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Calderó-Bardajı́, P., Longfei, X., Jaschke, S., Reermann, J., Mideska, K.G.,
Schmidt, G., Deuschl, G., and Muthuraman, M.

Abstract— Monitoring driver’s intentions beforehand is an
ambitious aim, which will bring a huge impact on the society by
preventing traffic accidents. Hence, in this preliminary study we
recorded high resolution electroencephalography (EEG) from
5 subjects while driving a car under real conditions along
with an accelerometer which detects the onset of steering.
Two sensor-level analyses, sample entropy and time-frequency
analysis, have been implemented to observe the dynamics before
the onset of steering. Thus, in order to classify the steering
direction we applied a machine learning algorithm consisting
of: dimensionality reduction and classification using principal-
component-analysis (PCA) and support-vector-machine (SVM),
respectively. The results showed an increase of the sample
entropy and the estimated power values in the theta and alpha
frequency bands, 100 ms before the onset of steering. The
detection of steering direction depicted that sample entropy
gives a higher classification accuracy (73.5%±6.8) as compared
to that of using the estimated power for theta and alpha
frequency bands (62.6%±5.6).

I. INTRODUCTION
Electroencephalography (EEG) is a key technique in

neuroscience with high temporal resolution and low cost
which has been commonly used as a diagnostic technique.
EEG analyzes the small voltage fluctuations of the brain
using electrodes that are usually placed non-invasively on
the scalp. More recently, the use of this technique has
been extended to other applications which aim in using the
information extracted from the EEG recordings while the
subject performs certain tasks in order to identify, analyze
or further communicate with other devices, also known as
brain computer interface (BCI). The applications of BCI
are wide, from controlling wheelchairs [1] to spelling by
thoughts [2], which can improve the living conditions of
people in particular circumstances.

One of the biggest needs in our society is to improve
the security in roads and highways. The number of licensed
drivers increase every year in almost all countries of the
world. This fact has a direct correlation with the increasing
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number of traffic accidents which in most cases could be
prevented. As a result, large number of human losses occur.
In addition, other factors rise such as economic losses for
the transported assets, insurances or jams.

Our study aims to help in the reduction of human victims
and economic losses in roads and highways by implementing
a system which monitors driver’s intentions. There are differ-
ent studies which have analyzed EEG signals while driving,
achieving successful performances mostly in simulated envi-
ronments [3] [4]. However, this study is taking a challenge
performing the analysis on a natural environment by driving
a real car, where complex tasks take place at the same time.

Monitoring drivers has been approached with other tech-
niques such as electromyography (EMG) [5], electrocardio-
graphy (ECG) [6] or electrooculography (EOG) [7], as well
as integrated sensors for example in the driver pedals [8],
or in the seats with contactless sensors [9]. Combining more
information would improve the security by recognizing the
driver actions even beforehand, making the driving experi-
ence more secure and comfortable.

Integrated car systems are already being used, as an
example, detecting distances between cars, as well as other
objects [10]. There is a high complexity of monitoring drivers
because of the variability in physiological signals between
subjects and also within subjects from time to time. Thus,
designing a system which analyzes robustly and accurately
is a required aim in order to transfer this technology to daily
applications.

II. DATA ACQUISITION AND PREPROCESSING

We have taken EEG recordings from 5 subjects (25.2±1.5
years) using Geodesic EEG System 300 based on 256 elec-
trodes placed according to the international 10-20 system.
All subjects had valid driving license and experience in
driving an automatic car. The task took place in an area
where no other cars were passing by. The subjects were
asked to drive straight until they reached an intersection.
Then, the command ’right’ or ’left’ was randomly given to
the driver in order not to get habituated. An accelerometer
sensor was attached in the top of the steering wheel, so that,
it detected the rotation of the wheel triggering a signal that
was used as a marker for the onset of steering. The task was
repeated 20 times for each subject. The recording lasted for
two and a half hours for each subject including preparation
time. The sampling rate was 1 kHz. Some recordings had
to be discarded because of experimental problems like bad
connections, dryness of the sponge pad of the EEG electrodes

                                         

                                                                                                                                            



(caused by volatilization of the electrolyte solution) or body
movements. The signals from 12 seconds before to 4 seconds
after steering were selected for the analyses. Common aver-
age referencing was performed on the measured signals [11]
in order to capture very small signals before we performed
further analysis. Then, we applied a moving average window
of size 100 ms.

III. METHODS

The methodology is presented in three parts. The first
part describes the sensor-level analyses: sample entropy and
time-frequency analysis from the EEG signals. The second
part describes dimensionality reduction, whereby we selected
first those electrodes corresponding to the region of interest,
the motor cortex area, and then combined this information
into a reduced number of features by applying principal-
component-analysis (PCA). The third part describes classi-
fication using support-vector-machine (SVM) with a linear
kernel. The performance of the algorithm was evaluated and
averaged with a 5-Fold cross validation loop.

A. Sensor-Level Analyses

We analyzed the measured EEG signals in order to reveal
information which was not observable in the raw data.
Therefore, we chose these two methods to process the EEG
signals: sample entropy and time-frequency analysis.

1) Sample Entropy: In information theory, entropy is
used as a mathematical measure for randomness. The brain
activity detected by the EEG will have a steady pattern for a
monotonous activity. Therefore, we had the hypothesis that
randomness in EEG signals will increase when changing the
activity from driving straight to steering, what was observed
calculating sample entropy [12] [13].

An EEG time series of length N can be represented by
u(j) : 1 ≤ j ≤ N . We want to form m partial blocks of
length N − m + 1 from the EEG time series, which are
represented by:

xm(i) = u(i+ k)

{
1 ≤ i ≤ N −m+ 1

1 ≤ k ≤ m
(1)

The next step is to calculate the Chebyshev distance
between all combinations of xm(i), selecting those whose
distance is smaller than r, defined as tolerance.

d[xm(i), xm(j)] = max
∣∣u(i+ k)− u(j + k)

∣∣ (2)

The vectors xm(j) whose d[xm(i), xm(j)] ≤ r will be
introduced to the variable Bi. Normalizing Bi and excluding
its self-matches with j : 1 ≤ j ≤ N−m | j 6= i, we get Bm.

Bm =
N −m− 1

N −m

N−m∑
i=1

Bi (3)

Repeating the procedure for m + 1 blocks of the same
EEG time series, we get Bm+1. Finally, calculating the
logarithm of the ratio between Bm+1 and Bm, we obtain

the expression for sample entropy with m, r and N as
parameters:

SampEn(m, r,N) = −lnB
m+1

Bm
(4)

Bm+1 will always be smaller than or equal to Bm,
therefore getting values equal or greater than zero. We set
m = 2 and r = 0.3.

2) Time-Frequency Analysis: The EEG signal was ana-
lyzed in time and frequency domain simultaneously. The
mathematical motivation for this analysis was to get a
relation between the activity in each frequency band of the
EEG [14] and the different time points while driving straight
and steering. Therefore we performed the time frequency rep-
resentation (TFR) based on multitapering of the signal using
a Hanning taper [15], to analyze temporally the behavior of
the signal power at each frequency.

B. Dimensionality Reduction

Prior to performing the classification algorithm, we se-
lected the results from the sensor-level analyses by restricting
our region of interest to be the motor cortex area from both
hemispheres, to reduce the number of electrodes. Thus, we
selected 75 electrodes which were located in this area and
normalized them to zero mean and unity standard deviation
to compensate the scaling variabilities. Then, we combined
the information of the normalized electrodes reducing the
dimensionality by applying PCA.

PCA is a multivariate statistical method based on
Karhunen-Loève expansion that we used to reduce the
dimensionality from the sensor-level data expressing the
information in terms of linear combinations of orthogonal
vectors along a new set of coordinates, where the sample
variances are uncorrelated. Mathematically, this transforma-
tion is described as:

Y = W ·X, (5)

where X is the data, W is the projection matrix and Y
represents the orthogonal vectors or principal components
(PC). Each PC represents a certain amount of variance in
the data, ranked by a decreasing degree. The first PC will
carry the largest variance and the last PC the least, usually
representing almost no information about the original data.

The more features one can use the more information is
available to differentiate between directions. However, more
training data are needed in order not to bias the model,
what is known as curse of dimensionality [16]. In this case,
we selected only the first three to five principal components
which carried the highest amount of variance.

C. Classification

To evaluate the separability between features
corresponding to different steering directions we used SVM
[17]. SVM calculates a decision boundary, in this case to
classify the directions of steering, using a hyperplane which
achieves the optimal distance between classes. A simple

   

                                                                                                                                            



model will have better generalization properties, therefore
we assumed linear separability, describing the hyperplane as:

~v · ~x+ c = 0, (6)

where ~v is an orthogonal vector to the hyperplane, ~x is a
vector containing the data and c is a constant. To separate
the classes, a hyperplane which validates the inequalities
for the data elements from left (L) and right (R) steering
direction classes, is given as:

~v · ~xi + c ≥ 1 for direction L (7)

~v · ~xi + c ≤ −1 for direction R (8)

Combining equations (7) and (8) gives:

yb(~v · ~xi + c)− 1 ≥ 0, (9)

where yb is a binary variable equivalent to 1 for direction
L and to −1 for direction R. The features from class 1
which satisfy equation (7) determine the hyperplane H1. The
distance between the origin and H1 is:

dL =
1− c∣
||~v||

(10)

Similarly for class −1 the distance between the origin and
hyperplane H−1 is:

dR =
−1− c∣
||~v||

(11)

As H1 and H−1 are parallel and no training points are
located between them, the distance between the hyperplanes
or margin is given as:

d
(
(~v, c), xi

)
=

2

||~v||
(12)

The hyperplane which maximizes d will be the optimal
hyperplane. To avoid bias in the results, the data were divided
into training and test sets using 5-Fold cross validation. The
classifier performance was evaluated with a confusion matrix,
yielding sensitivity, specificity and accuracy, defined for our
purpose as:

Sensitivity =
True L

True L + False R
(13)

Specificity =
True R

True R + False L
(14)

Accuracy =
TrueL + TrueR

TrueL + FalseR + TrueR + FalseL
(15)

IV. RESULTS

The results from the two sensor-level analyses are shown
in Fig. 1 and 2, which depict the change in dynamics between
driving straight and steering.

A. Sample Entropy and TFR

As it can be observed in Fig. 1, the results from sample
entropy analysis showed an increase before the onset of
steering, which was not visible in the raw data.
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Fig. 1. (a) As an example, EEG signal of electrode C6 from a representative
subject while steering to the left (b) Corresponding sample entropy values
smoothed by a moving average window of 100 ms. Time point 0 corresponds
to the steering onset.

Similarly, the estimated power from the TFR showed an
increase in the theta (4-7 Hz) and alpha (8-15 Hz) frequency
bands, before the steering onset, as shown in Fig. 2.
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Fig. 2. Time-frequency plot representing an increase in the power dynamics
of a representative subject before the onset of steering, smoothed by a
moving average window of 100 ms. Time point 0 corresponds to the steering
onset.

B. Classification

The extracted features by PCA were classified by SVM
with a linear kernel. The dimensionality of the original data
was reduced using the PCA sub-dimensional space, hence
reducing the complexity of the classifier, as shown in Fig. 3.

The evaluation of the classification in the time window
between –100 ms and the onset is shown in Table I for
both analyses of each subject separately, where accuracy,
sensitivity and specificity are given in percentage. In the case
of estimated power, the results are shown for those frequency
bands that showed best performance.

   

                                                                                                                                            



Fig. 3. Visualization of the first 3 principal components from the sample
entropy analysis of a representative subject. A hyperplane in the middle
shows the separability between the steering directions. Each letter represents
a single trial for left (L) or right (R).

TABLE I
PERFORMANCE OF STEERING PREDICTION USING SAMPLE ENTROPY

AND ESTIMATED POWER

Subject Entropy Estimated Power
Acc Sens Spec Band Acc Sens Spec

1 80 80 80 θ 60 62.5 58
2 63.5 60 67 α 63 62.5 63.5
3 79 73 85 θ 67 67 67
4 75 75 75 θ 69 67 71
5 70 60 80 α 55 43 67

Mean 73.5 69.6 77.4 62.8 60.4 65.3
Std 6.8 9.1 6.8 5.6 10.0 4.9

In total 83 steering repetitions from 5 subjects have been
analyzed, where 40 were to the left and 43 to the right
direction. As it can be seen, the average performance from
the sample entropy showed higher accuracy values compared
to the estimated power, ranging from 63.5% to 80%, while
for power the accuracies ranged from 55% to 69%.

V. CONCLUSIONS

We have confirmed the feasibility of detecting the steering
direction prior to the onset based on the two sensor-level
analyses: sample entropy and time-frequency analysis. Driv-
ing straight dynamics were distinguishable from steering in
both analyses, showing a different activity pattern. The clas-
sification gave a better performance for the sample entropy
as compared to the estimated power. Our study depicted that
it is possible to improve the estimation of driver’s steering
direction for a larger number of trials per subject, using an
adaptive approach by having a parameter selection step after
the dimensionality reduction.

The accuracy that we achieved under real environment
is comparable to those studies [3] which were performed
under simulated environment having different time windows.
The detection system used in this study is compatible with
other studies on braking prediction or brain state tracing.
Integration with other techniques such as EOG or EMG and

the corresponding data fusion could improve the performance
and robustness of detection. This technique can be applied
to smart-cars in combination with driving systems which
process the information of the surrounding aiming to improve
the security while driving. In the future, an increase in the
sample size will allow an increase of estimated parameters
for the classification.
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