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Abstract
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for 
most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline 
variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected 
members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house 
developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 
member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically 
conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. 
The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream 
of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well 
as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a 
synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic 
inheritance of familial CRC.
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Introduction

Several studies have estimated that around 15% of colorec-
tal cancer (CRC) patients show a first-degree family his-
tory of colorectal malignancies (Ponz de Leon et al. 1989; 
Hemminki et al. 2008; Frank et al. 2015; Chau et al. 2016). 
Analyzing the underlying heritable and environmental fac-
tors in twins from Sweden, Denmark, and Finland, Lichten-
stein et al. have estimated that genetic factors account for 
up to 35% of the CRC risk (Lichtenstein et al. 2000). Nev-
ertheless, only a small proportion of familial CRC cases 
can be traced back to germline mutations in established 
CRC-predisposing genes. In the present study, we used a 

family-based whole-exome sequencing approach to fill in 
this gap and to identify novel CRC predisposition genes with 
high-to-moderate penetrance germline variants.

The early-identified traditional CRC susceptibility genes 
include APC and mismatch repair genes (MLH1, MSH2, 
MSH6, PMS2), MUTYH and SMAD4/BMPR1A. Later on, 
sequencing studies have identified novel predisposition genes 
for CRC, such as NTHL1, RNF43, POLE, POLD1, FAN1 and 
RPS20 (Jasperson et al. 2010; Briggs and Tomlinson 2013; 
Palles et al. 2013; Gala et al. 2014; Nieminen et al. 2014; 
Kuiper and Hoogerbrugge 2015; Segui et al. 2015; Weren 
et al. 2015; Yan et al. 2017; Lorans et al. 2018; Valle et al. 
2019). Further candidate genes recently suggested by mod-
ern next generation sequencing methods include the solute 
carrier (SLC) family of membrane transport genes: SLC5A9 
(p.G492Afs*13), SLC26A8 (p.R954C) and SLC11A1 
(p.P64A) (Hansen et al. 2017; Yu et al. 2018). Addition-
ally, germline deletions affecting the open reading frame of 
SLC18A1 gene have been reported to increase the risk of CRC 
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and lower SLC18A1 protein expression has been further asso-
ciated with poor clinical outcome (Zhang et al. 2017).

Despite novel findings of predisposition gene candi-
dates in CRC, there still exist 75% of unexplored familial 
CRC cases. This proportion of familial CRC with unknown 
genetic background may be accounted for by two major com-
ponents: either following a monogenic inheritance model 
based on a single high-penetrance mutation or a polygenic 
inheritance model based on the combination of multiple 
low/moderate-penetrance risk alleles (Zetner and Bisgaard 
2017). Assuming the monogenic disease model for CRC 
cases with strong familial clustering, the identification of 
rare highly penetrant germline variants within pedigree-
based studies constitutes a promising approach for elucidat-
ing the remaining genetic burden of familial CRC.

For this purpose, we performed whole exome sequencing 
(WES) on a Polish family with CRC aggregation over three 
generations. Sequencing data of four CRC cases and two unaf-
fected family members were subsequently analyzed using our 
in-house developed Familial Cancer Variant Prioritization 
Pipeline (FCVPPv2) which was used earlier in identification 
of variants and pathways involved in several familial can-
cers (Bandapalli et al. 2018; Kumar et al. 2018; Srivastava 
et al. 2019; Srivastava et al. 2020a; Srivastava et al. 2020b; 
Skopelitou et al. 2021; Srivastava et al. 2021). Further in silico 
analyses resulted in the prioritization of a novel missense vari-
ant in the solute carrier family 15 member 4 gene (SLC15A4), 
encoding a proton-dependent peptide/histidine transporter. 
By being involved in multiple signaling pathways regulat-
ing cytokine production and thus innate immune responses, 
SLC15A4 has been shown to promote colitis in an in vivo 
mouse model (Sasawatari et al. 2011; Kobayashi et al. 2014). 
Since high expression of the encoded membrane transporter 

has been further reported in the feces of CRC patients as well 
as in early-stage CRC cell lines, an important role of SLC15A4 
in initial inflammation-induced colorectal carcinogenesis has 
been suggested (Lee et al. 2016). In this study, we conducted 
in silico analyses as well as further literature search to link the 
function of the SLC15A4 protein to a genetic basis, potentially 
contributing to CRC development in the studied family. By 
identifying and analyzing an additional variant in the upstream 
region of the SLC15A4 gene showing the same familial seg-
regation, we aimed to expand the theory of high-penetrance 
monogenic inheritance to a synergistic model of coding and 
non-coding variants underlying cancer predisposition.

Materials and methods

Patient samples and ethical permissions

The family with CRC history over three generations was 
recruited from Poland (Fig. 1a). Six family members were 
included in our experiments: four siblings diagnosed with 
CRC, a child of one CRC case with colorectal polyps and a 
healthy cousin of the CRC cases. The family was screened 
for alterations in APC, the mismatch repair genes MLH1, 
MSH2, MSH3, large deletions in EPCAM and POLE p. Leu-
424Val, POLD1 p.Ser478Asn and NTHL1 p.Gln90* muta-
tions and found to be negative. Collection of blood samples 
and clinical information from subjects was undertaken with 
informed written consent in agreement with the tenets of 
the declaration of Helsinki. The study was approved by the 
Bioethics Committee of the Pomeranian Medical Academy 
in Szczecin (protocol code No: BN-001/174/05).

Fig. 1  a Pedigree of the studied 
family with CRC aggregation 
over three generations and 
the presence of the missense 
and upstream variants in the 
SLC15A4 gene b Graphical 
overview of the filtering process 
according to the Familial 
Cancer Variant Prioritization 
Pipeline version 2 (FCVPPv2)



967Molecular Genetics and Genomics (2022) 297:965–979 

1 3

Whole exome sequencing, variant calling 
and annotation

Genomic DNA was isolated with a modified Lahiri and 
Schnabel method (Lahiri and Schnabel 1993) and WES 
was performed using Illumina-based small read sequenc-
ing. After mapping to the human reference genome (assem-
bly GRCh37 version Hs37d5) by means of BWA (Li and 
Durbin 2009), duplicates were removed with Picard (http:// 
broad insti tute. github. io/ picard/). SAM tools (Li 2011) and 
Platypus (Rimmer et al. 2014) were used for calling single 
nucleotide variants (SNVs) as well as short insertions and 
deletions (indels), respectively. Variants were then anno-
tated by ANNOVAR (Wang et al. 2010), 1000 Genomes 
Project (Genomes Project et al. 2015), dbSNP (Smigielski 
et al. 2000) and Exome Aggregation Consortium (ExAC) 
(Lek et al. 2016). To be further processed, variants should 
have a quality score of ≥ 20 and a coverage score of ≥ 5 ×, 
SNVs should pass the strand bias filter (a minimum one read 
support from both forward and reverse strand) and indels 
should pass all the Platypus internal filters. Based on minor 
allele frequencies (MAFs) deduced from the 1000 Genomes 
Project Phase 3, non-TCGA ExAC data, NHLBI-ESP6500 
and local data sets, rare variants with a MAF ≤ 0.1% in the 
European population were retained for further analysis. We 
checked for potential sample swaps and family relatedness 
by pairwise comparison of the shared rare variants.

Coding variant analysis according to the FCVPPv2

The resulting variants were analyzed based on our in-house 
developed FCVPPv2 (Kumar et al. 2018). First, variants 
were filtered according to the pedigree segregation of the 
malignancy. Variants should be present in family members 
affected by CRC and absent in the healthy family member. 
Since colorectal polyps at a relatively young age may rep-
resent a preliminary stage of familial CRC, the respective 
family member could be a possible carrier and show either 
presence or absence of the variant of interest.

Of the coding variants fulfilling the pedigree segrega-
tion criteria, the most deleterious 10% were retained for 
further analysis, represented by a PHRED-like CADD 
score ≥ 10 (Kircher et al. 2014; Rentzsch et al. 2019). To 
evaluate the evolutionary conservation as an indicator for 
functional importance of a genomic position, the follow-
ing scoring tools were applied with respective cutoff val-
ues given in brackets: Genomic Evolutionary Rate Profiling 
(GERP; ≥ 2.0), PhastCons (> 0.3) and PhyloP score (≥ 3.0) 
(Cooper et al. 2005; Siepel et al. 2005; Pollard et al. 2010). 
Next, the intolerance of genes against functional genetic var-
iation was assessed by using three intolerance scores (< 0) 
based on allele frequency data from our in-house datasets, 
from NHLBI-ESP6500 and ExAC (Petrovski et al. 2013). In 

the course of intolerance screening, missense and loss-of-
function variants were further annotated by the Z Score (> 0) 
and pLI score (≥ 0.9), respectively, which were specifically 
developed by the ExAC consortium for the particular type 
of variants (Lek et al. 2016). Last, we evaluated the deleteri-
ousness of non-synonymous and splice site SNVs by apply-
ing ten different scoring tools accessed from dbNSFP v3.0 
(database for nonsynonymous SNPs’ functional predictions): 
Sorting Tolerant From Intolerant (SIFT), Polymorphism 
Phenotyping v2 (PolyPhen-2) HumDiv, PolyPhen-2 Hum-
Var, Log ratio test (LRT), MutationTaster, MutationAsses-
sor, Functional Analysis Through Hidden Markov Models 
(FATHMM), Reliability Index, Variant Effect Scoring Tool 
version 3 (VEST3) and Protein Variation Effect Analyzer 
(PROVEAN) (Liu et al. 2016).

Summarizing, variants with a PHRED-like CADD-
score of ≥ 10 as well as ≥ 2 out of the three conservational 
tools, ≥ 60% of the four intolerance scores and ≥ 60% of the 
10 deleteriousness scores fulfilling the selection criteria 
were retained as the top exonic candidates. Allele frequen-
cies were re-evaluated by means of the gnomAD browser 
(https:// gnomad. broad insti tute. org/) (Karczewski et  al. 
2019). Since the studied CRC family originates from Poland, 
the non-Finnish European (NFE) population was taken as 
the representative population on a large scale.

We further assessed the potential of the variants for being 
cancer drivers in CRC by checking overall somatic altera-
tion frequencies according to cBioPortal and TCGA Pan-
Cancer Atlas, comprising data of 594 CRC patients (Cancer 
Genome Atlas Research et al. 2013; Gao et al. 2013). Moreo-
ver, protein expression levels in CRC tissue were accessed 
from The Human protein atlas (http:// www. prote inatl as. org) 
(Uhlen et al. 2017).

Additional in silico analyses based on protein 
function and phylogenetic conservation

The potential impact of the top missense variants on protein 
function was assessed by means of  Snap2 (Hecht et al. 2015). 
Based on a neural network,  Snap2 calculates the likelihood 
of single amino acid substitutions to alter protein function, 
giving scores between − 100 (low) and + 100 (high). The 
predicted functional impact is represented in form of heat 
maps covering each possible amino acid substitution at each 
position.

Since predictions of the functional impact of variants are 
based on evolutionary information, we further checked phylo-
genetic conservation of the top variants among different ver-
tebrate species. Multiple protein sequences of the candidate 
genes and their orthologs were derived from the National 
Center for Biotechnology Information (NCBI) (Coordina-
tors 2018) and aligned using COBALT, a constraint-based 
multiple alignment tool (Papadopoulos and Agarwala 2007). 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://gnomad.broadinstitute.org/
http://www.proteinatlas.org
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Visualized alignments were manually checked for conserva-
tion at the mutation sites and the surrounding regions and 
percent identity of protein sequences was further calculated 
by NCBI BLAST (Basic Local Alignment Search Tool). 
Details of multiple sequence alignment including selected 
representative species and NCBI accessions of respective 
genes and their orthologs are summarized in Online Resource 
1.

We checked recent literature for established gene-can-
cer associations, postulated oncogene or tumor-suppressor 
roles as well as potential cancer-promoting protein functions 
of the top candidates. Considering the entirety of derived 
information and in silico analysis results, the candidates 
showing the most promising impact on protein function or 
gene regulation were prioritized as the potentially cancer-
causing variants in the studied family. Familial segregation 
of the top-listed variants with the disease was confirmed by 
visually checking WES data with the help of the Integrative 
Genomics Viewer (IGV) (Robinson et al. 2017).

Analysis of regulatory elements and prediction 
of transcription factor binding sites 
in the non‑coding regions

To assess the biological function and to identify potentially 
active regulatory regions, the chromatin state of specific 
genomic positions was predicted by the updated version 
of CADD (v1.6). For this purpose, CADD v1.6 provides 
chromHmm and Segway data, which annotate the chroma-
tin state based on large-scale functional genomics datasets 
such as ChIP-seq data (Ernst and Kellis 2012; Hoffman 
et al. 2012; Roadmap Epigenomics et al. 2015). Using the 
intersect function of the Bedtools as well as FANTOM5 and 
SEA databases, we further scanned for potentially affected 
regulatory elements such as promoters, enhancers and super-
enhancers (Lizio et al. 2015; Wei et al. 2016). Moreover, 
transcription factor binding sites (TFBSs) were predicted by 
means of Jaspar2020 with the default relative profile score 
threshold of 80% and compared between wild-type and 
mutant sequence (Fornes et al. 2020). Details on the regula-
tory annotations are provided in a systematic review of in 
silico prioritization of non-coding variants (Lee et al. 2018).

Results

Application of the FCVPPv2 results 
in the prioritization of two coding variants in PTGES 
and SLC15A4 genes

The studied family was diagnosed with CRC over three 
generations, as represented in the pedigree (Fig. 1a). Four 
siblings affected by CRC in the second generation at the 

age of < 60 years were considered as cases and should 
therefore carry the variant of interest. Similarly, the daugh-
ter (IV2) of one of the cases (III2) developed colorectal 
polyps at the relatively young age of 29 years, potentially 
representing a preliminary stage of familial CRC. Consid-
ering the option of having inherited the variant of interest, 
IV2 was defined as a possible carrier and may present the 
variant as well. In contrast, an unaffected first cousin of the 
four CRC cases of a similar age and with healthy parents 
served as a control and should thus not carry the variant.

Analysis of WES data was performed using our in-house 
developed FCVPPv2, as visually summarized in Fig. 1b. Of 
the totally identified 11,076 variants with a MAF ≤ 0.1%, 
only 135 variants fulfilled the pedigree segregation crite-
ria. Exclusion of intergenic and intronic variants resulted 
in 28 variants in the coding region and 43 variants located 
in the non-coding region near transcription start and end 
sites (5′ and 3′ untranslated regions, upstream and down-
stream regions). Due to their less pathogenic character, syn-
onymous variants were excluded, leaving 17 missense or 
nonsense variants for further analysis. 12 of the remaining 
coding variants reached a PHRED-like CADD score ≥ 10, 
representing the most deleterious 10% of the variants in the 
human genome. Application of conservational, intolerance 
and deleteriousness scores further narrowed down the num-
ber of variants to 9, 4 and 2, respectively. The two final 
missense variants were located in solute carrier family 15 
member 4 gene (SLC15A4, p.Y444C) and prostaglandin E 
synthase gene (PTGES, p.A133T) and are summarized with 
respective analysis results in Table 1.

PTGES encodes a glutathione-dependent synthase cata-
lyzing the oxidoreduction to prostaglandin E2. By playing 
a role in inflammatory responses, fever and pain, PTGES 
protein has been reported to be involved in inflammatory 
diseases such as collagen-induced arthritis and gastri-
tis (Gudis et al. 2005; Korotkova et al. 2011). Similarly, 
the gene product encoded by SLC15A4 regulates innate 
immune responses. Being a proton-dependent peptide/his-
tidine transporter, SLC15A4 protein controls the transport 
of various molecules from the inside of endosomes to the 
cytosol and has been associated inter alia with systemic 
lupus erythematosus (Wang et al. 2013; Lee et al. 2014; 
Zuo et al. 2014; Zhang et al. 2016).

According to the gnomAD browser, both top-listed 
variants showed very low allele frequencies in the general 
NFE population: the PTGES variant was annotated with a 
frequency of around 8.4 ×  10–5 and the SLC15A4 variant 
even less with 0 counts in 113,688 alleles. Moreover, only 
one allele of the SLC15A4 variant has been reported in the 
worldwide population accessed by gnomAD browser, count-
ing in total 251,362 alleles (Karczewski et al. 2019). For 
further validation of allele frequencies, population data of 
Trans-Omics for Precision Medicine (TOPMed), integrating 
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large-scale whole genome sequencing data, was checked and 
did not report the identified SLC15A4 variant, confirming 
again its low allele frequency (Li et al. 2020; Taliun et al. 
2021).

Higher alteration frequency and protein expression 
of SLC15A4 in CRC compared to PTGES

We next checked available CRC patient data for overall 
somatic gene alteration frequencies to assess the poten-
tial of the top candidates for being cancer drivers in CRC. 
cBioPortal recorded six somatic missense mutations in the 
SLC15A4 gene (frequency = 1.01%, Fig. 2a) and only two 
somatic mutations in the PTGES gene (frequency = 0.34%, 
Fig. 3a) identified within 594 colorectal adenocarcinoma 

samples from the TCGA PanCancer Atlas. Regarding the 
overall somatic alteration frequency in all listed cancers, 
SLC15A4 showed a generally higher frequency with up 
to 5.48% in uterine cancer (Online Resource 2a), whereas 
the maximum alteration frequency of the PTGES gene 
was only 1.7%, also in uterine cancer (Online Resource 
2b) (Cancer Genome Atlas Research et  al. 2013; Gao 
et al. 2013). Besides genetic alterations documented in 
CRC, we checked protein expression levels in CRC sam-
ples. According to the Human Protein Atlas, 4 out of 12 
investigated CRC samples showed a medium expression of 
the SLC15A4 protein, whereas 0 out of 11 CRC samples 
showed a high or medium expression of the PTGES protein 
(Uhlen et al. 2017).

Fig. 2  In silico analysis results of the SLC15A4 variant p.Y444C a 
Graphical overview of the SLC15A4 protein with the PTR2 domain. 
Somatic mutations identified in CRC were extracted from cBioPor-
tal (www. cbiop ortal. org) on 13th of December 2020 using the TCGA 
PanCancer data and are represented by dark pins. The germline mis-
sense variant identified in the studied CRC family is highlighted in 

the form of a yellow pin. b  Snap2 heatmap depicting the functional 
impact of amino acid substitutions. The missense mutation p.Y444C 
is highlighted by grey boxes. c Extract of multiple sequence align-
ment of amino acids 430–460 of SLC15A4 and orthologs. The muta-
tion site is highlighted by a yellow box

Fig. 3  In silico analysis results of the PTGES variant p.A133T a 
Graphical overview of the PTGES protein with MAPEG domain. 
Somatic mutations identified in CRC are extracted from cBioPortal 
(www. cbiop ortal. org) on 13th of December 2020 using the TCGA 
PanCancer data and are represented by dark pins. The germline mis-
sense variant identified in the studied CRC family is highlighted in 

the form a yellow pin. b  Snap2 heatmap depicting the functional 
impact of amino acid substitutions. The missense mutation p.A133T 
is highlighted by grey boxes. c Extract of multiple sequence align-
ment of amino acids 120–150 of PTGES and orthologs. The mutation 
site is highlighted by a yellow box

http://www.cbioportal.org
http://www.cbioportal.org
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In silico analyses predict functional consequences 
of the SLC15A4 variant on protein level

The identified SLC15A4 variant p.Y444C was predicted to 
affect the PTR2 (peptide transport) domain (p.104–495) of 
the POT (proton-dependent oligopeptide transporter) fam-
ily (Fig. 2a) and in particular a non-cytoplasmic loop of the 
SLC15A4 transporter protein, which comprises in total 12 
transmembrane domains according to Interpro (Blum et al. 
2020). Analysis of the potential impact of the SLC15A4 
missense variant on protein function by means of  Snap2 
resulted in a predicted effect score of 44 with an accuracy 
of 71% (Fig. 2b). In contrast, the missense variant p.A133T 
in the PTGES gene, affecting the cytoplasmic part of the 
MAPEG (membrane-associated proteins in eicosanoid and 
glutathione metabolism) domain (p.17–146) of the PTGES 
protein (Fig. 3a), was annotated by  Snap2 with a score of 16 
and an accuracy of 59% (Fig. 3b) (Hecht et al. 2015). Due to 
a higher effect score and accuracy of the prediction in cross-
validation, the functional impact of the SLC15A4 variant was 
expected to be of higher relevance.

Sequence alignment of the orthologs showed for both var-
iants a universally conserved position with an overall high 
conservation of the surrounding region among the selected 
vertebrate species (Figs. 2c, 3c, respectively). Focusing on 
the five directly adjacent upstream and downstream amino 
acid positions, multiple sequence alignment resulted in 
95.86% identity of the SLC15A4 and 82.64% identity of the 
PTGES gene with their orthologs. Based on this observation, 
a higher phylogenetic conservation in the region surrounding 
the mutation site can be assumed for SLC15A4.

The entirety of the in silico analyses led to the prioritiza-
tion of the missense variant in SLC15A4 gene (p.Y444C). 
Familial segregation of this variant was manually checked 
and confirmed by applying IGV on the WES data.

Identification of an additional variant at an active 
transcription start site of SLC15A4 gene

We checked the WES data of the studied family for fur-
ther variants affecting the same gene of interest. Interest-
ingly, one additional variant in the upstream region of the 
SLC15A4 gene showing the same familial segregation as 
the missense variant (present in the cases and the possi-
ble carrier) was identified (12_129308531_C_T; 43 bp 
upstream of transcription start site, ENST00000266771.5). 
Functional annotation of the non-coding variant was derived 
from CADD v1.6 providing a PHRED-like CADD-score of 
11.38 (Kircher et al. 2014; Rentzsch et al. 2019). Moreo-
ver, the variant was annotated to be located at an active 
transcription start site according to ChromHmm (TssA, 
Score = 0.969) and Segway (TSS) (Ernst and Kellis 2012; 
Hoffman et al. 2012). CADD v1.6 further calculated 52 

different overlapping ChIP TFBSs covered by the upstream 
variant and 115 TFBS peaks when summed over different 
cell types and tissue.

Using the intersect function of the Bedtools, the non-
coding variant was predicted to affect the promoter 
(129,308,487.129308588) of the SLC15A4 gene. All 
described analysis results of the SLC15A4 upstream variant 
are summarized in Table 2.

In order to identify those transcription factors for which 
the binding may be affected the most by the variant, we used 
Jaspar2020 for prediction and comparison of the TFBSs for 
the wild-type and the mutant sequence of the SLC15A4 
upstream region (Fornes et al. 2020). Whereas most of the 
identified TFBS were shared by both sequences, nine tran-
scription factors were predicted to bind only to the wild-type 
sequence, indicating a TFBS disruption by the variant, and 
eight were predicted to bind only to the mutant sequence, 
indicating a TFBS creation by the variant (Table 3). One 
of the identified transcription factors, whose binding site 
was disrupted was STAT1 which has been established as 
a favorable prognostic marker in several types of cancers, 
including CRC (Klampfer 2008; Simpson et al. 2010; Gor-
dziel et al. 2013). Moreover, STAT1 has been proposed as 
a tumor suppressor particularly in colitis‐associated CRC 
(Crncec et al. 2018), in turn suggesting a carcinogenic poten-
tial of its disruption by the identified upstream variant.

Discussion

Performing WES on a family with CRC aggregation and 
applying our in-house developed FCVPPv2, we identified 
two novel heterozygous variants in the SLC15A4 gene that 
segregated with the disease in the family. The missense vari-
ant, p. Y444C, was predicted to affect the phylogenetically 
conserved PTR2/POT domain and to have a deleterious 
effect on the function of the encoded peptide/histidine trans-
porter. The other variant was located in the upstream region 
of the same gene and it was annotated to affect the promoter 
region of SLC15A4 as well as binding sites of several tran-
scription factors. Our findings of two distinct variants in 
the same gene may indicate a synergistic up-regulation of 
SLC15A4 as the underlying genetic cause and implicate this 
gene for the first time in genetic inheritance of familial CRC.

SLC15A4 belongs to the family of the proton-coupled 
oligopeptide transporters (POTs) that enable the transfer 
of histidine and oligopeptides derived from degradation 
products from inside of the endosome to the cytosol. Since 
proton dependency implies higher transport activity at low 
pH levels, endosomal acidification during the maturation to 
lysosomes is required for substrate uptake by the SLC15A4 
transporter (Yamashita et al. 1997; Bhardwaj et al. 2006).
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Well-established examples of SLC15A4 substrates are 
the NOD1 ligands L-Ala-D-Glu-meso-diaminopimelic acid 
(Tri-DAP) and γ-D-Glu-meso-diaminopimelic acid (iE-
DAP), components of the cell wall peptidoglycan of pri-
marily Gram-negative bacteria (Lee et al. 2009; Sasawatari 
et al. 2011). NOD1 stimulation by DAP induces the acti-
vation of nuclear factor-κB and mitogen-activated protein 
(MAP) kinases and thus the transcription of various genes 
responsible for innate and adaptive immune responses 
(Hayden and Ghosh 2004; Franchi et al. 2009). Knockdown 
of SLC15A4 in HEK293T cells has been shown to lead to 
decreased nuclear factor-κB activation by the NOD1 ligands 
(Lee et al. 2009), which was supported by in vivo experi-
ments resulting in loss of Tri-DAP–induced cytokine pro-
duction in SLC15A4-deficient mice. The same study has 
further reported an association of SLC15A4 with toll like 
receptor 9 (TLR9) functions: SLC15A4-deficient dendritic 
cells showed decreased TLR9-mediated cytokine produc-
tion which was traced back by the authors to high lysoso-
mal histidine concentrations in the absence of SLC15A4. 
By being required for TLR9- as well as NOD1-mediated 
cytokine production, SLC15A4 has been shown to promote 
Th1-dependent colitis in vivo (Sasawatari et al. 2011).

Since chronic intestinal inflammation has been associated 
with increased CRC risk, potentially mediated by oxidative 
DNA damage and innate and adaptive immune responses 
(Feagins et al. 2009; Ullman and Itzkowitz 2011), SLC15A4 
may further play an important role in the initial inflamma-
tion-induced colorectal carcinogenesis (https:// www. ebi. ac. 
uk/ gwas/ efotr aits/ EFO_ 00037 67; accessed on March 5th, 
2021). Based on these findings, we are suggesting a role in 
CRC susceptibility as well for genetic variation of SLC15A4.

Performing WES on a family with CRC aggregation 
and applying our in-house developed FCVPPv2, we were 
able to identify a novel heterozygous variant in the cod-
ing region of the SLC15A4 gene. By being present in all 
four CRC-affected siblings as well as one direct descend-
ant with colorectal polyps, the identified missense vari-
ant in SLC15A4 shows segregation with the disease and 
a potential for medium-to-high-penetrance susceptibility 
to CRC in the studied family. Considering the very low 
allele frequency of the variant in the NFE population of 0 
counts in 113,688 alleles, the proposed association of the 
identified genetic variation with familial CRC is further 
supported. In silico analyses based on evolutionary con-
servation, intolerance against functional genetic alterations 

Table 3  Summary of 
transcription factors exclusively 
targeting either the wild type 
(WT) or the mutant sequence 
(MUT) of SLC15A4 upstream 
region

Respective transcription factor binding sites (TFBS) are identified with Jaspar2020 and the default relative 
profile score threshold of 80%. Matrix ID, relative scores, start and end positions, strand information as 
well as respective binding sequences are included
a A relative score of 1 is representing the maximum likelihood sequence for the motif

Transcription factor Targeting Matrix ID Relative  scorea Start End Strand Predicted sequence

MEIS2 WT MA0774.1 0.84 116 123 + gggacAGG 
NR1D2 WT MA1532.1 0.81 108 122 + tgggttctgggacAG
RARA::RXRG WT MA1149.1 0.80 109 126 + gggttctgggacAGG TGA 
RBPJ WT MA1116.1 0.86 113 122 + tctgggacAG
RORC WT MA1151.1 0.82 110 121 + ggttctgggacA
SREBF1 WT MA0595.1 0.80 118 127 – GTC ACC Tgtc
STAT1 WT MA0137.2 0.84 109 123 – CCTgtcccagaaccc

MA0137.3 0.88 111 121 + gttctgggacA
TGIF2LX WT MA1571.1 0.81 117 128 – GGT CAC CTgtcc

0.81 117 128 + ggacAGG TGA CC
TGIF2LY WT MA1572.1 0.82 117 128 – GGT CAC CTgtcc

0.82 117 128 + ggacAGG TGA CC
GRHL2 MUT MA1105.2 0.83 116 127 + ggaacAGG TGA C
MYF6 MUT MA0667.1 0.82 118 127 + aacAGG TGA C
NFATC2 MUT MA0152.1 0.90 115 121 – Tgttcca
PRDM4 MUT MA1647.1 0.81 114 124 – ACCTgttccag
SCRT1 MUT MA0743.1 0.83 114 128 + ctggaacAGG TGA CC

MA0743.2 0.85 113 128 + tctggaacAGG TGA CC
SCRT2 MUT MA0744.1 0.85 114 126 + ctggaacAGG TGA 

MA0744.2 0.85 113 128 + tctggaacAGG TGA CC
TEF MUT MA0843.1 0.80 110 121 – Tgttccagaacc
ZBTB26 MUT MA1579.1 0.92 107 121 – Tgttccagaacccag

https://www.ebi.ac.uk/gwas/efotraits/EFO_0003767
https://www.ebi.ac.uk/gwas/efotraits/EFO_0003767
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and deleteriousness led to the prediction of pathogenicity 
for the missense variant.  Snap2 further predicted an effect 
on protein function by the missense variant leading to the 
amino acid substitution Y444C in SLC15A4. Considering 
all analyses, we propose an up-regulating mode of action 
for the identified missense variant on SLC15A4 protein 
level.

Interestingly, we identified another variant with the same 
familial segregation in the upstream region of the SLC15A4 
gene (12_129308531_C_T; 43 bp upstream of transcrip-
tion start site, ENST00000266771.5). GnomAD browser 
reported an allele frequency of 3.754 ×  10–3 in the NFE pop-
ulation. Taking this relatively high frequency into account, 
high penetrance and thus strong functional consequence of 
the upstream variant by itself may not be expected. Never-
theless, synergistic effects of both variants occurring in the 
same gene have to be considered: The upstream variant may 
have an enhancing impact on SLC15A4 protein expression, 
potentially of minor relevance when solely occurring but 
which may reinforce the postulated up-regulating mode of 
action of the SLC15A4 coding variant in the course of colo-
rectal carcinogenesis. In order to confirm the proposed mode 
of function, we assessed the upstream variant for potentially 
influencing gene transcription. According to our analysis, 
the upstream variant was annotated to be located at an 
active transcription start site affecting the promoter region 
of the SLC15A4 gene. In particular, binding sites of 17 dif-
ferent transcription factors were predicted to be exclusive 
for either the wild type or the mutant sequence due to the 
identified upstream variant, representing a potential mecha-
nism of enhancing gene transcription. Whether the variant 
potentially destroys TFBSs for transcriptional repressors or 
creates new TFBSs for transcriptional activators, remains 
unclear and requires further functional experiments. By pro-
viding a list of TFBSs and potential transcriptional repres-
sors or activators, including the tumor suppressor STAT1, 
we aim to lay the foundation for functional validation of 
the regulatory impact of the upstream variant and instigate 
further research in this field. Thus, we hope to facilitate a 
better understanding of the identified upstream variant in 
the context of SLC15A4 gene regulation in particular and of 
the postulated synergistic model of coding and non-coding 
variants in cancer predisposition in general.

Certainly, the confined number of analyzed family 
members and particularly healthy controls has to be taken 
into account as a statistical limitation of this study when 
finally interpreting the described results. Due to lack of 
availability of additional blood samples, the inclusion of 
further family members in our analyses was not feasible 
to increase the statistical power. We met this limitation 
to some extent by considering the allele frequencies of 
the identified variants in large populations according to 
gnomAD (Karczewski et al. 2019) and TOPMed data (Li 

et al. 2020; Taliun et al. 2021). Further validation of the 
identified variants has been provided by the large-scale 
WES data of UK Biobank, reporting statistically signifi-
cant gene-phenotype associations of the SLC15A4 gene 
and the clinical phenotypes of malignant neoplasms in the 
colon and rectum (Wang et al. 2021).

By identifying germline variants in the SLC15A4 gene 
in familial CRC, we implicated this gene for the first time 
in genetic inheritance of a malignancy, expanding its role 
from a potential CRC marker in quantitative fecal tests to 
a potential marker of CRC susceptibility in genetic test-
ing. However, the results of this study need to be further 
replicated in validation cohorts and validated using experi-
mental approaches in cell lines.
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