Towards Principled Synthetic Benchmarks for Explainable Rule
Set Learning Algorithms

David Patzel Michael Heider Jorg Hahner
david.paetzel@uni-a.de University of Augsburg University of Augsburg
University of Augsburg Germany Germany

Germany
ABSTRACT be roughly categorized into RSLs that utilize heuristics to iteratively

A very common and powerful step in the design process of a new
learning algorithm or extensions and improvements of existing algo-
rithms is the benchmarking of models produced by said algorithm.
We propose a paradigm shift in the benchmarking of explainable
if-then-rule-based models like the ones generated by Learning
Classifier Systems or Fuzzy Rule-based Systems. The principled
method we suggest is based on synthetic data sets being sampled
from randomly generated but known processes that have the same
overall structure as the models that are being benchmarked (i. e.
each process consists of a set of components each of which corre-
sponds to one if-then rule) which is up-to-date not available among
the many synthetic data generators. This approach has several ben-
efits over other benchmarks and we expect that it will lead to fresh
insights into how algorithms producing such explainable models
work and can be improved. We demonstrate its usage by bench-
marking the effects of different rule representations in the XCSF
classifier system.

CCS CONCEPTS

+ Computing methodologies — Rule learning; + General and
reference — Empirical studies.

KEYWORDS

Rule Set Learning, Learning Classifier Systems, Fuzzy Rule-based
Systems, Benchmarking, Evolutionary Machine Learning

ACM Reference Format:

David Pitzel, Michael Heider, and Jorg Héahner. 2023. Towards Principled
Synthetic Benchmarks for Explainable Rule Set Learning Algorithms. In
Genetic and Evolutionary Computation Conference Companion (GECCO ’23
Companion), July 15-19, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3583133.3596416

1 INTRODUCTION

One family of approaches for building human-comprehensible, ex-
plainable machine learning models is based on searching an optimal
set of if-then rules which are inherently transparent. Within this
work we term these algorithms Rule Set Learners (RSLs). RSLs can

This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in GECCO *23 Companion, July 15-19, 2023, Lisbon, Portugal

©2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACMISBN 979-8-4007-0120-7

https:/doi.org/10.1145/3583133.3596416

1657

generate a set of rules (e. g. the very popular C4.5 algorithm [17])
and RSLs that more directly search the space of possible rule sets
using metaheuristics such as evolutionary algorithms. This paper
focuses on the second category which we call Metaheuristic RSLs
(MRSLs). Prominent representatives of MRSL algorithms include
Learning Classifier Systems (LCSs) [8, 22], Fuzzy Rule-based Sys-
tems (FRBS) [5] and Ant-Miner [12]. There are MRSL approaches to
classification [e. g. 2, 12], regression [e. g. 1, 10, 25], unsupervised
learning [e. g. 20] as well as reinforcement learning [e. g. 4].

Since MRSLs build models consisting of if-then rules, they im-
plicitly assume that the data was generated by a process consisting
of if-then components [7]. Applying an MRSL to data that was not
generated by such a process may still yield good results and many
years of successful empirical MRSL research applying methods to
data sets whose generating process is unknown (and thus probably
does not fulfil above-stated assumption) show that this is indeed
the case. Nevertheless, we argue that more insights into MRSLs and
how they may be improved can be gained if the data was generated
by a process fulfilling said assumption—and even more so, if the
process itself was known formally. In particular, the generated mod-
els’ transparency can be gauged more directly due to the fact that
the data-generating process itself is transparent as well (after all, it
itself consists of if-then components) and a machine learning expert
can properly trace specific issues in the algorithm’s optimization
process.

We therefore propose to benchmark MRSLs using sets of syn-
thetic data sets. At that, each data set is sampled from a randomly
generated but known process that has the same structure as an
MRSL model (i. e. it consists of a set of components each of which
corresponds to one if-then rule). We then expect, the benchmarked
MRSL algorithms to build models that reconstruct this data-gene-
rating process—with measurable progress towards that goal.

It should be noted that some of the learning tasks that have
been used by MRSL research in the past are based on known data-
generating processes. Prominent examples from the LCS commu-
nity for which the optimal set of if-then rules are known include

o the Boolean multiplexer tasks [e. g. 24] which are based on
certain functions of the form B" — B,

o the real-valued checkerboard problem [3] as well as

o grid world reinforcement learning tasks [e. g. 24] where one
may derive the optimal set of rules by inspection of the
environment’s dynamics.

Another example is the first benchmark task used by Drugow-
itsch [7] who manually defines three if-then rules to generate one-
dimensional data with the purpose of visualizing how the learnt
RSL models look like. However, to our knowledge, all existing data

https://orcid.org/0000-0002-8238-8461
https://orcid.org/0000-0003-3140-1993
https://orcid.org/0000-0003-0107-264X
https://doi.org/10.1145/3583133.3596416
https://doi.org/10.1145/3583133.3596416

generators are rather restricted individual approaches whereas our
proposal is to automatedly generate as many benchmark tasks as
required. Furthermore, despite restricting ourselves to regression
tasks within this paper, the proposed approach can be applied to
all kinds of learning tasks (i. e. classification and regression as well
as reinforcement and unsupervised learning).

The remainder of this paper is structured as follows: We start
by giving in Section 2 an overview of the types of models that
MRSL algorithms build and, correspondingly, the structure of the
data-generating processes that we aim for. Section 3 then provides
an overview of how data-generating processes and data sets can
be built. In Section 4, we discuss several benefits the proposed
benchmarking approach has. In order to provide a better intuition,
we demonstrate in Section 5 how the approach can be applied to
a comparison of two algorithm variants. Section 6 concludes our
work with a short discussion of possible next research steps.

2 METAHEURISTIC RULE SET LEARNING

To keep this paper mostly self-contained, we start by giving a rough
overview of MRSL for supervised learning tasks. This is similar to
but slightly extends the treatment of LCS models given by Heider
etal [8].

Supervised learning deals with the task of approximating a pro-
cess that maps inputs x € X = RPX to outputs y € Y. At that,
this mapping is possibly (or rather, most certainly for real-world
tasks) non-deterministic (e. g. noisy). The definition of Y depends
on the type of supervised learning task being solved: For exam-
ple, regression tasks typically specify Y = R whereas classifica-
tion tasks with Dy classes are commonly approached by defin-
ing Y to be the set of one-hot encoded class representations (i. e.
Y={ylye{0o,1}P¥, T y=1} cRD)

MRSL assumes that the process to be approximated can be mod-
elled well by a set of rules akin to if-then statements!; correspond-
ingly, MRSL models contain a finite set of K rules, K € N. The kth
of those rules (simply termed rule k in the remainder of this paper)
contains a matching function m(y) : X — B that corresponds
to the rule’s if-part and determines for any possible input x € X
whether or not that rule matches that inputz. At that, the match-
ing functions are members of a parametric family m of functions
parametrized by a set of parameters V.

Rule k further contains a local model, a discriminative func-
tion fi(6x) : X — Y which corresponds to the rule’s then-part
and whose parameters 0. are trained on the inputs that the rule
matches—independently of other rules. MRSL algorithms in general
explicitly allow rules in the generated models to overlap which,
however, makes it necessary to define a method of mixing the local
model outputs of all the rules that match a certain input. This is
achieved by the MRSL model’s mixing model which constitutes the
third and final component of the MRSL model. Simple (and most
commonly-used) mixing models assign to each rule k a constant
mixing weight y;. How that mixing weight is computed exactly

!Note that while there are probabilistic formulations of MRSL models [e. g. 7] these
are a minority and we stick for ease of introduction with the more commonly-used
discriminative function form.

2There are approaches to MRSL that use matching by degree, most notably, FRBS. In
that case, matching functions map to a number between 0 and 1, my : X — [0, 1],
however, this distinction is not critical for the treatment given in this paper.

1658

differs between MRSL systems; a simple mental model sufficient
for the present work is to assume y; to be some sort of inverse of
the rule k’s prediction error on the inputs that it matches (i. e. rules
that have a higher error on the inputs that they match contribute
less to the overall model’s output). The number of rules and the
set of matching function parameters M = (K, {{y }le) form the
MRSL model’s model structure (similar to how the graph of a Neural
Network forms that network’s model structure). The local model
parameters and mixing weights form the set of the MRSL model’s
parameters 0 = {0k, v }Ik(:l‘ Putting this all together, the overall
form of an MRSL model is a weighted sum of local model outputs:

K

n0.) = 3" m(Y; %) v fie (O)

k=1

1)

Since one of the major selling points of using MRSL algorithms
is the inherent transparency of the resulting models, the local mod-
els are usually assumed to be simple with common choices being
constant [e. g. 2, 5, 12, 24] or linear models [e. g. 7, 25]. This can be
expressed more generally by stating that the number of parame-
ters of the local models are in O(D x) with small constant factors.
Assuming local models to be simple and trained independently
of each other means that fitting their parameters is straightfor-
ward since optimizing the local model parameters (of which there
are O(KD x) many) is decomposed into K independent optimiza-
tion problems of O(Dy) parameters. As was already mentioned
above, mixing weights are most commonly implemented as a single
constant per rule, an overall of O(K) mixing model parameters,
with well-performing heuristics to choose them being available
(see [7] for an overview of techniques). This means that most of
the effort of training MRSL algorithms stems from searching for
well-performing model structures, since model structures typically
have O(KD x) parameters (i.e. O(D x) parameters per each of the
K rules) that can, other than the O(KD y) local model parameters,
not be decomposed straightforwardly and need to optimized jointly.

MRSL model structure space (i. e. good values of M) can be
searched in many ways; a high-level classification and discussion
is given by Heider et al. [8]. Most approaches use some form of
metaheuristic such as evolutionary [22, 24] or swarm-based algo-
rithms [12]. For example, the most prominent LCS, XCS [24], and
its main derivatives [e. g. 2, 25] use a niching steady-state genetic
algorithm (GA) to optimize the set of matching functions.

A common example for an MRSL model family for regression
tasks is based on the following choices: Each matching function
corresponds to a half-open D x-dimensional interval, that is, ¥4 =
{l, ur} with I, up € X and mp(Yp;x) = 1if x € [l,ux) and
my (Yr; x) = 0 otherwise. Local models are linear regression models
including an intercept term, they thus have a vector of parameters
B € RPx+1 Eachlocal modelis further associated with an estimate
of the expected noise variance; the most common choice is isotropic
normally—-distributed noise which induces a parameter O'z e R

resulting in overall local model parameters 6y = {f, 0]3}. Finally,
the mixing weight for each rule k is a constant y; € R. In total, this
model family has

K2Dx+(Dx+2)+1)=3K+3KDy 2)

parameters (for each of the K rules: 29 y matching function pa-
rameters, D x + 2 local model parameters, one mixing weight).

3 GENERATING LEARNING TASKS AND DATA
SETS FOR BENCHMARKING MRSL

As was already stated in Section 1, we propose to generate bench-
mark learning tasks based on the assumptions that MRSL models
make about the data that they are meant to model. This means
essentially that we generate a random MRSL model which can be
queried to generate data. In order to generate a benchmark learning
task this way, we need to specify the number of rules K that the
generating MRSL model should have and for each of the rules, the
matching function parameters ;. the local model parameters 6
and the mixing weight parameter yy.

At that, we suggest to set the number of rules K manually since
that is the main parameter for influencing the generated learning
task’s difficulty (an optimal learnt model will have to have that
many rules; which defines the number of parameters that the meta-
heuristic searching model structure space has to optimize) and
to then draw the remaining parameters at random from suitable
probability distributions. Assuming we have done that, we have
generated a learning task from which we can sample a single data
point as follows:

(1) Draw a random input x € X (e. g. uniformly at random).

(2) For each of the rules k, draw an output value from the rule’s
output distribution (i. e. for the normal-noise linear models,
draw a noise value from N (0, aﬁ) and add that to the output

of the linear model ﬁc(ﬁk; x)).
(3) Compute Eq. (1) to obtain the output y € Y.

4 BENEFITS OF THIS APPROACH

The presented approach has several benefits over benchmarking
based on data sets with unknown data-generating processes, some
of which we now discuss shortly.

Learning tasks as well as data can be generated in large quantities
which enables robust statistical conclusions to be drawn about the
performance of a certain algorithm under benchmark. For example,
we could draw 50 such learning tasks for different sizes of K and
for each of them a large test data set.

The difficulty of the generated learning tasks is easily config-
urable. For one, we are able to specify how many rules optimal
solutions should have (with more rules being more difficult for the
model structure search to optimize due to the additional parameters
that need to be optimized). In addition, we can enforce certain other
properties as well—for example, by manipulating the probability
distributions that parameters are drawn from (e. g. having more or
less steep local linear models). Note further that it is not necessary
to specify exactly the properties we want before generating learn-
ing tasks. Instead, we can simply generate many tasks and then
select ones we find interesting, for example by filtering out too easy
tasks that can be approximated well by a single linear model.

Finally, since we know the ground truth (i. e. not just the labels of
the data set but the actual data-generating model) and that ground
truth has a model form similar to the model we’re trying to fit, we
can compute additional statistics that let us reason more directly
about the algorithm being analysed. For example, we may compute

1659

how close the metaheuristic model structure search’s solutions (e. g.
matching function parameters) actually are to the corresponding
parameters of the data-generating process and based on that trace
and explain specific issues in the algorithm’s optimization process.

5 DEMONSTRATION

Let’s assume that we want to investigate the effects of different
representations of interval-based matching functions (see Section 2)
on the XCSF algorithm? [25] which is a prominent MRSL for re-
gression tasks. There are many ways to encode such intervals for
performing evolutionary search with two of the main ideas being
the unordered-bound and centre-spread representations [6, 19].

Unordered-bound representation means that the D y-dimensio-
nal interval [, u) is encoded as a vector of reals (by,1, b1,2, b2,1,
b22,...,bpy 1, by 2) where each pair (bj 1,bj2) corresponds to a
one-dimensional interval [Ij, uj) = [min(bj 1, bj2), max(bj 1, b;2)).
This implies that the interval bounds are sorted whenever the phe-
notype is computed. The centre-spread representation on the other
hand represents the D y-dimensional interval [/, u) as a vector of re-
als (c1,51,¢€2,52, ..., COys SDX) where each pair (c;, Sj) corresponds
to a one-dimensional interval [cj —sj,cj+ Sj), that is, c; is the jth
interval’s centre and s; is its spread.

Assume that we are particularly interested in general statements
about whether XCSF using unordered-bound representations per-
forms better than XCSF using centre-spread representations. Note
that investigations like this have already been the topic of several
publications [e.g. 6, 19] but for the sake of demonstration we’ll
assume for now that we are not aware of these. Note further that,
for either of the two, several sub-options are possible (especially
with respect to the exact effects of the evolutionary operators used);
we simplify this by stating that we use Preen’s XCSF Python li-
brary [13] which supports both of these representations out-of-the-
box and publish our experimentation scripts [14] which contain
the parametrization. In the remainder of this paper, we abbrevi-
ate XCSF with unordered-bound representation as implemented by
Preen’s library as UBR and XCSF with centre-spread representation
as implemented by Preen’s library as CSR.

We now start by generating learning tasks (our data generation
code can be found online [15]) as described in Section 3 based
on the MRSL model family example given at the end of Section 2.
Assume that we are interested in analysing performance of models
that are human-comprehensible [9] and that we thus create tasks
that can be solved optimally with not too many rules while at the
same time varying the number of rules required. Therefore, we
choose learning tasks with three different numbers of components:
K € {5,10, 20}. We further want to investigate different input space
dimensions and choose Dy € {1, 3,5, 10,20} and for each of those
a somewhat sensible number of training examples N (given in
Table 1). Note that all of these choices are rather arbitrary and more
thought would need to be given to them if one were to conduct an
in-depth study rather than a demonstration.

For each of the 15 combinations of K and D x, we now generate
10 learning tasks: For each learning task,

3How the XCSF algorithm works is not relevant for the following discussion; we refer
the interested reader to the given reference.

Dy=3

16

14

12 4

Test MSE

104

0.14

Dy=5

Dy=10

704 1204

601 100 1

50 4

80
40

301 60

201
40

0.6 25.0 1

22.51
05
20.01
04+ 17.5

15.0 1

Test MSE

0.34
12.51
0.2+
10.0 4

.14
0 7.5

80 1
1104
704
100 -
60 201
Algorithm
® UBR
® CSR

504 804

0T =X

404 70 1

304 60

204 501

14 4 164
0.8+
124 154
0.6 14 4
104

134

Test MSE

0.4+
12 4

0.2+
114

104

701 110

60 100+

50 4 90 A

801

0z

404
70

304
60 1

20 4

0.0 T
01 2

50—

Figure 1: For each generated learning task, the mean of the test MSEs achieved by the 20 runs performed for UBR and CSR.
Error bars are non-parametric 95 % confidence interval (estimated from 1000 bootstrap samples).

e we draw uniformly at random and independently valid val-
ues for {Yx }, {0k} and {yx }. These define the learning task’s
data-generating model.

e we use these parameters to generate a training set of size
N and a test set of size 10N by drawing input data points
uniformly at random from the input space and based on
those sampling an output data point from the model.

This yields a total of 150 pairs of training and test data sets*. Table 1
displays training data set sizes as well as mean (over the ten learning
tasks) goodness-of-fit measured by mean squared error (MSE) on
the respective test data set (called test MSE in the following) of a
linear model fitted to the respective training data as well as of the
data-generating model” itself.

For each learning task, we fit each of UBR and CSR to the training
data set and then compute the test MSEs. Since XCSF is a stochastic
algorithm, we have to control for the associated inherent variance
and perform 20 independent repetitions (20 different random seeds)
of this procedure. The means over the 20 test MSEs per task and
representation are displayed in Figure 1.

We can see that for input dimension 1, UBR and CSR appear to
perform very similarly whereas for input dimensions 3 and 5 some
differences are visually noticeable with UBR maybe performing

4Data sets can be found online [16].
Note that the data-generating model’s MSE is not zero due to the rules’ noise terms.

1660

Lin. Models’ MMSE ~ Gen. Models’ MMSE

K 5 10 20 5 10 20
Dx N
1 300 4.23 1.93 1.00 0.01 0.01 0.00
3 500 10.10 10.38 10.00 0.01 0.01 0.01
5 1000 16.99 15.54 15.97 0.01 0.02 0.01
10 2000 30.96 2859 29.24 0.02 0.01 0.02
20 5000 54.14 56.66 58.40 0.02 0.02 0.01

Table 1: Statistics of the XCSF study learning tasks showing
for each input space dimension Dy and number of com-
ponents K the number N of training data points generated
as well as the mean (over the 10 generated tasks) test MSE
achieved by a single linear regression model fitted to the
training data and by the data-generating model itself.

slightly worse on some of the generated tasks. For input dimen-
sions 10 and 20, the difference in test MSE performance seems to
increase even further—it is visually unambiguous that UBR has a
much higher mean test MSE than CSR on the tasks considered®.
Nevertheless, neither UBR nor CSR come even close to the MSEs
achieved by the data-generating model itself (Table 1) despite being

®Performing proper statistical tests to confirm this is out of the scope of the present
paper where we focus on how to generate data to perform such tests rather than
solving the question of when to use UBR or CSR.

allowed to use at least ten times the number of rules’ to model the
data. Also, CSR’s MSEs are not even much lower than the MSEs
achieved by the overly simple linear model (the order of magnitude
is given by the means over the 10 data sets per combination of
Dx and K provided in Table 1). This indicates that these kinds of
learning tasks may actually be quite challenging for XCSF® and
additional effort such as parameter tuning and further investiga-
tion may be necessary to achieve an acceptable fit. In addition,
UBR’s MSEs are considerably worse than the MSEs achieved by
singular linear models which hints at further problems such as
cover-delete-cycles [e.g. 18] caused by misconfiguration; and, in-
deed, when looking at XCSF’s internal rule experience parameters,
cover-delete-cycles seem likely to be the case since for a majority
of rules experience values are rather small for UBR (but not for
CSR). This is likely due to, in our experiments, initial rule sizes
being too small for UBR for higher input dimensions; yet, further
investigation and resolution of this issue is out of the scope of this
demonstration.

Since we have the ideal set of rules available (i.e. the data-
generating model), we were able to also inspect the matching
function parameters discovered by XCSF and compare them to
the parameters of the data-generating models’ matching function
parameters (i. e. the ;). We noticed that there is quite some discrep-
ancy here (even for the lower input dimension tasks where XCSF’s
performance is in a somewhat acceptable range) which definitely
warrants a closer inspection of XCSF’s modelling capabilities as
well as its evolutionary optimization process.

Learning tasks being of different difficulty for different combi-
nations of Dy and K is expected since these parameters specify
the number of parameters of the model generating the data (see
Section 3) and thus the number of parameters that a learning al-
gorithm has to fit; this effect is clearly visible from the differing
scales of the test MSEs in Figure 1. However, we can also see from
that same figure that there are considerable differences in test MSE
between different learning tasks of the same combination of D x
and K. This indicates that even for fixed D x and K, the generated
learning tasks are of significantly different difficulty and suggests
that a more thorough investigation is called for.

6 CONCLUSION AND FUTURE WORK

We have presented a principled method to benchmark explainable
if-then-rule-based models like the ones generated by metaheuristic
Rule Set Learners (MRSLs) such as Learning Classifier Systems or
Fuzzy Rule-based System. The approach is based on generating
and sampling from random data-generating processes that have
the same overall structure as the models being tested. This allows
for new ways of investigating MRSLs to be developed since it pro-
vides large amounts of data, configurability and a clear target for
metaheuristic model structure search in the form of a known data-
generating process. As a demonstration, we conducted a prelimi-
nary study that compared the effects of different rule encodings on

"We set XCSF’s population size to 200; a common rule of thumb is “ten times the
number of expected rules” which we fulfil with that number.

8Note that we also preliminarily fitted (with minimal manual tuning) a few other
kinds of learning algorithms (e. g. random forests, multi-layer perceptrons) to some
of the Dx = 20 data and that on first glance the resulting models did not perform
significantly better than the linear regression model either.

1661

the XCSF classifier system. We were able to show that our approach
works and can lead to fresh insights.

We are currently in the process of reviewing principled statistical
tools that leverage the benefits of the proposed approach. Aside
from this we are looking into how learnt rule-based models should
be scored if the data-generating process is known.

Further research is necessary, for example, into the differences
within the sets of generated learning tasks and whether the dis-
tributions that the data-generating model parameters are drawn
from require tuning (e. g. considering component overlap or overall
linearity). This includes an investigation of the difficulty of the
generated learning tasks (e. g. by baselining with different kinds of
machine learning algorithms) as well as the differences in difficulty
for a fixed combination of Dy and K. We expect that work on this
will also exhibit ways to meaningfully filter the set of learning tasks
with respect to certain characteristics.

REFERENCES

[1] Rafael Alcala, Maria José Gacto, and Francisco Herrera. 2011. A Fast and Scalable
Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-
Dimensional Regression Problems. IEEE Transactions on Fuzzy Systems 19, 4
(2011), 666—-681. https://doi.org/10.1109/TFUZZ.2011.2131657

Ester Bernado-Mansilla and Josep M. Garrell-Guiu. 2003. Accuracy-Based
Learning Classifier Systems: Models, Analysis and Applications to Classifi-
cation Tasks. Evolutionary Computation 11, 3 (09 2003), 209-238. https:
//doi.org/10.1162/106365603322365289 arXiv:https://direct.mit.edu/evco/article-
pdf/11/3/209/1493332/106365603322365289.pdf

Larry Bull and Jacob Hurst. 2003. A neural learning classifier system with self-
adaptive constructivism. In The 2003 Congress on Evolutionary Computation, 2003.
CEC °03., Vol. 2. 991-997 Vol. 2.

Martin V. Butz and Wolfgang Stolzmann. 2002. An Algorithmic Description
of ACS2. In Advances in Learning Classifier Systems, Pier Luca Lanzi, Wolfgang
Stolzmann, and Stewart W. Wilson (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 211-229.

Oscar Cordén. 2011. A historical review of evolutionary learning methods for
Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy
systems. International Journal of Approximate Reasoning 52, 6 (2011), 894-913.
https://doi.org/10.1016/j.ijar.2011.03.004

Hai H. Dam, Hussein A. Abbass, and Chris Lokan. 2005. Be Real! XCS with
Continuous-Valued Inputs. In Proceedings of the 7th Annual Workshop on Genetic
and Evolutionary Computation (Washington, D.C.) (GECCO °05). Association for
Computing Machinery, New York, NY, USA, 85-87. https://doi.org/10.1145/
1102256.1102274

Jan Drugowitsch. 2008. Design and Analysis of Learning Classifier Systems - A
Probabilistic Approach. Studies in Computational Intelligence, Vol. 139. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Michael Heider, David Pétzel, Helena Stegherr, and Jérg Hahner. 2023. A Meta-
heuristic Perspective on Learning Classifier Systems. Springer Nature Singapore,
Singapore, 73-98. https://doi.org/10.1007/978-981-19-3888-7_3

Michael Heider, Helena Stegherr, Richard Nordsieck, and Jorg Héhner.
2022. Learning Classifier Systems for Self-Explaining Socio-Technical-Systems.
arXiv:2207.02300 [cs.HC]

Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj, and Jérg Hahner.
2022. Separating Rule Discovery and Global Solution Composition in a Learning
Classifier System. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (Boston, Massachusetts) (GECCO °22). Association for
Computing Machinery, New York, NY, USA, 248-251. https://doi.org/10.1145/
3520304.3529014

John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science & Engineering 9, 3 (2007), 90-95. https://doi.org/10.1109/MCSE.2007.55
Rafael S. Parpinelli, Heitor S. Lopes, and Alex A. Freitas. 2002. An Ant Colony
Algorithm for Classification Rule Discovery. In Data Mining. IGI Global, 191-208.
https://doi.org/10.4018/978-1-930708-25-9.ch010

Richard J. Preen and David Pétzel. 2022. XCSF. https://doi.org/10.5281/zenodo.
7139881

David Pétzel. 2023. dpaetzel/run-rsl-bench: v1.0.1. https://doi.org/10.5281/zenodo.
7915821

David Patzel. 2023. dpaetzel/syn-rsl-benchs: v1.0.0. https://doi.org/10.5281/zenodo.
7919420

David Patzel. 2023. Synthetic Datasets from the 2023 ECXAI Workshop Paper on
Principled Benchmarking for Rule Set Learning Algorithms. https://doi.org/10.

—_
&,

B3

[4

[

[10

(1]

[12

=
&

[14

[15

[16

https://doi.org/10.1109/TFUZZ.2011.2131657
https://doi.org/10.1162/106365603322365289
https://doi.org/10.1162/106365603322365289
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/11/3/209/1493332/106365603322365289.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/11/3/209/1493332/106365603322365289.pdf
https://doi.org/10.1016/j.ijar.2011.03.004
https://doi.org/10.1145/1102256.1102274
https://doi.org/10.1145/1102256.1102274
https://doi.org/10.1007/978-981-19-3888-7_3
https://arxiv.org/abs/2207.02300
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.4018/978-1-930708-25-9.ch010
https://doi.org/10.5281/zenodo.7139881
https://doi.org/10.5281/zenodo.7139881
https://doi.org/10.5281/zenodo.7915821
https://doi.org/10.5281/zenodo.7915821
https://doi.org/10.5281/zenodo.7919420
https://doi.org/10.5281/zenodo.7919420
https://doi.org/10.5281/zenodo.7919492
https://doi.org/10.5281/zenodo.7919492

5281/zen0do.7919492 New York, NY, USA, 1854-1860. https://doi.org/10.1145/1276958.1277326

[17] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann [21] Ole Tange. 2020. GNU Parallel 20200822 ('Beirut’). https://doi.org/10.5281/zenodo.
Publishers Inc., San Francisco, CA, USA. 3996295
[18] Patrick O. Stalph, Xavier Llora, David E. Goldberg, and Martin V. Butz. 2012. [22] Ryan J. Urbanowicz and Will N. Browne. 2017. Introduction to Learning Classifier
Resource management and scalability of the XCSF learning classifier system. Systems. Springer. https://doi.org/10.1007/978-3-662-55007-6
Theoretical Computer Science 425 (2012), 126-141. [23] Michael L. Waskom. 2021. seaborn: statistical data visualization. Journal of Open
[19] Christopher Stone and Larry Bull. 2003. For Real! XCS with Continuous-Valued Source Software 6, 60 (2021), 3021. https://doi.org/10.21105/joss.03021
Inputs. Evolutionary Computation 11, 3 (Sep 2003), 299-336. [24] Stewart W. Wilson. 1995. Classifier Fitness Based on Accuracy. Evolutionary
[20] Kreangsak Tamee, Larry Bull, and Ouen Pinngern. 2007. Towards Clustering with Computation 3, 2 (1995), 149-175.
XCS. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com- [25] Stewart W. Wilson. 2002. Classifiers that approximate functions. Natural Com-
putation (London, England) (GECCO °07). Association for Computing Machinery, puting 1,2 (01 6 2002), 211-234. https://doi.org/10.1023/A:1016535925043

1662

https://doi.org/10.5281/zenodo.7919492
https://doi.org/10.1145/1276958.1277326
https://doi.org/10.5281/zenodo.3996295
https://doi.org/10.5281/zenodo.3996295
https://doi.org/10.1007/978-3-662-55007-6
https://doi.org/10.21105/joss.03021
https://doi.org/10.1023/A:1016535925043

	Abstract
	1 Introduction
	2 Metaheuristic Rule Set Learning
	3 Generating learning tasks and data sets for benchmarking MRSL
	4 Benefits of this approach
	5 Demonstration
	6 Conclusion and future work
	References

