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. Introduction

The frequency content of biological signals is typically analysed
y digital spectral analysis. The traditional approach is the discrete
ourier transform performed for all the segments of the data under

tudy. The resulting periodograms [1] are then averaged leading
o a smooth power spectrum, which allows a smaller variance of
he estimate of the frequency content of the investigated signal.
owever, this approach has important limitations. If the size of the
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data segments used for the analysis is small, the frequency reso-
lution decreases proportionally. On the other hand, the larger the
number of segments, the smoother the power spectrum and less
variant is the spectral estimation. Thus there is a trade-off between
smoothness of spectral estimation and frequency resolution which
is especially problematic when applied to short data lengths. For the
same reason the application of methods to short intervals of data is
limited and the analysis of temporal evolution of spectral power in
different frequency bands lacks temporal resolution. Due to these
limitations, alternative methods for reliable spectral estimation for

very short intervals of data have been developed. The most com-
monly used approach is the continuous wavelet transform [2]. In
its original form the temporal resolution of the wavelet-transform
decreases with the frequency of interest. Thus for low frequen-
cies the time resolution is poor. Recent extensions of the wavelet
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−W

|U(f )|2 df (4)
                                  

ethod have, however, made it possible to obtain the same tem-
oral resolution for all frequency bands [3]. Another method for
ighly time-resolved spectral analysis is the multitaper method [4]
hich uses more than one window (‘taper’) for analysing the sig-
al. This method has been introduced into the analysis of biological
ata more recently and also performs with high temporal resolu-
ion irrespective of the frequency bands under study. Thus both

ethods allow assessing the dynamical changes in spectral and
ross-spectral estimates over time.

For biological questions it is often important to detect even very
hort-time intervals during which the power or coherence in a spe-
ific frequency range drops or disappears [5]. It has been postulated
hat the cortex may only be intermittently involved in the gen-
ration of pathological tremors [6] and that the different tremor
omponents at the basic and the “first harmonic” frequencies show
istinct dynamics likely indicating separate origins [7,8]. To find
ut which of the two time-frequency-analysis methods is better
o test for such hypotheses, we investigated their performances in
wo model systems with built-in short drops in power and coher-
nce and in real biological samples of EEG and EMG data recorded
rom patients with Parkinsonian tremor. The paper is organised
s follows: In Section 2 the data acquisition is described. In Sec-
ion 3 the analysis methods, namely the multitaper and the CWT
pproaches, are explained. In Section 4 the results of applying the
ethods to the two model systems are followed by the application

o the Parkinsonian data. In Section 5, the methodological advan-
ages and drawbacks of both methods are discussed, and finally,
he biological findings on the Parkinsonian data are summarized.

. Data recordings

In this study we have taken five patients with definite Parkin-
on’s disease as diagnosed by the brain-bank criteria [9]. Patients
ere seated comfortably in an arm chair with their forearms sup-
orted on and their hands hanging freely from the armrests. Surface
MG was recorded from the forearm extensors and flexors on the
ore affected side with two silver-chloride electrodes positioned

lose to the motor points of both muscles. EEG was recorded in
arallel with a standard 64-channel EEG recording system (Neu-
oscan, Herndon, VA, USA) using a linked mastoid reference. A
tandard EEG cap was used with electrode positions according to
he extended 10–20 system. EEG and EMG were band-pass fil-
ered (EMG 30–200 Hz; EEG 0.05–200 Hz) and sampled at 1000 Hz.
ata were stored in a computer and analysed off-line. Individual

ecordings were of 1–3 min duration. The number of recordings
erformed for each patient varied between 3 and 9 depending on
he comfort of the subject. The EMG was full-wave rectified. The
ombination of band-pass filtering and rectification is the com-
on demodulation procedure for tremor EMG [10]. The EEG was
ade reference-free by a Hjorth transformation [11]. The practical

mplementation of the Laplace operator detects source activity as
t appears at the surface level of the scalp. It is realized in the 10–20
ystem of electrode placement basically as an analogue superpo-
ition of four bipolar derivations, forming a star-like configuration
round each electrode. The 64-channel layout was used for record-
ng the EEG. But only 49 electrodes were recorded and used for the
jorth transformation and finally we derive 35 electrodes exclud-

ng the 14 boundary electrodes.

. Analysis methods
.1. Multitaper method

In this method the spectrum is estimated by multiplying the
ata with K different windows (i.e. tapers). The method uses a slid-
                                 

ing time window for calculating the power spectrum by discrete
Fourier transformation. If x(t) is the signal, then the spectral power
is calculated as follows [12]:

SMT(f ) = 1
K

K∑
k=1

|X̃k(f )|2 (1)

X̃k(f ) is the Fourier transform of the windowed signal x(t) which
can be calculated as

X̃k(f ) =
N∑

t=1

wk(t)x(t) exp(−2�ift), (2)

and the terms wk(t)(k = 1, 2, . . . , K) are the K orthogonal tapers. In
this study, K = 7 tapers were used. As orthogonal tapers with good
leakage and spectral properties, the discrete prolate spheroidal
sequences (DPSS) [13] are applied.

The DPSS can be defined as vk(t, W, N), where the kth DPSS has
a length N and a frequency-bandwidth parameter W. The Fourier
transform of the sequence vk(t, W, N) is given as

U(f ) =
N∑

t=1

vk(t, W, N) exp(−2�ift). (3)

The K sequences vk(t, W, N) are determined such that the spectral
amplitude U(f) is maximally concentrated in the interval [−W, W],
Fig. 1. The power spectrum of the Autoregressive 2nd-order process signals are
depicted in (A) solid line in red is the model for the EMG signal, solid line in black is
the modeled EEG signal. For clarity the flowchart of the model is depicted in (B). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)
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s maximised. The maximisation problem is solved by using
agrange multipliers; this leads to an eigenvalue equation, and the
igenvectors of this equation will be the DPSS.

After calculating the power spectra, the coherence between the
wo signals from the Parkinsonian tremor, in our case the EEG signal
(t) and the EMG signal y(t), is estimated as follows [14]:

ˆ (f ) = |Ŝxy(f )|2
Ŝxx(f )Ŝyy(f )

(5)

ere Sxy(f) is the cross spectrum and is defined as

xy(f ) = X̃k(f ) · Ỹk(f ) (6)

nd estimated as given in Eq. (1). Sxx(f), Syy(f) are the individual
ower spectra estimated as given in the above Eqs. (1) and (2),
he overcap indicating the estimation [15]. The coherence is a lin-
ar measure between 0 and 1. When the estimated value for the
oherence at a frequency is 0, this indicates the lack of correlation
etween the two signals at this frequency. The value 1 indicates

omplete correlation between the two signals at this frequency.

In this study, we used windows of length 1000 ms in order to
nd the intermittent drop in the power for the model system and

or the Parkinsonian tremor within a frequency band of 2–30 Hz.
he signals were sampled at 1000 Hz, and the time step was 50 ms

ig. 2. Estimation of coherence of the coupled autoregressive 2nd-order process model
xtended continuous wavelet-transform method (right column) for a single realization.
                                    

with overlapping windows. So, in this sense the time resolution is
50 ms, and the frequency resolution is 1 Hz.

3.2. Wavelet-transform method

In this method the Morlet wavelet is used. This is a complex
sinusoid windowed with a Gaussian envelope [3]:

h(t) = exp(jct) exp

(
−˛t2

2

)
(7)

The continuous wavelet transform for a continuous signal x(t) can
be written as [2]:

CWTx(�, a) = 1√|a|

∫
x(t)h∗

(
t − �

a

)
dt (8)

where t and � are time variables, h*(t) is the wavelet function, and
a is the scaling factor; the constant 1/

√|a| is used for energy nor-

malisation. The CWT can also be expressed as an integral in the
frequency domain [3]:

CWTx(�, a) =
√

|a|
∫ ∞

−∞
X(u)H∗(ua) exp(j2�u�) du (9)

system with incorporated gaps of 1–4 s for the multitaper (left column) and the
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(u) and H(u) are the continuous Fourier transforms of the signal
(t) and the wavelet function h*(t), respectively. The continuous
ourier transform reveals how the energy in the signal x(t) is dis-
ributed in frequency. As the scaling factor a is increased, the
avelet function h* is spread in time, which takes care of long-

ime oscillations (i.e. low frequency). When the scale is decreased,
he function h* becomes shorter to take care of short-time oscil-
ations (i.e. high frequency). The power is estimated by the square

odulus of the CWT, and its representation in time-scale domain
s termed scalogram.

The relationship between the scale a and the frequency f can

e given as a = c/f, where c represents the centre frequency in the
avelet.

To reduce the estimation time, the convolution is done in the
requency domain, as described by Eq. (9). The main feature of the

orlet wavelet is that the relative bandwidth can be easily adjusted

ig. 3. The mean coherence for all the 10 realizations of the coupled signals from 1 to 4
nder the curve for the “coupled time intervals” at 0–50, from 51–100, 52–100, 53–100,
he “uncoupled time intervals” from 50–51, 50–52, 50–53, 50–54 and 100–101, 100–102
                                 

using the two parameters c and ˛. In our case, It is chosen to be
c = 2� and ˛ = 0.151. The relation between these two parameters to
the frequency is given by
√

˛

c
= �f

2
√

2f
(10)

where �f is the desired frequency resolution at a given frequency f.
In this case the choice of c and ˛ individually are unimportant. The
important factor is the ratio

√
˛/c, which determines the relative

bandwidth:

�f 2
√

2˛

BWrel =

f
=

c
(11)

This allows the method to have complete flexibility in setting the
CWT to have a particular frequency resolution at any particular
frequency.

s for the multitaper method (A) and the wavelet method (B) is calculated as area
54–100 and 101–150, 102–150, 103–150, 104–150 s and by comparing them with
, 100–103, 100–104 s in the coherence over time and plotted as bar graphs.
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In the CWT, we also used windows of length 1000 ms and the
ime step was 50 ms with overlapping windows. So, in this sense
he time resolution is 50 ms, and the frequency resolution is 1 Hz
n order to allow a fair comparison of the performance with that of
he multitaper method.

. Results

.1. Application to model signals for detecting gaps

Both methods were applied to two model systems. One of them
as designed using a linear stochastic autoregressive 2nd-order
rocess. The second model was designed using non-linear stochas-
ic van der Pol oscillators. The autoregressive 2nd-order process is
efined as

0(t) = a1y0(t − 1) + a2y0(t − 2) + �0(t) (12)

here a1 and a2 are the autoregressive 2nd-order coefficients [16]
hich are determined as

1 = 2 cos
(

2�

T1

)
exp

(−1
T2

)
(13)

2 = −exp
(−2

T2

)
(14)

n this process, T1 is the mean oscillation period and T2 is the
elaxation time. �0(t) is a Gaussian white-noise process with zero
ean and unit variance. The sampling frequency was chosen to

e 1000 Hz again. In Parkinsonian-tremor data, the coherence
etween concurrently measured EEG and EMG is limited to very

arrow bands around 5 Hz and 10 Hz. The varying coherence
ver time indicates that these frequencies are only intermittently
resent. For the model signal, we used only one band (5 Hz). A nar-
ow band process was used to model the EMG signal (solid line in
ed in Fig. 1A). One broad-band (BB) processes were taken and then

ig. 4. Estimation of coherence of the coupled van der Pol oscillator model system witho
he multitaper (left column) and the extended continuous wavelet-transform method (ri
                                    

superimposed on the narrow band process for the whole period of
150 s. This combined process was used as a model for the more
broad-band EEG data containing tremor-related activity. Indepen-
dent white noise was added to the combined process (solid line
in black) which is the modelled EEG signal to tune the coherence
between 0.25 and 0.6 as it is seen in the biological data. For clarity,
the flowchart of the model is given in Fig. 1B. In order to model the
intermittent drops in the coherence between EEG and EMG, two
gaps of variable length between 0.5 and 4 s where left at 50 and
100 s without superimposition. But the noise process was contin-
ued in these gaps. Now, the magnitude of the coherence over time
between the two processes should be reduced at these instances
for the duration of the gaps.

In order to validate the methods for the application to non-linear
systems, an example of coupled stochastic van der Pol oscillators
was used [17]. The equations for their descriptions are given as

ẍ1 = �(1 − x2
1)ẋ1 − ω2

1x1 + ��1 + ε12(x2 − x1) (15)

ẍ2 = �(1 − x2
2)ẋ2 − ω2

2x2 + ��2 + ε21(x1 − x2) (16)

where ω1 = 1.45, ω2 = 1.48, and �i is Gaussian distributed white
noise. The interaction between these two oscillators is still linear;
the system is non-linear due to the terms which are weighted by
the parameter �. This value is fixed to 5, which leads to a highly
non-linear behaviour of the van der Pol oscillators. The coupling fac-
tors are fixed to ε12 = ε21 = 0.25. The model was investigated with
N = 150,000 data points. The intermittent drops in the coherence
were modelled in the same way as in the autoregressive process
with two gaps of variable length.
The methods were tested on both model systems for 10 real-
isations of each gap length (0.5–4 s). The multitaper method was
able to exactly identify gaps in the signals as small as 1 second as
shown in Fig. 2 for one realisation of the autoregressive 2nd-order
process. The minimum detected gaps for all the 10 realisations in

ut additional observational noise followed by addition of noise from 25 to 45% for
ght column) for a single realization.



                                                                         

Table 1
The mean and standard deviation of the minimum detected gap for both the model
signals.
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Fig. 5. An example for the typical EMG (forearm extensor) envelope power spec-
Minimum detected gap width (s) MTM CWT

AR2 0.97 ± 0.10 3.51 ± 0.21
van der Pol 1.12 ± 0.11 3.61 ± 0.19

oth model systems are summarised in Table 1 with mean and
tandard deviation. The 0.5 s gap was not identified, only a small
rop in the coherence was seen at these instances in time. In case
f the CWT method, gaps below 4 s were not clearly identified
s shown in Fig. 2. A finite coherence value remained in all the
0 realisations. The difference in coherence for all the 10 reali-
ations of the autoregressive 2nd-order process for the coupled
nd uncoupled durations in the signals was estimated by taking
he mean coherence in the frequency interval 4–6 Hz for the “cou-
led time intervals” at 0–50, from 51–100, 52–100, 53–100, 54–100
nd 101–150, 102–150, 103–150, 104–150 s and by comparing
hem with the “uncoupled time intervals” from 50–51, 50–52,
0–53, 50–54 and 100–101, 100–102, 100–103, 100–104 s. The
ean coherence with the standard deviation for the gaps from 1–4 s

s indicated as bars in Fig. 3. In Fig. 3A the MTM showed a large
ifference in coherence between the coupled time and the uncou-
led time identifying the induced gap in the signals, whereas the
xtended CWT as displayed in Fig. 3B showed much less difference
elow 4 s indicating that there is only a slight decrease in the esti-
ated coherence, not reduced to the same degree as in the case of

he MTM. The difference between the methods with respect to the
actors gap length and coupled or not coupled duration in the sig-
als was tested by the n-way analysis of variance (ANOVA) method
hich showed that all the factors and their interactions were sig-
ificant (p < 0.01). The mean coherence was calculated taking into
ccount all the 10 realisations.

.2. Application to model signals for random fluctuations

In the two model systems, both processes were added with
xternal observational white noise with a level of 25–75% com-
ared to the signal level, to get the noise threshold of the methods
nd also to prove that the decrease in coherence is monotonic
nd not due to random fluctuations in stochastic signals for the
hole period. The noise threshold was identified as 45% by visual

nspection. For each 10% increase starting from 25% of noise the
ime-frequency plots for one realisation of the van der Pol oscilla-
ors are shown in Fig. 4. The decrease in coherence was monotonic
ith the increase in noise power over the entire range of 150 s

or both model systems. The methods were tested on the autore-
ressive 2nd-order process and the van der Pol oscillators for 10
ealisations with almost identical results for both model system
nd all realisations.

.3. Application to Parkinsonian tremor

The methods were now applied to recordings from 5 Parkinson
remor patients all of which showed clear peaks in the corticomus-
ular coherence at the tremor frequency and the “first harmonic”
requency. The coherence was centered in the central electrodes
ontralateral to the trembling muscle (EMG) under study. The
ower spectrum of the left forearm extensor muscle (M4) and
he coherence between the EEG electrode C2 and this muscle of

Parkinsonian patient are shown in Fig. 5. The average basic fre-
uency was 4.8 ± 0.8 Hz and the average “first harmonic” frequency
as 9 ± 1.58 Hz across all patients and recordings. In all the five
atients the contralateral electrode with the highest coherence was
aken for the analysis of power and coherence over time.
trum in Parkinsonian tremor (A) and the corresponding corticomuscular (EEG–EMG)
coherence spectrum (B) for a single recording. The basic tremor frequency 4 Hz and
the first harmonic frequency 8 Hz shown by the peaks in the EMG envelope spectrum
are both coherent with an EEG (C2) electrode on the contralateral side.

As already seen in the model-signal analysis, the MTM was able
to detect relatively short-lived drops in power or coherence in one
of the two frequency bands, whereas the CWT tended to smear the
estimates. In Fig. 6 (bottom) the power spectrum was estimated
from 0 to 25 s using the Welch periodogram method [1]. The basic
tremor frequency at 4 Hz and the “first harmonic” frequency at 9 Hz
are present at this time interval which is also clearly depicted by
both methods in the power-spectrum estimations over time. How-
ever, the power spectrum from 95 to 115 s shows only power at the
“first harmonic” frequency of 9 Hz. This change is clearly identified
by the multitaper method as a gap in power at the basic frequency
of 5 Hz. In the extended continuous wavelet transform, the estima-
tion of the power spectrum is smeared over time and indicates high
power all the time in both frequencies.

The main finding illustrated in Fig. 6 was that the power and
corticomuscular coherence followed distinct time courses at the
basic and the higher “harmonic” frequencies with the cortical cor-
relate of one of them often being present without the other. The
significant difference between both these frequencies for all the
five patients was tested using a surrogate analysis. In order to
obtain a 1% significance level, 100 surrogates were estimated with
the coherence values taken for every 1 s for the whole period of

150 s. The cross correlation between the two time series was calcu-
lated by shuffling the coherence values of both of them randomly
for 99 times and then comparing it with the cross correlation of
the 100th surrogate, which was calculated with the actual coher-
ence values. The results are shown in Fig. 7 in which the vertical



                                                                         

Fig. 6. The dynamical power spectrum of the extensor right muscle-M2 and corticomuscular coherence spectrum between EEG electrode C1 and extensor right muscle-M2
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f a Parkinsonian-tremor patient analyzed with extended continuous wavelet-trans
ntervals from 0 to 25 s and from 95 to 115 s were estimated by the Welch periodog

ashed lines indicate the cross correlation of the 100th surrogate
or the five patients which was negatively correlated compared
o the other 99 surrogates which was close to 0. By these results
e can confirm that the two frequencies follow significantly dis-

inct time courses and also they are negatively correlated in all the
atients.

. Discussion

The traditional continuous wavelet transform has a varied time-
requency resolution at any position in the time-frequency plane

nd achieves better time resolution but larger frequency distortion
n the upper frequency range [18,19]. In this paper we have used
he extended version of the continuous wavelet transform, apply-
ng the Morlet wavelet. It has been claimed that this can be used
o freely choose an appropriate time-frequency resolution [3] as
method (A and B) and multitaper method (C and D). The power spectra for the time
ethod.

is the case of the multitaper method. Applying these methods to
the model signals revealed that the MTM was able to clearly detect
the short-lived gaps of 1–4 s in the power and coherence between
two coupled signals. In the case of the extended CWT, gaps below
4 s were not clearly identified in all the 10 realisations. The MTM
showed a large difference in coherence between the coupled and
uncoupled time segments compared to the extended CWT. This
indicates that the MTM is more suitable to analyze the dynamics
of the spectral power and coherence with high temporal resolu-
tion. Both analyses were tested for their noise thresholds on two
model signals, and the thresholds were between 40 and 50% for

both methods. It was also proved that the reduction of coherence
was monotonic over the whole period.

The main drawback in the wavelet method is that only one Mor-
let wavelet is used as the template for the whole period of signals.
In case of the multitaper method, the (e.g. 7) tapers are different in
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[

[

ig. 7. The distinct nature of the basic and the first harmonic frequency is statisti
ollowed by the 100th surrogate with the original coherence values. The dashed lin
ubjects which is 1% significant compared to the other values.

hape and all of them are used as windows and multiplied with the
ignal. The overall information of all the tapers is taken into account
or the estimation which gives additional information about the sig-
al. The length of the windows is the same for all the seven tapers
nd they do not have different pass bands [4]. The window length is
dentified for all seven tapers. Also, their corresponding frequency
esponses do not differ strongly in their pass band shapes. Differ-
nces do exist, however, in terms of the DC (i.e. zero frequency)
mplifications and of the leakage suppression especially at alter-
ating, slightly shifted frequencies. The inherent averaging of the
ethod leads to the advantageous behaviour observed above. The

ombination of all these windows in the multitaper method gives
ess leakage about the edges of the signals after windowing and
ives a clear indication of the time behaviour, which is very useful
n finding the sharp changes in the signals [4]. However, the com-
utation time of the multitaper method on an Intel(R) Pentium(R)

processor 1.70 GHz PC is 10 min compared to one minute for
he extended continuous wavelet transform for 150 s of data using

atlab, i.e., a factor of 10 has to be accepted as a price for the better
erformance.

In the tremor signals, there are multiple components [20]
ithin the low frequency range from 4 to 10 Hz. Resolving these

omponents within such a small frequency range is difficult in case
f the wavelet transform, because when there are two frequency
omponents within an analysis time-domain window, the estima-
ion is noisy at these frequencies and tends to overestimate the
ifferent components present in the signals. The two frequency
omponents were more reliably separated over the whole time
ourse using the MTM.

Now, based on new insights into the reliability of the analysis,
wo important aspects of the coupling between EEG and EMG have
ecome clear: They are only coupled at certain intervals in time and
he two frequencies involved (basic tremor and “first harmonic”
requencies) have a distinct time course in the coherence over time.

In summary we conclude from the methodological point of view
hat the MTM is more suitable for analysing the exact dynamics

f low frequency multimodal signals than the extended version of
WT. In the biological point of view our results on Parkinsonian
remor support the notion that the basic frequency and “first
armonic” are in fact distinct processes both contributing to the
eripheral tremor.

[

[

ested by calculating 99 surrogates with random shuffling of the coherence values
icate the cross correlation of the 100th surrogate values for the five Parkinsonian
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