statistical analysis of the fMRI data a general

linear model (GLM) was specified to model the BOLD

signal during the fMRI session. Tasks were modeled by a

block design with a task condition that has 10 blocks of a

30 s activity alternated by 30 s of rest. The localization of

task related activity was then detected by specifying a

positive t-contrast on the task condition. To avoid inordi-

nate false positives findings due to multiple statistical

comparisons in each voxel, we applied the FWE correction

with p value threshold of 0.05 to the statistical t-map and in

addition a cluster size based criterion that at least 5 con-

tiguous voxels must be activated. Based on these filtered

statistical maps, time series were extracted from the three

contralateral ROIs: SMC, PMC and DLPFC (see Table 1

for the corresponding MNI co-ordinates). A sphere with a

radius of 3 mm was extracted around the center voxel. The

radius of 3 mm was chosen to restrict the extracted signal

clearly to the selected ROIs; especially to distinguish the

signals between the proximate SMC and PMC ROIs. We

considered that the effective fMRI (BOLD) time series

extracted from this 3 mm sphere will yield the neuronal
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activity which is the source of cortical activation in the

respective ROIs (Zhang et al. 2010). In order to check the

selection of the sphere radius, fMRI data was parcelled

using an anatomical template called Automated Anatomic

Labelling (AAL) atlas and then the fMRI-BOLD signals

were extracted from the three ROIS (SMC, PMC and

DLPFC) and the GC analyses were repeated to see the

effective connectivity.

EEG

EEG was recorded with a MR-compatible high-resolution

256-channel recording system (Electrical Geodesics Inc,

OR, USA), using CZ as reference. The surface EMG

activity was recorded from the right hand forearm flexors

and extensors using pre-gelled AgCI electrodes (Brain

Products Co., Munich, Germany). The ECG was recorded

with two standard AgCI bipolar electrodes placed on the

left anterior axillary line in the 5th intercostal space and

the 2nd intercostal space right of the sternum. The EEG

and EMG signals were simultaneously sampled at

1000 Hz, stored on a PC and analyzed offline using

MATLAB (Matlab R2013a, 8.1.0.604, The Mathworks

Inc., MA, USA). The EEG coherence and the source

analyses were performed with the open source toolbox

fieldtrip (Oostenveld et al. 2010). Data were transmitted

from the amplifier, which was placed directly in front of

the head coil inside the MRI scanner room and connected

to a PC located outside the scanner room, via a fiber

optic cable. The fMRI scanner 10 MHz clock signal was

used for synchronizing the fMRI (BOLD) measurements

with the EEG amplifier.

Table 1 Individual subject MNI co-ordinates of the maximum

activated voxel (fMRI) and maximum coherent voxel (source level

EEG) in the sensorimotor cortex (SMC), premotor cortex (PMC) and

dorsolateral prefrontal cortex (DLPFC) regions of interest for the

three finger movement tasks (finger tapping-FT, simple finger

sequence-SFS, complex finger sequence-CFS)

Subject Task fMRI EEG Euclidean distance

between EEG and

IMRI (mm)SMC PMC DLPFC SMC PMC DLFC

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

1 FT -29 -26 54 -23 8 17 -30 16 35 -28 -25 55 -23 6 16 -30 17 33 1.73 2.24 2.24

SFS -30 -25 57 -25 8 17 -30 17 34 -29 -26 55 -24 7 17 -31 16 33 1.00 1.41 2.24

CFS -28 -25 56 -24 7 17 -27 18 36 -32 -24 54 -24 8 16 -28 18 34 3.00 1.41 3.00

2 FT -31 -27 56 -24 6 17 -27 17 33 -29 -22 54 -25 7 16 -30 17 33 3.00 2.45 2.24

SFS -27 -23 54 -24 8 17 -28 16 32 -30 -23 57 -24 8 17 -28 17 32 2.36 1.00 2.74

CFS -28 -26 57 -23 6 16 -29 17 32 -28 -27 57 -25 8 16 -30 18 35 3.00 2.24 2.00

3 FT -27 -26 56 -24 6 15 -30 18 32 -31 -23 56 -25 7 17 -30 18 33 3.00 2.24 2.83

SFS -27 -24 55 -25 8 18 -29 17 34 -28 -26 54 -24 7 18 -27 17 34 1.00 1.73 3.00

CFS -31 -25 56 -24 6 16 -30 18 34 -30 -25 55 -24 6 17 -28 18 35 1.73 2.24 2.83

4 FT -30 -22 55 -24 8 15 -30 17 33 -30 -27 55 -23 9 16 28 17 33 1.73 1.41 3.00

SFS -29 -22 54 -23 8 17 -31 19 35 -31 -22 56 -23 7 17 -30 19 35 2.90 1.00 3.00

CFS -32 -25 55 -24 8 18 -29 17 35 -32 -24 54 -24 6 15 -30 18 34 3.00 3.00 2.24

5 FT -27 -26 54 6 17 -28 18 35 -30 -23 54 -24 7 18 -28 17 35 3.00 1.73 2.24

SFS -29 -27 55 -24 8 16 -27 17 36 -28 -27 55 -24 7 18 -30 18 35 1.73 1.73 2.00

CFS -29 -23 55 -24 8 16 -29 17 36 -28 -22 56 -25 7 17 -30 18 34 2.58 2.24 2.24

6 FT -31 -25 55 -24 9 18 -30 16 33 -28 -26 56 -24 7 16 -27 18 32 2.24 1.73 2.69

SFS -31 -24 54 -25 8 15 -29 18 33 -31 -26 56 -24 9 17 -29 19 33 2.83 1.41 2.74

CFS -28 -22 57 -23 8 18 -27 18 35 -28 -26 55 -25 9 15 -29 17 34 1.41 3.00 1.73

7 FT -29 -24 57 -25 7 18 -28 18 32 -31 -22 56 -25 6 16 -31 17 33 2.90 3.00 2.45

SFS -29 -23 55 -25 7 17 -28 17 34 -28 -24 55 -24 8 16 -27 16 33 2.45 1.41 2.61

CFS -30 -26 55 -25 8 16 -28 18 34 -32 -23 56 -23 7 15 -29 19 35 2.69 2.24 2.16

8 FT -31 -24 55 -23 6 16 -29 18 35 -29 -26 55 -23 7 16 -29 18 34 1.00 1.41 2.45

SFS -31 -25 57 -24 6 16 -29 18 34 -28 -24 56 -25 8 16 -29 17 36 3.00 2.24 1.73

CFS -28 -23 55 -24 7 16 -29 18 34 -28 -27 55 -23 9 15 -30 18 34 1.73 2.24 2.24

9 FT -30 -25 54 -24 15 -31 19 35 -30 -23 55 -24 7 17 -28 18 35 2.32 1.41 2.83

SFS -30 -23 56 -23 8 17 -29 17 35 -29 -23 56 -23 9 16 -30 18 34 2.61 1.41 2.24

CFS -28 -25 55 -24 8 16 -31 18 34 -29 -23 56 -25 7 17 -29 18 35 2.61 2.24 2.24

The last column shows the mean Euclidean distance between the EEG and fMRI MNI co-ordinates

                              

   



The EEG and EMG signals were first band-pass filtered

(EEG 0.05–200 Hz; EMG 30–200 Hz). EMG was full-

wave rectified; the combination of band-pass filtering and

rectification is the common demodulation procedure for

EMG (Journee 2007). Online correction of EEG gradient

artifacts based on the average artifact subtraction algo-

rithm was performed using the EGI software (Electrical

Geodesics Inc., OR, USA), enabling visual inspection of

the EEG with a sliding average of 50 TRs (Allen et al.

1998, 2000). In order to eliminate the ballistocardiogram

artifact, a very similar subtraction procedure was used

(Michels et al. 2013). In the elimination procedure the

artifact window was aligned on QRS complexes detected in

the ECG traces and the templates were composed from 10

consecutive pulse intervals and individually estimated time

delay based on the global field power distribution. The

residual gradient artifacts, eye blinks were removed using a

regression-based method (Gratton et al. 1983).

EEG-Scalp Level The EEG-data were re-referenced to

the common average reference and was used for all the

subsequent analyses. In this step the average of all the 256

EEG electrodes were estimated and the average was then

used as the re-reference for all the EEG electrodes. We

then calculated the periodogram (Halliday et al. 1995) of

the EEG power spectra and the cross spectrum of EEG and

EMG for each of the 1-s segments independently using a

Hanning window. These periodograms were then averaged

over all the segments to get a reliable spectral and cross

spectral estimate with a frequency resolution of 1 Hz.

EEG-EMG coherence measures the linear time-invariant

relationship between EEG and EMG signals; it is calcu-

lated as the ratio of the squared magnitude of the cross

spectrum to the product of the power spectra. The confi-

dence limit which indicates the significance of EEG-EMG

coherence at a particular frequency is calculated by 1 –

(1 – v1/M-1) where M is the number of disjoint segments

used for the estimation, and v is set to 0.99, so that the

confidence limit results as 1 – 0.011/M-1 (Govindan et al.

2005; Halliday et al. 1995). Values of EEG-EMG coher-

ence above this confidence limit (1 – 0.011/M-1) indicates a

significant correlation between the two time series, while

values below this limit indicate absence of correlation. The

C3, FC3 and F3 electrodes were used to represent the scalp

level EEG channels corresponding to the SMC, PMC, and

DLPFC ROIs respectively (see Fig. 1).

EEG-Source Level In order to locate the origin (i.e., the

source) of neuronal activity seen on the scalp EEG signals

during the finger movement tasks, two problems needed to

be solved, namely the forward and the inverse problem.

The forward problem is the computation of scalp potentials

for a set of neural current sources in the brain, which is

usually solved by estimating the so-called lead field matrix

with specified models for the brain. The lead field matrix

was constructed using the realistic volume conductor

model (Fuchs et al. 2002), using a boundary element

method consisting of three non-intersecting, closed surface

separating compartments of isotropic and homogenous

layers with conductivity values: 0.33, 0.0042, and 0.33 S/m

for the brain, skull and scalp, respectively (Fuchs et al.

2002). Meshes of triangles modeled the three surfaces.

These surfaces were obtained from each subject’s

anatomical T1 MRI by setting different threshold values

for each layer such that they did not overlap.

The inverse problem is the quantitative estimation of

the neural sources underlying the observed neural activ-

ity. The source analysis used here was the dynamic

imaging of coherent sources (DICS) method based on the

beam forming approach (Gross et al. 2001; Sekihara and

Scholz 1996). For visualizing the EEG power and

coherence in the brain at a given frequency range, a

linear transformation was used based on a constrained

optimization problem which acts as a spatial filter (Van

Veen et al. 2002). By taking the EMG as the reference

signal, the brain region representing the strongest

coherence in a specific frequency band was identified.

The criteria used to identify more coherent areas were

selected by a within-subject surrogate analysis, in order

to define the significance level individually for each

subject. The surrogates were estimated by Monte Carlo

random permutations of 100 times of 1-s segments within

each subject. The p value for each of these 100 random

permutations was estimated and then the mean distribu-

tion of the p value was taken as the significance level in

each subject. This was the limit for considering areas in

the brain or activated voxels as noise for the next run of

source analysis and subsequently identifying other areas

in the brain for the same EMG reference signal. In order

to create tomography maps, a spatial filter was applied to

a large number of voxels covering the entire brain using

a voxel size of 5 mm. The individual maps of the

strongest EEG-EMG coherence were spatially normal-

ized, averaged and displayed on a standard MNI template

brain in SPM8. The same procedure for the analysis was

followed for each subject separately, followed by a grand

average across all the subjects. Once coherent areas were

identified, their activity was extracted from the surface

EEG signals. In a subsequent analysis, all the activated

voxels within the source signals were subjected to a

pooled estimate. This was done by pooling the second

order spectra using a weighting scheme and estimating

the pooled estimate as previously described (Amjad et al.

1997; Rosenberg et al. 1989). For each of the subjects,

the pooled source signals from each of these sources

were taken and then the dynamical coherence (DCA) was

                              

   



estimated with the EMG to attain the DCA source signal

vector at the individual finger movement frequency.

In all the subjects the source analysis was applied on the

basis of the EEG-EMG coherence peak frequency

(2–5 Hz), and the sources which were active in the ana-

lyzed frequency were identified. The sources were

restricted to the three contralateral ROIs (SMC, PMC and

DLPFC) in order to perform a direct comparison with the

fMRI and fNIRS neuroimaging modalities. The voxel with

the maximum coherence that was coherent between EEG

and EMG from all the activated voxels in these three ROIs

were identified and then the time series was extracted for

further analysis. In order to test that the identified voxel

was the most appropriate one from the EEG source anal-

ysis, the Euclidean distance between the maximum

coherent voxel from the EEG and the maximum activated

voxel based on the t-value from the fMRI for the three

ROIs and finger movement tasks was calculated (see

Table 1). The same procedure was done to determine the

mean Euclidean distance between the three scalp EEG

electrodes and the maximum activated voxel in the fMRI

for all the three tasks and the three ROIs (see Table 1).

fNIRS

An MR-compatible continuous-wave multi-channel fNIRS

system (Oxymon Mk III, Artinis Medical Systems, The

Netherlands) was used to measure the concentration

changes of O2Hb and HHb in the cortical microcirculation

blood vessels by means of the characteristic absorption

spectra of hemoglobin in the near-infrared range. Two

wavelengths (856 and 781 nm) per channel were used at a

sampling rate of 10 Hz. Five detector (avalanche photo

diode) and 11 transmitter (pulsed laser diode) probes were

placed in the EEG cap using specially designed holders, to

obtain 15 channels (each represented by a Transmitter-

Detector combination) with the distance between each

transmitter and detector set to 3–3.5 cm (see Fig. 1).

Fiducial markers were placed between each transmitter and

detector pair so that the position of the fNIRS channel

could be located in the T1-MR images of each subject.

After the fNIRS probes were placed in the EEG cap and

secured in place by a cloth, subjects were placed inside the

MRI scanner. MR-compatible fNIRS optical fibers of

*10 m length were used to connect to the fNIRS system

located outside the MRI room. The fMRI scanner 10 MHz

clock signal was also synchronized with the fNIRS system.

The fNIRS channels were first located on each subject’s

T1-MRI using the fiducial markers. The selection of the

fNIRS channels to represent the three contralateral ROIs

(SMC, PMC, and DLPFC) were based on the fNIRS

channels that satisfied the condition that it lay anatomically

in the region above the fMRI (BOLD) maximum activated

voxel and the fiducial markers were used as the reference.

Then the time series of one fNIRS channel from each of the

three contralateral ROIs (SMC, PMC, and DLPFC) was

selected for each subject based on the fNIRS channel that

had the best functional correlation with the fMRI time

series (Muthalib et al. 2013; see supplementary Table 1 for

group level functional correlations between the fNIRS,

fMRI and EEG modalities).

Effective Connectivity Analysis Using Granger

Causality

The steps for the GC analysis for the fMRI, EEG and

fNIRS neuroimaging modalities are illustrated as a flow

chart in supplementary Fig. 1. The scalp level EEG GC

Fig. 1 256 channel EEG

electrode layout on a realistic

head model skin from the

sagittal (a) and coronal

(b) viewpoint. The scalp EEG

electrodes (C3, FC3, F3) and

fNIRS measurement locations

(area between transmitter-T and

Receiver-R) corresponding to

the SMC, PMC, and DLPFC

regions of interest

                              

   



analysis was performed on the time series extracted from

the C3, FC3 and F3 electrodes corresponding to the con-

tralateral SMC, PMC, and DLPFC ROIs respectively (see

Fig. 1). The source level EEG GC analysis was performed

on the time series extracted from the maximal coherent

voxel in the contralateral SMC, PMC and DLPFC ROIs

(see Fig. 2). The fMRI (BOLD) time series signals were

extracted from the peak activated voxel in the contralateral

SMC, PMC and DLPFC ROIs (see Fig. 3). The fNIRS

(O2Hb and HHb) GC analysis was performed on the time

series extracted from three channels corresponding to the

contralateral SMC, PMC, and DLPFC ROIs respectively.

For the fMRI and fNIRS, the mean time series was

removed from the time series in order to have a zero mean

prior to the GC analysis (Seth et al. 2013). Furthermore,

band-pass filtering was not performed on the fNIRS time

series before GC analysis since the model order would

increase, which in turn would increase the number of

spurious connections between the ROIs (Barnett and Seth

2011; Florin et al. 2010).

The GC analysis was based on a MVAR model. In

contrast to dynamical causal modeling (DCM) (Garrido

et al. 2007), GC does not require any a priori information

about the connectivity in the network to be analyzed. The

concept of GC, first defined by Granger (Granger 1969),

states that if a prediction about a future state of time series

B is improved after incorporating the past knowledge of

time series A, then time series A is causing time series B.

In this study we used GC to quantify effective connectivity

networks in the brain.

Xt ¼
Xp

j¼1

a1Xt�j þ
Xp

j¼1

b1Zt�j þ e1t ð1Þ

Z t ¼
Xp

j¼1

c1Xt�j þ
Xp

j¼1

d1Zt�j þ e2t ð2Þ

Assume time series X and Z of length t shown in Eq. (1–

2) with model order p. The model order describes the

number of past values of the time series that are required to

successfully predict the present value of the time series.

The MVAR coefficients (a, b, c, d) define whether GC

exists between the two time series, and also the extent of

GC, if it exists. Let ex(t) denote the prediction error (where

x = 1, 2). In order to get a reliable prediction, the pre-

diction error should be minimized. The covariance matrix

for the prediction error is given by Eq. (3).

r2
mod el1

¼ varðe1tÞ covðe1t; e2tÞ
covðe2t; e1tÞ varðe2tÞ

� �
ð3Þ

The same model but with the inclusion of one more time

series Y as shown in Eqs. (4–6) and the corresponding

Fig. 2 The group mean source

level EEG activation

(coherence) maps shown on a

MNI template axial slice

representing the contralateral

(column 1) sensorimotor cortex

(SMC), (column 2) premotor

cortex (PMC) and (column 3)

dorsolateral prefrontal cortex

(DLPFC) during the finger

tapping (FT), simple finger

sequence (SFS) and complex

finger sequence (CFS) tasks of

the right hand. The color bar

indicates the minimum and

maximum EEG source analysis

EEG-EMG dynamical

coherence values

                              

   



covariance matrix is shown in Eq. (7). If this inclusion of Y

actually reduces the prediction error of X, then Y is causing

X, and the extent of GC can be quantified as the log ratio of

the prediction error variance from both models by Eq. (8)

(Seth 2010):

Xt ¼
Xp

j¼1

a2Xt�j þ
Xp

j¼1

b2Yt�j þ
Xp

j¼1

c2Zt�j þ e3t ð4Þ

Y t ¼
Xp

j¼1

d2Xt�j þ
Xp

j¼1

e2Yt�j þ
Xp

j¼1

f2Zt�j þ e4t ð5Þ

Z t ¼
Xp

j¼1

g2Xt�j þ
Xp

j¼1

h2Yt�j þ
Xp

j¼1

k2Zt�j þ e5t ð6Þ

r2
model2

¼
varðe3tÞ covðe3t; e4tÞ covðe3t; e5tÞ

covðe4t; e3tÞ varðe4tÞ covðe4t; e5tÞ
covðe5t; e3tÞ covðe5t; e4tÞ varðe5tÞ

2

64

3

75

ð7Þ

FY!XjZ ¼ log
varðe1tÞ
varðe3tÞ

� �
ð8Þ

Before calculating GC, the model order p must be

determined. The optimal model order must be an inter-

mediate between a too simple (the model cannot capture

important temporal dynamics) and a too complex model

(model trap spurious causalities). Therefore, a compromise

is needed between minimizing the prediction error variance

and keeping the number of model parameters low enough.

In this paper, we have chosen to minimize the Akaike

Information Criterion (Akaike 1974) as an approach for

estimating optimum model orders. For comparison of the

GC values for all three modalities we have chosen the

model order P = 5 for the fMRI, fNIRS and EEG

modalities after computing different model order for the

three neuroimaging methods (fMRI: P = 4, fNIRS: P = 5

and EEG: P = 12) that produced no significant differences

in connection strength by a link–link comparison of the

connectivity values. Indeed, by using a non-parametric

Kruskal–Wallis test followed by post hoc tests for inde-

pendent samples, connection strength and the connectivity

did not differ significantly between the three ROI’s (SMC,

PMC and DLPFC) for the three modalities. For application

of GC, the GC connectivity analysis (GCCA) toolbox for

(MATLAB R2013a, 8.1.0.604, The Mathworks Inc., MA,

USA) was used (Seth 2010).

Due to the nonlinear relation between direct causality

and time series data, the distribution of the MVAR coef-

ficients is not well understood. This in turn indicates the

need for a non-parametric significance test on the estimated

GC amplitudes. Therefore, the time series subjected to GC

were divided into smaller epochs and then appended in

random order, such that by random shuffling of time series

all the intrinsic GC was eliminated. GC was then calculated

for this randomly shuffled EEG, fMRI and fNIRS time

series; this was done 100 times and the mean result was

used as our null hypothesis (Kamiński et al. 2001). Addi-

tionally, the time varying GC analysis was applied to 1-s

data windows of the fNIRS and EEG data to estimate the

time varying behavior of the connectivity over all the

significant connections.

Statistical Analysis

The forward and backward GC values between the SMC,

PMC, and DLPFC ROIs during each of the three finger

movement tasks determined by EEG (scalp and source level),

fNIRS (O2Hb and HHb), and fMRI (BOLD) were tested using

a non-parametric Kruskal–Wallis test followed by post hoc

testing for independent samples (directionality connections

Fig. 3 The group mean fMRI (BOLD) activation maps shown on a

MNI template sagittal slice representing the contralateral a sensori-

motor cortex (SMC), b premotor cortex (PMC) and c dorsolateral

prefrontal cortex (DLPFC) regions of interest (ROIs) during the finger

tapping (FT), simple finger sequence (SFS), and complex finger

sequence (CFS) tasks of the right hand. fNIRS fiducial markers are

shown above the SMC (a). The blue lines indicate the three ROIs

taken from an MNI anatomical automatic labeling atlas (AAL) and

the three black rings show the 3-mm sphere around the maximum

activated voxel of each ROI. The color bar indicates the minimum

and maximum fMRI (BOLD) t-values (Color figure online)

                              

   



were: SMC ? PMC, PMC ? SMC, SMC ? DLPFC,

DLPFC ? SMC, PMC ? DLPFC, DLPFC ? PMC). The

forward and backward GC values between each modality

(fNIRS, fMRI, EEG) were also tested using a non-parametric

Kruskal–Wallis test followed by post hoc testing for inde-

pendent samples. The Bonferroni correction was performed

for the entire post hoc test that involved multiple comparisons.

The significance level was set at p\ 0.05.

Results

MNI Coordinates of the SMC, PMC, and DLPFC

ROIs

The grand average activation maps from the EEG (source

level) and fMRI (BOLD) are illustrated in Figs. 2 and 3,

respectively (supplementary Fig. 2 shows the grand aver-

age activation time series and supplementary Table 1

shows the functional correlation between the EEG, fMRI

and fNIRS modalities). The three finger movement tasks of

the right hand were associated with an increase in activity

in the contralateral SMC, PMC and DLPFC ROIs. The

mean MNI co-ordinates and Euclidean distance between

the EEG (source level) and fMRI (BOLD) in each of the

three ROIs during the three finger movement tasks are

shown separately in Table 1. The MNI coordinates of all of

the three identified ROIs (SMC, PMC and DLPFC) from

the EEG and fMRI were statistically significant

(p = 0.003) in a Monte Carlo random permutation test

across all subjects for all the three motor tasks. The mean

Euclidean distance between the maximum coherent voxel

in the EEG source analysis and the fMRI maximum acti-

vated voxel in each of these three ROIs for the three tasks

were within 3 mm (see Table 1). The mean estimated

Euclidean distance between the scalp EEG electrodes and

the maximum coherent voxel in the source level EEG ROIs

(SMC: 25.3 ± 4.6 mm; PMC: 24.6 ± 3.9 mm; PFC:

26.5 ± 3.2 mm) and the maximum activated voxel in the

fMRI ROIs (SMC: 24.7 ± 3.9 mm; PMC: 23.3 ± 4.1 mm;

PFC: 25.9 ± 4.1 mm) was approximately 25 mm.

Effective Connectivity Determined by EEG, fMRI,

and fNIRS

The forward and backward effective connectivity (GC

values) between the SMC, PMC and DLPFC ROIs during

the three motor tasks for each of the EEG, fMRI and fNIRS

modalities are shown in Fig. 4 (and Fig. 5 shows the

schematic in a representative template brain). In the case of

scalp level EEG, GC analysis between the EEG electrodes

representing the three ROIs (C3-SMC, FC3-PMC and F3-

Fig. 4 Conditional Granger causality (GC) strength values of the

direction of information flow between the sensorimotor cortex

(SMC), premotor cortex (PMC) and dorsolateral prefrontal cortex

(DLPFC) regions of interest (ROIs) measured by the EEG, fMRI and

fNIRS modalities during the right hand finger tapping (FT), simple

finger sequence (SFS), and complex finger sequence (CFS) tasks. The

Asterisk indicates a significant difference of GC values between the

modalities fMRI and fNIRS in the first row. In the second row the

Asterisk indicates a significant difference between the EEG-scalp and

EEG source level analysis. Only in the EEG source level analysis

there was a significant difference Asterisk between direct and the

feedback direction

                              

   



DLPFC) showed significant (p = 0.023; p = 0.032;

p = 0.021, respectively) bi-directional connections

(SMC $ PMC, PMC $ DLPFC, SMC $ DLPFC) dur-

ing all three motor tasks, with no significant difference

between the forward and backward connections. In the case

of source level EEG, there were also significant bi-direc-

tional connections (p = 0.028; p = 0.025; p = 0.018)

between the three ROIs (SMC, PMC and DLPFC, respec-

tively); however, there were also significant differences

(p = 0.018; p = 0.035; p = 0.028) in the magnitude

between the forward and backward connections, such that

the forward connections from the SMC ? PMC,

PMC ? DLPFC and SMC ? DLPFC were significantly

greater than the backward connections (PMC ? SMC,

DLPFC ? SMC and DLPFC ? PMC). In the case of

fNIRS (O2Hb and HHb) and fMRI (BOLD), there were

also significant bi-directional connections (p = 0.023;

p = 0.018; p = 0.013) between each of the three ROIs

(SMC $ PMC, PMC $ DLPFC, SMC $ DLPFC) over

the three motor tasks, and although the forward

connections were greater in magnitude compared to the

backward direction, they were not significantly different

(p = 0.361).

Additionally, time varying GC analysis for the fNIRS

and EEG modalities were undertaken to test the influence

of a higher temporal resolution (1 Hz) on the effective

connectivity between the three ROIs (see supplementary

Fig. 3). Similar to the GC results, the fNIRS and the EEG

(scalp and source level) showed bi-directional connections

between the ROIs, and only the source level EEG showed

the forward connections were significantly greater than the

backward connections.

The GC values for all three motor tasks were signifi-

cantly higher for the source level EEG in comparison to

scalp level EEG (p = 0.004), fMRI-BOLD (p = 0.009),

fNIRS-O2Hb (p = 0.004) and fNIRS-HHb (p = 0.002)

(Fig. 4). Although the GC values between scalp level EEG

and fMRI (BOLD) did not show any significant difference

(p = 0.457), scalp level EEG GC values were significantly

higher than fNIRS-O2Hb (p = 0.008) and fNIRS-HHb

Fig. 5 Conditional Granger causality (GC) direction of information

flow between the contralateral sensorimotor cortex (SMC), premotor

cortex (PMC) and dorsolateral prefrontal cortex (DLPFC) regions of

interest (ROIs) measured by the EEG, fMRI and fNIRS modalities

during the finger tapping (FT), simple finger sequence (SFS), and

complex finger sequence (CFS) tasks right hand. Columns indicate the

different neuroimaging modalities, and rows indicate the different

finger movement tasks. Only in the case of the EEG source level there

was a significant difference between the direct and feedback direction.

This is indicated in the figure with a single arrow-head and yellow

solid lines

                              

   



(p = 0.007). The GC values were higher, but not signifi-

cantly different (p = 0.672) for fNIRS-O2Hb in compar-

ison to the fNIRS-HHb. GC values for fMRI (BOLD) were

significantly (p = 0.003) greater than fNIRS (O2Hb and

HHb). Even though we have compared the GC values

between the modalities the interpretation of this result

should be dealt with consideration. The results of the

functional parcellation analyses were similar to the above

results except the effective connectivity between SMC and

DLPFC was significantly stronger. The results of these

analyses are shown in supplementary Fig. 4.

Discussion

To the best of our knowledge, this is the first study to

simultaneously apply EEG, fMRI and fNIRS neuroimaging

modalities to independently determine using GC analysis

the directional coupling (i.e., effective connectivity)

between cortico-cortical sensorimotor networks (SMC,

PMC and DLPFC) during finger movement tasks. A novel

finding of this study was that the cortico-cortical effective

connectivity determined by the fMRI, fNIRS and EEG

modalities all showed a bi-directional information flow

pattern between the SMC, PMC and DLPFC ROIs during

the simple and complex finger movement tasks. However,

the source level EEG provided the largest GC values and

also showed a significantly greater forward than backward

signal flow between the three ROIs.

Effective Connectivity Within Cortico-Cortical

Networks

In the present study, we concentrated on three contralateral

cortical ROIs (SMC, PMC, and DLPFC) to determine their

effective connectivity during finger movement tasks of the

right hand. We have studied the question of how well the

electrophysiological (EEG) and hemodynamic (fMRI and

fNIRS) neuroimaging modalities, measured in parallel,

relate to each other in determining the information flow

between the three cortical ROIs during performance of

finger movement tasks. We found that the effective con-

nectivity determined by GC analysis independently by the

EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb

and HHb) modalities shows a bidirectional flow of infor-

mation between the SMC, PMC and DLPFC ROIs during

performance of the finger movement tasks. These findings

suggest that a bi-directional increase in information flow

occurred between brain areas involved in activating finger

movements (SMC), motor planning (PMC) and executive

control (DLPFC). Our findings extend a previous fNIRS

(Bajaj et al. 2014) and fMRI (Rehme et al. 2013) study that

showed bi-directional effective connectivity between SMC

and PMC during performance of hand motor tasks. Our

findings also agree with a study using transcranial magnetic

stimulation (TMS) with event-related fMRI, which showed

that the PMC and the SMC are strongly functionally con-

nected and contribute significantly in performing a motor

task (Bestmann et al. 2008). Furthermore, a paired pulse

TMS paradigm showed temporally and spatially selective

interactions between SMC and DLPFC that are both task

and muscle specific (Hasan et al. 2013), which provides

strong evidence for the effective connectivity between

these ROIs shown in the present study. Furthermore, the

connectivity between the human cortical motor systems

have been validated earlier with in vivo cortical–cortical

evoked potential and showed clearly the existing cortical–

cortical connectivity (Matsumoto et al. 2007).

The directions of information flow for rhythmic move-

ments in earlier studies have shown that the SMC plays a

major role in directing voluntary motor tasks (Anwar et al.

2012; Kai et al. 2000; Zhang et al. 2010). A novel finding of

the present study was that although scalp level EEG showed

both forward and backward directions of information flow

between ROIs with similar GC values, source level EEG,

fNIRS (O2Hb and HHb) and fMRI (BOLD) GC values were

larger in the forward than backward direction (i.e.,

SMC ? PMC, SMC ? DLPFC, PMC ? DLPFC), but

this difference was only significant for source level EEG.

The higher significance of the forward than backward

directions of information flow between the three ROI’s

would suggest that the voluntary finger movements emerge

from top-down processing that are less influenced by

peripheral feedback which could lead to increasing the

strength of backward connections as shown in previous

studies (Muthuraman et al. 2012; Pollok et al. 2004, 2006).

Even though, in this study we have compared the GC values

between the modalities the interpretation of these results

should be dealt with consideration has GC shows the effect

and not the mechanism (Barrett and Barnett 2013). By using

the three modalities simultaneously in one experiment we

were able to show statistically that all three modalities show

bi-directional information flow between the three ROI’s. We

tested the feasibility of combining the three functional neu-

roimaging modalities in one experiment and finally able to

show how well the three functional neuroimaging modalities

correspond to each other during an active motor task.

However, for achieving a good spatial resolution and good

temporal resolution the combination of fMRI and EEG could

be used. However, the complete information of oxygenation

and deoxygenation profile can be only obtained using fNIRS.

Methodological Considerations and Limitations

Functional connectivity is used to describe spatially sepa-

rate ROIs that appear to be in close communication with

                              

   



each other during performance of a task, based on coher-

ence analysis of neuroimaging time series data. The rise of

the concept of functional connectivity has led to the study

of linked frequency responses measured by non-invasive

neuroimaging modalities (Kinoshita et al. 2010). The

choice of methods for functional connectivity is still a

matter of intense research and debate (Stephan and Friston

2010). Recent advances in neuroimaging signal analyses

have enabled researchers to estimate effective connectivity

between cortical ROIs involved in task performance

(Friston et al. 2003). Various methods for effective con-

nectivity estimation between simultaneously recorded time

series signals exist. The majority of these methods are

based on the parameters of predictive models fitted to the

data. Methods like structural equation modeling (SEM)

(Büchel and Friston 1997) and dynamic causal modeling

(DCM) (Friston et al. 2003) have traditionally been applied

to the fMRI modality. One limiting factor for these two

methods is the fact that their results are always based on

some a priori assumptions about the anatomical networks.

GC-estimating methods like partial directed coherence

(PDC) (Baccalá and Sameshima 2001), directed transfer

function (DTF) (Kaminski and Blinowska 1991), modified

directed transfer function (dDTF), generalized partial

directed coherence (gPDC) (Baccalá et al. 2007) and

renormalized partial directed coherence (rPDC) (Schelter

et al. 2009) are all parametric measures of effective con-

nectivity that don’t require a priori anatomical knowledge.

Furthermore, they infer the effective connectivity in the

frequency domain and hence are useful in analyzing brain

networks corresponding to certain frequencies of interest.

The GC analysis in the time domain has been widely

used in neurological signal processing for the estimation of

effective connectivity. Recent literature has compared the

performance of GC measures for a variety of signal sce-

narios like fMRI and results show that the GC is a quite

robust measure of effective connectivity in the case of the

variable hemodynamic response function (HRF). Further-

more, GC is invariant to the convolution of the neural

signal with the HRF (Seth et al. 2013). Moreover, GC is

shown to be invariant under quite a few classes of filtering

operations and not down sampling (Barnett and Seth 2011;

Seth et al. 2013). Finally, it has also been shown that GC

provides reliable results for many different HRF systems

including ‘time-to-peak’ confound (Seth et al. 2013; Wen

et al. 2013). In the present study, due to the limited time

resolution of fMRI (0.4 Hz) compared to the fNIRS

(10 Hz) and EEG (1000 Hz), we considered that using GC

in the time domain to be the optimal method to infer the

directionality information between the time series (Seth

2010) of the three cortical ROIs measured by the fMRI,

fNIRS and EEG modalities. However, there are some

issues that need to be considered.

Firstly, it should be noted that the full spatial resolution

of the fMRI modality was not utilized in this study by

selecting only 3 ROIs, but we chose a limited number of

ROIs to make comparisons between the lower spatial res-

olutions of the EEG and fNIRS modalities. Since we did

not utilize the full time resolution of the fNIRS and EEG

for the GC analysis, we looked into by estimating the time

varying GC analysis of the EEG and fNIRS modalities

using their full time resolutions (see supplementary Fig. 3).

The results for this analysis showed similar GC values to

the present results, which suggests that the greater GC

values attained by the source level EEG is not merely due

to the improved temporal resolution. Additionally the

greater spatial accuracy of source level EEG provides a

better estimate of the source of activation, which was

evident from the close correspondence of the location of

the maximum activated voxel between the source level

EEG and fMRI (see Table 1).

Secondly, there could be an issue on the selection of the

ROIs for the fMRI modality using a sphere around a seed

voxel parcellation method. Some studies have reported dif-

ferent results based on different parcellation techniques,

which raises a question mark on the appropriateness of dif-

ferent parcellation techniques (Shirer et al. 2012; Sohn et al.

2015; van den Heuvel and Sporns 2011; Wang et al. 2009).

Two parameters contribute to the inter-subject anatomical

variability, first brains vary in their folding patterns and

second brains vary in terms of location of the cytoarchitec-

tonic zones, which plausibly correspond to the function

(Nieto-Castañón and Fedorenko 2012). In order to overcome

these two problems, we used a technique based on a ‘‘lo-

calizer’’ or ROI, which has been used extensively in the

literature, where we determined a subject-specific ROI (Ni-

eto-Castañón and Fedorenko 2012). After estimating the

local ROI with maximum activation, we validated further the

position of that ROI in the brain using its MNI coordinates

and using a brain atlas from SPM8. A sphere radius of 3 mm

was used in this study to restrict the extracted signal clearly to

the selected brain regions (Zhang et al. 2010). In order to

check the correspondence of our results to a parcellation,

fMRI data was parcelled using an anatomical template

namely Automated Anatomic Labelling (AAL) atlas and

then the fMRI-BOLD signals were extracted from the three

ROIS (SMC, PMC and DLPFC) and the GC analyses were

repeated to see the effective connectivity (see supplementary

Fig. 4). The results were similar to our previous results

except the effective connectivity between SMC and DLPFC

that was significantly stronger. We did not consider this

parcellation method for this study since the main focus of the

study was to use the EMG as EEG reference and identify the

coherent network of sources for each motor task.

Thirdly, since down sampling the data could lead to

false results, we checked for consistency by reducing the

                              

   



number of time points progressively and checked the sig-

nificance threshold for the three finger movement tasks

separately for our fMRI data. The significance threshold

did not vary significantly for the three tasks FT (p = 0.57),

SFS (p = 0.47) and CFS (p = 0.39). Thus the surrogate

method used was considered valid in the present study.

Fourthly, the EEG-EMG coherence was the basis for

selecting the peak frequency in the band (2–5 Hz) in this

study for the subsequent source and effective connectivity

analyses. In order to understand the network involved

during the motor tasks at this band (2–5 Hz), we have

undertaken the band-limited EEG analyses and showed a

different network of sources for the three different motor

tasks namely the posterior parietal cortex (PPC), medial

frontal cortex (MFC) and prefrontal cortex (PFC). The

effective connectivity between the sources was then ana-

lyzed using Granger causality and the results are shown in

supplementary Fig. 5.

Finally, the scalp level EEG method suffers from

noise and volume conduction effects (Schlogl and Supp

2006), and this can be circumvented by looking at the

connectivity measures using source level EEG (Astolfi

et al. 2009; Hassan et al. 2014). In particular for EEG

signals, a linear AR model may lead to wrong estima-

tions of GC. Although nonlinear measures like mutual

information might be preferred when studying broadband

EEG signals with nonlinearities, linear methods are still

preferred as they offer a rapid and easy characterization

of functionality (Astolfi and Babiloni 2007). A recent

study applied DTF and PDC (both are based on GC

measures) on nonlinear data and demonstrated that by

using the sufficiently high model order, nonlinear inter-

actions within the data were captured as well by these

linear connectivity measures (Astolfi and Babiloni 2007;

Seth et al. 2015). We have previously tested a nonlinear

version of GC by using the time domain partial directed

coherence which uses the dual extended Kalman filter in

the time domain (Anwar et al. 2013, 2014). We tested

this nonlinear GC method on the EEG signals and

compared the differences to the present study linear

version GC results. The results for the effective con-

nectivity analyses on the scalp EEG and on the source

EEG signals showed no differences between the linear

and non-linear GC methods in the significant connections

between the three ROIs. The application of non-linear

connectivity analyses was also tested using the time

domain partial directed coherence (TPDC) method which

uses the dual extended Kalman filter in the time domain

(Anwar et al. 2013, 2014). We have compared the

strength of each link between ROIs by a link–link

comparison with a non-parametric Kruskal–Wallis test.

The results for the scalp level EEG comparing the non-

linear TPDC and linear GC revealed no significant

difference for the three tasks. Similarly on the EEG

source level the analyses did not reveal any significant

difference for the three tasks. Altogether, these findings

confirm that the non-linear connectivity analyses were

not different to the results from the linear GC method in

the context of our study. These empirical findings indi-

cate that a nonlinear GC method approach was not

superior to the linear GC one in assessing causality in

cortical activity variability series recorded from healthy

subjects. This confirms that Granger causality based on a

linear model is able to detect and quantify changes in

coupling strength and direction of activation between

different cortical regions (Astolfi and Babiloni 2007; Seth

et al. 2015). In pathological population, where the con-

tribution of nonlinearities might be more evident, the

advantage of using a nonlinear GC method might become

a tool to quantify more constantly than linear GC ap-

proaches causality in cortical regions. In addition, over-

all, we suggest that no single method can be recognized

as the best in all circumstances, and each of the methods

has its domain of best applicability.

Conclusion

This simultaneous fMRI, fNIRS and EEG study has

shown for the first time that a bi-directional effective

connectivity exists within a cortico-cortical sensorimotor

network (SMC, PMC and DLPFC) during finger move-

ment tasks of different complexity. However, since

information flow data acquired with source level EEG

showed the largest GC amplitude values compared to

scalp EEG, fNIRS and fMRI, we consider that source

level EEG provides the strongest means to characterize

the directionality of neural communication within cortico-

cortical sensorimotor networks; however, fMRI or fNIRS

could be used to guide the source localization. The source

level EEG changes in functional activation and effective

connectivity analysis to different neurological conditions

(Japaridze et al. 2013; Muthuraman et al. 2012) can be

employed in the future as a diagnostic tool for following

the progress to clinical studies. Since fNIRS is more easy

to use with fewer constraints than fMRI, it is an attractive

alternative to fMRI in particular for providing reasonable

spatial resolution for bedside multimodal fNIRS-EEG

measurements.
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