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Abstract—Brain activity can be measured using different
modalities. Since most of the modalities tend to complement
each other, it seems promising to measure them simultaneously.
In to be presented research, the data recorded from Func-
tional Magnetic Resonance Imaging (fMRI) and Near Infrared
Spectroscopy (NIRS), simultaneously, are subjected to causality
analysis using time-resolved partial directed coherence (tPDC).
Time-resolved partial directed coherence uses the principle of
state space modelling to estimate Multivariate Autoregressive
(MVAR) coefficients. This method is useful to visualize both
frequency and time dynamics of causality between the time
series. Afterwards, causality results from different modalities
are compared by estimating the Spearman correlation. In to
be presented study, we used directionality vectors to analyze
correlation, rather than actual signal vectors. Results show
that causality analysis of the fMRI correlates more closely to
causality results of oxy-NIRS as compared to deoxy-NIRS in
case of a finger sequencing task. However, in case of simple
finger tapping, no clear difference between oxy-fMRI and
deoxy-fMRI correlation is identified.

I. INTRODUCTION

Understanding the underlying functional connectivity in
the brain is of vital importance. Detailed information about
such connectivity will increase our knowledge about the
signal flow between sources and sinks in the brain[1]. Dif-
ferent modalities have emerged in the recent past that mea-
sure brain activity directly (Electroencephalography (EEG)/
Magnetoencephalography (MEG)) or indirectly (Functional
Magnetic Resonance Imaging (fMRI)/ Near Infrared Spec-
troscopy (NIRS)). Electroencephalography measures electric
potentials by placing electrodes on the scalp. Such potentials
originate from accumulative activity of millions of neurons.
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In magnetoencephalography, magnetometers are placed over
the scalp to detect the magnetic field generated by the same
number of neurons in the brain. Functional magnetic reso-
nance imaging (fMRI) exploits the fact that neural activity
in a specific part of the brain results in the increased demand
of haemoglobin to that region. Blood with different concen-
tration of oxygen reacts differently to the applied magnetic
field resulting in the so-called BOLD (Blood oxygen level
dependent) signal. fMRI can detect brain activity from sub-
cortical areas successfully but it suffers from a low sampling
rate. The principle of NIRS is based on monochromatic light
absorption by haemoglobin, which can be used, indirectly,
to estimate neural activation in the brain. Usually two lasers
with different frequencies are used to estimate both oxy-
and deoxy-haemoglobin. In order to identify signal source,
principle of Granger causality can be used [2]. Directionality
analysis using Granger causality based methods have been
applied to fMRI data [3] [4]. In case of NIRS, such methods
have been applied in animal [5] and human study [6]. In the
following, we apply directionality analysis to simultaneously
recorded fMRI and NIRS (both oxy and deoxy) time series
and compare results from both using the statistical test of
Spearman correlation.

II. METHODS

Different methods to analyze the directionality between
time series exist. The analysis of neurological time series is
more meaningful in the frequency domain. So, investigation
of causality between medical time series in the frequency
domain seems pragmatic. Such methods include directed
transfer function (DTF) [7], partial directed coherence (PDC)
[8], modified directed transfer function (dDTF) [9], gener-
alized partial directed coherence (gPDC) [10], and renor-
malized partial directed coherence (rPDC) [11]. All these
methods are based on the principle of Granger causality
that, in its original form, has also been applied to medical
data, especially to fMRI data successfully [12] [13]. In this
study we will use time-resolved partial directed coherence
(tPDC), which has the additional advantage of not only
giving frequency information about causal connections but
also information about their time dynamics [14]. Assuming
time series z,(t) is causing time series z;(t), we have:

P
zi(t) = Z a;j(r)x;(t —r) + e(t). (1)
r=1

Here, a;; are the causal coefficients describing the behaviour



of causality from x; to x;. P is the maximum delay (optimum
order) and e is driving white noise. The coefficients of causal-
ity are of prime importance; they tell us whether causality
exists between time series and also about its intensity if it
exists. Using the Fourier transform of these coefficients, PDC
from time series x;(t) to time series x;(t) can be calculated
using the following formula [15]:

|Aij (w)]
Vi Ak (W)

Causality from z; to x; can be interpreted as connection
from z; to x; . Partial directed coherence shows the strength
of the connection in the frequency domain. Calculation of
the PDC is based on the estimation of causal coefficients,
which are also called Multivariate Autoregressive (MVAR)
coefficients. Number of these coefficients is defined by
the optimum order, which can be estimated by fitting an
appropriate Autoregressive (AR) model to the data and using
Akaike’s Information Criterion (AIC). During calculation
of PDC, each coefficient is estimated by taking the whole
time series into account. However, if we divide the time
series into small segments and fit a model to each one
separately, the PDC on each epoch can help us to visualize
the time dynamics of causality. In order to calculate tPDC,
we estimate MVAR coefficients at each time instance of the
time series only taking into account a certain number of
past values (optimum order). After finding these time-varying
MVAR coefficients, PDC is calculated at each time point, and
finally a time-frequency graph is plotted. In order to estimate
time varying MVAR coefficients, we use the concept of state
space modelling and model our time series by these two
equations [16]:

(2)

71 (w)] =

2(k) = Fla(k — 1),w] + Bo(k), (3)
y(k) = Cx(k) + n(k). (4)

For a linear model, F'[z(k)] can be written as Az(k). Both
v(k) and n(k) can be assumed as Gaussian white noise.
Time series y(k) is the observed one, and our aim is to
estimate (k). A and C are process and observation matrices,
respectively. For non linear model, we have to estimate w
too, and this can be done by approximating the non-linear
function by a linear one which is varying in time [16]. In
essence, at each time point, we estimate w and x. This gives
us two Kalman filters running in parallel, hence named as
dual extended Kalman filter(DEKF) [16]. In the present study
DEKEF is used on fMRI and NIRS data separately.

Before applying it to the medical data, the DEKF was
tested to estimate the time varying coefficients on model data
which were taken from [17]:

21(t) = 0.592 (t — 1) — 0.2z (t — 2) + a(t)aa(t — 1)
(st — 1) + e (2), (5)
w2 (t) = 158za(t — 1) — 0.9622(t — 2) + e2(t),  (6)
z3(t) = 0.60z3(t — 1) — 0.9123(t — 2) + es(t).  (7)

Here, the time-varying MVAR coefficients a(t) and b(t) have
time dynamics as shown in Fig. 1.
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Fig. 1. Time varying coefficients: The upper plot shows dynamics of causal
coefficient from x2 to z1, while the lower plot shows dynamics between
x3 and x1.

After fitting the appropriate model to the data, time-
varying PDC was calculated for this model. The results are
shown in Fig. 2. We can see that the connections and the time
dynamics were successfuly revealed by tPDC. Following the

Fig. 2. Result of applying tPDC on model data. The two connections and
their time dynamics have been successfully revealed. One can see that xo
is causing 1 in a sinusoidal way while connection from x3 to 1 follows
a triangular shape over the course of time.

testing of this method on the model data, we applied it on
medical data. For this purpose 6 healthy subjects (5 females
and 1 male) were chosen to perform voluntary motor tasks
using the right hand. The subject’s mean age is 25 years
(with standard deviation of 5 years). Prior to recording, all
participants provided written consent. All subjects, except
one, were right handed. Task details are as follows:

1. Finger tapping (FT): Simple tapping of index finger at
approximately 2-5 Hz in a rhythmic fashion.

2. Simple finger sequencing (SFS): Sequential tapping of
index, middle, ring and fourth finger against thumb.

The target area of finger motor tasks is within the scope of
NIRS and fMRI measurement. The block design was used in



which the subjects were asked to perform the motor task for
30 seconds followed by 30 seconds rest. The total recording
time was 600 seconds; hence 10 complete (activity-rest)
blocks were obtained.

We used continuous-wave NIRS system (OXYMON MK-
1, Artinis, The Netherlands) measuring oxy-, deoxy- and
total haemoglobin concentration in the blood by directing
a monochromatic laser into the skull. The standard con-
figuration with two wavelengths (856nm and 781 nm) per
channels was used. The sampling rate was 10 Hz. Five
detectors (avalanche photo diode) and 11 transmitters (pulsed
laser diodes) were used to obtain 15 channels. The distance
between each transmitter and detector was around 3.5 cm.
MRI-compatible cables of length 10 meter were used to con-
nect the NIRS monitoring/recording instrument with NIRS
optodes during fMRI recording. The fMRI scanner (10 MHz
output) was also synchronized with the NIRS system
BOLD-sensitive MRI was performed with a 3-Tesla MR
scanner (Philips Achieva, Philips, Best, the Netherlands) and
a standard, 8-channel SENSE head coil. A single-shot T1-
weighted, gradient-echo planar imaging sequence was used
for fMRI (TR = 2500 ms, TE = 45 ms, 32 slices, 64 x 64
matrix, slice thickness = 3.5 mm, FOV = 200 mm, flip angle
= 90). The sampling rate was 2.5 seconds; hence, 240 brain
volumes were acquired during the 600 seconds [18].

III. RESULTS

Activation maps with 30 seconds motor task followed
by 30 seconds of rest were constructed using the block
design. In order to locate NIRS probes, fiduciary markers
were placed between each transmitter and receiver pair so
that the position of the NIRS channel can be located in
fMRI plots. For each receiver, we used two NIRS time
series (oxy and deoxy). Prior to any processing, a band-
pass filter with cut off frequencies of 0.01 and 0.5 Hz was
applied to both time series [19]. Afterwards, both time series
were smoothed using a window length of 25 points. This
process reduced the length of NIRS time series from 6000
to 240 data points. In case of fMRI, all scans were realigned,
normalized and smoothed. The size of clusters was chosen
as 5 voxels with P value of 0.01(corrected), and fMRI time
series were extracted from three regions of the brain, namely,
contralateral motor cortex (CMC), premotor cortex (PMC),
and prefrontal cortex (PFC). A sphere with a radius of
3mm was assumed as source of activation in the desired
part of the brain for time-series extraction [4]. All pre-
processing of fMRI and time series extraction was performed
using the SPMO08 toolbox. (http://www.fil.ion.ucl.ac.uk/spm).
Using the positions of fiduciary markers in fMRI, we made
sure that we extract time series from specific parts of the
brain which are exactly below the NIRS channels so that
both time series can be compared. Region of interest around
highest activation point was used in case of fMRI to compare
it with NIRS. Out of 15 NIRS channels, only 3 were used.
We did this because we are interested in only three regions
of the brain. Each region of brain was covered by multiple
NIRS probes. Position of NIRS probes was confirmed from

activation maps of fMRI and using fiducial markers. Layout
of selected probes is shown in Fig. 3. Colored four-cornered

Fig. 3. Layout used for NIRS probes. Color stars show the approximate
position of NIRS channel. Black circle, inside cortex show, corresponding
fMRI ROI. Hypothetical banana curves between NIRS optodes are also
shown

stars show the position of NIRS channels. Black circle inside
the cortex show the location of respective ROI. The first and
last data points of both NIRS(oxy and deoxy) and fMRI time
series were discarded and tPDC was applied to all three time
series (oxy-NIRS, deoxy-NIRS, and fMRI).

In the resulting time frequency plot, bins were created
on the frequency axis and tPDC values inside a single
bin were compared to tPDC values inside a similar bin in
the other modality. Ten bins were created on the complete
frequency axis (0 - 0.2 Hz) and tPDC magnitudes within
each bin (0 - 0.02 Hz) are stored as a vector for further
analysis. We did this because there is not much information
on the frequency axis due to the very low sampling rate of
fMRI, also NIRS time series were smoothed with window
length of 25 data points, resulting in the same effective
sampling rate as that of fMRI. Spearman correlation was
calculated between time vectors (bin vectors) of oxy-NIRS
and fMRI and also between deoxy-NIRS and fMRI. Positive
significant correlation (value of P<0.05) between two time
series (vectors in our case) shows that both time series
are showing the same causal dynamics, a negative value
meaning the opposite. Of all the significant connections
we calculated the number of positive correlations and the
number of negative correlations. Results are presented in Fig.
4. In addition to calculation of number of correlations, mean
correlation (both positive and negative) along with standard
error of mean was also calculated and shown in Fig. 5.

Results show that oxy-NIRS time series is more closely
related to fMRI as compared to its deoxy counterpart in
case of the finger-sequence task. In addition to an increased
number of positive correlations, the number of negative
correlations was also reduced during the finger-sequence
task. During finger-tapping task, no clear difference was
observed. It could be due to limited activation regions
in the brain as can be seen from our own earlier study
[18]. Better correlation of fMRI signal with oxy-NIRS is
in accordance with published literature in this regard [19]
[20]. This could be due to the observation that an increase
in BOLD activity is accompanied by decrease in deoxy-
NIRS during motor task [19]. However significance of our



Fig. 4. Results showing that more number of positive correlations was
between oxy-NIRS and fMRI as compared to deoxy-NIRS and fMRI in
case of finger-sequence task. Number of negative correlations is also less
in oxy-NIRS and fMRI as compared to deoxy-NIRS and fMRI. However
incase of finger-tapping task, no clear difference is seen.

Fig. 5. Subject wise correlation measure is depicted in this figure. Increased
number of positive correlations between fMRI and oxy-NIRS, along with
increased number of negative correlations between fMRI and deoxy-NIRS
are shown for both tasks. Standard error of mean are also indicated by bars

study is to analyze correlation of causality vectors instead
of signal vectors. Our findings show that Granger-causality
based methods can be applied to non invasive modalities like
NIRS and have potential to be a promising tool for estimating
underlying functional networks of the brain during voluntary
and involuntary tasks.
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