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Abstract— Directionality analysis of signals originating from 

different parts of brain during motor tasks has gained a lot of 

interest. Since brain activity can be recorded over time, 

methods of time series analysis can be applied to medical time 

series as well. Granger Causality is a method to find a causal 

relationship between time series. Such causality can be referred 

to as a directional connection and is not necessarily 

bidirectional. The aim of this study is to differentiate between 

different motor tasks on the basis of activation maps and also to 

understand the nature of connections present between different 

parts of the brain.  In this paper, three different motor tasks 

(finger tapping, simple finger sequencing, and complex finger 

sequencing) are analyzed. Time series for each task were 

extracted from functional magnetic resonance imaging (fMRI) 

data, which have a very good spatial resolution and can look 

into the sub-cortical regions of the brain. Activation maps based 

on fMRI images show that, in case of complex finger 

sequencing, most parts of the brain are active, unlike finger 

tapping during which only limited regions show activity. 

Directionality analysis on time series extracted from contra-

lateral motor cortex (CMC), supplementary motor area (SMA), 

and cerebellum (CER) show bidirectional connections between 

these parts of the brain. In case of simple finger sequencing and 

complex finger sequencing, the strongest connections originate 

from SMA and CMC, while connections originating from CER 

in either direction are the weakest ones in magnitude during all 

paradigms. 

Keywords-fMRI; Granger Causality; Multivariate Autoregressive 

(MVAR); AIC. 

I. INTRODUCTION 

Our study of human brain is based on the idea of 
considering it as a set of correlated variables in a complex 
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network. Correlation between these variables helps us 
mapping simultaneously activated regions of brain both in 
context of motor tasks and also in absence of such events [1] 
[2]. Recently, interest has been growing in understanding the 
underlying dynamic directional relationship between these 
variables. Such directionality analysis is likely to shed light 
on the effect of a certain part of the brain on another part and 
thus can be very helpful in understanding the functional 
connectivity of human brain [3] [4] [5]. 

Functional magnetic resonance imaging (fMRI) can 
measure activity indirectly from all brain regions, using 
BOLD signal, but suffers from very low temporal resolution, 
making it prone to missing brain dynamics faster than the 
sampling rate of fMRI. Functional connectivity of brain can 
be quantified by analysis of time series from activated 
regions of interest [6]. The Granger causality (GC) test is 
one such method which can find functional network 
connectivity by analysis of time series recorded from 
different parts of the brain. Calculation of GC is based on 
multivariate autoregressive (MAR) modeling and the idea 
behind GC is that causes precede effects [7]. Various 
directionality analysis methods, based on GC, have recently 
been applied on medical time series and have given 
promising results. Such methods include “directed transfer 
function” (DTF) [8], “partial directed coherence” (PDC) [9], 
“modified directed transfer function” (dDTF) [10], 
“generalized partial directed coherence” (gPDC) [11], and 
“renormalized partial directed coherence” (rPDC) [12]. In 
order to understand the underlying functional connectivity of 
brain, we will employ time domain Granger Causality, which 
has recently been successfully used on fMRI time series [13] 
[14]. 

II. GRANGER CAUSALITY 

Conditional GC is based on the principle that an 
inclusion of past values of time series X1 improves the 
predictability of future values of time series X2, in 
comparison to taking into account only the past values of 
time series X2. Such a case implies that time series X1 
Granger causes time series X2. Consider three time 

series )(
1

tX , )(
2

tX and )(
3

tX given by the following 

autoregressive model: 
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(1) 

(2) 

(3) 

Here, P is the model order (P < T), T is length of time 

series. )(t  is the prediction error of time series )(tX  

and 
xx

A  are the MVAR coefficients. 

Assuming that )(
1

tX , )(
2

tX and )(
3

tX are covariance- 

stationary, the magnitude of conditional GC from )(
2

tX  to 

)(
1

tX  conditioned on )(
3

tX   can be given as: 

(4) 

where 
11

  is subset of noise covariance matrix of 

restricted model omitting variable 2 and  11
is subset of 

noise covariance matrix of unrestricted model. For further 
description of this formula, please refer to [15]. 

Estimation of ‘P’ is of vital importance while fitting 
MVAR model to a time series, because choosing a very low 
order is likely to miss out temporal dynamics of a time series 
while choosing a higher model order will yield spurious 
results. In this study, an optimum model order was found 
using Akaike’s Information Criterion (AIC) and conditional 
Granger causality was applied on modeled and medical time 
series using the Granger causality connectivity analysis 
(GCCA) toolbox [15] [16]. 

No correction for multiple comparisons was performed 
and conditional GC amplitudes were tested against a 
significance level calculated using a surrogate-data method. 
The essential feature of this method is to randomly select 
blocks with appropriate length from the original time series. 
These blocks are rejoined to produce re-sampled time series. 
Due to this random shuffling of blocks, causality in re-
sampled time series is lost. Conditional Granger causality, 
calculated for this re-sampled time series, can be used as a 
null hypothesis [17]. 

III. MODEL DATA 

Prior to conditional GC analysis on fMRI time series, it 
is tested on simulated data. Three time series (Length=2000) 
of order three were constructed having inbuilt causality given 
as: 

(5) 

(6) 

(7) 

Here, )(t is white noise. This model is subjected to 

analysis and directionality was successfully revealed as given 
below: 

Figure 1. Results of directionality analysis on model data. 

After testing the method with modeled data, we will now 
apply it to actual medical time series in the next section. 

IV. EXPERIMENT 

Four healthy subjects (two males, two females, mean age 

= 26) were asked to perform the following three motor tasks 

for ten minutes with the right hand while fMRI was recorded: 

Finger tapping (FT), Rigorous tapping of index finger at a 

frequency of 2-5Hz. Simple finger sequencing(SFS), 

Tapping sequence of thumb against first, middle, ring and 

little finger. Complex finger sequencing(CFS), Tapping 

sequence of thumb against first, ring, middle and little finger. 

BOLD-sensitive MRI was performed with a 3-Tesla MR 

scanner (Philips Achieva, Philips, Best, the Netherlands) and 

a standard 8-channel SENSE head coil. A single-shot T2-

weighted, gradient-echo planar-imaging sequence was used 

for fMRI (TR = 2500 ms, TE = 45 ms, 32 slices, 64 × 64 

matrix, slice thickness = 3.5 mm, FOV = 200 mm, flip 

angle = 90°). 240 brain volumes were acquired during 10 

minutes. Block design was used to find activation maps with 

a 30-second motor task followed by 30 seconds of rest (10 

repetitions). 

After recording fMRI, scans were realigned to remove 

head-movement artifacts. The first image in a session was 

specified as a reference and all subsequent images were 

realigned to it. After realignment, images were resliced and 

normalized. Finally the images were smoothed by 

convolving them with a full width half-maximum (FWHM) 

Gaussian kernel of fixed width [8x8x8 mm], in order to 

suppress noise. Threshold value was fixed to p=0.05 (FWE 

corrected) with 10 voxels threshold on the cluster extent. 

Time series were extracted from three regions of the brain, 

namely contralateral motor cortex (CMC), supplementary 

motor area (SMA) and cerebellum (CER). For extraction of 

time series, a sphere of radius 3mm was assumed as a source 

in the desired part of the brain. Spheres were defined around 

local Maxima in respective region of brain. Moreover 

Hemodynamic response function (HRF) of the brain is 

assumed to be the same all over the brain. No second level 

analysis was performed and preprocessing of images and 

time series extraction was done using the SPM8 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm). 

V. RESULTS 

Activation maps were overlaid with standard anatomical 

brain images to locate the exact positions of activity. 
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Figure 2. Activation map for finger-tapping activity, with the cross hair 

showing the contralateral motor cortex as most active region. Example of 

single subject. Local Maxima (MNI coordinate [-34,-20, 60]). 

Figure 3. Activation map for simple finger-sequence activity, more brain 

regions are active as compared to the finger-tapping task. Example of single 

subject. Local Maxima (MNI coordinate [-32,-20, 68]). 

Figure 4. Activation map for complex finger-sequence activity; brain 

activity can be observed almost all over the brain region. Example of single 

subject. Local Maxima (MNI coordinate [-36,-22, 62]). 

Above activation maps, obtained from single subject, 
clearly shows that, during complex finger sequencing, more 
regions of the brain are active than in simple finger-tapping 

tasks which have very limited activity in the brain. 
Moreover, since all subjects were right-handed and activity 
was performed with the dominant hand, the left side of the 
brain shows more activity than the right hemisphere. The 
cross hair shows the approximate location of CMC in all 
figures (2, 3, and 4). 

In order to measure the activation, the number of active 
voxels was counted, in typical subject, for each activity, as 
shown in Table I. We can see that CFS has most active 
voxels while FT has the fewest active voxels. This trend was 
observed in all subjects except one. 

TABLE I 

NUMBER OF ACTIVE VOXELS FOR EACH ACTIVITY 

Activity Number of Activated Voxels 

FT 3884 

SFS 14360 

CFS 46456 

Figure 5. Approximate locations of supplementary motor area (top left), 

cerebellum (top right) and contralateral motor cortex (bottom left) shown 

by the cross hair, taken from finger-tapping activity (MNI coordinates [-2,-

4, 58], [14,-58,-24], [-34,-20, 60]). 

After extracting time series from CMC, SMA, and CER 

(as shown in Fig 5.), individual time series were subjected to 

detrending and removing the mean, which is a pre-requisite 

of MVAR-model fitting. The time series are tested if they are 

covariance-stationary using the “augmented Dickey Fuller 

test”, since causality analysis methods cannot be applied to 

non-stationary time series. An appropriate model order is 

selected using AIC and conditional granger causality is 

calculated. The significance level is calculated using 

surrogate data. Almost all connections were found to be 

significant, their magnitudes were noted down, and an 

average was taken over all subjects (see Fig. 6). However, 

we did not perform any group level studies. 
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Figure 6. Average connection strength for each motor activity. 

From the results, we can see that, especially in case of 
complex and simple finger sequence, the strongest 
connection was originating from SMA and CMC, while 
cerebellum had weakest outgoing connections in all tasks. In 
order to test the strength of the connections in each case, 
connections were arranged in order of strength of magnitude. 

TABLE II 

STRONGEST CONNECTION IN EACH MOTOR TASK 

Activity Strongest Connection 

CFS SMA -> CMC (75%) 

SFS SMA -> CMC (60%) 

FT CMC -> CER (40%) 

Table II. Shows that incase of complex finger sequence, 
SMA to CMC connection were strongest in 75% of the 
subjects. In case of simple finger sequence, the strongest 
connection was again from SMA to CMC in 60% of the 
subjects, and in case of finger tapping, the strongest 
connection was from CMC to CER almost 40% of the 
subjects. 

VI. CONCLUSION 

In the presented study, three different motor tasks have 

been investigated with respect to causality in brain. The 

results suggest that, incase of complex brain activity, 

different parts of the brain interact with each other more 

strongly than during simple finger tapping. In turn, this 

means that complex activity demands more neural 

computations from more parts of the brain. This is most 

likely due to increased emphasis on motor-initiation 

processes. During simple-sequencing and complex finger-

sequencing tasks, the strongest connection observed was 

from SMA to CMC; however, in case of a finger-tapping 

task, the strongest connection was observed from CMC to 

CER. The weakest connections in all tasks are the ones 

originating from CER to the other two regions of the brain. 

Both CMC and SMA together act as motor-command signal 

sources. 
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