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Abstract— Image-based phenotypic drug profiling is
receiving increasing attention in drug discovery and
precision medicine. Compared to classical end-point
measurements quantifying drug response, image-based
profiling enables both the quantification of drug response
and characterization of disease entities and drug-induced
cell-death phenotypes. Here, we aim to quantify image-
based drug responses in patient-derived 3D spheroid
tumor cell cultures, tackling the challenges of a lack
of single-cell-segmentation methods and limited patient-
derived material. Therefore, we investigate deep transfer
learning with patient-by-patient fine-tuning for cell-viability
quantification. We fine-tune a convolutional neural network
(pre-trained on ImageNet) with 210 control images specific
to a single training cell line and 54 additional screen-
specific assay control images. This method of image-based
drug profiling is validated on 6 cell lines with known
drug sensitivities, and further tested with primary patient-
derived samples in a medium-throughput setting. Network
outputs at different drug concentrations are used for drug-
sensitivity scoring, and dense-layer activations are used
in t-distributed stochastic neighbor embeddings of drugs
to visualize groups of drugs with similar cell-death phe-
notypes. Image-based cell-line experiments show strong
correlation to metabolic results (R ≈ 0.7) and confirm
expected hits, indicating the predictive power of deep learn-
ing to identify drug-hit candidates for individual patients.
In patient-derivedsamples, combining drug sensitivity scor-
ing with phenotypic analysis may provide opportunities
for complementary combination treatments. Deep transfer
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learning with patient-by-patient fine-tuning is a promising,
segmentation-free image-analysis approach for precision
medicine and drug discovery.

Index Terms— Molecular and cellular imaging,
microscopy, pattern recognition and classification, neural
network, spheroid, phenotypic drug profiling, translation.

I. INTRODUCTION

FUNCTIONAL drug testing is an important step in drug
discovery and drug repurposing [1], [2], [3], [4] which

also receives increasing attention in precision medicine [5],
[6], [7]. In particular, testing of primary patient-derived
material using high-throughput technologies for cell seeding,
drug treatment, and readouts is a promising approach to
further improving treatment outcomes [6], [7], [8], [9], [10].
Functional drug profiling appears to be an obvious addi-
tion to precision-medicine strategies based on next-generation
sequencing (NGS)1 [11], providing confirmatory or comple-
mentary information on functionally active disease pathways
as well as quantitative information on sensitivity to drug treat-
ment such as dose-response curves (DRCs) and metrics. How-
ever, the technical set up of and, more so, data analysis in
functional drug profiling remain challenging. We address four
challenges through image-based drug profiling [12] using a
novel, data-driven approach to image quantification.

A. Four Challenges

First, the current trend towards using three-dimensional
(3D) cultures with increased tissue complexity (including
co-cultures and organoid models) for drug testing in precision
medicine likely mandates high-content analysis instead of
scalar readouts [13]. In fact, it has already been shown using
two-dimensional (2D) cultures that image-based phenotypic
drug profiling can provide much higher-dimensional informa-
tion [14] than classical end-point readouts, such as on single
cells, cell/cell interactions, and tissue architecture, all of which
may impact drug response [15], [16], [17], [18]. Specifically,
drug responses of hypoxic and euoxic cells may differ signif-
icantly, motivating the use of 3D spheroids large enough to

1See Table S-I for a list of abbreviations (figures and tables with S- prefix
refer to content in the unreviewed supplemental document on IEEE Xplore).
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establish hypoxic cores in precision oncology directed at solid
tumors.

Image-based phenotypic features such as cell, nucleus
and organoid texture or morphology enable sophisticated
functional interpretation (e.g., mitochondrial outer membrane
potential as an indicator for cell health). In addition, imaging
not only enables advanced quality control (QC) and better sup-
pression of background signals, but also, well or tissue-sample
contaminations and undesired tissue-sample properties (such
as polyclonal tumor origins or blood and other non-tumor cells
in primary tumor tissue) can be accounted for [19]. Further-
more, using adequate controls, various drug mechanisms can
be differentiated based on phenotypic features: this includes
cell death (apoptosis, autophagy, stress) as well as effects on
cell-cycle phases or organoid structure and function.

Second, advances in automated microcroscopy and decreas-
ing costs for image storage have enabled rapid imaging of
many treatment conditions. In fact, in each screen within this
study, 75 drugs are tested on a single tissue sample within
only 3 h image-acquisition time for one dye. In addition,
as spheroid cultures of solid tumor material require imaging of
several planes to capture the entire 3D structure, large amounts
of imaging data are being acquired (dozens of image planes,
scores of drugs, a concentrations series, and replicates, totaling
hundreds of GB) for each tissue sample. In essence, large
amounts of data mandate fully-automated image analysis.

Third, inter-sample heterogeneity of primary tissue samples
implies that automated image analysis may require adaptation
to each patient’s tissue sample (e.g., when they represent
different tumor entities). The often limited amount of patient
material, and consequently low numbers of training controls,
render automated adaptation challenging, and inter-plate vari-
ance may intensify this challenge – preventing turn-around
within time frames compatible within clinical translation.

Fourth, and finally, classical image analysis is complicated
by the fact that single-cell segmentation is still challenging
in 3D spheroids. Classical image analysis usually combines
image segmentation and feature extraction with supervised or
unsupervised machine learning for feature selection [20], [21],
[22]. In this setting, image features are extracted from a-priori
(or iteratively determined [23]) regions of interest, such as
whole images or supervoxels, segmented spheroids, or single
cells. Unfortunately, each of these alternatives comes with
its own challenges, especially when applied to 3D cultures:
first, per-well features (based on whole images) may provide
little additional information over metabolic readouts and are
sensitive to well contaminations (Fig. 1, green arrow). Second,
spheroid segmentation requires a spheroid to be established
in the first place, which cannot be guaranteed for all tissue
samples or drugs (in particular, those effecting cell viablity or
spheroid formation). And third, while routine in 2D cultures,
instance segmentation of single cells (or cell nuclei) from 3D
fluorescence microscopy images is still challenging due to the
tight packing of cells, resulting in insufficient spatial separa-
tion especially along the optical axis. This usually requires
time-consuming fine-tuning of classical image-segmentation
algorithms, or creation of large amounts of manual or semi-
manual annotations for deep-learning segmentation methods,

Fig. 1. Challenges met in 3D image analysis based on different
approaches to feature extraction. Using features based on whole images
or spheroids faces roadblocks such as contaminations (green arrow) or
differences in spheroid formation (compare Fig. 2) and staining efficiency,
in particular, with tissue samples originating from various patients and
entities. Compared to segmentation-free deep-learning image analysis,
for which we see particular potential (blue arrow), single cells will
yield most granular image information as soon as reliable 3D single-
cell instance-segmentation methods are available, which is still a major
roadblock.

and still does not guarantee that cells in cores of larger
spheroids, which may be dead or dying in hypoxic cores or
difficult to stain or image in others [24], are fully considered.

In this study, we propose image-based drug profiling for
patient-derived material obtained from pediatric solid tumors,
focusing on segmentation-free deep-learning image analysis.
This approach not only allows rapid and automated analysis
of drug screens leading to quantitative information on drug
sensitivity, but also provides information on drug-induced cell-
death phenotypes (CDPs) on a patient level. The method tack-
les the aforementioned challenges of limited patient-derived
material, analysis of 3D spheroid cultures without single-cell
seqmentation, and the limitation of mechanism-specific end-
point measurements and hence can be used to confirm, correct
and to complement classical end-point readouts to improve
precision-medicine and drug-discovery programs.

B. Related Work

Considering the tremendous progress that deep learning has
brought to many areas of image analysis, its application to drug
profiling seems only logical. However, despite a vast number
of reports in the literature, we are not aware of any approach
tackling the complete set of challenges introduced in the
previous section. Looking at examples for single-cell analy-
ses, the recently reported Deep-SeSMo [25] approach uses a
convolutional neural network (CNN) to compute senescence
probabilities for images acquired from cells undergoing drug
treatment, after training using images of positive (H2O2)
and negative controls. Notable differences to our settings
include the use of 2D cell cultures (and hence ease of single-
cell segmentation) and the use of cell lines (and hence an
abundance of cell material). Similarly, Tox_CNN [26], which
predicts drug toxicity based on training with controls such
as Caspase 3/7, uses 2D cell cultures and cell lines. More
generally, the practicability of single-cell feature embeddings,
which have been proposed for 2D microscopic imaging [27],
remains to be studied in 3D imaging.

Regarding analyses of 3D cell cultures, counting living cells
[28] can be seen as a classical way of tackling the lack
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of single-cell segmentation methods. More importantly, deep
learning has been proposed for segmentation of organoids [29]
and spheroids [30] as well as for classification of spheroid
polarity [31]: yet so far, issues such as low amounts and
inter-patient variability of biopsy material (and hence training
data) in a pediatric precision-oncology platform have not been
addressed to our knowledge.

C. Proposed Approach
As a proof of concept, this study was applied to tissue sam-

ples derived from pediatric patients with solid tumors, enrolled
in the INFORM registry study (“INdividualized Therapy FOr
Relapsed Malignancies in Childhood”). We aim to show the
potential of image-based drug profiling in (pediatric) precision
oncology programs, here specifically, to overcome the need
of finding adequate therapy options for relapsed patients
circumventing potential resistances induced by previous treat-
ments. Our work is part of the COMPASS multi-center study
(“Clinical implementation Of Multidimensional PhenotypicAl
drug SenSitivities in paediatric precision oncology”) which
includes pediatric brain-tumor, sarcoma and neuroblastoma
patient-tissue samples from several European registry stud-
ies (namely, “INdividualized Therapy FOr Relapsed Malig-
nancies in Childhood” (INFORM), “Individualized Therapies
for Children with Relapsed/Refractory Malignancies using
Molecular Profiling” (iTHER), and “MoleculAr Profiling for
Pediatric and Young Adult Cancer Treatment Stratification”
(MAPPYACTS)) for functional drug profiling using metabolic
and image-based readout techniques to quantify inhibition of
cell viability.

To tackle all aforementioned challenges, we investi-
gate patient-by-patient (in particular, screen-by-screen) deep
transfer learning as an easily implementable solution for
image-based drug profiling without complex image pre-
processing or segmentation. Deep learning has produced out-
standing results both in image analysis [35] and beyond, e.g.,
predicting drug response from genomic profiles and chemical
structure [36]. In contrast to the three-step approach of image
segmentation, feature extraction and machine learning, deep
learning uses the available data to not only optimize selection
of existing features, but also to guide extraction of optimized,
potentially cell-phenotypic features without explicit single-cell
segmentation [37]. Given sufficient training data, this end-to-
end learning process can be carried out for each individual
tissue sample.

Two main challenges of this end-to-end data-driven
approach need to be addressed: the aforementioned limited
patient-derived material and low number of assay controls,
and the need to interpolate between positive and negative
assay controls to compute drug-sensitivity scores (DSSs) over
the tested drug concentration range. Transfer learning allows
addressing the limited amount of screen-specific assay controls
through pre-training with additional controls derived from
more readily available cell lines, as well as from natural
images; while label smoothing improves the interpolation
between controls. Thus, the main technical novelty of our
work is a training scheme using multiple stages of pre-training
to account for low amounts of training data, including the

Fig. 2. Wavelength-colored MIP (left) and MID images (middle), and
pseudo-RGB-colored MIP-MID-MIP composite images (right) of two
tumor cell lines at 224 × 224 resolution before channel-wise normaliza-
tion of image intensity. In the RGB image, white color indicates MID/MIP
intensity, while pink color indicates MIP-only intensity (above or below the
middle slice). These negative (DMSO) and positive control (STS) images
for two cell lines illustrate differing affinities of cells to forming compact,
potentially hypoxic-core spheroids, complicating application of classical
image-analysis criteria to a wide range of cell lines and patient-derived
cells. The INF_R_153 cell line confirms the targeted spheroid size range
of 100–200 μm. While not part of routine screening of PDSs, Cas-3/7
staining in the control experiment with the INF_R_153 cell line resulted in
some signal intensity (Fig. S-1), indicating a mix of either dead or hard-
to-image cells in the inner core of the spheroid. For the BzCl positive
control, see Fig. S-8.

use of ImageNet-trained network weights, pretraining using
a cell line (Phase I), patient-specific fine-tuning (Phase II),
and optionally employing images from technical replicates for
training of a maximally robust CNN.

To our knowledge, this is the first study applying
such screen-by-screen deep transfer learning to image-based
drug profiling. In the following, we present our proposed
image-analysis approach using CNNs (Section II), the image
data (Section III), and evaluation methods and results using
image-based and metabolic readouts (Section IV). The signif-
icance of the results is discussed in Section V.

II. IMAGE-BASED PHENOTYPIC DRUG PROFILING

Here, we describe the processing part of the proposed
image-based drug-profiling pipeline. In summary, a pre-trained
CNN was fine-tuned using control images generated using
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Fig. 3. A CNN pre-trained using the ImageNet database is fine-tuned using positive and negative controls from a controls-only training cell-line
screen (top). For each screen of interest (validation cell-line screens, middle, and testing patient screens, bottom), in-plate controls are used to
further fine-tune the network. Image-based cell viabilities are then inferred for each plate well holding library drugs, and following QC, combined in
the form of one drug-response curve and summarized in one asymmetric DSS (see Section II-C) per patient and drug.

a cell line to input (preprocessed) images and output cell
viability; further fine-tuned, for each screen, using screen-
specific control images; and finally, applied to all of a screen’s
images.

A. Image Preprocessing
Available image data comprised one 3D image stack per

well, consisting of 20–40 individual 2D image planes and a
2D maximum intensity projection (MIP) image.

1) Image Intensity Normalization: All used 2D images were
downsampled from 2048 × 2048 to 224 × 224 pixels,
meanwhile converting 16-bit integer image intensities to
floating-point numbers ∈ [0, 1]. Maximum image intensities
rarely exceeded 0.5, and an offset of 0.5 was added to
obtain mean image intensities comparable to natural images,
compensating for the dominance of low-intensity background
pixels.

2) Pseudo-RGB Image Composition: For use of pre-trained
established CNNs which input 2D red-green-blue (RGB)
images, we composed 2D pseudo-RGB images for each well
(Fig. 2). Therefore, after initial experimentation, we arranged
the MIP and the mid-z plane (MID) image as three channels
in the order MIP-MID-MIP.

3) Data Augmentation: During fine-tuning of the CNN,
random data augmentation was applied, namely horizontal and
vertical flips, image rotation (up to 30◦), image shifts (up
to 10%), image scaling (∈ [0.9, 1.1]) and intensity scaling
(∈ [0.5, 1.5]). In particular, as we noticed that mean of stack
(MoS) values can be used to separate controls in the control
experiment, but performed poorly in the drug screens, we used
intensity scaling to prevent the CNN from focusing on mean
image intensity and thus to maximize generalization.

B. Neural Network Training

CNNs were trained in four steps: pre-training, phase-I and
phase-II fine-tuning (Fig. 3), and optional phase-III robust-
ness training (Fig. 4). We used a Linux workstation with
a 10-core i9-7900X (Intel) processor, 32GB random-access
memory (RAM), and a Quadro RTX 6000 (NVIDIA) graphics
processing unit (GPU). All CNN computations were run in
mixed precision using TensorFlow v2.8 and its Keras frontend
in Python v3.10.

1) Image Labels: To quantify image-based cell viability,
we assigned values of 1 and 0 to negative and positive
cell-death controls, respectively. We used dimethyl sul-
foxide (DMSO) and staurosporine (STS), respectively—see
Section III-C.3 for details.

2) Network Architecture and Pre-Training: After comparing
the performance of the VGG16 and the VGG19 image-
classification networks [38], due to their large capacity and
ease of availability, we chose VGG19 for its slightly improved
performance on average. We used a pre-trained CNN by
loading the network bottom2 with weights pre-trained on the
ImageNet image database [39] from the TensorFlow Keras
Application module (TFKA), and added the network top2

from the original architecture with random initialization. As in
binary classification, the dense output layer had 2 outputs (one-
hot encoding followed by softmax activation), of which we
interpreted the first as raw image-based cell viability. This
network has the same structure as in [38, Tables 1D and 2]

2In line with TFKA notation, in particular, its include_top parameter,
we use the terms network bottom for its—usually convolutional—layers close
to the input of the network, and network top for the remaining—usually fully-
connected (dense)—and output layers, respectively.
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Fig. 4. Illustrating Phase-II (left) and phase-III training (right) using
percentage cell viabiltities. While phase II splits controls (−, +) between
training and validation, phase III trains using all available controls as
well as cell viabilities of duplicates inferred in phase II; the latter are
exchanged between duplicates DA and DB (at the same concentration)
of some drug D. Before training, label smoothing is applied (only) to
controls; cell viabilities of drug wells are re-used directly. After inference,
labels are un-smoothed by normalization in the iTReX web app [40], after
which raw cell viabilitites 0.80, 0.62 ,0.59, 0.56, 0.50 and 0.20 correspond
to percentage cell viabilities 100, 70, 65, 60, 50 and 0%, respectively.
Colors indicate different groups of wells (green: negative controls; red:
positive controls; blue, orange: two duplicates of drug D), while arrows
indicate the way cell viabilities are used (�: training label backpropagated
into the network; �: value inferred by the network; ⇔: validation label).

except for the final dense layer (FC-2 instead of FC-1000) and
hence the number of parameters (134 M instead of 138 M).

3) Phase-I Global Fine-Tuning Using Cell-Line Controls: The
CNN was then fine-tuned using control images acquired from
a cell line [88 and 102 wells for training; 2 × 10 wells for
validation (Section III-D)]. The CNN globally fine-tuned in
this way was used as a basis for further fine-tuning (Fig. 3).

We used an Adam optimizer with a learning rate of 1 ×
10−7 to minimize the categorical cross-entropy loss function
with a batch size of 1 (compare Section V-A.2) over 200
epochs, where the chosen learning rate was found heuristically
based on the validation-loss curve’s ability to approach the
optimum, and the number of epochs was set to ensure conver-
gence of said curve for most cell lines (compare Section IV-A).
Importantly, we used label smoothing (using a heuristically
determined value α = 0.4) to prevent the network from
becoming overly confident, as we prepared the network to
encounter images between positive and negative controls for
which it should infer meaningful intermediate values.

4) Phase-II Screen-Wise Fine-Tuning Using Screen Controls:
For each screen independently, the globally fine-tuned CNN
was fine-tuned further using the screen-specific controls across
all 3 microplates (3 × 7 STS and 3 × 9 DMSO for training,
3 × 1 STS and DMSO for validation, respectively). Training
parameters were the same as in phase I except for the learning
rate (3 × 10−7).

5) Optional Phase-III Screen-Wise Robustness Training: A
potential weakness of the proposed method is low robustness,
as measured by the reproducibility between duplicates (com-
pare Section IV-C.2), supposedly due to using only negative
and positive controls during network training. Considering also
the low number of these controls, it may be advantageous
to add drug wells to the training data. While these images
are unlabeled a-priori, we are in the unique position of
a) knowing that we expect their viabilities to lie between those
of positive and negative controls, b) having duplicates available
for all drugs and concentrations, and c) knowing that duplicate
metabolic cell viabilities are highly correlated.

TABLE I
NUMBERS OF WELLS AND EFFECTIVE RAW CELL VIABILITY VALUES

(AFTER LABEL SMOOTHING) OF SEVERAL WELL

TYPES IN ALL PHASES

Having duplicates is a similar situation as in the SimCLR
framework for contrastive learning [41], which uses two-
fold, independent data augmentation on individual unlabeled
images to generate image pairs expected to generate similar
representations. However, instead of contrasting between all
unlabeled images and thereby risking the introduction of
unwanted differences in representations of similar drugs, we
group images with expected similar viabilities.

Here, we use the raw image-based cell viabilities inferred
by the CNN after phase II as training labels for an optional
phase-III robustness training. Since training a network with
its own output usually results in little training progress,
we exchange the labels between the duplicates in each
pair (Fig. 4).

In addition, we skip validation and use all control images
of the screen for training in this phase. The resulting numbers
of training and validation images are summarized with their
raw cell viabilities in Table I.

C. Inference and Drug Scoring

The CNNs fine-tuned using screen-specific controls
(phases II and III, respectively) were subsequently applied to
images acquired from all wells of that screen. Drug-sensitivity
scoring used a prerelease version of the iTReX web application
for drug-sensitivity scoring ([40], v1.1.1.9000, functionally
identical to release v1.2.0), run in R v4.1. Due to label smooth-
ing (α = 0.4), raw image-based cell viabilities generally range
around the interval [0.2, 0.8] and were therefore normalized
using positive (STS, set to 0%) and negative (DMSO, 100%)
controls to yield percentage image-based cell viabilities.

For each drug, 10 percentage image-based cell viabili-
ties (5 concentrations, duplicates) were converted to per-
centage inhibition values and used to fit a curve model
based on the Hill equation (namely, a generalized 5-parameter
logistic curve model in the log-concentration domain [42]
having an asymmetry coefficient). The curve model was
then integrated in the log-concentration domain to yield the
which was then converted to an in-house-developed DSS
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(DSSasym, [40]) inspired by [43, Fig. 1], using an auto-
mated drug-scoring pipeline such as previously shown by
others [43], [44], [45], [46].

Raw metabolic cell viabilities aquired after imaging (com-
pare Section III-C.6, Fig. S-8) underwent similar normalization
using readouts from benzethonium chloride (BzCl) and DMSO
wells, followed by otherwise identical drug scoring.

III. MATERIALS

Materials used in this work include a total of 17 screens of 6
cell lines (each screened between 1 and 4 times) and 3 patient-
derived samples (PDSs) (screened once). All cells underwent
our standard 3D spheroid drug-profiling assay including fluo-
rescence microscopy (imaging; inspired by [8] and described
in detail in Section III-C.5) followed by luminescence-based
metabolic readouts (compare Section III-C.6 and [40], [47]);
one cell line underwent additional imaging (Section III-D) of
assay controls in larger quantities for CNN training (phase I).

A. Cell Lines

Details of 6 cell lines used are summarized in Table II.
The INF_R_153 cell line (established, growing in fetal bovine
serum (FBS), passage 40+) was generated from a primary
tumor biopsy obtained from a soft tissue sarcoma patient
enrolled in the INFORM registry study.

Cells were cultured according to cell-line-specific culture
protocols largely identical to those described in [40]. The
BT-40, HD-MB03, and INF_R_153 cells were cultured in
Roswell Park Memorial Institute (RPMI) 1640 medium con-
taining L-glutamine (Gibco, Life Technologies, Thermo Fisher
Scientific) supplemented with 10% FBS and 1× non-essential
amino acid (NEAA) solution. The NCI-H3122 cells were
cultured in RPMI 1640 medium (American Type Culture
Collection) supplemented with 10% FBS and 2% penicillin-
streptomycin (P/S). The SJ-GBM2 and SMS-KCNR cells were
cultured in high-glucose Dulbecco’s Modified Eagle’s medium
(DMEM), supplemented with 10% FBS and 1× NEAA.

B. Patient-Derived Tissue Samples

After implementation of the method in cell lines, PDSs
were used for additional validation. Tumor biopsies collected
during surgical tumor resections in pediatric and young adult
(<21 yrs.) patients enrolled in the INFORM registry study
(German Clinical Trials Register ID: DRKS00007623) were
submitted by the respective Society for Paediatric Oncology
and Haematology (GPOH) study centers for functional drug
testing within 24 h of surgery.

Written informed consent covering the use of tumor material
for drug profiling and drug profiling analysis was obtained
by the local study centers. Ethics committee approval for
performing drug profiling, the use of consent forms and
scientific evaluation of the data were obtained from the
Ethics Committee of the Medical Faculty of Heidelberg
(S-502/2013).

PDSs from tumor biopsies, of which we selected 3
for this work based on good metabolic QC and strict

TABLE II
OVERVIEW OF CELL LINES AND PATIENT SAMPLES USED

adherence to the requirements of the imaging protocol
(Table II), were dissociated according to entity-specific
protocols: tumor-tissue samples INF_R_1021_relapse1_V1
and INF_R_1123_primary_V1 were dissociated according to
a protocol adapted from [56] and pre-cultured as short-term
cultures under defined serum-free conditions in complete
tumor stem medium (TSM) with 4 mM L-glutamine and
2% penicillin-streptomycin up to 7 d before drug screening;
tumor-tissue sample INF_R_1025_primary_V2 was dissoci-
ated by the group of E. Koscielniak, cultured in RPMI, 10%
FBS, and 1% NEAA, and screened more than 6 weeks after
surgery.

C. Drug-Profiling Assay

1) Nomenclature: Over the course of several months, all cell
lines in Table II underwent one or multiple rounds of metabolic
screening in the framework of the COMPASS project at our
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institution, and we included all screens for which imaging data
were also acquired. In screen identifiers, separate rounds of
screening are indicated by _V1, _V2 suffixes, while _DS1,
_DS2 suffixes indicate repeated drug screens within the same
round. For PDSs, _V1, _V2 suffixes indicate V ital cells
followed by an order number designating different deliveries of
samples from the INFORM study center, while _DS1, _DS2
indicate different drug screens of the same delivered tissue
sample.

2) Drug-Microplate Sets: Each drug in a library of 75–76
oncology drugs (Table S-II) was profiled in duplicates, using
5 concentrations in a 10-fold serial dilution. The drug library
and additional assay controls were pre-printed (High Through-
put Biomedicine core unit, Institute for Molecular Medicine
Finland, HiLIFE, University of Helsinki, Finland) onto sets of
3 round-bottom 384-well microplates (3830, Corning), each
set being designed to be used for one screen [57].

3) Assay Controls: Each plate set contained positive as well
as negative assay controls: positive controls comprise 3 ×
8 wells with 250 nM of the pan-kinase inhibitor STS as a
0%-cell-viability control for all image-based measurements.
The advantage of STS lies in its numerous cell-death mecha-
nisms [58], [59] which explains its common use as a positive
control for cytotoxic and anti-proliferative effects on cancer
cell lines and primary cancer cells [8]. 3 × 5 wells with
100 μM BzCl were used as a 0%-cell-viability control for
metabolic measurements. Negative controls include 3 × 10
wells with DMSO, set to 100% cell viability (despite basal
levels of cell death) for image- and metabolics-based readouts,
and additionally untreated cells in medium (3 × 15 wells
mostly in top and bottom rows, and an extra 30 wells in the
third plate).

4) Cell Seeding: We aimed for a spheroid size of
100–200 μm to allow imaging dyes (and light) to penetrate
into (and out of) the spheroid. 25μL cell suspension (20 000
and 40 000 cells/mL for cell lines and PDSs, respectively)
were seeded using automated liquid handling (Multidrop
Combi Reagent Dispenser, Thermo Fisher Scientific) onto the
pre-printed drug plates and incubated at 37 ◦C and 5% CO2 for
72 h before image-based and metabolic readouts of the same
plates. The first and last columns (32wells) were left empty
(i.e., wells were filled with medium, but without cells).

5) Image-Based Readout: Cells were stained with Hoechst
33342 (H3570, Thermo Fisher Scientific) dye following a no
wash-protocol (final dilution factor, 1:2000). Plates were incu-
bated for 30 min after staining. Image stacks were acquired
at 37 ◦C using an ImageXpress Micro Confocal (Molecular
Devices, San Jose, CA) high-content microscope equipped
with light-emitting diode (LED) excitation, a 60 μm pinhole
disk, a CFI Plan Apo Lambda 20X (Nikon) objective (numeri-
cal aperture, 0.75), a DAPI filter set (excitation, 377 nm; emis-
sion, 447 nm) and laser-assisted focusing. With an exposure
time of 50 ms, Hoechst image acquisition took approximately
60 min per plate and resulted in 100 GB of data stored as
16-bit unsigned integers in uncompressed tagged image file
format (TIFF).

We imaged a single, central site in all inner 22 × 14 wells.
Images comprised 2048 × 2048 pixels, with a calibrated pixel

size of 0.343 μm, and each stack contained 20–40 images with
a distance along z of 2.5 μm.

6) Metabolic Readout: After imaging, a metabolic lumi-
nescence readout was carried out in the same plates using
CellTiter-Glo 2.0 (CTG) and either a FLUOstar OPTIMA
(BMG LABTECH) or a Spark multimode (Tecan) microplate
reader as described before [40]. These measurements are
referred to as raw metabolic cell viabilities.

D. Cell-Line Control Experiment

We acquired one 384-well microplate with negative
(DMSO, 98 wells) and positive controls (250 nM STS,
112 wells) holding the INF_R_153 cell line (500 cells/well)
for phase-I CNN fine-tuning. This control experiment
(INF_R_153_CE) was carried out 4 mos before the first drug
screens of the same cell line, allowing for potential changes
of the assay over time (such as through using different batches
of plates or storage of preprinted drug plates).

IV. EVALUATION METHODS & RESULTS

We evaluated the proposed approach using raw cell viabil-
ities, QC metrics and drug-sensitivity scores, including data
from metabolic screens and the proposed CNN-based approach
after phase II and III, respectively. In addition, we considered a
naïve image-based approach averaging image intensities across
each well’s 3D image stack (mean of stack, MoS).

A. Network Training

Network training performance metrics (categorical cross-
entropy loss, accuracy, and area under the receiver oper-
ator curve (AUROC)) for cell-line and PDS screens are
detailed in Table S-III. Of note, the minimum achievable
loss is 0.5004024235381879 due to label smoothing (α =
0.4). Training accuracy is close to ideal (1.0) except for
BT-40_V3_DS2 and INF_R_1123 (1 error among 48 training
images, respectively); AUROC values are >= 0.99. Validation
accuracy is 6/6 for 11 screens, 5/6 for 5 screens, and 4/6 for
the remaining screen. AUROC values are >= 0.97 for all but
two images (BT-40_V3_DS1 and BT-40_V3_DS2). Training
times amount to approximately 45 min, 15 min, and 2.5–3 h
in CNN phases I, II and III, respectively.

To demonstrate the added value of transfer learning,
we repeated Phase-II training for the INF_R_153_V2_DS1
drug screen while skipping different parts of pre-training.
Results shown in Fig. 5 indicate the importance of carrying
out both Phase-I and Phase-II training, as fewer Phase-I
iterations lead to higher Phase-II validation losses than cannot
be compensated for by longer Phase-II training.

B. Quality Control

We quantified assay quality (using high-throughput screen-
ing (HTS) QC metrics such as the Z ′-factor [60], where Z ′ ∈
(−∞, 1], and assays with Z ′ > 0.5 are usually considered
excellent) and reproducibility (using correlation coefficients
between duplicate wells). Robust computation was used for
Z ′-factors by using median instead of mean values, and
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Fig. 5. Phase-II validation loss (lower is better) for INF_R_153_V2_DS1
as a function of Phase-II epochs and various pretraining configurations
(using ImageNet and INF_R_153_CE). Longer Phase-I pretraining con-
sistently improves the validation loss achievable in Phase II, indicating
the importance of transfer learning.

Fig. 6. Z ′-factors for four methods across all screens (3 plates per
screen, cell-line as well as patient screens). White diamonds, mean
values of data points; white lines, violin medians; bottom annotations,
number or numerical values of outliers.

mean absolute deviations instead of standard deviations. Both
metrics were compared to the same metrics in the metabolic
assay using the same plates.

Per-plate Z ′-factors are summarized in Fig. 6, indicating
comparable QC metrics for metabolic and CNN-based quan-
tification, compared to drastically lower values for MoS (mean
and median Z ′, < −1.0). Table S-III also shows individual
Z ′-factors for phase II: negative Z ′-factors for 9/51 plates in
most cases coincide with non-ideal (<1.00) training accuracy
(1/9 plates) or validation accuracy (5/9 plates): this is in line
with the facts that a) Z ′ values are computed from cell viabil-
ities of all (training and validation) control images, and b) Z ′
values are particularly prone to misclassification errors, in the
sense that a perfect Z ′ value computed from classification-
based cell viabilities of 10 positive and 8 negative control
images can become negative under the misclassification of a
single control image.

C. Well Quantification

1) Uniformity: For drug-treated wells, to ensure the desired
smoothness of DRCs (as opposed to binary classification of

Fig. 7. Red to blue: image-based raw cell viabilities of all wells after CNN
phase II. Black: control wells only, with values expected at 0.2 (STS) and
0.8 (DMSO) due to label smoothing.

Fig. 8. Top: percentage cell viabilities estimated for duplicate drug
wells using four methods, summarized for cell-line and patient screens.
R, Pearson’s correlation coefficient; ρ, Spearman’s rank correlation
coefficient; per-screen results in Fig. S-2. Bottom: Pearson’s R per
screen.

drug wells into positive or negative), we verified that network
outputs (across all drugs and concentrations) were distributed
uniformly in the range between negative and positive controls.
Fig. 7 confirms a continuous distribution of CNN-based raw
cell viabilities for controls and drugs after CNN phase II.

2) Reproducibility: Complementary to Z ′-factors, Fig. 8
summarizes the reproducibility of network outputs for drug
wells within each plate (excluding any control wells) by
scatter plots as well as the Pearson correlation coefficents.
Scatter plots (Fig. 8, top) show that metabolic data is more
variable for high cell viabilities, indicating a noise amplitude
proportional to the luminescence readout. Smaller extensions
of MoS point clouds indicate high background image intensity
that can lead to mean values similar or larger than standard
deviations. By contrast, CNN phase II is highly robust for both
high and low cell viabilities (close to the training controls),
showing high variability for intermediate cell viabilities. CNN
phase III is able to reduce variability in the intermediate range
in particular.
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Fig. 9. Top: image-based DSSs computed using duplicate dilution series
(5 conc. each) based on cell viabilities in Fig. 8. R, ρ as in Fig. 8; per-
screen results in Fig. S-2. Bottom: Pearson’s R per screen.

In line with Z ′-factors, reproducibility as measured by
correlation coefficients (Fig. 8, bottom) is worse for MoS
than for metabolic data. Reproducibility for CNN phase II
is also slightly lower, while that for CNN phase III is higher,
confirming the effect of robustness training using duplicates.

D. Drug Scoring
1) Reproducibility: The trends observed for cell viabilities

from different modalitities are confirmed by DSSs computed
based on these cell viabilities (Fig. 9), with unusable MoS
results and somewhat reduced (CNN phase II) and highest
(CNN phase III) correlations between duplicates, compared to
correlations within metabolic data.

2) Modalities: Heatmaps of DSSs across all modalitites,
drugs, and screens indicate severe differences between MoS
and all other modalities (Fig. 12). In particular, MoS yields a
number of large outlier values compared to both metabolic and
CNN-based results, and clustering of screens is also improved
in CNN-based over MoS results.

3) Expected Hits: On a biological level, we verified that
expected hit compounds (drugs expected to be efficient in
killing cells according to their molecular characterization; see
Table II for a list of molecular characteristics and related
references) ranked high also according to their drug scores
(using a DSS of 10 as a threshold). Image-based DSSs
of expected hits in cell lines (Fig. 10) confirm most drug
hits seen in metabolic data. Image-based DSSs appear to be
slightly higher, which is not concerning considering different
normalizations of image-based (STS) and metabolic (BzCl)
cell viabilities.

4) Imaging–Metabolics Correlation: Finally, through scatter
plots of image-based and metabolic-based drug scores, we
compared image-based DSSs to their metabolic counter-parts

Fig. 10. DSSs of expected hits in all cell line screens for metabolic data
as well as after CNN phase II. See Table S-IV for numerical results.

Fig. 11. Top: image-based vs. metabolic DSSs (using 2 × 5 conc. each),
summarized for cell-line and patient screens. R, ρ as in Fig. 8; per-screen
results in Fig. S-2. Bottom: Pearson’s R per screen.

(Fig. 11). Note that contrary to earlier scatter plots, perfect
correlation between metabolic and imaging results is neither
intended nor expected. Nonetheless, CNN phases II and III
behave similarly in terms of DSS, and with higher correla-
tion to metabolics than MoS. Applying the hit threshold to
image-based and metabolic DSSs, we identified mismatches
(hits in one, but not the other) in 26% of scores for MoS,
compared to only 20 and 21% for CNN phases II and III.

E. Beyond Metabolics: Imaging-Exclusive Benefits
1) Imaging–Metabolics Mismatches: While the output of

metabolic readouts consist of only a single number per well,
multi-dimensional imaging readouts enable additional infor-
mation to be extracted from the assays, including those allow-
ing to rule out certain mistakes in sample preparation such
as missing cells, non-viable cells, lack of spheroid formation,
lack of imaging dye, etc. We exemplify the benefit of having
this information available for user interpretation through one
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Fig. 12. Heatmaps of DSS values for all modalitites (vertical, labels on the left), drugs (vertical, labels on the right), and screens (horizontal).

case of mismatch between image-based and metabolics-based
cell viabilities in the same well.

In an extreme case of imaging–metabolics mismatch
(Vinorelbine in screen INF_R_153_V2_DS1, Fig. S-3), DRCs

show almost maximum effect in imaging (DSS, 48.8), but
almost no effect in metabolics (DSS, 2.7). Qualitative com-
parison of images suggests correctness of the image-based
DRCs. An independent imaging–metabolics screen of the
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same cell line (INF_R_153_V3_DS1; image-based DSS, 38.8;
metabolics, 22.4) as well as metabolic screens carried out
at 3 COMPASS partner sites, namely DKFZ (DSS, 28.7),
Institut Curie (23.4), and FIMM (20.7), support the hypothesis
that this drug’s metabolic DSS value in INF_R_153_V2_DS1
is an outlier. In conclusion, while imaging–metabolics DSS
differences persist (not unexpectedly, due to normalization
to different controls), Vinorelbine is detected as a hit in all
screens except one, in which quantitative and qualitative image
analysis overrule metabolic findings.

2) Phenotypic Analysis: In addition, imaging information
can be used for technical (detecting contaminations and empty
wells; compare Fig. S-9) as well as biological purposes
(identifying similarities and differences between CDPs). In this
section, we visualize groups of drugs with similar CDPs
of known drugs using CNN features, namely, 4096 layer
activations of the penultimate fully-connected layers of the
trained CNN after principal component analysis (PCA) to
reduce the number of features to those representing at least
95% of the variance.

Figs. 13 and 14 and Figs. S-4 to S-7 show 2D t-SNE plots
of the CNN layer activations after PCA. Features shown are for
the highest concentration of each drug and control, for all three
patients, and for phases II and III, respectively. Two distinct
clusters can be observed in all cases, presumably representing
non-effective and effective drugs, respectively, as indicated
by the presence of untreated wells (u) and DMSO in the
former and STS, BzCl and apoptotic modifiers in the latter.
As images of BzCl (used primarily for metabolic analysis)
and STS appear strikingly different, STS and BzCl wells tend
to cluster in separate, disjoint sub-regions, while DMSO and
untreated wells intermingle with each other and other non-
effective drugs. It is notable how closely duplicates of many
effective drugs cluster in phase II. In phase-III t-SNE plots
(Fig. 14 and Figs. S-5 and S-7), we note the same proximity in
replicates of ineffective drugs. Finally, in one example, Fig. 15,
we show the t-SNE plot annotated with a selection of the
respective microscopy images to visualize the different CDPs
across the plot.

3) Explainability: Finally, Figs. S-8 and S-9 show three
different class-activation maps (CAMs) for controls and a
Foretinib dilution series, respectively. CAMs [61], [62], [63]
illustrate that the CNN directs its attention towards the spher-
oid if one can be seen (Fig. S-8); in Fig. S-9, they visualize
how the CNN is potentially confused by a well contamination
for 10 nM of Foretinib.3

F. Proposed Patient Workflow

Fig. 16 summarizes analysis of a PDS analysis using a
waterfall plot of drug scores to select top hits, and a t-SNE
plot of CNN features to select complementary phenotypes for
combinatorial treatments. Drug DRCs and images of drugs and
controls (DMSO, STS) help visually confirm sensitivity and
complementarity of this drug combination.

3It should be noted that while the VGG16 network, in an earlier version
of this manuscript, returned an incorrectly low cell viability for this well,
VGG19 was not impacted in the same way.

V. DISCUSSION

In this work, we have achieved image-based quantification
of cell viability using fully-automated CNN fine-tuning for
individual patients, especially for the use with limited pri-
mary material. We have validated image-based cell viabil-
ity using metabolic cell viability. In addition, image-based
functional drug profiling offers unique potential to control,
correct and supplement metabolic analyses. Deep-learning
based features shed light on drug CDPs in individual cell
lines or PDSs, allowing comparison of CDPs and selection of
complementary drugs for combination therapies. This method
is currently being used in “Clinical implementation Of Mul-
tidimensional PhenotypicAl drug SenSitivities in paediatric
precision oncology” (COMPASS) for future improvement
of treatment stratification in precision-medicine platforms
such as INFORM, especially for cases with few genetic
alterations [64].

A. Confirmation of Specific Aims

1) Versatility: A major aim of this approch was broad
applicability which we ensure by screen-by-screen fine-tuning,
enabling us to employ the same workflow for 3D cell cultures
of different structural phenotypes without any manual recali-
bration. This includes tissue samples forming spheroids with
hypoxic or hard-to-image cores as well as less-densely packed
cells (Figs. 2, S-8 and S-9).

Another example is screen HD-MB03_V1_DS2, which suf-
fered from side-illumination issues during microscopic imag-
ing (Fig. S-10). Despite rather low Z ′-factors (0.21–0.57)
in CNN phase II and negative Z ′-factors in metabol-
ics (Table S-III), the CNN yields acceptable within-screen
reproducibility (R = 0.84) for both raw cell viabilities
as well derived DSS without any dedicated image pre-
processing or spheroid segmentation. Performance in patients
(INF_R_dddd) clearly favors the CNN-based approaches over
MoS (Figs. 8, 9 and 11).

Our definition of “image-based cell viability” through posi-
tive controls is highly flexible, as it can be varied by choosing
different positive (and potentially, negative) control conditions.
In fact, our choice of STS as a positive control implies
an STS-likeness interpretation of cell viability, one of many
possible. Finally, study conditions need not be limited to
drug treatments: for example, images from ex-vivo irradiation
assays could also be used, as could multi-color image acqui-
sitions (Fig. S-1) to provide additional distinction between
phenotypes.

2) Limited Patient Material: Another aim being the ability
to work with limited patient material, and thus a very low
number of control images, we train the network using a
minimal training batch size of 1 for maximum generalization,
inspired by [65]. The resulting loss of compute parallelism is
irrelevant to our application due to the low number of training
images and, consequently, short training durations. We also
employed regularization through label smoothing to prevent
the CNN from overfitting on the few training controls, as seen
in the broad distribution of raw cell viabilities for control
wells (Fig. 7). Additional regularization approaches, such as
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Fig. 13. t-SNE plots of CNN penultimate-dense-layer activations for wells holding highest concentrations of drugs and assay controls for patient
INF_R_1025 after CNN phase II. Top: wells color- and shape-coded by drug class. Bottom: wells color-coded by drug subclass and labeled by drug
name abbreviation (compare Table S-II, second column), allowing separating drugs within subclasses for biological interpretation and matching wells
holding drug duplicates for technical validation. t-SNE based on 131 principal components representing 95% of the variability of the 4096 features.

mixup [66] and CutMix [67], shall be mentioned here for
the sake of completeness, but have not been studied in this
work.

Label smoothing also affords some detectability of
out-of-distribution cases, such as contaminations, through
filtering of extreme CNN outputs (raw image-based cell
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Fig. 14. t-SNE plots as in Fig. 13 after CNN phase III (157 principal components). See Fig. 15 for image annotations.

viabilities outside of [0.2, 0.8]) which are not normally
attained (Fig. S-10).

To further optimize the use of limited patient material,
we use all available controls in final (phase III) CNN training,

as well as duplicate drug wells with phase-II outputs switched.
This can be interpreted as an extra regularization step, as we do
not introduce any new information into the CNN, but force it
to consider the given information in a way designed to improve
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Fig. 15. Image-annotated t-SNE plot from Fig. 14 (patient INF_R_1025, phase III), including images for (clockwise from top left) Idasanutlin (Id),
A-1331852 (A13), Entrectinib (Entr), Ruxolitinib (Rux), Selumetinib (Selu), Dactinomycin (Dac), Foretinib (Fo), and Chloroquine (Ch).

robustness. If the CNN were only overfitting in this step,
we would expect the correlation plots between duplicate wells
(Fig. 8) to flip, leaving the correlation coefficient between
duplicates mostly unchanged. Therefore, we can safely eval-
uate the success of this step by the increase of correlation
coefficients from phase II to phase III. It should be noted,
however, that phase-III training relies on the existence of dupli-
cate drug wells, which is not generally guaranteed – especially
with limited patient material, in which case operators can face
a decision between maximizing the number of drugs tested

(without duplicates) or including duplicates (at the expense of
testing a lower number of drugs). It is for this reason that we
term phase III optional.

B. Beyond Metabolic Findings
We have already presented the largest imaging–metabolics

mismatch (DSS 48.8 vs. 2.7, Fig. S-3) above, with the image-
based DRCs being backed by qualitative interpretation of
the images and metabolics-based DRC being contradicted by
other screens of the same cell line. Beyond this anecdotal
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Fig. 16. Summary of possible workflow for patient INF_R_1025. Top left: waterfall plot of DSS values per drug, indicating A-1331852, Trametinib,
Navitoclax, A-1155463, Dactinomycin, Crizotinib, Cabozantinib, Bortezomib, A-1210477, and Vinorelbine as top-10 drug hits. Top right: t-SNE
plot of CNN features (compare Fig. 14), indicating different phenotypes between wells with highest concentrations of A-1155463/A-1210477/
A-1331852/Ceritinib/Idasanutlin (A-11/A12/A-13/Ce/Id) and Bortezomib (Bo). Middle: DRCs and pseudo-RGB images of A-1331852 and
Bortezomib dilution series, highlighting particularly different phenotypes at highest concentrations. Bottom: pseudo-RGB images of assay controls
(3 negative imaging controls, DMSO; 3 positive imaging controls, STS; and 1 positive metabolic control, BzCl). We expect this analysis workflow
uncovering complementary CDPs to be relevant for drug discovery as well as for personalized oncology.

evidence, image-based, even segmentation-free CNN-based,
cell-viability quantification offers two additional, unique
advantages.

1) Explainability of Image-Based Viabilities: A common point
of criticism against deep-learning approaches concerns a lack
of interpretability, which it shares with other machine-learning
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approaches such as random forests. In terms of explainability,
fine-tuning all layers of the CNN for each patient impedes
computation of features that can be compared across patients.
However, CNNs still offer unique possibilities for visualization
of network mechanics such as CAMs (Fig. S-9): classical
machine-learning approaches based on whole-well features
would be challenged localizing such influences.

2) Visualization of Drug CDPs: t-SNE plots of CNN features
enable further imaging-exclusive benefits to be realized, such
as visualizing CDPs. Our interpretation is that t-SNE plots
highlight distinctly different phenotypes between different
positive and negative controls and, by extension, different
drugs, which we support in three ways:

a) Confirming drug clusters through drug (sub)classes: We
observe several noticeable patterns patterns in Figs. 13 and 14
and Figs. S-4 to S-7. On the level of drug classes (top panel
of each plot), positive and negative controls are well sepa-
rated in all plots. Similarly, apoptotic modifiers (AM) usually
cluster around or close to positive controls. On the level of
drug subclasses (bottom panel of each plot), BzCl and STS
positive controls usually form separate clusters. On that same
level, e.g., for patient INF_R_1025 (Fig. 13), all three MEK
inhibitors (KI-MEK: Cobimetinib [Co], Selumetinib [Selu],
and Trametinib [Tr]) cluster in the same region. Similarly,
the two kinase inhibitors whose main target is the BCR-ABL
kinase, Dasatinib (Das) and Pontatinib (Po), cluster together.

b) Confirming drug clusters through microscopy images: As
seen in Fig. 15, microscopy images linked to individual data
points in the t-SNE plot show distinctly different phenotypes
between drugs at different locations in the plot, while images
of neighboring drugs appear similar.

c) Confirming drug combinations through literature: Finally,
several combinations of drugs that are effective yet distant
from each other in the t-SNE plot (indicating complementary
phenotypes) have been found to provide synergetic benefits
in the literature. For example, the t-SNE plot for patient
INF_R_1025 (Fig. 13) shows Venetoclax (Ven) in the top-right
cluster and Ponatinib (Pon) south of it (with one replicate of
the latter central in the supposedly effective cluster and the
other closer to the supposedly ineffective cluster). In fact,
venetoclax-ponatinib has been described as synergistic for
several forms of leukemia [68], [69]. Another such example,
from the same plot, is venetoclax-dasatinib, Dasatinib (Das)
being found central and towards the south end of the effective
cluster [68].

Considering that distances in t-SNE plots are not indicative
of distances in the original features especially with different
cluster sizes, the data do not allow the conclusion that negative
controls exhibit higher inter-well variability. By contrast, the
relative proximity of replicates despite variability in spheroid
formation and staining suggests that different drug CDPs
can be distinguished and could potentially be linked to drug
mechanisms of actions.

C. Limitations and Potential for Improvement
1) Image Analysis: Detection of contaminations by

non-cellular material (such as dirt, dust, or lint) could be
improved using advanced training, for example, using a third

network output class and inputting either images with extreme
output values or even manually annotated images collected
across patients. After detection, such data points could be
discarded before drug-sensitivity scoring as each drug is
described by 10 data points in total (5 concentrations in
duplicates). Alternatively, contaminations not overlapping any
spheroid could be segmented and removed, and a cleaned-up
images fed into the cell-viability quantification network.
We did not follow any of these approaches in this work due
to rare occurrence of contaminations (Fig. S-10).

Despite acquisition and storage of huge amounts of 3D
imaging data, the proposed approach does not make use of
the full 3D information, as the network inputs only MID and
MIP images. However, the added benefit of designing larger
3D CNNs is not obvious and would need to be demonstrated.
Unfortunately, pre-trained 3D image-classification networks
are much less widely available, and since all training phases
appear critically important for screen-by-screen learning with
limited patient data, this would require a re-design of all
aspects of the proposed training pipeline.

Similarly, the network operates on low-resolution, 224 ×
224-pixel images due to GPU memory constraints and does
not use the full image resolution available. As before, the
advantage of using the full image resolution is not guaranteed
and would need to be demonstrated using, for example, lower-
complexity architectures such as MobileNet [70] for which
pre-trained networks are available.

The amount of training data could be augmented by using
not only DMSO, but also untreated wells as negative controls.
However, this would increase the risk of class imbalance
between negative and positive controls. BzCl wells could
additionally be considered as positive controls, but t-SNE plots
imply that while DMSO and untreated wells are phenotypi-
cally similar, the same is not true for STS and BzCl wells.
By contrast, t-SNE plots may reveal drugs similar enough to
STS in CDP and effectiveness to be used as additional positive
controls on a patient-by-patient basis.

Finally, it would be helpful make CDPs accessible to human
interpretation; however, the grouping of drugs with similar
CDPs is based on CNN features which are complex, non-
linear combinations of input pixel values, rarely coincide with
classical morphological properties, and are thus inherently
challenging to describe in human terms. In addition, since
a CNN is fine-tuned for every single screen, features repre-
sent different pixel-value combinations for different screens
and are thus not suitable for comparison across screens.
Translating similarities in CNN features into similarities of
human-perceived morphology therefore requires further study.

2) Imaging Reproducibility: As we have seen, reproducibility
of image-based cell viabilities is lower compared to that in
metabolics, especially in phase II. While we are not able
to attribute this effect to either the imaging workflow (in
particular, nuclear staining and imaging) or to the image-
quantification method, there is some notable potential for the
former:

Variabilities may for example be introduced into the imag-
ing workflow by spheroids outside of our imaging field
of view, which covers only a central site rather than the
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whole well. If wells known to be empty (free of cells) were
imaged, these could be added to the training data as another
class to detect wells where no cells can be seen which could
then be discarded. Beyond such approaches, the proposed
phase-III training does appear to improve reproducibility.

3) QC Failure: Despite the demonstrated good versatility, the
proposed approach is not universal. For example, one PDS
excluded from this work due to using only 566 cells/well
did not establish spheroids and failed image-based QC despite
good QC of the metabolic readout. However, no comparable
case was available to verify if the imaging failure was related
to the number of cells, the disease entity, or other factors.

4) Extended QC Analysis: In addition to Z ′ values computed
from cell viabilities of negative (DMSO) and positive (250 nM
STS) control images, STS concentration series (0.1–1000 nM)
are routinely acquired as shown in Fig. S-11 and could be used
for additional, automated QC analysis, using the assumption
that continuously increasing STS concentrations should lead
to continuously increasing inhibition values.

5) Choice of Pre-Training Data: Regarding phase-I pre-
training with the INF_R_153 cell line, it is especially relevant
to evaluate the need for pre-training and the impact of
the choice of the training cell lines. Since pooling con-
trols across patients screens yielded training accuracies and
AUROCs around unacceptable 75%, supposedly due to large
variability between PDSs, patient-specific fine-tuning seems
to be mandatory. We have also seen in earlier experiments
that patient-specific controls alone are insufficient for train-
ing, requiring use of a dedicated control plate for pre-
training. Using another cell line for pre-training remains to
be investigated.

6) Lack of Comparison Methods: This manuscript demon-
strates the value of patient-by-patient deep transfer learning,
in particular when compared to a simple MoS method.
We have considered implementing additional comparison
methods; however, due to the difficulties mentioned in
Section I-A (in particular, different degrees of spheroid for-
mation between different patients and a lack of reliable 3D
single-cell segmentation methods), a classical method based
on spheroid or single-cell segmentation was out of reach in
this work.

VI. OUTLOOK AND FUTURE WORK

As a next step, we will apply the proposed cell-viability
quantification method to a larger cohort of PDS from the
INFORM study for exploration of potentially novel drug-
response patterns, investigation of phentotypic clustering
accross disease entities and drug mechanisms of action, and
ultimately clinical translation. Lacking a unique gold standard
for image quantification, clinical translation will focus on
independent confirmation of metabolic findings (similar to
expected hits in cell lines, Fig. 10) and genomic alterations.
We further aim to train CNNs across patients to distinguish
between entities, e.g., for verification of histological diagnoses.

In the future, we will compare the proposed deep-learning
approach with single-cell-segmentation-based approaches,
including the opportunity to differentiate cell types within
one tissue sample (e.g., tumor from non-tumor cells, using

a patient-specific healthy tissue sample). For illustration,
Fig. S-12 shows the example of red blood cells (RBCs)
making up the majority of a PDS during imaging. While RBCs
are unaffected by Hoechst staining due to their lack of nuclei,
bright-field (BF) imaging demonstrates how other (blood)
cells centrifuged to the well bottom could be mistaken for
a healthy tumor-cell spheroid in simple image-based readouts,
potentially leading to over- or underestimation of measured
cell viabilities, respectively.

VII. CONCLUSION

Deep transfer learning with patient-specific training via
screen-by-screen fine-tuning allows quick implementation
of high-throughput microscopy-based image-quantification
pipelines for functional drug response profiling. Two-phase
fine-tuning addresses limited amounts of patient material while
label smoothing supports interpolation between positive and
negative controls. CNN features may be used for mapping the
landscape of effective and ineffective drugs by their cell-death
phenotypes. Future work will employ this pipeline for dis-
covering image-based drug-response patterns across different
drugs and tumor entities, as well as correlation with NGS data.
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