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Introduction

The electroencephalography (EEG) has a long-standing tradition
in human neurophysiology (Berger, 1930). EEG is one of the first
techniques, which has been used to characterize the development of
the human central nervous system. It has been demonstrated repeat-
edly that the absolute power of oscillations of the resting-state brain
activity in lower frequency bands (delta (1–3 Hz), theta (4–7 Hz) and
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lower alpha (8–10 Hz)) decreases exponentially with age, while
power in higher EEG frequency bands (higher alpha (10–13 Hz)
and beta (13–30 Hz)) shows less prominent decreases, or more com-
plex changes such as an increase in childhood followed by a decrease
during adolescence in the higher alpha band (Gasser et al., 1988;
Lüchinger et al., 2011). Although these brain electric oscillations of
different frequencies can be attributed to the activity of complex
neuronal networks (Laufs, 2008), knowledge about structures which
constitute these networks and how they are related to each other (func-
tional connectivity), and about information flowwithin these networks
(directed connectivity) is insufficient and sometimes ambiguous. Spe-
cifically, little is known about the normal development of functional
and directed connectivities within networks underlying different oscil-
latory brain activities.
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The most convincing studies on the function of neuronal networks
and the link to oscillatory activity have been performed using simul-
taneous recordings of EEG and functional magnetic resonance imag-
ing (fMRI) and correlating the absolute EEG power and changes of
the blood oxygenation level-dependent (BOLD) signal. A regular ob-
servation is that the coupling strength between the EEG power and
the BOLD signal is dependent on the examined frequency band as
well as on the resting-state condition (Laufs et al., 2003; Mantini
et al., 2007; Scheeringa et al., 2008). During the condition with eyes
open (EO), EEG-fMRI studies in adults have found predominantly
negative correlations for theta oscillations (Scheeringa et al., 2008)
that is theta power increase is paralleled by BOLD signal decrease.
During the condition with eyes closed (EC), several EEG-fMRI studies
in adults have revealed negative correlations between alpha and beta
power and BOLD signal changes predominantly in parieto-occipital
regions as well as in the thalamus (Laufs et al., 2003). This is not sur-
prising, as there is rich evidence from modeling and physiological
studies for a fundamental role of alpha rhythm and thalamic activity
(Lopes da Silva et al., 1974). Concerning developmental changes of
neuronal networks of cortical oscillations, some studies have demon-
strated that the resting-state coupling strength is almost identical
between young adults and adolescents (Lüchinger et al., 2011) but
differs between young adults and children (Lüchinger et al., 2012).
Thalamic BOLD signal changes especially, were positively correlated
to alpha and beta powers, yet stronger in adults than in children.
Although EEG–BOLD signal correlations inform about state- and age-
dependent interactions between the power fluctuations and the BOLD
signal, they do not inform about the amount of synchronized oscillatory
power in the space (and time) domain. A high level of synchronization
between pairs of signals is considered to reflect structural and functional
connections between cortical regions underlying the recording elec-
trodes (Fein et al., 1988; Thatcher et al., 1986). One way to estimate
synchronization in the frequency domain between neuronal activity,
measured by EEG, magnetoencephalography (MEG), or fMRI, is the
measurement of frequency-band specific coherence (Babiloni et al.,
2004; Beaumont et al., 1978; Essl and Rappelsberger, 1998; Grasman
et al., 2004; Mizuhara et al., 2005; Sauseng et al., 2005; Schack et al.,
1999; Sekihara et al., 2011; Srinivasan et al., 1998, 2007; Tucker et al.,
1986). Several studies have been performed to describe task or rest-
related coherence differences during childhood (Barry et al., 2004,
2005, 2009; Gasser et al., 1987, 2003; Knyazeva et al., 1994; Marosi
et al., 1992) and adulthood (Anghinah et al., 2005; Clarke et al., 2008;
Schellberg et al., 1990). Gasser et al. (1987) examined children during
rest and visual task performance and found a moderate increase in co-
herence with age (between 10 and 13 years). In addition, there is evi-
dence from resting MEG and EEG studies that coherence increases
with age in healthy school-aged children especially in the delta and
alpha bands (Marosi et al., 1992), but also shows a state-dependency
(i.e., EO versus EC) in adults for ultraslow (b0.1 Hz) fluctuations (Liu
et al., 2010).

Although the studies described above elucidate a specific frequency-
dependent pattern of maturation by coherence, most studies only
analyzed synchronization and coherences between scalp EEG sig-
nals. In contrast, dynamic imaging of coherent sources (DICS) is a
tool to analyze networks of sources which may be attributed to
any of brain oscillations obtained on the EEG or MEG (Gross et al.,
2001; Kujala et al., 2008; Liljestrom et al., 2005; Moeller et al.,
2012; Muthuraman et al., 2008, 2012a). The functional connectivity
between sources may be represented by using coherence of source
signals and the directed connectivity may be demonstrated by
accessing information flow between sources using different methods of
Granger causality, for example the renormalized partial directed coher-
ence (RPDC) (Sameshima and Baccala, 1999; Schelter et al., 2009). Com-
pared to other methods, there is increasing evidence that DICS may be
able to demonstrate coherent changes not only between cortical sources,
but even between cortical and very deep and subcortical structures, such
as the thalamus (Krause et al., 2010;Muthuraman et al., 2012a). This ad-
vantage of the RPDC method is especially relevant for the analysis of os-
cillatory brain activity, as it is frequently associated with activity in the
thalamus (Butz et al., 2006; Krause et al., 2010; Moeller et al., 2012;
Pollok et al., 2009). Both the coherences between cortical and subcortical
sources of activity (functional connectivity) as well as the directionality
of information flow between sources within networks underlying brain
oscillations have not been investigated in studies which have dealt
with maturation of brain oscillation (Takigawa et al., 1996; Varotto
et al., 2010; Wang and Takigawa, 1992).

The aim of this study was to investigate the developmental
changes of functional and directed connectivities within neuronal
networks underlying different brain oscillations in healthy children
and young adults. Since the frequency band power distribution differs
between EC and EO we first asked whether, apart from spectral
source mean power, frequency-band dependent coherence separates
between EC and EO conditions in adults as well as in children. Since it
is known from structural (Groeschel et al., 2010; McLaughlin et al.,
2007; Whitford et al., 2007) and functional (Dosenbach et al.,
2010b; Fair et al., 2007, 2008; Littow et al., 2010; Supekar et al.,
2010) neuroimaging studies that certain cortical as well subcortical
structures are not fully developed in children, we expected to see
weaker regional coherence in children than in adults. We further
asked whether directed coherence measured by EEG could index
age and/or regional specific effects.

Methods

Subjects

Seventeen adults (mean age 25.1 ± 3.8 years, 8 males) and 17
children (mean age 10.1 ± 1.3 years, 9 boys), all right-handed with
normal vision, were included in this study. Sex distributions did not
differ between the two age groups (Pearson χ2 (1, N = 34) = 0.48
p = 0.49). All participants were healthy, with no history of medical
or psychiatric disease, and were not currently taking drugs or medica-
tion. All childrenwere enrolled in typical school programs and reported
no special educational considerations. The group-specific IQ was not
different between adults and children (adults: range: 98 to 137, mean
IQ: 112.2; children: range: 98 to 130.5 mean IQ: 109.4). All participants
as well as the parents/caregivers of the children gave written informed
consent prior to participation. The study was approved by the local
ethics committee. Subjects received a voucher for their participation
in the study. EEG examinations in all subjects were performed in the
early afternoon.

Proceedings and EEG recordings

The EEG was recorded simultaneously with functional MRI dur-
ing resting state condition for 10 min with alternating EO and EC
blocks of 2.5 min. 64 sintered Ag/AgCl ring electrodes were attached
using the “BrainCap” (Falk-Minow Services, Herrsching-Breitbrunn,
Germany), which is part of the MR-compatible EEG recording sys-
tem “BrainAmp-MR” (Brain Products Co., Gilching, Germany). Elec-
trode impedance was kept below 10 kΩ (after subtraction of the
value of the safety resistors). EEG montage was based on a selection
of 10–20 systempositions (Bremet al., 2010). Two additional electrodes
were used to record eye movements and two further electrodes were
used to obtain the electrocardiogram. F1 served as recording reference,
and F2 was the ground electrode. Data were transmitted from the
high-input impedance amplifier (250 Hz low-pass filter, 10 s time con-
stant, 16-bit resolution, 32 mV dynamic range), which was placed di-
rectly behind the head coil inside the scanner room and connected to
a computer located outside the scanner room via a fiber optic cable.
The scanner (10 MHz clock output) was synchronized with the EEG
amplifier (5 kHz sampling rate). Online correction of gradient artifacts



                                           
based on the averaged artifact subtraction algorithm was performed
using RecView software (Brain Products Co., Gilching, Germany) en-
abling visual inspection of EEG.

EEG analysis

EEG preprocessing and analysis were done using Brain Vision An-
alyzer 1.05 (Brain Products, Gilching, Germany). MR-gradient arti-
facts were removed by average artifact subtraction (Allen et al.,
1998, 2000) with a sliding average over 50 TRs. To eliminate the
ballistocardiogram artifact a very similar subtraction procedure was
used, with the artifact window aligned on QRS complexes detected in
the electrocardiogram (ECG) traces (templates based on 10 consec-
utive pulse intervals and individually-estimated time delay for sub-
traction based on global field power distribution). EEG was digitally
bandpass-filtered (0.5–70 Hz, 24 dB/oct and 50 Hz Notch) and further
downsampled to 256 Hz. An infomax ICA (Delorme and Makeig, 2004)
was calculated on the concatenated data sets of the two resting session.
Components were profiled by their topography, activation time course,
spectrogram, and contribution to averaged BCG amplitude. Compo-
nents clearly assigned to either eye blinks (Jung et al., 2000), residual
MR-gradient or BCG artifacts were excluded from the back projection.
For all groups, the mean overall data length after these pre-processing
steps ranged between 8 and 10 min but did not differ between groups
(p > 0.05, two-tailed paired t-test). All channels (electrooculogram
(EOG) and ECG channels were excluded) were then transformed to
the average reference (Lehmann and Skrandies, 1980), and EEG seg-
ments with remaining artifacts were removed. The EEG data set of
each participant was then parsed into EO and EC conditions. Each condi-
tion onsetwas defined individually by the exact time of eye opening and
closing, respectively, as indicated by ICA component activation trace.
Next, the power spectral density was estimated for each condition,
whereby the EEG signal was parsed in 2 s windows. For each of these
segments a fast Fourier transformation (FFT, hamming window: 10%,
frequency resolution of 0.25 Hz) was computed electrode-wise and av-
eraged across segments. The average band power was calculated as the
integrated area under the absolute power spectrum in the specific fre-
quency band of interest, divided by the width (in points) of the specific
frequency band. For the spectral band sourcemean power and synchro-
nization analysis (see below) across all sources, the following frequency
bandswere examined: delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz),
and beta (14–30 Hz).

Analysis of coherent sources

The total interaction strength, which is the mean coherence be-
tween all the sources during the EC and EO condition, was analyzed
using DICS (Gross et al., 2001). The basis of the source analysis
(DICS) is the so-called beamforming approach (Hillebrand et al.,
2005; Pascual-Marqui et al., 2009; Sekihara and Scholz, 1996).
There are two major constraints in this beamformer DICS analysis:
it assumes a single dipole model, which is not linearly correlated to
other dipoles and the signal-to-noise ratio is sufficiently high (Gross et
al., 2001). To determine coherence between brain areas, the spatial max-
imum of the power was identified and then defined as the seed region.
Here the assumption is that the coherence between the reference and it-
self is always 1. In the next step this area of the brain or the activated
voxels are considered as noise in order to find further coherent areas in
the brain (Schoffelen et al., 2008). The selection of the reference region
and the subsequent network sources was done on an automatic basis.
The output of the beamformer at a voxel in the brain can be defined as
a weighted sum of the output of all EEG channels (Van Veen et al.,
2002). The beamformerweights for a given source (at a location of inter-
est) are determined by the data covariance matrix and the
forward-solution (lead-field matrix — LFM). The lead-field matrix was
estimated with specified models for the brain. In this study, the
brain was modeled by a more complex, five-concentric-sphere
model (De Munck, 2002; van Uitert and Johnson, 2000) with a
single sphere for each layer corresponding to the white matter,
gray matter, cerebral spinal fluid, skull and skin. The volume
conductor model was created using standard T1-weighted magnetic
resonance images. Part of the forwardmodeling and the source analysis
was done using the open source software FieldTrip (Oostenveld et al.,
2011). For both groups, the head was modeled using the radius and
the position of the sphere with the standard electrode locations, that
is, the same head model was used for children and adults. The LFM
contains the information about the geometry and the conductivity
of the model. The complete description of the solution for the forward
problem has been described previously elsewhere (Muthuraman et al.,
2010).

The weights determine the spatial filtering characteristics of the
beamformer and are selected to increase the sensitivity to signals from
a voxel and reducing the contributions of the signals from (noise)
sources at different locations. The frequency components and their lin-
ear interaction are represented as a cross-spectral density (CSD)matrix.
The twomeasureswhich can be derived from the CSDmatrix are power
and coherence. Coherence can be estimated by normalizing the CSD be-
tween two signals with their power spectral densities. In order to visu-
alize power and coherence in the brain at a given frequency range, a
linear transformation is used based on a constrained optimization prob-
lemwhich acts as a spatialfilter (VanVeen et al., 2002). The brain region
representing the strongest power in a specific frequency band can sub-
sequently be used as a reference region for cortico-cortical coherence
analysis. Areas were selected by a within-subject surrogate analysis to
define the significance level, which was then used to identify areas in
the brain as activated voxels as noise for subsequent runs of the source
analysis. In order to create tomographymaps, the spatial filter is applied
to a large number of voxels covering the entire brain using a voxel size
of 5 mm. Once coherent brain areas were identified, their activity was
extracted from the surface EEG (source space).

In a further analysis, all the original source signals for each source
with several activated voxels were combined by estimating the second
order spectra and employing a weighting scheme depending on the ana-
lyzed frequency range to form a pooled source signal estimate for each
source as previously described (Amjad et al., 1997; Rosenberg et al.,
1989). The individual maps of coherence were spatially normalized and
interpolated on a standard T1 brain in SPM2 (Wellcome Trust Centre
forNeuroimaging). The application of the spatialfilter has beendescribed
elsewhere (Muthuraman et al., 2008). This analysis was performed for
each subject separately, followed by a grand average across all children
and adults separately for the EC and EO conditions.

Directionality analysis

Coherence only reveals components that are mutually correlated
to two signals in the frequency domain. It does not give the direction
of information flow between two signals. Renormalized partial directed
coherence (RPDC) is a technique, based on the perspective of Granger
causality (time domain), performed in the frequency domain to detect
causal influences (i.e., directed connectivity) in multivariate stochastic
systems and provides information on the direction of information
flowbetween the source signals (Schelter et al., 2009). Themultivariate
model was based strictly on causality (i.e., not taking into account
zero-lagged or instantaneous influences) and was used to model the
pooled source signal estimates by an autoregressive process to obtain
the coefficients of the signals in the defined frequency band. The open
source Matlab (The MathWorks, Inc., Natick, MA, USA) package ARFIT
(Arnold and Tapio, 2001; Tapio and Arnold, 2001) was used to estimate
the autoregressive coefficients from the spatially filtered source signals.
The correct model order required for the determination of these coeffi-
cients was estimated by minimizing the Akaike information criterion
(AIC) (Akaike, 1974). The AIC is a measure of the relative goodness of



                                           
fit which has the minimum loss of information of a resulting statistical
model with an optimal order for the corresponding model (Ding et al.,
2000). After estimating the RPDC values the significance level was calcu-
lated from the applied data using a bootstrapping method (Kaminski
et al., 2001).

Since the information flow between brain areas is difficult to esti-
mate from EEG measurements due to the presence of noise and bias
of volume conduction (Nolte et al., 2004), any effective connectivity
measure (here RPDC) has to be carefully tested for its reliability to de-
tect the underlying neuronal interactions during any functional state
of interest (here resting state). In this context, some authors used the
imagery part of coherence (Dubovik et al., 2012; Nolte et al., 2004) or
time reversal technique (TRT) (Haufe et al., 2013). In a recent simula-
tion study, Haufe et al. (2013) showed that the TRT is an appropriate
method to alleviate the influence of weak asymmetries (i.e. non-casual
interactions caused by zero-lagged, instantaneous coherences (=volume
conduction)) on the result of any causal measure, while maintaining
or even amplifying the contribution of strong asymmetries (i.e. time-
lagged causal interactions not caused by volume conduction). Thus,
we applied TRT as a second significance test on the connections already
identified by RPDC using bootstrapping as a data-driven surrogate sig-
nificance test. According to the TRT approach, if a uni-directional infor-
mation flow between two time series, namely from A to B, is due to
strong asymmetry, then a time reversal of time series A and B (i.e., a
recalculation of the RPDC values) should reverse the result. The same
logic holds for bi-directional information flow between two time series.
The TRT approach is illustrated in Fig. 1. In general, for the multivariate
autoregressive model of RPDC any directional information flow be-
tween the two signals x(t) and y(t) can be computed by:

x tð Þ ¼ a1 � y t−1ð Þ þ η tð Þ

where the time lagged term y(t − 1) (i.e., strong symmetries) influ-
ences x(t), which is being governed by a1. Due to this model, lagged co-
herence y(t) can contribute to the information flow towards x(t),
restricting any instantaneous causality (e.g. volume conduction, weak
symmetries). In contrast, volume conduction effects are attributed to
the noise term η(t) since it captures any weak asymmetries. This noise
term is needed to estimate RPDC. However, our calculation of RPDC
asymmetries eliminates this noise term, which is constant across direc-
tions and TRT. Accordingly, the RPDC asymmetries should be insensitive
to contributions from volume conduction or other instantaneous inter-
actions. In addition, our RPDC asymmetry calculation should completely
revert by applying TRT, and therefore be only sensitive to strong causal
interactions during brain development and adulthood. We applied TRT
on the RPDC values for both states (EO and EC) and groups (adults and
Fig. 1. Illustration of the time reversal technique (TRT). The TRT approach assumes that
if a uni-directional information flow (“Uni”) between two time series from A to B is due
to strong asymmetry (=causal interactions), then a time reversal of time series A and
B should give identical results but in the opposite direction from B to A. The same logic
holds for a bi-directional information flow (“Bi”) between two time series, where the
two RPDC values (one per direction) will interchange with their counterparts.
children) and compared these results with results of RDPC analysis
without TRT.
Statistical analysis

Spectral source mean power differences within the different fre-
quency bands of interest were assessed by two-tailed paired t-tests.
The significance of the sources was tested by awithin-subject surrogate
analysis. The surrogates were estimated by a Monte Carlo random
permutation 100 times shuffling of one-second segments within
each subject. The p-value for each of these 100 random permuta-
tions was estimated and then the 99th percentile p-value was taken as
the significance level in each subject (Muthuraman et al., 2012a).
To ensure that any of the reported results (which are all calculated
for pre-defined frequency bands) are not confounded by group dif-
ferences in individuals' alpha frequency (IAF), we also estimated
and compared individual band limits calculated as a percentage of
the IAF (Doppelmayr et al., 1998). First, we calculated the IAF from
the mean of all EEG channels excluding EOG and ECG channels.
Next, based on the IAFs, we defined the lower and upper boundaries
of the other frequency bands (delta, theta, and beta) within 10% of
the predefined band edges. For example, one adult subject had an
IAF of 10.1 Hz, so the lower band edge for the delta band (defined
as 1–3 Hz) is 1.01 Hz (0.1 (10% of 1 Hz) × 10.1 Hz) and the upper
edge is 3.03 (0.3 × 10.1 Hz). We then estimated the median fre-
quency band values for all subjects to see whether those values lie
in the range of the pre-defined frequency band, and whether the
values differ within a group (one-sample t-tests) and between groups
(paired t-tests).

Next, for the statistical comparison on the coherence values, the
mean coherence (or interaction strength) between all the sources
was estimated for testing the significance between children and adults.
A Friedman two-way analysis of variance test was then performed on
themean coherence values. In order to find the difference in coherence
strength between the EC versus EO within adults and within children
separately a Friedman two-way analysis of variance testwas performed
with the coherence values on the first source from each subject.
Between-group coherence differences were assessed as follows: First,
a reference voxel was selected in the posterior parietal cortex with
the MNI co-ordinates [8, −77, 38]. The criteria for picking up this
voxel were first to identify the voxel, which was activated the most in
the identified first source in the network of sources. Secondly, the iden-
tified voxel should be from the first identified sources over all the con-
ditions. Thirdly, the voxel should have the lowest power in all frequency
bands. Asmentioned above, the standard headmodelwas used for both
groups, which give the advantage of selecting the same reference voxel
across children and adults. Within this spatial template, the Euclidean
distance was estimated between the reference voxel and the voxel
with the maximum power or coherence for the maximal overlapping
number of sources between both groups for all sources.

The quantitativemeasure of distancewas then compared group-wise
between the children and adults for each sourcewith a t-test of unrelated
samples. Specifically, any significant between-group effect does reflect
differences in the Euclidean distances between the reference voxel and
(particular) group-overlapping sources.

For the between group analysis on the RPDC values, the same refer-
ence voxel was chosen as described above. Next, the directionality or in-
formation flowwas estimated between this and themaximally activated
voxel of all sources. The RPDC values were then compared between the
two groupswith a two-tailed t-test of unrelated samples. The hypothesis
is that the directionality between the reference voxel and themaximally
activated voxel for each source is different between the two groups.
Since the directionality can be bi-directional (i.e., from the reference
voxel to the maximally activated voxel and vice versa), we will report
the subsequent results for both possible directions.



                                           
For all statistical analyses, the significance level was kept at
p b 0.001.

Results

Analysis of individual median frequency band values and source spectral
absolute mean power

The IAF was not different between adults and children (i.e. IAF(adults):
10.7 Hz, IAF(children): 10.28 Hz, p = 0.087). Further, within-group
(one-sample t-tests) and between-group (paired t-tests) median
frequency band values were not different (supplementary Fig. 1).
Based on these findings, all results will be reported according to
the pre-defined frequency bands. For both resting states, spectral
source mean power in the delta, theta, and alpha bands was higher
for children (Fig. 2, black bars) than adults (Fig. 2, gray bars). No sig-
nificant group difference was found for beta source power during EC
and EO conditions, although the sign pointed to the same direction.
The statistical analysis of global spectral mean EEG power differ-
ences between both groups is shown in supplementary Fig. 2.

Analysis of coherent sources

Fig. 3 shows the results of the analysis of significant coherent
(p b 0.001) sources for children (A and B) and adults (C and D) for
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cortex (source 1, BA17); medial and dorso-lateral prefrontal cortices
(source 2, BA9 and BA46); parietal cortex (source 3, BA39) and thalamus
(source 4); and beta activity was correlated with sources in the parietal
cortex and precuneus (source 1, BA39 and BA7), prefrontal cortex
(source 2, BA46), middle cingulate cortex and premotor cortex (source
3, BA32 and BA6), as well as thalamus (source 4). There were no signif-
icant differences in the strength of coherence between conditions EC
and EO in children (p = 0.64).

For adults, delta activity was associated with coherent sources in the
premotor cortex (source 1, BA6), middle cingulate cortex (source 2,
BA32) and dorso-lateral prefrontal cortex (source 3, BA46) as shown in
Fig. 3C; theta activity was related to the sources in the middle cingulate
cortex (source 1, BA32), parietal cortex and precuneus (source 2, BA39
andBA7),medial prefrontal cortex (source 3, BA9) anddorso-lateral pre-
frontal cortex (source 4, BA46); alpha activity was attributed to the
sources in the parietal cortex and precuneus (source 1, BA39 and BA7),
occipital cortex (source 2, BA17), dorso-lateral prefrontal cortex (source
3, BA46), motor cortex (source 4, BA4), and thalamus (source 5, BA23);
and beta activity correlatedwith sources in theoccipital cortex (source1,
BA17), parietal cortex and precuneus (source 2, BA39 and BA7),
premotor cortex (source 3, BA6), dorso-lateral prefrontal cortex
(source 4, BA46), inferior frontal gyrus (source 5, BA44), as well
as thalamus (source 6).

During EO (Fig. 3D), the neural oscillations in adults were related to
the following sources as following: delta activity was associated with
sources in the premotor cortex (source 1, BA6), parietal cortex (source
2, BA39), insula (source 3, BA16), and caudate nuclei (source 4); theta ac-
tivity was related to source in the medial and lateral prefrontal cortices
(source 1, BA9 and BA10), inferior frontal gyrus (source 2, BA44), as
well as orbitofrontal cortex (source 3, BA11); alpha activity was at-
tributed to sources in the middle cingulate cortex (source 1, BA32); oc-
cipital cortex (source 2, BA17), parietal cortex (source 3, BA39), medial
prefrontal cortex (source 4, BA9), dorso-lateral prefrontal cortex (source
5, BA46), and thalamus (source 6); and beta activity correlated with
sources in the middle and posterior cingulate cortex (source 1, BA30
and BA31), premotor cortex (source 2, BA6), medial and dorso-lateral
prefrontal cortices (source 3, BA9 and BA46) and thalamus (source 4).

As for children therewere no significant differences in the strength of
coherence between EOversus EC in adults (p = 0.57). However, it seems
likely that opening the eyes has an impact on the results of the source
analysis as the visual inspection revealed different frequency-band spe-
cific coherent sources for EO than for EC.



Table 2
The mean coherence values between all the sources from all subjects (separately for
children and adults) for the condition EO.

Coherence (mean) Child Adult

Delta 0.18 0.23a

Theta 0.17 0.22a

Alpha 0.17 0.24a

Beta 0.18 0.25a

Eyes open (all sources).
a Indicates a significant group differences at p b 0.001.

                                           
In summary, the source analysis demonstrated that children were
characterized by significantly higher spectral source mean power in all
frequency bands except for the beta band (Fig. 1). In case of the total in-
teraction strength, adults showed significantly higher mean coherence
values in all frequency bands compared to children (Tables 1 & 2).

These observationswere confirmed by the group statistics. Therewas
a significant between-group difference (p b 0.001) for most sources in
all frequency bands for EO and EC conditions. However, some sources
in alpha (source 1, EO), beta (sources 1 and 4 in EO and source 1 in
EC), and theta (source 3, EC) frequency bands were not significantly dif-
ferent between the two groups, probably because these sources have the
maximally activated voxel at the same location for both children and
adults (see Fig. 3). A summary of between-group differences is shown
in Table 3A.

Directionality analysis

The information flow between sources (same naming as in Fig. 2)
of brain activity for each frequency analyzed is illustrated in Fig. 4. In
the following paragraph we will discuss only differences in the RPDC
between groups.

In children, a unidirectional and cortical information flow was ob-
served from prefrontal to parieto-occipital brain sources for the delta
and theta bands for both EC and EO.

In adults, the same frequency bands showed a unidirectional in-
formation flow but in the opposite direction (from parieto-occipital
to fronto-central brain regions). For alpha and beta, two different in-
formation flow patterns occurred in children: As for delta and theta,
cortical information flow followed rather a posterior to anterior infor-
mation flow (i.e. parieto-occipital sources connected to more central
and frontal sources). Second, thalamo-cortical information flow be-
tween sources was always bilateral and widespread (i.e. not only ob-
servable between anterior sources and the thalamus).

The cortico-cortical information flow followed a parieto-occipital
to fronto-central gradient in adults. However, in contrast to children,
adults demonstrated only a unidirectional thalamo-cortical informa-
tion flow, which originated from the thalamus. There were no notable
differences in information flow between EO and EC in either group of
subjects. Next, we analyzed whether within-group differences are ro-
bust against potential volume conduction effects. Here, the TRT anal-
yses underlined the solidity of the above-mentioned results, as all
significant causal interactions identified by RDPC were identified by
the TRT as well (Supplementary Fig. 5).

Finally, there was a significant between-group difference in the di-
rectionality (p b 0.01) for all frequency bands and sources irrespective
of the resting state (Table 3B).

Discussion

This study revealed the followingmainfindings: On the spectral level,
children showed stronger sourcemean power in all examined frequency
bands compared to adults. On the level of functional connectivity, adults
were characterized by significantly higher mean coherence between
sources underlying oscillatory brain activity at rest than children in
all frequency bands. The directed connectivity analysis revealed an
Table 1
The mean coherence values between all the sources from all subjects (separately for
children and adults) for the condition EC.

Coherence (mean) Child Adult

Delta 0.25 0.31a

Theta 0.21 0.27a

Alpha 0.17 0.23a

Beta 0.17 0.23a

Eyes closed (all sources).
a Indicates a significant group differences at p b 0.001.
anterior to posterior information flow (directed coherence) between
cortical sources in children for the delta and theta EEG bands, while
adults showed the opposite relationship. Most strikingly, for the alpha
and beta band the thalamic source was a significant part of the network
in both adults and children, however, the influence of the thalamus on
cortical sources was found only in adults while children showed bi-
directional thalamo-cortical flow of information. The between-group
analysis confirmed that the group-specific coherence strength and in-
formation flow (directed coherence) was different between groups of
subjects. This indicates that EEGmeasures of functional and directed co-
herence are sensitive to differences in brain maturation.

Developmental differences in coherence

We found that the absolute source power fromdelta, theta, and alpha
was significantly higher for children than for adults; a similar group dif-
ference did not reach significance in the case of the beta band. The results
were also observed when using individual (i.e., IAF-based) band defini-
tions (see Methods) rather than fixed pre-defined bands across both
groups. These results are in line with numerous scalp EEG findings and
especially with a recent EEG-fMRI study by our group (with a nearly
identical groupof subjects), forwhichwealso found consistently stronger
spectral scalp power in children than adults, particularly for the
lower frequency bands (Lüchinger et al., 2011). This result indicates
that the classical topographical maps usually obtained with EEG or
MEG (e.g. parieto-occipital alpha during EC) are preserved in resting
EEG-fMRI recordings as well. This is a prerequisite for the subse-
quent coherence analysis performed in this study, as any divergence
in the spatial distribution of spectral power between resting EEG and
EEG-fMRI would certainly not justify a comparison of literature-based
EEG power and coherence effects with the results from the present
(EEG-fMRI data driven) study.

Second, we found higher rest-related coherence values in adults
compared with children in all frequency bands. There is a large body
of evidence that developmental changes in the brain are predominantly
determined by myelination and synaptogenesis (Huttenlocher, 1990;
Yakovlev and Lecours, 1967). Myelination leads to efficient connections
between cortical and subcortical brain regions. Specifically, it is known
that synaptic density declines in the human brain starting at age 9–10
and continuing into early adulthood. This decrease can be captured by
a number of brain imaging methods, such as PET (Chugani et al.,
1987), MRI (Gogtay et al., 2004), and EEG. Using EEG or MEG it has
been shown that coherence or more general synchronous neural ac-
tivity is lower in children than in adults, as indexed by waking (Barry
et al., 2004; Gasser et al., 1988; Segalowitz et al., 2010) and sleep EEG
(Feinberg and Campbell, 2010; Tarokh et al., 2010). It seems likely that
the DICS method reflects such developmental coherence effects at the
source level as adults demonstrate overall stronger mean coherence
values across sources. This observation of enhanced functional con-
nectivity in adults is in line with fMRI data which shows a significant
increase of the resting state functional connectivity between local
and distant brain regions, especially in the fronto-parietal network
(Fair et al., 2007).

Further, our resting state results parallel task related developmental
findings, as we and others (Muller et al., 2009) found decreasing spectral



Table 3
Summary of coherence (A) and directed coherence (B) differences between adults and children. In (A) negative t-values indicate shorter Euclidean distances between the reference
voxel and particular, group-overlapping sources for children compared to adults. In (B), positive values in the column directionality indicate information from a given source to the
reference voxel; negative values (i.e., −1) indicate information from the reference voxel to a given source. EO: eyes open, EC: eyes closed, freq: frequency.

(A)

State Freq. Source t-Value p-Value State Freq. Source t-Value p-Value

EO Delta 1 6.8 b0.0001 EC Delta 1 −31.6 b0.0001
2 27.2 b0.0001 2 9.8 b0.0001
3 −7.9 b0.0001 3 −8.7 b0.0001

Theta 1 −10.6 b0.0001 Theta 1 −5.4 b0.0001
2 10.4 b0.0001 2 28.2 b0.0001
3 −31.7 b0.0001 3 1 0.31

Alpha 1 −1.2 0.25 Alpha 1 2.9 0.007
2 18.9 b0.0001 2 3.7 0.001
3 −4.9 b0.0001 3 −36.6 b0.0001
4 −10 b0.0001 4 18.3 b0.0001

Beta 1 0.13 0.9 5 18.6 b0.0001
2 13.9 b0.0001 Beta 1 −1.8 0.09
3 −13.9 b0.0001 2 12.1 b0.0001
4 0.7 0.52 3 −16.9 b0.0001

(B)

State Freq. Source Directionality p-Value t-Value State Freq. Source Directionality t-Value p-Value

EC Delta 1 1 −9.9 b0.0001 EC Delta 1 1 −7.4 b0.0001
2 1 −6.9 b0.0001 2 1 −8.9 b0.0001
3 1 −9.9 b0.0001 3 1 −9.1 b0.0001
1 −1 −17.5 b0.0001 1 −1 −7.9 b0.0001
2 −1 −5 b0.0001 2 −1 −10.8 b0.0001
3 −1 −2.5 0.02 3 −1 −7.4 b0.0001

Theta 1 1 −8.4 b0.0001 Theta 1 1 −8.2 b0.0001
2 1 −8 b0.0001 2 1 −7.1 b0.0001
3 1 −9 b0.0001 3 1 −8.8 b0.0001
1 −1 −7.9 b0.0001 1 −1 −8.8 b0.0001
2 −1 −9.6 b0.0001 2 −1 −9.2 b0.0001
3 −1 −7.7 b0.0001 3 −1 −7.2 b0.0001

Alpha 1 1 −7.5 b0.0001 Alpha 1 1 −6.5 b0.0001
2 1 −5.6 b0.0001 2 1 −8.9 b0.0001
3 1 −10.1 b0.0001 3 1 −8.5 b0.0001
4 1 −14.3 b0.0001 4 1 −14.2 b0.0001
1 −1 −6.9 b0.0001 5 1 −9 b0.0001
2 −1 −9.4 b0.0001 1 −1 −9.4 b0.0001
3 −1 −9.9 b0.0001 2 −1 −10.6 b0.0001
4 −1 −10.5 b0.0001 3 −1 −9.5 b0.0001

Beta 1 1 −6.9 b0.0001 4 −1 −8.7 b0.0001
2 1 −7.8 b0.0001 5 −1 −10.3 b0.0001
3 1 −8.9 b0.0001 Beta 1 1 −8.4 b0.0001
4 1 −18.5 b0.0001 2 1 −7.1 b0.0001
1 −1 −6 b0.0001 3 1 −10.1 b0.0001
2 −1 −9.7 b0.0001 4 1 −14.3 b0.0001
3 −1 −8.1 b0.0001 5 1 −8 b0.0001
4 −1 −8.2 b0.0001 6 1 −9.6 b0.0001

1 −1 −10.4 b0.0001
2 −1 −11.8 b0.0001
3 −1 −10.6 b0.0001
4 −1 −11 b0.0001
5 −1 −9.5 b0.0001
6 −1 −9.8 b0.0001

                                           
power with age, while at the same time global cortical synchronization
was increasing during cognitive operations (Michels et al., 2012). Our
findings can further be discussed in the context of more general current
theories on the neural framework for EEG coherence, as the observed re-
sults lend support for a recent model, which proposed that a decline in
(EEG) power and an increase in coherence are complementary processes
that support cognitive gains during normal human brain development
(Stevens, 2009). Therefore, we would argue that the successful integra-
tion of activity in anatomically distributed populations of neurons relies
on increased coherence, assuming that neural function is indexed by
short- and long-range coherence. Recently, it has been proposed that
the presence of frequency-band specific functional integration by coher-
ence can be achieved by neurons in distal regions – connected by axons –
which synchronize their response temporally by oscillating at the
same frequency (Singer, 2009). In this way, temporary networks
can be formed to serve a specific function and then dissolved to form
new networks. We conclude that the higher cortico-cortical and coher-
ence cortico-subcortical in adults reflects a complex neuronal interplay
betweenwidespread brain sources, which is not fully developed only in
children.

The direction of information flow during rest: Age-dependent differences

The most striking finding of this study was that adults showed di-
rected connectivity (assessed by RPDC) from parieto-occipital to frontal
sources in all frequency bands, whereas children showed an opposite
pattern of information flow, most pronounced in the delta and theta
bands.

Thesefindingswere also confirmedbyTRT,which showed a complete
reversal of all significant asymmetries detected by RPDC (as expected for
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Fig. 4. Illustration of information flow between sources (same source naming as in Fig. 1) of brain activity for each frequency band.

                                           
strong asymmetries due to lagged coherence), suggesting that RDPC is a
powerful technique to reliably detect resting-state related causal interac-
tions during brain development. From EEG, it is known that coherence at
frontal locations decreases with increasing age, most pronounced in the
theta band, whichmight be the result of increased cortical differentiation
(Thatcher et al., 1986). Our results support this notion, as directed con-
nectivity in adults never originated in frontal sources in the two different
resting-states. Yet, we additionally conclude that not only the coherence
differs as a function of age but also the direction of information flow, as
we found higher influence of parieto-central sources on frontal sources
in adults compared to children.

The second major finding was that alpha and beta band coherence
was present not only between different cortical sources but also be-
tween cortical and subcortical sources, namely the thalamus. There is
rich evidence for the importance of thalamocortical connections medi-
ating a crucial role in complex cognitive functioning (Van der Werf
et al., 2003) and that those connections show functional and structural
developmental changes (Alkonyi et al., 2011). Further, from resting
functional connectivity fMRI studies it is known that several cortical
regions are less connected in children than in adults (Dosenbach
et al., 2010a; Fair et al., 2007, 2008) during low-cognitive operations
(e.g., rest). Interestingly, we found exclusively unidirectional influ-
ences of the thalamus on cortical sources in adults. Several studies
already demonstrated a tight coupling between alpha/beta band power
and thalamic BOLD signal strength in adults (Goldman et al., 2002;
Laufs et al., 2003, 2006;Moosmann et al., 2003). Of coursewe have to in-
terpret our results with caution, as we do not know the underlying
neural mechanism responsible for coherence or developmental co-
herence differences, respectively. Further, there are some uncertainties
regarding EEG based localization of deep subcortical signals in the
presence of stronger cortical signals. In a recent EEG-fMRI study
we demonstrated (in the same group of subjects) that EEG-BOLD
signal correlations were nearly indistinguishable between children
and adults, except for thalamic BOLD signal correlations with alpha-
and beta power (Lüchinger et al., 2012). Thus, our study and other stud-
ies underline the relevance of the thalamus as an important relay sta-
tion in the brain (Steriade and Deschenes, 1984; Steriade and Llinas,
1988), which might be indirectly described by directed coherence. It
has recently been proposed that long-range coherence between distal
(i.e., far away) sources at higher frequencies might be driven by a
third region, namely the thalamus (Tarokh et al., 2010).

Further it was argued that coherence between proximal electrodes
at low and high frequencies can result from cortico-cortical coupling
or is driven by a third region. Although the information flow from
the thalamus was widespread in both groups of subjects, the directed
connectivity analysis revealed that the adults demonstrate exclusively,
an outflow of information from thalamus to other cortical regions
cortical regions in lower and higher frequencies, while children demon-
strate a bidirectional information flow between cortical regions and the
thalamus. This might indicate that in children the thalamus requires
feedback from cortical regions to operate properly. Recently, it has
been observed in a spatial memory related fMRI study that healthy
children (similar age range than in our study) show stronger func-
tional connectivity between thalamo-striatal and thalamo-cortical
loops compared to children with hyperactivity (Mills et al., 2012),
suggesting that functional connectivity can label the level of brain
maturation. However, there is also evidence that thalamocortical
connectivity is not always increasing from child- and adulthood
(Alkonyi et al., 2011). The authors reported in a DTI study that tha-
lamic connectivity of some cortical regions showed a decrease with



                                           
age, while other regions (specifically the prefrontal cortex) demon-
strate increasing thalamocortical connectivity with age. Recently,
a study modeled the neurophysiological changes (within the delta–
gamma bands) with age in a large group of healthy subjects (n =
1498) aged 6–86 years, incorporating among other parameters,
thalamocortical loops (van Albada et al., 2010). The authors found
that neurophysiological changes in thalamocortical loops tend to
be most rapid in childhood, generally leveling off at age 15–20 years.
As we found in children, bidirectional connectivity between the thala-
mus and frontal, parietal as well as visual areas we would argue –

based on the above-mentioned studies – that the observed bidirectional
thalamo-cortical connectivity in children might reflect brain immaturity
and that those connections will become fine-tuned (i.e., develop unidi-
rectional connectivity) during adulthood. We want to emphasize that
any observed unidirectional flow does not implicate that there is no bi-
directional flow per se but only that the direction of information flow is
stronger in one than in the other direction (asymmetric information
flow).

Coherence differences between eyes closed and eyes open states

There is striking evidence that absolute and relative EEG/MEG
power differs between EC and EO conditions, such as alpha power is
particularly increased during EC acquisition. In addition, already in
1987 it was demonstrated that coherence values, estimated from EC
power, exponentially increase in intra-hemispheric coherence be-
tween frontal and occipital EEG leads (Thatcher et al., 1987) with in-
creasing age. Yet, it was not reported in which frequency band(s) this
observation was made. We show that coherence values were generally
higher during EC and EO in adults than in children. Further, it is evident
that opening the eyes leads to a different involvement of neuronal
sources, which suggests differences in integrity of the central nervous
system dependent on sensory input. This resting-state dependent pres-
ence of neuronal sources was present in both examined groups. In fact,
although the order of coherent source may differ between children and
adults (Fig. 2), the localization of sources was very similar in both
groups of subjects for the EC condition. However, for the EO condition,
the localization of sources underlying brain oscillations differed substan-
tially between adults and children. Thus, it seems likely that sensory
input contributes to a large degree to heterogeneity of neuronal net-
works underlying brain oscillations.

Limitations of the study

Even though we could show age specific pattern of source coher-
ence using DICS, this study also has some limitations. Firstly, the
study revealed brain sources in deep brain structures such as thala-
mus. It is a matter of debate whether it is possible to find sources so
deep in the brain based on recordings from the scalp. In previous
MEG (Gross et al., 2001, 2002; Sudmeyer et al., 2006; Timmermann
et al., 2003) and EEG (Muthuraman et al., 2012a) studies, subcortical
sources have been detected by applying DICS to oscillatory signals
(e.g. tremor), and also in healthy subjects during isometric contrac-
tion (Muthuraman et al., 2012b). Moreover, based on EEGs obtained
simultaneously with functional MRI in patients with absence seizures
and photoparoxysmal responses, DICS revealed sources in deep brain
structures (thalamus) for oscillatory epileptic activity. The sources
found in the thalamus corresponded with positive BOLD signal changes
in thalamus in all patients. In contrast, therewere no sources in the thal-
amus in patients who did not activate thalamocortical network during
epileptiform discharges. In such a way, it was possible to validate the
detection of sources in deep brain structures such as thalamus with an-
other independent method with a better spatial resolution (Moeller
et al., 2012). Secondly, in this study no realistic head models were
used. Thus, the influence of age-related conductivity of head tissues
resulting in differences in the lead field matrix on results of the DICS
cannot be excluded. Previous studies have demonstrated a clear advan-
tage of MRI constrained spherical model, boundary element, as well as
finite element models in localization of bioelectrical sources (Fuchs
et al., 2007; Hallez et al., 2007). Although there is no doubt that realistic
headmodelingwill possibly improve the localization power of DICS, we
want to emphasize that conductivity differences in the examined age
range can be considered as a minor factor to explain the observed
group differences in directed connectivity, since only subtle differ-
ences in conductivity of the skull are found between the age 11
and 24 (Hoekema et al., 2003).

Although the current resting EEG was obtained during fMRI in the
scanner, our spectral analysis clearly replicated all major developmental
effects usually observed during EEG recordings outside of the MR scan-
ner. Specially, for both source and scalp (Lüchinger et al., 2012) spectral
power, we could replicate the standard spectral topographies and devel-
opmental patterns. Yet, the fact that slightly more ICA artifact compo-
nents were excluded in children than adults (Lüchinger et al., 2012),
due to stronger residual ballistocardiogram artifacts, is consistent with
EEG findings outside the scanner, and suggests that the typical differ-
ences in EEG quality were well minimized.

Conclusion

This study demonstrates an age-specific pattern of (directed) con-
nectivity, which may explain functional and behavioral differences in
the context of human brain development. We thus conclude that both
functional and directed connectivities are sensitive to brain matura-
tion as the distribution and directionality of functional connections
differ between the developing and adult brains.
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