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. Introduction

Essential tremor (ET) and the tremor in Parkinson’s disease (PD)
re the two most common pathological tremor forms encountered
n clinical neurology [1]. Where ET is a relatively benign disease

ith the tremor being the main symptom, PD is a progressive
euro-degenerative disorder in the course of which other disabling
eurological deficits develop. Differential diagnosis between the
wo tremors is usually achieved clinically. But there is a certain
verlap in the clinical presentation between the two diseases that
an make the differentiation on purely clinical grounds difficult
2]. In such unclear cases, functional imaging of the dopaminergic
eficit as the hallmark of PD is considered the diagnostic gold stan-
ard [3,4]. However, this requires SPECT (Single Photon Emission

omputer Tomography)-technology, injection of a radioactivity-

abeled dopamine transporter ligand into the patients (DAT-Scan),
nd needs a considerable amount of time. Thus more readily avail-
ble and easier diagnostic tests are desirable [5]. Spectral analysis of
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tremor time-series recorded by accelerometry and surface EMG is a
common approach [6]. It has proven useful to distinguish between
physiological and pathological tremor [7] but is not superior to the
clinical assessment in the distinction of ET from PD in its present
form [8].

Therefore methods beyond the standard spectral analysis of the
recorded tremor time-series have been applied in an attempt to
find a way to safely separate ET and PD [9–14].

These methods seemed to have reasonable diagnostic yields:
an almost complete separation between 25 PD and 15 ET subjects
was obtained on the basis of the asymmetric decay of the auto-
correlation function in a time-series analysis [9]. However, this
approach does not investigate the frequency domain and it is not
clear, if it is equally successful in different and larger samples. A
method of long-term EMG recording was proved to be suitable for
the separation of PD tremor and ET [10]. But this is more time con-
suming and cumbersome to patients and doctors as it entails more
than one visit and longer recording times also outside the labora-
tory [12]. We hypothesize that the power spectra of short (30 s)
EMG and accelerometer time-series recorded in a laboratory set-

ting carry more information in the different frequency bands and
this information from the frequency domain could be utilized for
the differential diagnosis between ET and PD tremor.

A different approach of spectral analysis is suggested in
this paper. This approach is based on a soft-decision wavelet-
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Table 1
Trial data-size, age, gender, and disease duration distribution of both PD and ET
subjects.

PD ET

Number of patients 19 21
Mean age (range) 64.54 (40–90) years 63.24 (27–94) years
Gender (male/female) 11/8 12/9
Mean disease duration 16.4 years 34 years

Table 2
Test data-size, age, gender, and disease duration distribution of both PD and ET
subjects.

PD ET

Number of patients 20 20
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Mean age (range) 68.22 (52–85) years 64.52 (32–86) years
Gender (male/female) 12/8 11/9
Mean disease duration 15.3 years 29 years

ecomposition technique, and it succeeds in obtaining 85%
ccuracy of discrimination of ET from PD.

The organization of the paper is as follows: in Section 2, both
he trial data and test data are described. Section 3 contains the

ain idea of the soft-decision wavelet-based technique with its
mplementation on trial data. The results of implementation on test
ata and discussion of the results are given in Section 4. Section 5
ontains conclusions and some remarks concerning the follow-up
f the presented work.

. Data acquisition

.1. Subjects

In this study, 39 PD and 41 ET subjects were analyzed, respec-
ively. All patients are suffering from a moderate to severe postural
remor. This postural tremor could not be differentiated on clinical
rounds with respect to frequency, amplitude, or other features.
he data is divided into two sets and to be used for training (trial
et) and for testing (test set), respectively. The features are to be
btained from the training set and the discrimination algorithm is
o be tested for performance evaluation on the test set. The mean
ge, sex and disease duration of the PD patients were compared
ith the ET patients for the trial and test data in Tables 1 and 2.
ll patients gave informed consent, and the study was approved by

he local ethics committees at the University of Kiel.
It is important to mention at this stage that the data size is

arginal (not large enough) to yield general results and this will
ven limit the consistency test methods that can be used along with
uch a marginal data size.

.2. Tremor recording

The settings in which the data from both the PD and ET patients
ere recorded, were almost identical. The patients belonging to

oth groups were comfortably seated in an armchair with their
orearm supported by the arm rests. Postural tremor was recorded
rom the more affected side, while subjects extended their hands
nd fingers actively to a 0◦ position with the resting forearm.
his posture was held against gravity, and in this condition the
remor was recorded for a period of 30 s. A piezoelectric accelerom-
ter of about 2 g was fixed to the dorsum of the more affected

and in the middle of the third metacarpal bone, and bipolar sur-

ace EMG recordings with silver–silver–chloride electrodes from
orearm flexors (EMG1) and extensors (EMG2) were taken. EMG
lectrodes were fixed close to the motor points of the ulnar part of
he hand extensor and flexor muscles of the forearm, thereby pref-
                              

erentially recording the extensor and flexor carpi-ulnaris muscles.
All data were sampled at 800 Hz. The EMG was band-pass filtered
between 50 and 350 Hz and full-wave rectified. The relatively high
sampling frequency was useful for the EMG recordings as within
the bursts there are frequency components up to 350 Hz and can
only be fully picked up with such a sampling frequency to satisfy
the Nyquist theorem.

3. Data analysis method

The spectral-analysis technique applied in the following is based
on a specific variant of the so-called sub-band decomposition
soft-decision technique [15]. The wavelet-based soft-decision tech-
nique is introduced in [16] with an application of wavelet filters
instead of the Haar filters used in the conventional sub-band tech-
nique. The basis of the wavelet-based technique is to be briefly
explained in the following subsection.

3.1. Wavelet-decomposition

The wavelet-decomposition starts by filtering the input signal
x(n) of length N by low-pass filters (LPF) and high-pass filters (HPF)
and then down-sampling by a factor of 2 to produce both the
“approximation” a(n) and the “details” d(n). Assuming that Haar
filters are used, then a(n) and d(n) can be obtained by:

a(n) = 1√
2

[x(2n) + x(2n + 1)] (1a)

d(n) = 1√
2

[x(2n) − x(2n + 1)] (1b)

If it is known that the energy is concentrated in one of the
bands, the computation process could be applied in that band and
stopped in the other one to reduce complexity and save process-
ing time. The decomposed bands could also be decomposed further
into low frequency and high-frequency sub-bands using the same
filters. The process of selecting one decomposition path out of the
full decomposition is called hard-decision algorithm [15]. The band
selection is established by an energy comparison between the low-
and high-frequency subsequences a(n) and d(n):

B =
(N/2)−1∑

n=0

(a(n))2 − (d(n))2 (2)

According to the sign of B, the decision is taken: if B is positive,
the low-frequency band a(n) is considered, and if B is negative, the
high-frequency band d(n) is considered. Since we are not interested
in the value of B, but only in its sign, Eq. (2) can be simplified to the
approximation:

sgn(B) = sgn

(N/2)−1∑
n=0

|a(n)| − |d(n)|. (3)

Energy comparison and band selection are repeated at each
decomposition stage; this results in following one decomposition
path and narrowing down the estimate of the dominant frequency
range of the original sequence.

A useful modification of the hard-decision algorithm is to per-
form full decomposition in each stage to a specified number of
times and assign a “probability measure” that reflects the energy
in each decomposed band. This process is called the soft-decision

algorithm [15] and found useful in estimating the approximate
power-spectral density (PSD) using different wavelet filters [16] in
spectral analysis. The soft-decision method has been implemented
successfully due to its simplicity and good spectral resolution
advantage in many biomedical signal-processing applications, e.g.,
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Accuracy (%) =
T

· 100 (6)
ig. 1. The average power-entropy plots for both ET and PD cases of trial records
accelerometer).

or the heart-rate variability signal in obstructive sleep apnea or
or congestive heart failure [17–19]. The complete procedure for
stimating the PSD of the decomposed sub-bands [16] is listed in
ppendix A.

.2. Implementation on trial data

The soft-decision algorithm is implemented on the training data
sing Daubechies (db4) wavelet filters with m = 8 decomposition
tages, which results in 256 frequency bands. The PSD (the probabil-
ty values) and the entropies of the 256 bands are obtained for each
D record and ET record. An average power-entropy plot is derived
or both diagnostic groups (PD or ET) by averaging the probability
alues of counterpart bands in each case for each signal out of the
hree used signals (accelerometer, EMG1 and EMG2). The average
ower-entropy plots of the 21 ET records and the 19 PD records
re shown in Figs. 1–3 for the first 20 bands up to 31.25 Hz for
he three different signals, respectively. Figs. 1–3 represent aver-
ge results and can be considered as standard plots for ET and PD.

requencies above 31.25 Hz are not considered in our algorithm as
oth ET and PD tremor frequencies are below 31.25 Hz [6,9]. The
umber of bands (256) was selected to have good resolution of the
stimated power-spectral density. Other than (db4) wavelet filters

ig. 2. The average power-entropy plots for both ET and PD cases of trial records
EMG1).
Fig. 3. The average power-entropy plots for both ET and PD cases of trial records
(EMG2).

have been also used but no better results are obtained, so results of
db4 filters are kept only in the paper due to the simplicity of db4
filters.

3.3. Classification performance

A classifier is a parameter or a variable, with a suitable optimal
threshold, that is used in a classification algorithm. In this study,
only binary classification is considered, e.g., classification between
two different cases termed “positive case” (PD) and “negative case”
(ET). The performance of a classifier is evaluated by three main
metrics: specificity, sensitivity, and accuracy, as follows [20]:

Specificity (%) = TN
TN + FP

· 100 (4)

Sensitivity (%) = TP
TP + FN

· 100 (5)

TP + TN
where the entities in the above equations are: (TN (true negatives),
TP (true positives), FN (false negatives), FP (false positives)), and T
is the total number of data under test.

Table 3
Classification results of test data based on first 20 bands.

EMG2 EMG1 Accelerometer Band number

PD ET PD ET PD ET

9 13 9 16 9 6 B1
9 13 9 16 9 14 B2
9 17 8 16 10 16 B3

11 7 11 7 9 13 B4
12 8 9 12 10 10 B5
13 16 12 16 12 9 B6

8 14 11 13 13 9 B7
11 14 14 14 11 9 B8
11 15 14 11 10 8 B9
10 15 10 15 10 8 B10
11 11 14 17 11 11 B11

6 13 12 10 9 8 B12
11 12 13 14 10 10 B13
11 10 13 12 12 11 B14
12 8 14 14 7 10 B15
12 7 12 8 10 9 B16

9 10 13 11 14 10 B17
13 10 11 14 8 10 B18

8 12 12 13 7 10 B19
10 11 10 14 11 10 B20



                                                                     

Table 4
Results based on different bands from different signals using test data set.

Classification based on Band number Correct ET subjects Correct PD subjects

Accelerometer signal B17 4, 5, 6, 7, 8, 9, 11, 15, 17, 18
EMG1 B11 1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14,
EMG2 B6 1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15,
Voting 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 1

Table 5
Classification factors for the three signals obtained from training data.

Case CFET CFPD

Accelerometer 0.3172 0.4448
EMG1 0.1175 0.1558
EMG2 0.1249 0.1516

Table 6
Performance analysis of the technique obtained from test data.

Case Specificity (%) Sensitivity (%) Accuracy (%)

Accelerometer 55 60 57.5
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distances of the data under test from a standard ET factor CFET to
those from a standard PD factor CFPD. If the result is negative, this

T
R

EMG1 85 65 75
EMG2 80 75 77.5

Specificity indicates the ability of a classifier to detect nega-
ive cases, i.e., the ET cases. Sensitivity represents the ability of

classifier to detect the positive cases, i.e., the PD cases. Accu-
acy represents the overall performance of a classifier. It indicates
he percentage of correctly classified positive and negative cases
mong the total number of cases.

. Results

In order to discriminate ET from PD based on power-entropy
esults, a blind search has been implemented to find any band or
ombination of bands that can lead to clear or good discrimination
etween the two groups. By a blind search, we mean a search in
hich no a-priori information is known about any relation between

remors and frequency bands. This means that all frequency bands
rom B1 to B20 (up to 31.25 Hz) are given the same priority in our
earch about the discrimination features.

.1. Classification based on single band

The average entropy of each band from (B1–B20) for all ET and
D training data is computed respectively for all three signals. In the
est stage, the entropy of each band is computed for the data under
est and a decision is made to classify the signal as ET or PD if its
ntropy of that calculated band is close to the corresponding band
f the average training ET or PD, respectively. Table 3 shows the
umbers TN and TP of correctly classified ET and PD cases, respec-
ively, out of T = 20 subjects under test from each category. We can

otice that the best result is obtained with EMG1 using band 11,
ith a specificity of 17/20 (85%), sensitivity of 14/20 (70%), and

ccuracy of 31/40 (77.5%).

able 7
esults based on sum of entropy of two bands from different signals.

Classification based on Band number Correct ET subjects

Accelerometer signal B6 + B11 4, 5, 6, 7, 8, 9, 11, 14, 15, 17, 1
EMG1 B6 + B11 1, 2, 3, 6, 7, 8, 9, 10, 11, 13, 14
EMG2 B6 + B11 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15
Voting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1
1, 3, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20
15, 16, 17, 18, 19, 20 2, 3, 4, 5, 8, 9, 11, 12, 14, 15, 16, 17, 18, 20
16, 17, 18, 19, 20 2, 3, 4, 5, 6, 9, 11, 14, 15, 16, 17, 19, 20
4, 15, 16, 17, 18, 19, 20 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20

4.2. Classification based on different bands from different signals

For each data under test, we compute B17 from the accelerom-
eter signal and B11 from EMG1 signal and B6 from EMG2 signal.
The signal under test is classified three times according to the
results of the three different bands from the three different sig-
nals. A voting between the three classifications is done such that if
a signal is classified twice out of three times as ET then it is consid-
ered as ET subject, while otherwise it is considered as PD. Table 4
shows the result of such a classification. The numbers listed in each
row under ET and PD represent the indexes of the subjects that
are correctly classified as ET or PD. The efficiency of the voting
step is a specificity of 90%, a sensitivity of 80%, and an accuracy
of 85%.

It is important to mention at this stage, that the selection of
those three bands is not randomly done, but a blind search has been
implemented for all bands to find the best combination of bands
from different signals to give the best discrimination result. If we
investigate the results of Table 3 and especially for the accelerome-
ter signal, B3 shows better specificity and accuracy results than B17,
while B17 has been selected in the combination because it shows
better sensitivity results than B3 and gives better accuracy results
in the voting step.

4.3. Classification based on the sum of entropy of the same two
bands from different signals

A blind search was implemented to find a combination of the
same two bands from the three different signals of training set
to be used as a classification factor. This blind search leads to a
good classification factor (CF) between the two groups, namely,
the sum of the power entropies of bands 6 (7.8125–9.375 Hz) and
11 (15.625–17.1875 Hz) averaged over all ET and PD cases, respec-
tively. Values of this classification factor for ET (CFET) and PD (CFPD)
for the three different signals are listed in Table 5. By blind search
here, we mean that all combinations of two bands have been tried
to find the best combination B6 and B11.

The values of CF (sum of power entropies of both bands 6 and
11), is found for each data under test for the three different sig-
nals. A final discrimination factor between ET and PD named M is
computed as:

M = (CF − CFET)2 − (CF − CFPD)2 (7)

The value of M is a measure of the difference between the squared
means that the data under test is closer to a standard ET case than to
a standard PD case, and hence it is considered as ET (negative case).
If the result is positive, this means that the data under test is closer

Correct PD subjects

8 2, 4, 6, 7, 8, 11, 14, 16, 17, 18, 19, 20
, 15, 16, 17, 18, 19, 20 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 17, 18, 20
, 16, 17, 18, 19, 20 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 16, 17, 18, 19, 20
3, 14, 15, 16, 17, 18, 19, 20 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 16, 17, 18, 19, 20



                                    

Fig. 4. Values of M for data under test (accelerometer).

Fig. 5. Values of M for data under test (EMG1).

Fig. 6. Values of M for data under test (EMG2).
                                 

to a standard PD than to a standard ET, and hence it is considered
as PD (positive case). Values of M are plotted for all data under test
in Figs. 4–6 for the three different signals, respectively. The thresh-
old value between the two categories, which is the 0 value, is also
shown in the figures. The values of the specificity, sensitivity, and
accuracy obtained from those figures corresponding to the three
signals are listed in Table 6.

Now in addition, a “voting” is used between the three results
of Table 6 for each data under test in such a way that, if the data
is classified in any category (ET or PD) two times or more, it is
considered belonging to that category. Such a voting idea results
in a specificity of 95% and a sensitivity of 75% and an accuracy of
85%. Table 7 shows detailed results of this section with the voting
results.

To test the consistency of the results with regard to data depen-
dency, a 2-fold cross-validation approach is done, in which the test
data set has been used in the trial stage, and the trial data set has
been used in the test stage. The classification factors and the per-
formance analysis are listed in Appendix B (Tables B.1 and B.2).
A voting is used between the three results of Table B.2. This vot-
ing step resulted in a specificity of 95%, a sensitivity of 63%, and
an accuracy of 80%. Table B.3 shows detailed results of this part
with the voting results. Values of M are plotted for the three
signals in Figs. B.1–B.3. Other test methods such as leave-one-out-
method have not been used at this stage due to the small size
of data.

5. Discussion and conclusions

A complete discrimination system for essential and Parkinson
tremors based on the computation of power entropy of wavelet-
decomposed spectra using the fast approximate soft-decision
technique is implemented and tested on trial and test data obtained
from the Department of Neurology of the University of Kiel, Ger-
many. The classification system is complete in the sense of using
two sets of data, the first one for training and obtaining threshold
values of the classification factor, and the second one for testing the
performance of the implemented technique. An accuracy of classi-
fication up to 85% is obtained from the test data. The technique
uses as a classification factor the sum of power entropies of bands
6 and 11 out of 256 bands estimating the power-spectral density
of the accelerometer and EMG signals. The method is computa-
tionally simple and could be developed into a supporting test in
the clinical differential diagnosis between ET and PD-tremor. How-
ever, results from larger numbers of clinically well-defined patients
would be desirable before applying our test in a routine clinical
setting.

A weighted-voting process between the results of the three sig-
nals according to their efficiency in discrimination between ET and
PD of the trail set can be also used to discriminate between ET and
PD in the test stage. Such a process may be of better results than
the normal voting approach applied in this paper, especially if it is
used with a larger size of data size.

Given the fact that we only looked at the postural tremor which
cannot be distinguished on clinical grounds the present results
show a surprisingly good separation between ET and PD selectively
looking at specific frequency bands. We show here that a more
detailed spectral analysis taking into account frequency bands
beyond the actual tremor frequencies is a worthwhile approach
in diagnostic clinical neurophysiology of tremors. Interestingly, it

was the frequency bands between 7.8125 and 9.375 Hz and 15.625
and 17.1875 Hz that allowed for the best separation between the
two common tremors. These bands are very close to the frequency
regions in which the first and second harmonic peaks at dou-
ble and triple the tremor frequency are found. Thus it may be
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his common phenomenon of harmonic peaks in higher ampli-
ude tremors that carries differential diagnostic information. This
ould be in keeping with a previous study showing that nonlin-

arities in the tremor wave forms (asymmetry) that typically give
ise to higher harmonic peaks could separate between ET and PD
9]. It is a common observation that PD patients more regularly
how peaks at harmonics of the basic tremor frequency than ET
atients. More recently it has also been postulated that the har-
onic peaks in PD tremor may not be solely related to waveform

symmetries but also to a second tremor generator at double the
requency [11,21] and it has even been speculated that double
he basic tremor frequency is the main central drive resulting in
he reciprocal alternating pattern of Parkinsonian tremor in the
eriphery [22]. These phenomena are not encountered to the same
xtent in ET patients [23,24] and one may speculate that they
re the basis of the differences found in these frequency bands
n our present results. However, the frequency band between 8
nd 9.5 Hz is slightly lower than the expected 10 Hz first har-
onic peak for typical 5 Hz PD tremors and the band between

5.5 and 17 Hz is slightly higher than the expected second har-
onic peaks. But we know that the harmonic peaks are typically

roader than those at the basic tremor frequency and may well
over also the frequency bands found in the present study. Nev-
rtheless information other than the harmonic peaks may also be
arried in these bands and further studies specifically looking at
he individual harmonic frequencies are necessary to solve this
ssue.
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ppendix A.
.1. Estimation of power-spectral density

The following procedure is used to estimate the PSD of the
ecomposed sub-bands [16]:

ig. A.1. PSD estimation by probability assignments for 8 sub-bands (m = 3 decom-
osition stages).
                              

1. The wavelet-decompositions are computed for all branches up
to a certain stage m to obtain 2m sub-bands.

2. All estimator results up to stage m are stored, and a probability
measure is assigned to each path (i.e., frequency band) to bear
the primary information as will be explained in the next steps.

3. If J(L) is the assigned probability of the input signal being
primarily low-pass, the number J(H) = 1− J(L) is the probabil-
ity that the signal is primarily high-pass. One simple way
to make the probability assignments is to use the ratio of
the number of positive comparisons between |a(n)| and |d(n)|
in Eq. (3) to the total number of comparisons for a given
stage.

4. At the following stage, the resulting estimate can be inter-
preted as the conditional probability of the new input
sequence containing primarily low (high) frequency compo-
nents, given that the previous branch was predominantly
of the low (high)-pass type. Using this reasoning and laws
of probability, the assignments for the probability measure
of the resulting sub-bands is equal to the product of the
previous branch probability and the conditional probability
estimated at a given stage. Fig. A.1 shows this step of prob-
ability assignment for eight sub-bands (three decomposition
stages).

5. The probabilities P(Bi) derived from the estimator outputs,
where i is the index of the band, may be interpreted themselves
as a coarse measurement of the PSD: the higher the probabil-
ity value of any band, the higher is its power-spectral content.
For m decomposition stages, 2m bands result. Each band covers
(400/2m) Hz of the signal-spectrum range between 0 and 400 Hz,
if the sampling frequency is 800 Hz.

6. The power entropy H(Bi) can be computed from P(Bi) using the
following equation for better scaling since the values of proba-
bilities P(Bi) are very small (the sum of the probabilities of all
256 bands equals one):

H(Bi) = P(Bi) log2

(
1

P(Bi)

)
(A.1)
Appendix B.

See Figs. B.1–B.3 and Tables B.1–B.3.

Fig. B.1. Values of M for data under test (accelerometer) (test done on trial data).



                                                                     

Fig. B.2. Values of M for data under test (EMG1) (test done on trial data).

Table B.1
Classification factors for the three signals obtained from test data.

Case CFET CFPD

Accelerometer 0.3775 0.4205
EMG1 0.1201 0.1608
EMG2 0.1299 0.1491

Fig. B.3. Values of M for data under test (EMG2) (test done on trial data).

Table B.2
Performance analysis of the technique obtained from trial data.

Case Specificity (%) Sensitivity (%) Accuracy (%)

Accelerometer 81 63 72.5
EMG1 86 58 72.5
EMG2 86 58 72.5

Table B.3
Results based on sum of entropy of two bands from different signals (test done on trial da

Classification based on Band number Correct ET subjects

Accelerometer signal B6 + B11 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14,
EMG1 B6 + B11 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14
EMG2 B6 + B11 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13
Voting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
ta).

Correct PD subjects

15, 16, 17, 19, 20, 21 1, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19
, 15, 17, 18, 19, 20, 21 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 17, 18, 20
, 14, 15, 17, 18, 20, 21 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 16, 17, 18, 19, 20
13, 14, 15, 17, 18, 19, 20, 21 1, 3, 4, 6, 8, 9, 10, 11, 13, 16, 17, 19
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