
Predicting Physical Disturbances
in Organic Computing Systems Using

Automated Machine Learning

Markus Görlich-Bucher(B), Michael Heider, and Jörg Hähner

Organic Computing Group, University of Augsburg, Augsburg, Germany
{markus.goerlich-bucher,michael.heider,joerg.haehner}@uni-a.de

https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/oc/

Abstract. Robustness against internal or external disturbances is a key
competence of Organic Computing Systems. Hereby, a rarely discussed
aspect are physical disturbances, therefore, failures or breakdowns that
affect a systems physical components. Before experiencing such a dis-
turbance, physical components may show various measurable signs of
deterioration that might be assessed through sensor data. If interpreted
correctly, it would be possible to predict future physical disturbances
and act appropriately in order to prevent them from possibly harming
the overall system. As the actual structure of such data as well as the
behaviour that disturbances produce might not be known a priori, it is of
interest to equip Organic Computing Systems with the ability to learn to
predict them autonomously. We utilize the Automated Machine Learning
Framework TPOT for an online-learning-inspired methodology for learn-
ing to predict physical disturbances in an iterative manner. We evaluate
our approach using a freely available dataset from the broader domain
of Predictive Maintenance research and show that our approach is able
to build predictors with reasonable prediction quality autonomously.

Keywords: Organic Computing · Automated Machine Learning ·
Predictive Maintenance

1 Introduction

Organic Computing (OC) [9] is intended to solve the increasing complexity in
information- and communication technology by allowing systems to freely adapt
and organize themselves. OC-based systems are expected to involve various kinds
of sensors and actuators and are explicitly designed to cope with plenty differ-
ent types of real-world scenarios and use-cases. A notable focus in OC research
over the last years lies on investigating how OC systems can be built to be
robust, therefore, to remain functioning within a desired range of performance
even though various kinds of internal or external disturbances may appear [14]
Hereby, most of the existing research focuses on software-sided disturbances.

https://doi.org/10.1007/978-3-031-42785-5_4

49

Only few works on how to deal with hardware-sided disturbances, termed physi-
cal disturbances throughout this work, exist, although being a serious, yet unre-
solved problem in OC, as outlined in [6]: A damaged actuator, for example,
remains damaged until it is repaired or exchanged and may affect the overall
performance of the entire system. Although human repair works may be neces-
sary to replace broken hardware, it may indeed be possible and useful to reduce
the amount of human participation to an absolute minimum. In order to do
so, it is necessary to be able to predict when future physical disturbances will
happen. This could allow the OC system to estimate how long it will be able to
function in a desired way, therefore, to assess how long it will be robust. In order
to be able to predict upcoming physical disturbances, it is both necessary to col-
lect a suitable amount of training data as well as to choose a suitable Machine
Learning (ML) algorithm depending on the overall structure and type of the
collected data. As OC systems are intended to move design-time decisions to
runtime, it is not possible to choose an appropriate algorithm a priori. We sug-
gest the utilization of an Automated Machine Learning (AutoML) framework
for overcoming this issue. AutoML-approaches are intended to automatically
choose and parametrize an appropriate ML algorithm based on the given input
data, as well as to incorporate necessary data preprocessing steps. In this work,
we present an AutoML-based approach for predicting upcoming physical dis-
turbances using the Tree-based Pipeline Optimization Toolkit (TPOT) [10]. We
present an iterative process that gathers measurements from the OC systems’
hardware components and utilizes TPOT to continuously learn and optimize
until a desired prediction quality is reached.

The remainder of this paper is structured as follows. In Sect. 2, we give a
brief overview on existing related research from the field of OC as well as the
related field of Predictive Maintenance. Furthermore, we refer to various existing
AutoML frameworks. Afterwards, we provide a more detailed motivation of the
underlying problem of this work and provide a brief introduction to TPOT in
Sect. 3. We thoroughly explain our approach in Sect. 4 before evaluating it using
a simple smart factory scenario in Sect. 5. We conclude with a short outlook on
possible future work in Sect. 6.

2 Related Work

There are several aspects in OC research that are relevant to our work. First
of all, the concept of robustness, as already mentioned in the introduction, is
related to the occurrence of disturbances. A contemporary approach on measur-
ing robustness can be found in [14]. The latter work also gives a good introduction
on this topic in general. Quite similar is the self-x property self-healing, there-
fore, the ability of an OC system to resolve disturbances by taking appropriate
countermeasures. However, existing research on self-healing mostly focuses on
healing software-sided disturbances, e.g. in [12]. Finally, various ML approaches
have been utilized in OC research so far. Hereby, the XCS classifier system
(XCS) [3] as well as some of its derivates have gained plenty of attention in the

50

OC community. However, they are mostly utilized to learn appropriate control
strategies based on the current situation in the underlying System. We refer
to [13] for a broader introduction to the usage of XCS in OC, as well as for an
overview of other ML techniques used in OC so far.

Predictive Maintenance (PdM), sometimes also termed as Condition-based
Maintenance is a quite active area of research in various other scientific disci-
plines. Especially over course of the last years, ML techniques have gained an
important role in PdM research. We refer to [4] for a more detailed introduc-
tion and broader overview on current research in this topic. A notable difference
between our proposed approach and PdM concepts lies in the inherent design-
time to runtime idea of OC: ML methodologies are usually developed with a
notable amount of domain knowledge, their applicability can be tested and eval-
uated thoroughly. Contrary, utilizing ML for predicting hardware failures in OC
necessitates methodologies that do not rely on such optimal conditions.

AutoML has become a quite active domain of research over the course of the
last years, too. Various state-of-the-art frameworks make use of Bayesian Opti-
mization in order to optimize both chosen algorithms and preprocessing steps
as well as their hyperparameters. A contemporary survey on various AutoML
frameworks is given in [17].

3 Prerequisites

The overall system model can be briefly described as follows: We assume a Sys-
tem under Observation and Control (SuOC) controlled by a Control Mecha-
nism (CM), for example an instance of the Multi-Layer Observer Controller -
architecture [15]. The SuOC is associated with a set of various components C.
Here, a component refers to possible sensors and actuators an OC system may be
associated with in order to interact with its surrounding environment. However,
the term sensors and actuators does not necessarily refer to sensors or actuators,
but could also be taken as a description for more sophisticated components or
machinery involving both of them, i.e. soft-sensing mechanisms.

We assume that the CM is able to assess individual health states for each
single component c ∈ C at each discrete timestep t. This means that the CM
is able to decide wether a component is functioning or defective (therefore dis-
turbed) at timestep t. This can happen, for example by a component shutting
down after an error, meaning that the CM can no longer gather data from it, or
by an utility metric measuring the system performance that suddenly decreases.

We assume that a component is able to return some sort of status infor-
mation or internal sensor readings somehow reflecting the internal state of a
component. The term internal sensor readings should not be confused with sen-
sors an OC system is equipped with for interacting with its environment: The
former refers to measuring, as explained, the internal state of a component, the
latter refers to a designated component that is used to assess the environment.
Under the assumption that the gathered measurements reflect the actual phys-
ical state of the component, this information appears useful to predict future

51

physical disturbances: If an upcoming physical disturbance is known a priori,
the CM might be able to proactively take countermeasures to ensure a robust
system state. The OC approach of moving design-time decisions to runtime can
yield various problems at this point: It is not known in advance how the gath-
ered data may look like. There exist scenarios where one has to expect quite
simple, structured data (e.g. vibration and temperature sensor measurements in
a simple mechanical machinery). On the other hand, there may exist scenarios
where the gathered information is quite complex (e.g. images of produce taken
by a camera installed for quality assurance purposes). Also, the data can be
enriched with information actually useless for predicting physical disturbances.
This can necessitate different types of machine learning algorithms as well as var-
ious possible preprocessing steps depending on structure and type of the incom-
ing data. Finally, it is also necessary to determine suitable hyperparameters for
the used algorithms - a non-trivial task requiring an appropriate amount of data
for training and testing purposes. Accordingly, traditional OC-related learning
paradigms such as XCS appear inappropriate for this kind of learning problem,
as they are not necessarily applicable to e.g. unprocessed, high-dimensional or
unstructured data. More precise, XCS is a single learning paradigm, whereas the
described learning problem may necessitate multiple different suitable learning
algorithms, depending on the actual data available within specific scenario. We
therefore focus on methods from the broader field of AutoML in order to tackle
previously motivated problem. Within the scope of this work, we use the TPOT
framework as an AutoML framework, as it is based on Genetic Algorithms—a
class of optimization heuristics that are commonly used in OC.

The overall idea of TPOT is to utilize Genetic Programming (GP) [1] for
building and optimizing ML pipelines. TPOT is able to use various preprocessing
and decomposition algorithms, feature selectors as well as actual ML models
as operators. The operators are combined in tree-based structures. Both the
structure of these trees as well as the parameters of the chosen operators are
evolved by means of GP: In the very beginning, a population of such tree-based
individuals is generated randomly. Each individual is trained and tested using an
appropriate train/test-split of the given training data. Using a suitable selection
scheme, some of the individuals are chosen for breeding or applying genetic
operators, such as crossover, for the next generation of the population. From
generation to generation, TPOT is able to iteratively generate and optimize
ML pipelines for the given data. As a broader introduction would be beyond
the scope of this work, we refer to [10] for a more detailed explanation of the
individual parts of TPOT, as well as for an evaluation of the approach on several
datasets from the UCI machine learning repository.

4 Methodology

Our overall approach is divided in three phases: Right after setting up the OC
system, the BOOTSTRAP -phase takes place. It is used to collect an initial
amount of training data that is (presumably) sufficient enough to train a first

52

pipeline. As this goal is reached, the system changes to the OPTIMIZATION -
phase. In this phase, pipelines are trained in an iterative manner at certain dis-
crete timesteps until the system reaches a desired prediction quality. Afterwards,
the system switches to the PRODUCTION -phase, where the actual predictions
of the trained pipeline should be used by the CM in order to cope with upcoming
disturbances.

In order to simplify the following explanations, we assume that all compo-
nents in C are of the same type (in order to allow the CM to use gathered data
from all components for training one ML pipeline that is used to predict distur-
bances in all components). Of course, OC systems presumably feature various
different kinds of components. Accordingly, in an actual real-world scenario, the
CM would conduct the following process individually for each type of component
existing in its SuOC.

4.1 Data Collection and Labeling

At each discrete timestep t, the CM gathers a row of sensor readings for each
component ci ∈ C and saves them for later use. Additionally, the CM examines
the current physical state of each component ci ∈ C.

If the CM identifies a component ci as broken, it recalls all sensor mea-
surements gathered for ci since the component’s last breakdown (or since the
installation of the overall system, if no breakdown for the corresponding compo-
nent happened before), resulting in a set of chronologically ordered rows for ci.
Afterwards, all rows that are younger than a certain threshold Θpred are labeled
as positive, all other rows are labeled as negative. Θpred can be described as the
desired prediction horizon for predicting upcoming breakdowns: If the trained
learner is able to make perfect predictions, an upcoming disturbance would be
predicted Θpred timesteps in advance. The choice of a suitable Θpred is not a
trivial task and may depend on various aspects that might not be known a pri-
ori. For now, we assume that Θpred is given in advance (e.g. during setting up
the corresponding system). After the data is collected and labeled, ci is reported
to the CM, e.g. for repair or maintenance operations. This overall functionality
is refered to as labelAndRepair() in the algorithms later on.

At the end of a timestep, all collected sets of data rows are merged. After-
wards, a train/test-split is applied to the merged data: The major amount of
collected data is added to the training dataset Dtrain. The minor amount is
added to the test holdout dataset Dtest. The split is done proportional to the pos-
itive/negative labels (that is, the proportion of positives and negatives among
the data added to the training set is the same as for those added to the test
holdout set). The intuition behind these sets is as follows: Dtrain is used as data
for training actual AutoML pipelines. Dtest, on the other hand, is used as previ-
ously unseen data to validate the results of the trained pipelines after they are
optimized. Both sets are extended with novel training (respectively testing) data
each time a component breaks. We refer to this functionality as consolidate-

Data() in the algorithms later on.

53

4.2 Bootstrap Phase

The goal of the Bootstrap Phase is to gather enough data for training a first
pipeline for predicting future disturbances. Here, the term enough data should be
taken as a rough estimate rather than an explicit boundary: Deciding if enough
data for training a machine learning algorithm exists is not a trivial task and
of subordinate importance for our overall approach. The idea of the bootstrap
phase is just to avoid too early trainings that can lead to irritating results: For
example, we found that training a pipeline with very few examples can lead to
unrealistic good results during the first training episodes in our evaluation. The
trained pipeline apparently overfits on the training data. As both the training
data as well as the test data holdout are sampled from very few components in
the beginning, the test holdout dataset did not indicate an overfitting—leading
to very good results which later on declined iteratively, as more and more data
is added to both datasets.

Accordingly, nothing except the previously explained data collection and
labeling takes place during the bootstrap phase. Whenever a component fails, its
collected measurements are labeled and, at the end of a timestep, split and added
to Dtrain and Dtest respectively. We furthermore assume that the component is
repaired afterwards, allowing the CM to collect data from this component again.
At the end of each timestep, it is assessed if enough training data was collected
as shown in Algorithm 1.

Algorithm 1. isBootstrapDone()

1: function isBootstrapDone()

2: if |Dtrain+| ∗ Θsr/ Fib(fp) >= d and |Dtrain−| ∗ Θsr/Fib(fp) >= d then
3: return true
4: else
5: return false

Here, |Dtrain+| and |Dtrain−| refer to the number of positive (or negative)
training data rows available. Θsr determines the sample ratio and is a fixed
multiplier set in advance. Fib(i) is a function returning the ith element from a
list of Fibonacci numbers. The purpose of the variable fp (Fibonacci pointer) and
the corresponding list of Fibonacci numbers is explained in the next subsection.
Finally, d refers to the dimensionality of the used input data. The idea of the
isBootstrapDone() is as follows: It is checked if both the amount of positive
labeled training data as well as negative labeled training data lies above a certain
threshold. This threshold is calculated using a simple heuristic based on a fixed,
predefined sample ratio, a variable Fibonacci number as well as dimensionality of
the used data. The Bootstrap phase ends once these conditions hold by executing
the first training and starting the optimization phase.

54

4.3 Optimization Phase

The optimization phase is meant to iteratively train ML pipelines using TPOT
and continuously assess their performance, until the latter reaches an acceptable
level for beeing used productively. The corresponding algorithm is shown in
Algorithm 2.

Algorithm 2. Optimization phase
1: function optimization()

2: for c in C do
3: if isBroken(c) then
4: labelAndRepair(c)
5: evaluateMachine(c)
6: consolidateData()
7: if nextTrainingNecessary() then
8: training()
9: if isOptimizationDone() then

10: production()

The overall procedure is as follows: Upon entering the optimization phase,
the method train() is called in order to train a first usable pipeline, as shown
in Algorithm 2 in the previous subsection. It should be denoted that the training
happens during the current discrete timestep, accordingly, ending the Bootstrap
phase, entering the Optimization phase and training the first pipeline happens
at the end of the same timestep. Afterwards, the system still continues to gather
labeled data similar to the Bootstrap phase. The method evaluateMachine()

is used to evaluate the performance of the current trained TPOT instance on
the (labeled) data of the newly broken component, therefore, to assess how good
the performance of the instance would have been in an (actual) productive sce-
nario. The calculated score is saved internally. Furthermore, if enough data was
gathered, the method calculates the moving average for the last ΘOptWindow

scores that have been recorded. The moving average is appended to the list
movingAverageScores, which then acts as a rolling window to assess how the
overall performance changes over time. At the end of each timestep, measure-
ments from newly broken components are added to the corresponding data
sets. Besides, it is checked if another retraining is necessary using nextTrain-

ingNecessary(). If this is the case, training() is called again. Finally, isOp-

timizationDone() is called in order to assess if the Optimization phase can
come to an end. The individual functions are explained in the following.

Algorithm 3 shows the Train()-method. First of all, in line 2, the existing
training data in Dtrain is divided into k stratified folds or splits used internally
in TPOT for training and testing. Actually, TPOT would be able to split the
training data for cross-validation (CV) purposes internally. The reason why this
is done in advance follows in line 3 and line 4: Due to the high class imbalance,

55

Algorithm 3. train()
1: function train()

2: splits := StratifiedKFold(Dtrain)
3: for trainSplit in splits do
4: SMOTEENN(trainSplit)
5: newLearner := fitTpot(splits)
6: if currentLearner is not null then
7: newPrediction := newLearner.predict(Dtest)
8: currentPrediction := currentLearner.predict(Dtest)
9: if score(newPrediction) > score(currentPrediction) then

10: currentLearner := newLearner
11: fp := fp - 1
12: else
13: fp := fp + 1
14: else
15: currentLearner := newLearner
16: fp := fp - 1

TPOT tends to overfit on the majority class, as we found out in some preliminary
test runs. In order to cope with this issue, we integrated suitable over- and
undersampling methods. We used the SMOTEENN-algorithm, a combination of
SMOTE and Edited Nearest Neigbours (ENN) [2]. Applying SMOTEENN on
the whole training data and letting TPOT create the CV-folds by itself would
lead to synthetical data within the (internal) test splits. The internal test splits
need to be as imbalanced as the (expected) data the pipeline is confronted with
afterwards in order to avoid biasing the chosen scoring function. Accordingly,
only those splits that are used as training data afterwards are altered. After the
data augmentation is done, a new TPOT instance is created and fitted using
the splits in Line 5. The pipeline created by the new TPOT instance is now
used to create predictions for the existing test holdout set Dtest. Additionally,
the last TPOT instance (that is: the TPOT instance that was created in the
previous training run) is also used to create predictions for Dtest. Afterwards, a
scoring function is applied to both predictions in order to determine if the last
instance or the newly trained one performs better on the test holdout dataset. If
the newly trained instance performs better, it is saved and the previous instance
is discarded. Additionally, the Fibonacci pointer fp is decremented. If the older
instance performs better than the newly trained one, the latter is discarded and
fp is incremented. This also happens when no previously trained instance exists.

The idea of incrementing/decrementing the Fibonacci pointer followed our
first preliminary experiments, where we found that rather short training intervals
do not show any notable change in performance. Moreover, it could happen that
a newly trained pipeline performs worse than the previous one. The idea of the
Fibonacci pointer is to introduce some sort of adaptive threshold for deciding if a
retraining is necessary: Increasing the pointer leads to a longer interval until the
next retraining, reflecting the case that no increased performance was reached

56

in the current training. Decreasing it leads to a shorter interval, as obviously the
size of the previous interval was sufficient to increase the prediction performance.
In general, the overall method would also work with fixed intervals, as a new
training does not depend on the previous training. However, as the trainings are
quite time expensive, it is of interest to reduce the overall number of trainings.
Fibonacci numbers as multiplicator for the intervals show favourable character-
istics. Their slope is larger compared to linear functions, which avoids smaller
training intervals and thus expensive training cycles. Furthermore, its slope is
smaller than a quadratic functions which would grow too quick. The influence of
the Fibonacci pointer can be seen in the nextTrainingNecessary() method,
shown in Algorithm 4.

Algorithm 4. nextTrainingNecessary()

1: function nextTrainingNecessary()

2: if (|Dtrain+| − |D−1
train+|) · Θsr/F ib(fp) >= d and (|Dtrain−| − |D−1

train−|) ·
Θsr/F ib(fp) >= d then

3: return true
4: else
5: return false

The algorithm is quite similar to Algorithm 1 that is used to decide if the
bootstrap phase shall end. The only difference here is the usage of |D−1

training+|
and |D−1

training−|, referring to the amount of positive (and negative) training
samples that were available during the last training. Therefore, it is investigated
if the amount of training data gathered since the last training exceeds a certain
threshold, again determined by the fixed sample ratio Θsr and the a Fibonacci
number gathered through the previously explained Fibonacci pointer.

Finally, Algorithm 5 shows the algorithm that is used to decide if the opti-
mization phase has come to an end.

Algorithm 5. isOptimizationDone

1: function isOptimizationDone()

2: for i=1 to ΘOptWindow do
3: if movingAverageScores[-i] < ΘOptThreshold then
4: return false
5: return true

The method uses the moving average score list that is extended each time
a physical disturbance occurs, as previously explained. If the last ΘOptWindow

scores lie above a predefined threshold ΘOptThreshold, the optimization phase
ends, as TPOT is now able to provide predictions that are considered good
enough for the CM to be used for assessing the SuOC’s future state. At the end
of the corresponding timestep, the production phase starts.

57

4.4 Production Phase

The overall goal of the production phase is to use TPOT to predict upcom-
ing physical disturbances, report those to the CM and to continuously assess
if TPOTs performance is still acceptable. The procedure executed after each
timestep is shown in Algorithm 6.

Algorithm 6. Production Phase
1: function production()

2: for c in C do
3: if isBroken(c) then
4: labelAndRepair(c)
5: evaluateMachine(c)
6: else if c.mode == EXPLOIT then
7: prediction := currentTpot.predict(c)
8: if prediction := true then
9: reportPrediction(c)

10: consolidateData()
11: if nextTrainingNecessary() then
12: training()
13: resampleExploreExploit()

The algorithm is quite similar to the optimization phase. The major dif-
ference is that each component in C is associated with a mode that can be
either EXPLOIT or EXPLORE. If a component is set to EXPLOIT, TPOT is
used to predict whether the component c is expected to break or not, as can
be seen in Line 6. If so, the CM is informed by calling reportPrediction().
It is now up to the CM to decide on proper countermeasures, e.g. by repairing
or changing c in advance. Components set to EXPLORE are not considered
in the predictions: Their purpose is to run until being hit by a physical dis-
turbance. This makes it possible to continuously assess if the TPOT instance
still makes acceptable predictions. The same obviously holds for components
set to EXPLOIT that break without the disturbance being predicted properly.
For now, nextTrainingNecessary() and training() in Line 11 and 12 fol-
low the functionality they have in the optimization phase: Data is gathered,
another training run is started, and if the prediction performance of the current
TPOT instance declines, it is replaced by a newly trained one. However, it is
also conceivable to, for example, return to the optimization phase if the per-
formance drops below a certain threshold. Another possible option would be to
adapt the ratio between EXPLOIT and EXPLORE towards more machines set
to EXPLORE in order to speeden up the learning process, if necessary. Finally,
the method resampleExploreExploit() is called to resample the distribu-
tion of EXPLORE, respectively EXPLOIT -modes among all components in C.
The ratio between the two modes is set in advance. A rather small number of
EXPLORE components appears suitable in order to allow the overall system to
benefit from the predictions made for the EXPLOIT components.

58

5 Evaluation

The overall evaluation scenario is structured as follows. The SuOC consists of
5 components in form of identical production machines. In general, any other
number of components would be applicable too - with lesser components, the
overall process would take longer, with more components, is would be faster. We
assume that the CM is able to assess if a machine is working properly or is broken.
In the given scenario, this could be the case by assessing the number of work-
pieces a machine produces in a discrete timestep. Furthermore, each machine
delivers various internal measurements that can be used to assess its internal
state. Additionally, no configuration changes or other disturbances except actual
machine breakdowns will take place, resulting in a quite simple evaluation sce-
nario. The Azure AI Predictive Maintenance Dataset1 was used for simulating
the measurements from the individual machines. The dataset consists of 4 differ-
ent machine types in total, type number 1 was used throughout this evaluation.
The CSV-files in the dataset were preprocessed such that a single CSV-file exists
for each machine in the dataset (containing measurements from installation until
breakdown in chronologial order). Incomplete traces (that is, machines without
breakdowns and machines that were repaired although no breakdown happened)
were removed. Furthermore, the error column was removed, therefore, the only
measurements available are volt, rotate, pressure and vibration. This results in
a total of 672 machines. The 5 components of the SuOC are equipped with 5
uniformly chosen machine CSV-files. A component is regarded as broken when
the corresponding CSV-file reaches its last row. The component is then repaired
in the next timestep by replacing the CSV-file by a newly sampled one.

5.1 Implementation and Parametrisation

We implemented our approach using Python as well as the original TPOT imple-
mentation [10]. Scikit-learn [11] was used for the stratified cross validation as
well as for the scoring functions. Furthermore, the SMOTEENN-implementation
from the imblearn library [8] was used. If not stated otherwise, the default
parametrizations for the algorithms were used.

We used the balanced accuracy as a scoring function both internally in TPOT
as well as afterwards for scoring in our own implementation due to the imbal-
anced nature of the available data: As the balanced accuracy is defined as the
mean between sensitivity and specificity, it is less vulnerable to false predictions
of the minority class, at least compared to the non-balanced accuracy metric.
TPOT was configured with 10 generations, a population size of 25 and an early
stopping of 2. This results in TPOT stopping the optimization process if no
progress was made after 2 generations. At this point, it should be mentioned
that TPOT features a warmstart-function. This allows TPOT to use the last
population as a start population for a new run, however, we found that this

1 https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-
maintenance.

https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance
https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance

59

leads to a notably worse performance compared to starting with a complete new
population each time, therefore, we did not use it.

The fixed sample ratio Θsr was set to 0.025. The optimization threshold
ΘoptThreshold as well as the optimization sliding window size ΘoptWindow were
set to 0.9 and 20, respectively. The Fibonacci pointer fp was set to 5 for the
bootstrap phase, resulting in the number 8. Additionally, we limited the fp to
6 to make sure the variable amount of the retraining interval does not get too
large. The split between Dtrain and Dtest was set to 0.9/0.1.

We evaluated 20 repetitions with different, fixed random seeds. Each repeti-
tion was limited to 80000 timesteps. The production phase was limited to 5000
timesteps, therefore, once the algorithm reaches production, it continues to run
for another 5000 timesteps.

As a simple baseline, we used a naive Random Forest Classifier (RF) with
sklearn-default parameters. The rest of the algorithm remains the same, therefore
instead of TPOT, RF instances were trained.

5.2 Results

In order to give an idea how the overall procedure behaves over time, a single
repetition is depicted in Fig. 1. The graph shows the behaviour of TPOT over
the course of the execution. Single Component refers to the scoring that is done
after a component broke, smoothed over 50 steps. Current TPOT and Newly
Trained TPOT show the scores for the predictions on Dtest in Line 7 and Line
8 from Algorithm 3. Figure 2 shows a similar experiment using RF classifiers.

We evaluated the balanced accuracy for all components broke during the
production phase. As explained earlier, the idea of the balanced accuracy is to
compensate the class imbalance in the dataset: In a worst-case scenario, the
simple, non-balanced accuracy score can show quite good results when the ML
algorithm simply classifies all incoming samples as the majority class, as the
(wrong predictions) for the minority class simply have a unsignificant influence
on the result. If the production phase was not reached, the last 5000 timesteps of
the optimization phase were used. A mean balanced accuracy of 0.865±0.047 was
reached by the TPOT-based approach, the RF runs achieved values of 0.816 ±
0.027. The optimization phase of the former takes an average of 44829 timesteps,
while the latter takes an average of 67741 timesteps. As the data appears to
be not normally distributed according to a performed Shapiro-Wilk-test, both
evaluated measurements were tested on significance using a Wilcoxon-rank-sum-
test. It showed that the TPOT-based approach was able to reach a significantly
better performance than the RF (with a p-value of 0.00043). Furthermore, it
took significantly less timesteps to reach the production phase (with a p-value
smaller than 0.00001).

60

Fig. 1. A single TPOT-based run Fig. 2. A single RF-based run

5.3 Discussion

The results show that our approach is indeed able to achieve an acceptable
prediction quality in a comparable amount of time. However, as the naive RF-
classifier also reaches quite comparable results, one cannot necessarily state that
the utilization of an AutoML framework intuitively leads to a superior per-
formance. Rather, one can suspect that the chosen dataset is of quite simple
structure, therefore, the RF-classifier is able to learn it without sophisticated
preprocessing steps.

The Azure AI Predictive Maintenance Dataset is used in various other ML-
related research work on PdM. In order to give an idea what performances are pos-
sible with manually optimized ML pipelines in general, a brief overview on suitable
references is given in the following. Gęca [5] investigated several ML algorithms on
the dataset. Various preprocessing (such as calculating statistical measures and
including them in the data, as well as normalizing the whole dataset) was con-
ducted. The labeling was done similar to our approach, a prediction window of
24 h was used. Most of the algorithm evaluated were able to reach an accuracy of
over 0.99, with a Gradient boosting machine reaching 0.9993. Similar results were
achieved by Hrnjica et. al. [7]. An accuracy of 0.948 was reached by their approach
for the first machine type, also using 24 h as a prediction window and a gradient
boosting manchine. However, a direct comparison of these results to our approach
must be taken with caution: First of all, there is a quite obvious methodological
difference between iterative online learning and an offline learning setting, when
taking the amount of data a learner can use into account. Besides, both papers use
a different prediction horizon. Furthermore, they do not use the balanced accuracy,
which we do in order to compensate the class imbalance in the dataset. However,
they provide solid precision and recall values, which at least allows the assumption
that their approaches are able to deal with the class imbalance properly.

6 Conclusion and Outlook

In this paper, we presented a novel approach on learning to predict disturbances
of physical nature in Organic Computing systems, or, to be more precise, in

61

the SuOC controlled by an OC-based CM. We motivated the advantages of
AutoML-methodologies for such an use-case over ML-approaches used in existing
OC-research so far. We introduced and explained our TPOT-based approach
and evaluated it with a simple Smart Factory-simulation scenario. We showed
that our approach is indeed able to learn to predict physical disturbances in an
automated manner, with suitable prediction quality and better than a simple
random forest-based approach. However, taking existing research work using
the Azure PdM dataset into account, it can be suspected that a significantly
better prediction quality could be possible–at least under the assumption, that
a balanced accuracy score for both works shows a similar performance. A In
order to investigate if the results from these papers are indeed as good as they
appear, it is necessary to manually build and optimize a suitable ML pipeline
using the balanced accuracy as a scorer. By doing so, it would be possible to
assess how well the AutoML-based methodology performance compared to what
is generally possible for the dataset.

As a next step, we plan to evaluate the overall concept using other AutoML-
frameworks as well as Neural Architecture Search–based frameworks like AutoK-
eras. Furthermore, it is of interest to evaluate our approach using other datasets
from the broader domain of PdM. Especially more complex dataset than the one
used in the evaluation provided here will be necessary to investigate if the over-
all methodology can benefit from AutoML-based approaches. Hereby, a notable
focus could lie on noise or wrong sensor readings. Besides, we plan to investigate
how the parameters of our own methodology as well as the parametrisation of
TPOT (or any other AutoML-framework we employ in the future) affects the
overall prediction quality. Another interesting question is how the approach deals
with an upcoming concept drift [16]: Intuitively, the continuous assessment in the
production phase would lead to more frequent trainings if the existing pipelines
increasingly fail on novel, drifted data. This would be a quite interesting aspect,
as it can be expected that OC-related real world scenarios, due to their approach
to adapt to changes, would involve some sort of drift. Another interesting aspect
would be a further investigation of the actual pipelines generated by TPOT
in terms analyzing if e.g. common patterns or algorithms are evolved. Finally,
the evaluation in this work relates to a quite optimistic real-world setting: The
(internal) sensor data from components in a SuOC might not always be reliable.
Accordingly, additional methodologies for validating the information gathered
for the AutoML-algorithms might be necessary. This would include mechanisms
to actually identify already disturbed components in a reliable manner, in order
to provide a correct labeling for the learning process.

References

1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An
Introduction: on the Automatic Evolution of Computer Programs and its Appli-
cations. Morgan Kaufmann Publishers Inc., Burlington (1998)

62

2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several meth-
ods for balancing machine learning training data. ACM SIGKDD Explor. Newsl
6(1), 20–29 (2004)

3. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Soft. Comput. 6(3),
144–153 (2002)

4. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G.:
A systematic literature review of machine learning methods applied to predictive
maintenance. Comput. Ind. Eng. 137, 106024 (2019)

5. Gęca, J.: Performance comparison of machine learning algotihms for predic-
tive maintenance. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie
Środowiska 10 (2020)

6. Görlich-Bucher, M.: Dealing with hardware-related disturbances in organic com-
puting systems. In: INFORMATIK 2019. Gesellschaft für Informatik eV (2019)

7. Hrnjica, B., Softic, S.: Explainable AI in manufacturing: a predictive maintenance
case study. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G.,
Romero, D. (eds.) APMS 2020. IAICT, vol. 592, pp. 66–73. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-57997-5_8

8. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365

9. Müller-Schloer, C., Tomforde, S.: Organic Computing-Technical Systems for Sur-
vival in the Real World. Springer, Cham (2017)

10. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-
based pipeline optimization tool for automating data science. In: Proceedings of
the Genetic and Evolutionary Computation Conference 2016, pp. 485–492. GECCO
2016, ACM, New York, NY, USA (2016)

11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

12. Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Ungerer, T.: Using an automated
planner to control an organic middleware. In: 2011 IEEE Fifth International Con-
ference on Self-Adaptive and Self-Organizing Systems, pp. 71–78. IEEE (2011)

13. Stein, A.: Reaction learning. In: Organic Computing - Technical Systems for Sur-
vival in the Real World, pp. 287–328. Springer (2017)

14. Tomforde, S., Kantert, J., Müller-Schloer, C., Bödelt, S., Sick, B.: Comparing the
effects of disturbances in self-adaptive systems - a generalised approach for the
quantification of robustness. In: Nguyen, N.T., Kowalczyk, R., van den Herik, J.,
Rocha, A.P., Filipe, J. (eds.) Transactions on Computational Collective Intelligence
XXVIII. LNCS, vol. 10780, pp. 193–220. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78301-7_9

15. Tomforde, S., et al.: Observation and control of organic systems. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds.) Organic Computing-A Paradigm Shift for
Complex Systems, vol. 1, pp. 325–338. Springer, Basel (2011). https://doi.org/10.
1007/978-3-0348-0130-0_21

16. Wang, S., Schlobach, S., Klein, M.: What is concept drift and how to measure
it? In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp.
241–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16438-
5_17

17. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning
frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)

https://doi.org/10.1007/978-3-030-57997-5_8
http://jmlr.org/papers/v18/16-365
https://doi.org/10.1007/978-3-319-78301-7_9
https://doi.org/10.1007/978-3-319-78301-7_9
https://doi.org/10.1007/978-3-0348-0130-0_21
https://doi.org/10.1007/978-3-0348-0130-0_21
https://doi.org/10.1007/978-3-642-16438-5_17
https://doi.org/10.1007/978-3-642-16438-5_17

	 Preface
	 Organization
	Keynote Talks
	 Reconfigurable Technologies in HPC and Data-Centers. Challenges and Opportunities
	 Optimizing the Memory Access Path Across the Computing Stack
	 Contents

	Accelerating Neural Networks
	Energy Efficient LSTM Accelerators for Embedded FPGAs Through Parameterised Architecture Design
	1 Introduction
	2 Related Work
	3 LSTM Background
	4 Solution Design
	4.1 8-Bit Fixed-Point Quantisation
	4.2 Activation Function Optimisation
	4.3 ALU Optimisation

	5 Implementation
	5.1 Activation Function Implementation
	5.2 Pipeline-Based ALU Implementation
	5.3 Parameterised Architecture

	6 Evaluation
	6.1 Experimental Settings
	6.2 Resource Utilisation
	6.3 Throughput
	6.4 Power Consumption and Energy Efficiency

	7 Conclusion and Future Work
	References

	A Comparative Study of Neural Network Compilers on ARMv8 Architecture
	1 Introduction
	2 Background
	2.1 The Three Categories of NN Optimizations
	2.2 The NN Compilers Landscape

	3 Basic Features of the Selected Toolchains
	4 Evaluation Methodology
	5 Evaluation Results
	6 Conclusions
	References

	Organic Computing Methodology (OC)
	A Decision-Theoretic Approach for Prioritizing Maintenance Activities in Organic Computing Systems
	1 Introduction
	2 Related Work
	3 Prerequisites
	4 Methodology
	4.1 Simple Stochastic Planing
	4.2 Complex Stochastic Planing
	4.3 Naive Planing

	5 Evaluation
	5.1 Datacenter Scenario
	5.2 Organic Production Line Scenario
	5.3 Results
	5.4 Discussion

	6 Conclusion and Outlook
	References

	Predicting Physical Disturbances in Organic Computing Systems Using Automated Machine Learning
	1 Introduction
	2 Related Work
	3 Prerequisites
	4 Methodology
	4.1 Data Collection and Labeling
	4.2 Bootstrap Phase
	4.3 Optimization Phase
	4.4 Production Phase

	5 Evaluation
	5.1 Implementation and Parametrisation
	5.2 Results
	5.3 Discussion

	6 Conclusion and Outlook
	References

	Self-adaptive Diagnosis and Reconfiguration in ADNA-Based Organic Computing
	1 Introduction
	2 Related Work
	3 Diagnosis Architecture
	3.1 Local Diagnosis
	3.2 System Diagnosis
	3.3 Alarms
	3.4 Probes

	4 Adaptive Diagnosis
	4.1 Processing Element Diagnosis
	4.2 Task Diagnosis
	4.3 Probing Based Diagnosis

	5 Quality of Service
	6 Application Reconfiguration
	6.1 Compute Resource Unit

	7 Use Case - Explorer Robot
	7.1 Physical Model
	7.2 Logical Model
	7.3 Initial Configuration
	7.4 Degraded Performance
	7.5 Reconfiguration
	7.6 Results and Evaluation

	8 Conclusion and Future Work
	References

	Dependability and Fault Tolerance (VERFE)
	Error Codes in and for Network Steganography
	1 Introduction
	2 Background
	2.1 Error Codes
	2.2 Network Steganography
	2.3 Related Work

	3 Combining Error Codes and Steganography
	3.1 Error Correction Codes in Covert Channels
	3.2 Covert Channels in Error Correction Codes
	3.3 Erasure Codes and Covert Channels

	4 Experimental Results
	5 Conclusions
	References

	Modified Cross Parity Codes for Adjacent Double Error Correction
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Decoding
	3.2 Checkbit Errors

	4 Burst Detection
	5 Conclusion
	References

	Computer Architecture Co-Design
	COMPESCE: A Co-design Approach for Memory Subsystem Performance Analysis in HPC Many-Cores
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 HPC Architecture
	5 Design Space Exploration Methodology
	5.1 Co-design Exploration: Memory Sub-system
	5.2 Model Validation

	6 Case Studies
	6.1 Unidirectional Approach

	7 Conclusions and Future Work
	References

	Post-Silicon Customization Using Deep Neural Networks
	1 Introduction
	2 Intuition
	3 Background and Related Work
	4 Main Idea: Forecaster
	4.1 Phase 1: Building a Predictive Model
	4.2 Phase 2: Prediction-Based Hardware Reconfiguration

	5 Implementation
	6 Experimental Setup
	7 Results
	8 Conclusions
	References

	Computer Architectures and Operating Systems
	TOSTING: Investigating Total Store Ordering on ARM
	1 Introduction
	1.1 About This Paper

	2 Memory Consistency Models
	2.1 Programming Model
	2.2 Total Store Ordering on x86
	2.3 Weak Ordering on ARM

	3 The Apple M1 Architecture
	4 Evaluation
	4.1 CPU Benchmarks
	4.2 Synthetic Benchmarks

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Back to the Core-Memory Age: Running Operating Systems in NVRAM only
	1 Introduction
	2 Fundamentals and Methodology
	2.1 Hardware Platform
	2.2 Operating Systems
	2.3 Evaluation Approach

	3 Performance Characterisation
	4 Discussion
	5 Related Work
	6 Conclusion
	References

	Retrofitting AMD x86 Processors with Active Virtual Machine Introspection Capabilities
	1 Introduction
	2 Background
	2.1 Hardware-Assisted Virtualization
	2.2 Virtual Machine Introspection

	3 State of the Art
	3.1 SLAT-Based Mechanisms
	3.2 Hyper-Single-Stepping

	4 Introspection on the AMD64 Architecture
	4.1 Design
	4.2 Implementation

	5 Evaluation
	5.1 Correctness
	5.2 Stealthiness
	5.3 Performance

	6 Summary
	References

	Organic Computing Applications 1 (OC)
	Abstract Artificial DNA's Improved Time Bounds
	1 Introduction
	2 Related Work
	3 AHS and ADNA
	4 A2DNA
	4.1 Relation to the ADNA
	4.2 Fundamental Idea
	4.3 Determinability

	5 Determinability Algorithms
	5.1 Naive Algorithm
	5.2 Towards Preprocessing
	5.3 Algorithm with Preprocessing
	5.4 Specification

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

	Evaluating the Comprehensive Adaptive Chameleon Middleware for Mixed-Critical Cyber-Physical Networks
	1 Introduction
	2 Related Work
	3 Middleware Architecture and Implementation
	3.1 Middleware Architecture
	3.2 Adaptation
	3.3 Middleware Implementation

	4 Evaluation
	4.1 Evaluation 1: Handling of Dynamic Load Changes
	4.2 Evaluation 2: Handling of Failures
	4.3 Evaluation 3: Effects of Learning
	4.4 Evaluation 4: Exploiting the Potential of CPN

	5 Conclusions
	References

	CoLeCTs: Cooperative Learning Classifier Tables for Resource Management in MPSoCs
	1 Introduction
	2 Related Work
	3 Background
	3.1 SOSA
	3.2 Challenges in SOSA
	3.3 Cooperation in LCTs

	4 Design
	5 Evaluation
	5.1 Simulation Setup
	5.2 Results

	6 Conclusion and Outlook
	References

	Hardware Acceleration
	Improved Condition Handling in CGRAs with Complex Loop Support
	1 Introduction and Motivation
	2 Related Work
	3 Condition Handling in CGRAs
	3.1 CBox
	3.2 CondPE Hardware
	3.3 Scheduler Application Representation - SCAR
	3.4 Scheduler Improvements

	4 Evaluation
	4.1 HW Synthesis
	4.2 Scheduling
	4.3 Combined Evaluation

	5 Conclusion
	5.1 Outlook

	References

	FPGA-Based Network-Attached Accelerators – An Environmental Life Cycle Perspective
	1 Introduction
	2 Related Work
	2.1 Communication Model for Network-Attached Accelerators
	2.2 Environmental Life Cycle Assessment for Data Centers
	2.3 Use Cases for Network-Attached Accelerators

	3 Exemplary NAA Framework
	4 Environmental Life Cycle Assessment of NAA Nodes
	4.1 Initial KPI4DCE Observations
	4.2 CPU-Based Nodes
	4.3 NAA-Based Nodes
	4.4 KPI4DCE Evaluation

	5 Conclusion
	References

	Optimization of OLAP In-Memory Database Management Systems with Processing-In-Memory Architecture
	1 Introduction
	2 Preliminaries
	2.1 3D-DRAM
	2.2 Processing-In-Memory (PIM)
	2.3 PIM Simulation Environment

	3 Experimental Setup
	3.1 Database Management System
	3.2 Profiler
	3.3 Profiling the Database
	3.4 Simulation Environment

	4 Analysis
	4.1 Finding the Hot Spots
	4.2 Observations and Discussion
	4.3 Analysis of the Bottlenecks

	5 Results
	5.1 PIM Implementation
	5.2 Database Design Considerations with PIM

	6 Conclusion
	References

	Organic Computing Applications 2 (OC)
	Real-Time Data Transmission Optimization on 5G Remote-Controlled Units Using Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Real-Time Data Transmission Problem
	4 Approach: Deep Reinforcement Learning
	4.1 Background and Model
	4.2 Setup and Hyperparameters
	4.3 Challenges

	5 Evaluation
	5.1 5G Simulation and Scenario
	5.2 Results

	6 Summary
	References

	Autonomous Ship Collision Avoidance Trained on Observational Data
	1 Motivation
	2 Background
	2.1 Learning Based Strategies

	3 Approach
	3.1 Automatic Identification System (AIS) as Training Data
	3.2 MASS Collision Avoidance Using PPUU

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	6 Conclusion
	References

	Towards Dependable Unmanned Aerial Vehicle Swarms Using Organic Computing
	1 Introduction
	2 Related Work
	3 Architecture of the ADNA System for Drones
	4 Novel ADNA UAV Elements
	4.1 GroupController
	4.2 PathPlanner

	5 Extension of the ADNA Message Types
	5.1 Prerequisites
	5.2 Implementation
	5.3 Comparison Between Message Types

	6 Evaluation
	7 Conclusion and Future Work
	References

	Author Index

