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Abstract:
Starting from a crystalline lattice with short-range interactions between par-

ticles, continuum models are derived for the bending, torsion or brittle frac-
ture of inextensible rods moving in three-dimensional space.

In the derivation, limits of the rod thickness and interatomic distance si-
multaneously tending to zero are studied. If the two quantities are of the same
order of magnitude, this leads to a novel theory for ultrathin rods composed
of finitely many atomic fibres, which incorporates surface energy and new dis-
crete terms in the limiting functional.

Further, in the elastic-brittle case, fracture energy in the Γ -limit is expressed
by an implicit cell formula, which covers different modes of fracture, including
(complete) cracks, folds and torsional cracks. In special cases, the cell formula
can be significantly simplified. Our approach applies for example to atomistic
systems with Lennard-Jones-type potentials and is motivated by the research
of ceramic nanowires.
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This doctoral thesis was written during times of increasing concern about
human-induced global climate change. If humanity fails to prevent the
rise in global mean temperature to 2°C above pre-industrial levels, we
can expect a significant increase in extreme weather events, harmful
changes in ecosystems that we rely on, impactful reduction of crop yields,
and negative consequences on people’s health1. In our society, scientists
should give a lead on taking conclusions of trustworthy research studies
seriously. If you are reading these lines, consider supporting relevant
NGOs or initiatives, such as the Alliance of World Scientists2 or Scientists
for Future3.

1O. Hoegh-Guldberg et al. Impacts of 1.5°C Global Warming on Natural and Human Systems. In V. Masson-
Delmotte et al., editors, IPCC Special Report on Global Warming of 1.5°C. Cambridge University Press, 2018.

2
https://scientistswarning.forestry.oregonstate.edu

3
https://scientists4future.org
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1. Introduction and motivation
Without much doubt, nanotechnology ranked among paradigm-shifting and
the fastest growing research areas of the last 30 years and influenced our lives
in multiple different ways. To name one example, the versatility and high per-
formance of latest smartphones derives from advanced computer chips, which
contain billions of nanoscale transistors.

The mechanical response of engineered nanoworld objects differs so much
from macroscopic bodies (e.g. because of size or structure effects) that new
models and simulation methods are still being developed, to efficiently en-
hance the grasp gained by intricate laboratory measurements. In particular,
there exist rod-like structures in nanoengineering which are long enough in
one direction for continuum theories to be applicable, but in the perpendicular
direction, they have a diameter on the scale of tens to hundreds (occasionally
even units) of atoms.

This thesis tries to contribute to the subject of mechanical modelling of na-
nowires, benefiting from variational formulations of problems in elasticity the-
ory. Passing from a discrete atomistic model to a continuum one by means
of Γ -convergence seems to be a promising method for the derivation of phe-
nomenological models which retain important physical features of the micro-
scopic description, but also include all the mathematical precision needed for
further mathematical analysis and/or the design of numerical schemes. For
this intent, the thesis topic specifically draws inspiration from three paths of
research in applied mathematical analysis which are:

(DR) rigorous derivation of elasticity theories for thin structures (often re-
ferred to as dimension reduction);

(D-C) discrete-to-continuum limits;

(F) fracture mechanics.

The purpose of the following sections of this introduction is to briefly survey
research fields related to (DR), (D-C) and (F), in order to give the necessary
background and motivation.

1.1 Γ -convergence

An important tool in all three branches (DR), (D-C) and (F) is Γ -convergence
(see [Bra02, Bra06] for an introduction). This mode of convergence was de-
signed by De Giorgi in the 1970s for parametrized families of variational prob-
lems, i.e. if Eε are functionals defined on some metric space X, we may con-
sider the problems

find y such that min
x∈X

Eε(x) = Eε(y)

depending on a parameter ε.
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Definition 1.1.1. Let (X,d) be a metric space. We say that the family (Eε)ε>0,
Eε : X → R̄ := R∪ {−∞,+∞}, Γ -converges in X to E0 : X → R̄ if for all y ∈ X and
all εk→ 0 we have

(i) (lower bound) for every sequence (yεk ) converging to y

E0(y) ≤ liminf
k→∞

Eεk (yεk );

(ii) (existence of a recovery sequence) there exists a sequence (yεk ) converging
to y such that

E0(y) = lim
k→∞

Eεk (yεk ).

The function E0 is called the Γ -limit of (Eε), and we write this fact as Eε
Γ→ E0 or

E0 = Γ - limεEε.

In mechanics for instance, Eε can have the meaning of elastic or interaction
energy in a deformable solid or a particle system, respectively.

A distinctive property of Γ -convergence is that together with a compactness
condition, it ensures the convergence of (approximative, global) minimizers of
the parent problems as ε → 0 to minimizers of the limiting problem. Thus
certain important information is preserved in the effective problem and it can
help us choose which minimizers of the limiting functional are the most rea-
sonable from a modelling point of view, as they are related to the ones of the
approximating problems. For illustration, a precise formulation of this con-
vergence property is given in Corollary 3.6 using the example of our discrete-
to-continuum limit from Section 3.3.

Advantageously, a Γ -limit is always lower semicontinuous, so the effective
problem admits a solution if in addition, the limit has e.g. precompact sublevel
sets so that the direct method of the calculus of variations can be applied.
However, Γ -convergence also has certain ‘exotic’ properties – it is not induced
by any topology on R̄X , a constant sequence of functionals Ek = E0 might not
have the same functional as its Γ -limit (if E0 is not lower semicontinuous), and
Γ -limits are generally not stable under addition.

Γ -convergence has been successfully applied in many areas, while new ones
still keep emerging (e.g. time-dependent problems [SS04, MMP21] or semi-
supervised machine learning [RB22]). At the same time, tools for the treatment
of local minimizers or stationary points are also under development. [Bra14]

1.2 Models of lower-dimensional objects in elastic-
ity

Plate or rod models offer a useful approximation of three-dimensional elastic-
ity theory. They allow efficient numerical simulations and are commonly used
in civil and mechanical engineering. Their development witnesses a long his-
tory (see [Ant05, O’R17, Lov44] for an overview), as pioneering contributions
were made by L. Euler and Jac. and D. Bernoulli in the 18th century, inspired
by an earlier attempt by Galileo. Another milestone was marked in [Kir59] in
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1859 and since then, Kirchhoff’s theory has become the most widespread one
for describing elastic rods moving in 3D space (although a reformulation in
modern notation is now used). Some prominent lower-dimensional theories
are listed below (for more details, see the three books mentioned above).

• Two-dimensional theories include membranes (in which in-plane strain
is dominant), Kirchhoff plates (a theory for bending), von-Kármán plates
(which model both bending and stretching, using specific assumptions),
Mindlin or Reissner plates (used for thicker structures where shear strain
becomes important) or shells (their reference state is not planar).

• One-dimensional theories focus on strings (which have no bending or tor-
sion resistance), planar Euler–Bernouilli beams, Kirchhoff rods (presented
in more detail in Chapter 2), or else the more refined Timoshenko or
Cosserat rods.

x1

x2
x3

Figure 1.1: An elastic rod moving in 3D space.

(It should be noted, though, that different naming conventions for rod or plate
theories exist and sometimes it is difficult to select researchers to which a the-
ory should be correctly attributed.) Since this thesis is oriented to rod mod-
elling, it is worth mentioning the wide applications of 1D elasticity theories:
ranging from classical examples like beams, arches, bridges, pipes, or cables to
more recent ones, such as lattice metamaterials [Gio21], soft robots [TAR19],
collagen fibrils [BvdHH07], DNA molecules [MMK96], plant tendril perver-
sion [MG02], or hair in computer graphics [USS14].

As Mora and Müller put it, nowadays there is a ‘variety of lower dimen-
sional theories which are often not consistent with each other’. [MM03] Hence
it is useful to understand their foundations and explore mathematically how
the lower-dimensional solutions are connected to 3D elasticity.1 This is the
aim in (DR). Most mathematically rigorous derivations of lower-dimensional
theories first appeared no sooner than in the 1990s. [ABP91, LDR93, ABP94]
(Previous approaches based on some presumed form of the deformation or on
formal asymptotic expansions are reviewed in [Cia21].) A decade later, the fa-
mous discovery of a quantitative rigidity estimate in [FJM02] brought forth an
abundance of works on bending theories. [FJM02, FJM06, MM03] This non-
linear version of a corollary of Korn’s inequality [Mü17, FJM06] also holds in
Lp, 1 < p <∞, but for our purposes it suffices to cite its L2 variant.

1To verify the validity of a particular theory, we should ascertain what 3D problem its
solutions approximate and in what mathematical sense. An argument why this is important
is given in [FJM02] – it turns out that a common ansatz that the out-of-plane displacement
in a bent plate is linear leads to an incorrect constant λ instead of λµ

µ+λ/2 in the elastic energy.
This does not occur if the ansatz is abandoned and the Γ -limit of properly scaled energies is
computed.
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Theorem 1.1 ([FJM02]). Let n ≥ 2 and let U ⊂ Rn be a bounded Lipschitz domain.
Then there exists a constant C(U ) > 0 such that for every v ∈ H1(U ;Rn) there is a
fixed rotation matrix R ∈ SO(3) satisfying

∥∇v −R∥L2(U ;Rn×n) ≤ C(U )∥dist(∇v,SO(n))∥L2(U ).

The constant C(U ) is invariant under scaling U .

In [MM03], a nonlinear bending-torsion theory for inextensible rods was
rigorously derived from three-dimensional elasticity using Theorem 1.1 to lo-
cally approximate scaled deformation gradients by rotations in the Γ -liminf in-
equality. This rod theory, which was also independently obtained in [Pan02],
embraces Kirchhoff rods as a special case. The reader is referred to [MM04,
Sca06, FPPG15, EK21] for other results on mathematical derivation of dimen-
sionally reduced theories in elasticity.

A mathematical approach for the derivation of rod equations different from
Γ -convergence but worth mentioning is the centre manifold method. [Mie88]
The approach is based on recasting the static problem as an ODE in a Banach
space – the independent variable t does not have the meaning of time but a real
parameter describing the longitudinal position within a long elastic body. In
comparison with [MM03], not only bending and torsion are included, but also
shear and extension; however, the centre-manifold approach only works for
strains small in C0,λ and applied forces cannot be easily incorporated. [Mü17]

1.3 Derivation of continuum theories from atomic
interactions

As for (D-C), ‘establishing the status of elasticity theory with respect to atom-
istic models’ was listed by Ball among outstanding open problems in elasticity.
[Bal02] Indeed, although variational formulation of elasticity has become stan-
dard, often an exact expression for the stored energy density is not available
and it may be enlightening to explore the microscopic origins of this quan-
tity. [BLL02] Research has been devoted to studying the so-called Cauchy–
Born rule [FT02, EM07] (see Subsection 1.3.2), pointwise limits of interaction
energies [BLL02] and their Γ -limits [AC04, Sch09, BS13], or to finding atom-
istic deformations approximating a given solution of the equations of elasticity
[OT13, BS16, Bra17]. See also the recent articles [BBC20, ALP21] or [BLBL07]
for a survey.

1.3.1 Mechanics of many-particle systems

Materials at the nanoscale are described by the laws of quantum mechanics,
but for larger particle systems it is far out of reach to solve Schrödinger’s equa-
tion, regardless whether numerically or analytically. Fortunately, a number of
approximative theories are available.

• Molecular dynamics have been around since the 1950s and are based on
integration of Newton’s equations of motion for the n-particle system:

mi
∂2y(i)

∂t2
= f (i), i = 1,2, . . . ,n,
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where y(i) is the (time-dependent) position of i-th particle, whose mass is
mi and f (i) is the net force acting on this particle. For pair interactions2,
the forces can be derived from an interaction potential V , which depends
on the distance between two particles:

f (i) = −
n∑︂
j=1
i≠j

∇y(i)V
(︂
|y(j) − y(i)|

)︂
= −

n∑︂
j=1
i≠j

V ′
(︂
|y(j) − y(i)|

)︂ y(i) − y(j)

|y(i) − y(j)|
.

Generally, the force between two particles is repulsive if their distance is
small and attractive, but decaying asymptotically if they are located fur-
ther away. These two properties are combined into particular empirical
potentials (Lennard–Jones, Morse. . . ), which can look like in Figure 1.2.
The discrete models in Chapters 3–4 are motivated by molecular dy-
namics with short-range interactions. As the complexity of the problem
increases substantially otherwise, we work at zero temperature there.
Questions of practical implementation of molecular dynamics simula-
tions are treated e.g. in [FS02].

• Monte Carlo methods make use of random numbers generated by a com-
puter to study equilibrium or non-equilibrium systems. A detailed ex-
position about these methods can be also found in [FS02].

• In the Thomas–Fermi theory and its later more complicated corrections,
electron density is modelled separately, while the atomic nuclei are con-
sidered as classical charged particles. Blanc et al. [BLL02] achieved a
discrete-to-continuum limit in this setting, relying on pointwise conver-
gence of the energy functionals. A successor of Thomas–Fermi models
in computational materials science and quantum chemistry is the density
functional theory, which has become a popular method and a very active
area of research.

Evidently, there is a multitude of relevant choices of the starting point for
(D-C) and even in the realm of classical point-particle models, different results
in the limit can be expected depending on the inclusion of longer-range or
k-particle interactions, choice of the crystallographic structure etc. (see e.g.
the references in [AC04]).

1.3.2 Cauchy–Born hypothesis

The Cauchy–Born rule is a method of relating a continuum deformation to
displacements in a crystal lattice that constitutes the material. In our context
it can formulated as follows3:

Suppose that a crystalline solid is subject to an affine deformation
ϕ on the boundary. Then the minimum interaction energy of atoms

2More complicated models also include interactions of k-tuples of particles with k ≥ 3. This
might model preferred angles between bonds, as we see in the Stillinger–Weber potential, used
for semiconductors. [Phi01]

3The concept is nicely illustrated in [FT02, Fig. 2].

7



requi

0

r

V (r)

Figure 1.2: An interatomic potential with a minimum value at requi > 0.

in its crystal lattice is achieved when all the atoms follow the same
affine deformation ϕ.

On the grounds of the Cauchy–Born hypothesis, we can define a macroscopic
elastic energy density using the potential energy of a lattice given in a molec-
ular model. [Zan96] Researchers have tried to determine the range of validity
of this hypothesis. The study [FT02] contributes to the subject mathematically,
investigating minimum-energy configurations in a 2D mass-spring lattice. It is
proved there that for some values of the spring parameters, the Cauchy–Born
rule holds and for other ones it does not. Conti et al. [CDKM06] generalized
the result of [FT02] to higher dimensions.

In the discrete model of Chapter 3, the Cauchy–Born rule is not assumed
directly, but assumptions from [CDKM06] about interatomic potentials are in-
corporated, which ensures that the hypothesis is valid for the crystalline ma-
terial.

For a broader perspective on this topic, see e.g. the review [Eri08].

1.3.3 Models for thin films and nanowires

When it comes to modelling nanomaterials, elasticity theory has the advan-
tage of condensing the complexity of a structure composed of many molecules
(e.g. in [dFMGa05], Kirchhoff’s rod theory was applied to nanowires for the
purposes of identification of Young’s modulus and Poisson’s ratio). However,
the natural question arises whether atomistic effects should not be part of con-
tinuum theories for bodies which only consist of a few atomic layers in their
transversal direction. Bearing this in mind, Friesecke and James proposed in
[FJ00] a method for deriving continuum models of 2D and 1D nanomaterials
when in-plane strain is dominant (membrane theory) and the approach was im-
plemented rigorously in [Sch08a] for thin films. The work [Sch06] focused on
the bending of Kirchhoff’s plates and introduced a continuum theory for thin
films which comprise no more than several layers. A similar derivation of von-
Kármán’s plate theory has only been achieved recently [BS22].
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Other approaches to nanowire mechanical modelling include adaptations
of the Cauchy–Born rule [YE06, KKG16], the so-called objective quasicontin-
uum method [HTJ12], thermodynamically motivated constitutive relations us-
ing data from molecular dynamics [SIS15], and Eringen’s nonlocal elasticity
[KHH20]. Several works have also used couple-stress theories to account for
size effects in Kirchhoff rods. [ZG19]

1.4 Fracture mechanics

There are different mechanisms of material failure, amply discussed in engi-
neering textbooks. [And05] In ductile fracture, the gradually formed crack is
preceded and surrounded by a plastically deformed zone, whereas brittle frac-
ture propagates rapidly and on the microscopic level it often involves cleavage
along specific planes. Fatigue cracks are also sudden and produced by cyclic
loading – a common phenomenon in industrial metallic structures. Classical
fracture formulations differ from damage mechanics, which applies to the for-
mation and growth of microvoids that may lead to material softening, but the
deformation of damaged material is still modelled as continuous in space.

The English engineer A. A. Griffith conceived a global criterion for brittle
fracture propagation a hundred years ago, postulating that a crack may grow
if the elastic energy G released per unit area of the rupture reaches the fracture
energy Gc necessary to produce the crack.

The interest of mathematicians in (F) was particularly ignited after Franc-
fort and Marigo [FM98] elaborated on Griffith’s influential model, using mod-
ern variational methods (see e.g. [Fra21, BFM08] for further references). In
variational models of fracture, be it brittle or cohesive [Bar62], we typically
find functionals involving the sum of elastic and fracture energy:∫︂

Ω

W (∇y(x))dx+
∫︂
Jy

k(y+(x)− y−(x),ν(x))dHd−1(x). (1.1)

In the above, W : R3×3→ [0,∞) stands for the stored energy density of a mate-
rial body Ω ⊂ Rd , d ∈ {2,3}, y+ − y− is the jump of the deformation y : Ω→ Rd
across the crack set Jy , ν denotes the normal vector field to Jy , and k: (Rd)2→
[0,∞] is the fracture toughness.

Contemporary variational formulations of brittle fracture problems were
also shaped by the study of the Mumford–Shah functional in image segmenta-
tion and by the related framework of free-discontinuity problems using special
functions of bounded variation (SBV ). [AFP00]

1.5 Nanomaterials

Nanotechnology is concerned with processing matter 1–100 nanometres in
size (i.e. at the scale of atoms or molecules). [San18] Materials whose dimen-
sions lie roughly in this range (or whose internal structure is based on such
tiny building blocks) are called nanomaterials and can be classified as 0D, 1D,
2D, or 3D depending on their shape.
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The most minute nanoobjects may have single nanometres in diameter and
are therefore referred to as zero-dimensional (e.g. carbon fullerenes, quantum
dots, or nanoparticles). [WHLW20]

One-dimensional nanomaterials like nanowires are the most relevant for the
topic of this thesis, so they are described more thoroughly in the next subsec-
tion.

Examples of 2D nanomaterials are various kinds of nanosheets, thin films,
or even monatomic layers such as graphene or silicene. [BKF21]

Lastly, 3D nanomaterials can be defined as those whose no dimension is
confined to the nanoscale (graphite, nanowires organized in bundles, or other
assemblies of lower-dimensional nanostructures etc.).

It should be noted that many sorts of nanoobjects are necessarily missing
in this brief survey and can be found in the ever-growing specialized literature
of this field.

1.5.1 Nanowires and nanotubes

Figure 1.3: ZnO nanowires (US National Institute of Standards and Tech-
nology (NIST), https://commons.wikimedia.org/wiki/File:Nanowires_

(5884868572).jpg, 2008. Accessed: 3. 1. 2023).

Figure 1.4: Bent boron nitride nanotube (licensed under CC BY
4.0, https://commons.wikimedia.org/wiki/File:Recovery_of_bent_BN_

nanotube.jpg, Accessed: 3. 1. 2023). Originally published in [GCMB09].

Since the first boom in research on carbon nanotubes in the 1990s, we have
been experiencing discoveries of a wide variety of 1D nanomaterials. These
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include nanowires, nanorods4, nanopillars, and nanowhiskers [Eva20, BJ21],
which find applications in electronics, photonics [San18, HGB18], sensor de-
sign [ML20, ASL+13], or biomedicine [Cof21, AIP+21]. Another important
category is nanofibres. [KL17]

As such thin structures only have tens of nanometres in diameter, they
exhibit unusual deformation behaviour under external loads, different from
that of bulk materials (e.g. great flexibility, anisotropy, structure dependence,
or surface effects).

The model in Chapter 4 is particularly motivated by ceramic and semi-
conductor nanowires (composed of Si, SiC, Si3N4, TiO2, or ZnO etc.) which,
apart from large deflections, also show brittle or ductile fracture under load-
ing. [CL16] In practice, fracture and defects are common in 1D nanomaterials
[KKG16] and may considerably alter the structure’s properties.

1.6 Overlaps of the previous research fields

Given the myriads of physical situations that emerge in modern materials sci-
ence, it seems natural that researchers have made efforts to bridge some of the
gaps between (DR), (D-C) and (F).

Combining (DR) and (D-C) is motivated by the need of accurate mod-
els for thin structures in nanoengineering, such as thin films or nanotubes,
as mentioned before. [FJ00, Sch08a, Sch08b, ABC08] Interestingly, when the
thickness h of the reference crystalline body is very small (i.e. comparable to
the interatomic distance ε), the simultaneous Γ -limit as ε→ 0+, h→ 0+ gives
rise to new ultrathin plate or rod theories which could not be obtained by (DR)
in the purely continuum setting. [Sch06, BS22] (This is observed in the models
in Chapters 3–4 too.)

Atomistic effects also lie at the core of crack formation and propagation.
[BHO20, BKG15] However, up to now combinations of (D-C) and (F) have
only been explored in specific situations such as one-dimensional chains of
atoms [BC07, SSZ11, JKST21], scalar-valued models [BG02], or cleavage in
crystals [FS14, FS15a, FS15b].

Similarly, despite the recent progress, theories uniting (DR) and (F) are
still under development. In linearized elasticity, models for brittle plates
[BH16, AT23, FPZ10, LBBB+14], beams [GG23] or shells [ABMP21] have been
derived mostly using a weak formulation in SBD or GSBD function spaces
[ACDM97, DM13]. The nonlinear setting of membranes as in [BF01, Bab06] or
[ARS23], on the other hand, employs the more regular spaces SBV and GSBV .
[AFP00] As for nonlinear bending theories, the lack of a piecewise quantita-
tive rigidity estimate in 3D presents an obstacle, so the result of [Sch17] with
a dimension reduction from 2D to 1D seems rather isolated; we also refer to
[FKZ21, SS23] for materials with voids.

4Some authors use the term nanorod for objects with a smaller aspect ratio than a nanowire
has, hence here the term nanorod is avoided in the sequel.
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1.7 Outline and a summary of results

Continuing with the introductory matter, Chapter 2 is devoted to a presen-
tation of Kirchhoff’s rod theory and to showing its connections with the vari-
ational formulation in [MM03]. Thus, it also allows a comparison with the
effective rod models in subsequent chapters, where crystalline structure or
brittleness of the rod is additionally considered.

1.7.1 Purely elastic models

The presentation of the thesis’ results begins in Chapter 3, where two con-
tinuum theories for the bending and torsion of inextensible rods are estab-
lished as Γ -limits of 3D atomistic models. Simultaneous limits of vanishing
rod thickness h and interatomic distance ε are studied in the derivation. First,
a novel theory is set up for ultrathin rods with a fixed number of atoms within
their cross section (ε ∼ h), where surface energy and new discrete terms are
included in the effective functional. This can be thought of as a contribution
to the mechanical modelling of nanowires. Second, the case where ε ≪ h is
treated and the nonlinear rod model from [MM03] is recovered. The findings
are also presented in the preprint [SZ23a].

1.7.2 Model with brittle fracture

To set off on a path towards elastic-fractural modelling of nanowires, in Chap-
ter 4 (see also [SZ23b]) we extend the ultrathin purely elastic model from
Chapter 3 considerably by adding liability of the material to develop brittle
cracks.

Thus the chapter approaches a problem that falls into all three branches
(DR), (D-C) and (F). The main Theorem 4.3 provides the Γ -limit of atomic in-
teraction energies defined on cubic crystalline lattices in the shape of a slender
rod. Unlike in the purely elastic model from Chapter 3, the interaction poten-
tials (expressed by a cell energy function Wcell like in e.g. [FT02, CDKM06,
Sch06]) are replaced there with a sequence (W (k)

cell)
∞
k=1 of cell energies to ensure

that elastic deformations (bending and torsion) are comparably favourable in
terms of energy as cracks. This is specifically expressed in condition (W5) for
the constants (c̄(k)

1 )∞k=1, which give a lower bound on the cost of placing atoms
far away from each other (see Subsection 4.1.3). Physically we can interpret
this as considering a sequence of materials that are mutually similar but are
characterized by different values of material parameters. The limiting strain
energy has, just like in (1.1):

1. A bulk part that coincides with its counterpart in Chapter 3 and features
an ultrathin correction and atomic surface layer terms, neither of which ap-
pears in the corresponding rod theory [MM03] derived by (DR) without
(D-C). These traits might make a model better-suited for the description
of nanostructures.

2. A fracture part which turns out to be a weighted sum over the singular
set of a limiting deformation. The weights are given by an implicit cell
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formula ϕ = ϕ(y+−y−, (R−)−1R+), where y+−y− ∈ R3 denotes the jump of
the deformation mapping at a specified crack point and (R−)−1R+ ∈ SO(3)
is related to kinks/folds or torsional rupture.

Implicit cell formulas arise in Γ -convergence problems in homogenization
[Bra06] or phase transitions [CS06, KLR17, CFL02].

To comment on some important aspects of the proofs, in the liminf inequal-
ity we first derive a preliminary cell formula by a blowup technique reminis-
cent of [FM92, AFP00] and then relate it to a more simple asymptotic formula
which uses rigid boundary values (cf. [FKS21]). The atomistic setting allows
us to circumvent the unavailability of a 3D piecewise rigidity theorem in SBV
(in fact, it is enough to work with piecewise Sobolev functions here). The main
challenge of the analysis is, however, to provide a matching limsup inequality.

Due to the k-dependency of the interaction potential W (k)
cell, it is a priori not

clear how to construct a global recovery sequence (y(k)) that not only works for
a specific subsequence. We resolve this difficulty by establishing a localization
of cracks on the atomic length scale, which appears to be of some indepen-
dent interest. More precisely, it is argued that an approximative minimizing
sequence (y(k)) for ϕ can be chosen with cracks confined to a fixed number
of atomic slices (Lemma 4.6), which lets us transfer y(k) to a lattice with dif-
ferent interatomic distances (Proposition 4.7) and thus define (y(k)) for every
k ∈ N. Γ -convergence problems involving brittle fracture often have to deal
with pieces of the deformed body escaping to ∞. As our limiting theory is
one-dimensional we can sidestep working on GSBV -type spaces and instead
obtain a limiting functional on piecewise H2 functions. By an explicit con-
struction using assumption (W9) in Lemma 4.8 it is shown that L∞ (or weaker)
bounds could be imposed energetically so as to ensure matching compactness
properties of low-energy sequences.

The short conclusion at the end of this thesis gives some hints on possible
future research.

1.8 Basic notation

If S ⊂ Rn, we write IntS for the interior of S, S for the closure of S, diamS =
supx,y∈S |x − y|, and, if S is Lebesgue measurable, |S | for the n-dimensional Le-
besgue measure of S. The integral average over S of an integrable function
f defined in S is then −

∫︁
S
f dx = 1

|S |

∫︁
S
f dx (if |S | > 0). In the whole text, we re-

serve the letter C for a generic positive constant whose value may vary from
line to line, but is independent of the quantities involved in a limit passage.
We use standard notation for function spaces: namely the Lebesgue spaces
Lp(Ω;Rn), p ∈ [1,∞], Sobolev spaces Hm(Ω;Rn) = Wm,2(Ω;Rn), m ∈ N, and
weak convergence (fk⇀f ; see [Eva98, ACM18]). Further, A•j denotes the j-th
column vector of a matrixA ∈ Rm×n; R3×3

skew = {A ∈ R3×3; A = −A⊤} stands for the
space of all 3-by-3 skew-symmetric matrices; ei = Id•i , 1 ≤ i ≤ 3, are the stan-
dard basis vectors in R3, and |u| and |A| =

√
TrA⊤A denote the Euclidean and

Frobenius norms of u ∈ Rn and A ∈ Rm×n, respectively. The orthogonal group
is O(n) = {R ∈ Rn×n; R⊤R = RR⊤ = Id, detR = 1} and the special orthogonal
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group SO(n) = {R ∈ O(n); detR = 1}. All vectors, unless otherwise specified,
are treated as column vectors. For an open set Ω ⊂ Rn we write Ω′ ⊂⊂ Ω if
Ω̄
′ ⊂ Ω and Ω̄

′ is compact. Besides, V ⊥ is the orthogonal complement of a
subspace V in an inner product space X.

We write dist(B1,B2) := inf{|x(1) − x(2)|; x(1) ∈ B1, x
(2) ∈ B2} for B1,B2 ⊂

R3. Whenever the symbol ± appears in an equation, we mean that the equa-
tion holds both in the version with + in all occurrences and in the version
with −. One-sided limits are written as f (σ±) = limx→σ± f (x). Further, Hn is
the n-dimensional Hausdorff measure. The restriction µ

¬
K of a measure µ to

the measurable set K is defined by µ
¬
K(U ) = µ(U ∩K). Given a finite set B, we

denote by ♯B the number of its elements.
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2. Mechanics of Kirchhoff rods
‘Wir werden uns jetzt mit dem
Gleichgewicht und der Bewegung
von Körpern beschäftigen, deren
Dimensionen theilweise unendlich
klein sind; dünne Stäbe und
Platten können näherungsweise
als solche angesehen werden.’

Kirchhoff’s Vorlesungen über
Mechanik, 1897 (28th lecture)

The nonlinear bending-torsion theory of thin rods introduced by Kirchhoff
[Kir59] was reformulated and further expanded by Clebsch [Cle62] and Love
[Lov44]. Reviewing the theory in this chapter is aimed at making a connection
with readers having an engineering background and presenting further me-
chanical insight into the rod model in [MM03] that mathematicians can find
useful. Thus, a highest possible level of mathematical precision is not a prior-
ity here.

The presentation follows a review article by Dill [Dil92]. Modelling as-
sumptions and notation are adapted here to facilitate the comparison with
[MM03] and later chapters. For the same reason, only straight (i.e. not ini-
tially curved) rods are treated in this exposition. To avoid conflicts of nota-
tion, points x ∈ R3, vectors (n, ν . . . ), and matrices (R, E, I = (e1 |e2 |e3). . . ) are
typeset in boldface.

2.1 Kinematics

We consider a three-dimensional rod-like body that occupies a fixed reference
configuration Ω = (0,L)×S before the deformation. For convenience, the cross
section S ⊂ R2 is assumed to be a simply connected domain with sufficiently
smooth boundary. The rod’s thickness h = 1

2diamS is significantly smaller than
the length L of the rod. We choose the reference coordinate system, without
loss of generality, in such a way that∫︂

S
x2x3dx2dx3 =

∫︂
S
x2dx2dx3 =

∫︂
S
x3dx2dx3 = 0

so that the line segment (0,L)× {(0,0)} can be called the rod’s axis (also known
as the base curve or centreline).

In general, the idea of modern rod theories is to approximate the slender
body’s deformation by the motion of its axis and by a set of vectors, called
directors, assigned to each point x1 ∈ (0,L) – this leads to the notion of a directed
curve.

Specifically, when the rod is deformed, the axis becomes a curve parame-
trized by x1 ↦→ y(x1, t) for every time t ∈ (0, t∗), t∗ > 0. (At the beginning of
the loading process, i.e. for t = 0, the rod is situated in its reference configura-
tion.) Contrarily to some treatments of Kirchhoff’s theory [Lov44, Dil92], we
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regard the rod as inextensible, hence the tangent vector d1(x1, t) := ∂x1
y(x1, t)

is assumed to have unit length. To further characterize rotations of the ma-
terial cross section, we introduce vector-valued functions d2 = d2(x1, t) and
d3 = d3(x1, t) such that (di(x1, t))

3
i=1 is a right-handed orthonormal frame, as-

sociated with each point of the axis. We call d2 and d3 directors1. Note that
in [Ant05, O’R17] a different definition of d1 is employed: d2 and d3 may not
be perpendicular to ∂x1

y there and d1 = d2 × d3; we follow the convention of
[MM03], though. Introducing the rotation matrix R = (d1|d2|d3) ∈ SO(3), we
have

∂R
∂x1

= R
(︃
R⊤

∂R
∂x1

)︃
in (0,L)× (0, t∗). (2.1)

To obtain some useful interpretation of the previous equation, let κ2 =
∂2y
∂x2

1
·d2,

κ3 =
∂2y
∂x2

1
·d3, and τ = ∂d2

∂x1
·d3 in (0,L)×(0, t∗) so that the columns in (2.1) become

∂2y

∂x2
1

= κ2d2 +κ3d3
∂d2

∂x1
= −κ2

∂y
∂x1

+ τd3 (2.2a)

∂d3

∂x1
= −κ3

∂y
∂x1
− τd2 (2.2b)

by noting that R⊤∂x1
R is skew-symmetric2. In (2.2) we see how the scalars

κ2, κ3, and τ express the rate of change of ∂x1
y, d2 or d3 projected into the

direction of another vector in this triad. Thus the strain variables κ2 and κ3
are referred to as curvatures and τ is called the torsion of the rod. (None of the
three should be confused with curvature or torsion as defined in geometry.) In
accord with the reasoning of Kirchhoff and Love, we express the position of a
rod particle in the present (i.e. deformed) configuration as

y3D(x, t) = y(x1, t) + x2d2(x1, t) + x3d3(x1, t) +R(x1, t)α(x, t), (x, t) ∈Ω× (0, t∗),

where α is such that α(x1,0,0, t) = 0. The term α is connected with secondary
effects, namely warping the cross section (in torsion, the section does not, in
general, stay planar) and its lateral contraction in flexure. It is worth mention-
ing that in [MM03], no ansatz on the form of the deformation is imposed; only
a suitable strain energy scaling is assumed.

The initial conditions for t = 0 are given by R(x1,0) = I and α(x,0) = 0.
Let us find formulas3 for α, connecting it with κ2, κ3, and τ . For this we

need several approximating assumptions. In fact, we limit ourselves to mo-
tions of the rod during which neither of the functions |κ2|, |κ3|, and |τ | exceeds
1/a (at any point (x1, t)), where a is a chosen positive number. Moreover, let

1Certain more general rod theories remove some of the constraints on the directors. For
instance, in the special Cosserat theory of rods, d2 and d3 may not be orthogonal to the tangent
∂x1

y so that transverse shear can be modelled and the tangent may not be a unit vector so that
dilatation of the rod can be described. General Cosserat theories even drop the orthonormality
of d2 and d3 or use more than two directors. [Ant05]

2Dill [Dil92] uses the matrix ∂x1
RR⊤, which gives the formula ∂x1

R = (∂x1
RR⊤)R instead.

The two matrices are related by a similarity transformation: R⊤∂x1
R = R⊤(∂x1

RR⊤)R.
3This was an important contribution of Kirchhoff. Yet, it is not uncommon in the literature

to call theories with the more restrictive ansatz y3D = y +
∑︁3
s=2 xsds ‘Kirchhoff rods’.
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δ be the larger of the ratios h
L and h

a . We suppose that the rod’s dimensions
and deformations considered imply that δ is a small quantity (compared to
1). Hopefully, the deficiency of this approach in mathematical rigour will be
compensated by the gain of better physical understanding of Kirchhoff’s rod
model. Kirchhoff did not content himself with requiring that αk = 0, he just
assumed that these additional displacements are small. More precisely, the
theory applies to motions such that

αk
h

=O(δ),
∂αk
∂xs

=O(δ),
∂αk
∂x1

=O(δ2), s = 2,3, k = 1,2,3. (2.3)

Later it will be seen from (2.9) that the third assumption above with k = 2,3
holds if La∂κs∂x1

= O(1) – a condition that precludes crumpling the rod, as the
rate of change of curvature along the axis is limited.

By (2.3), the deformation gradient of y3D is

∇y3D = (d1 + x2∂x1
d2 + x3∂x1

d3 +∂x1
Rα+R∂x1

α |d2 +R∂x2
α |d3 +R∂x3

α)

= R
(︃
I + f +O(δ2)

)︃
= R+O(δ),

where we have set

f :=
(︃
R⊤

∂R
∂x1

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x2
x3

⎞⎟⎟⎟⎟⎟⎟⎠ ⃓⃓⃓⃓ ∂α∂x2

⃓⃓⃓⃓ ∂α
∂x3

)︃
=O(δ).

From this we compute the Green–St. Venant strain tensor (see [GFA09])

E =
1
2

((∇y3D)⊤∇y3D − I ) =
1
2

(f + f ⊤) +O(δ2)

and define e = 1
2(f + f ⊤).

For the sake of illustration, we use the isotropic St. Venant–Kirchhoff con-
stitutive relation4, so the second Piola–Kirchhoff stress tensor T (2), related to
the Cauchy stress T by T (2) = det∇y3D(∇y3D)−1[T (∇y3D)−1]⊤, is given by

T (2) = 2µE +λ(TrE)I = 2µe+λ(Tre)I +O(δ2),

where λ, µ are Lamé’s parameters. Hence, if we set σ := 2µe+λ(Tre)I , the first
Piola–Kirchhoff stress tensor reads

T (1) = ∇y3DT
(2) = Rσ +O(δ2). (2.4)

2.2 Consequences of the balance of momentum

As it is known in continuum mechanics, the balance of momentum can be
globally expressed in the reference configuration by∫︂

∂Ω
T (1)ndS +

∫︂
Ω

ρ0bdx =
∫︂
Ω

ρ0
∂2y3D

∂t2
dx (2.5)

4Other material models can also be applied in rod theories. Mora and Müller [MM03] start
their derivation from a general anisotropic hyperelastic material assumption, which, however,
only enters the effective rod model by the quadratic form of linearized elasticity.
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and locally by

divT (1) + ρ0b = ρ0
∂2y3D

∂t2
,

where n is the unit outer normal vector field to Ω, ρ0 stands for the initial
density of the material, and b is the density of applied body force. Kirchhoff’s
intuition about the distribution of stress inside the loaded rod led him to the
following condition, derived from the local momentum balance:

∂T (1)

∂x2
e2 +

∂T (1)

∂x3
e3 = 0,

which gave rise to a debate in the subsequent literature. Without attempting
to review the outcomes of this debate, let us bear in mind that the theory is
limited to situations in which the above relation holds. Substituting (2.4) into
the equation and neglecting the second order terms, we get(︃∂σ12

∂x2
+
∂σ13

∂x3

)︃
d1 +

(︃∂σ22

∂x2
+
∂σ23

∂x3

)︃
d2 +

(︃∂σ32

∂x2
+
∂σ33

∂x3

)︃
d3 = 0, (2.6)

which can only be true if the individual coefficients of the linear combination
vanish, as dk are orthonormal.

Concerning the boundary conditions for σ , it is assumed that tractions on
the sides of the rod are small, namely of the order O(δ2). By formula (2.4) for
T (1), these tractions equal T (1)(0,ν)⊤ = R(σ•2ν2 + σ•3ν3) +O(δ2), where ν =
ν(x2,x3) is the unit outward normal to the cross section S at the point (x2,x3) ∈
∂S. Upon neglecting the O(δ2) terms, this yields the boundary condition

σk2ν2 + σk3ν3 = 0, k = 1,2,3. (2.7)

Fix t ∈ (0, t∗). The partial differential equations originating from (2.6) to-
gether with boundary conditions (2.7) now have to be solved for αk. In the
solution procedure, bending and torsion effects can be discerned.

2.2.1 Torsion

First let us focus on the set of equations

∂σ12

∂x2
+
∂σ13

∂x3
= 0,

σ1s = 2µe1s, α1(x1,0,0, t) = 0,

e1s =
1
2

(︃∂α1

∂xs
+ x2ds ·∂x1

d2 + x3ds ·∂x1
d3

)︃
, s ∈ {2,3}, in S,

σ12ν2 + σ13ν3 = 0 on ∂S.

Combining the equations, we easily check that

α1(x, t) = τ(x1, t)φ(x2,x3) (2.8)
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is the (unique) solution, where the so-called warping function φ (also called
torsion function) satisfies

∂2φ

∂x2
2

+
∂2φ

∂x2
3

= 0 in S, φ(0,0) = 0,(︃ ∂φ
∂x2
− x3

)︃
ν2 +

(︃ ∂φ
∂x3

+ x2

)︃
ν3 = 0 on ∂S.

The warping function is a property of the cross section (if S is radially sym-
metric, then φ = 0). In fact, out-of-plane deformations of the cross section do
not have an analogue in plate or shell theories, as for bending it is meaning-
ful to assume that plane sections remain plane after deformation (this can be
demonstrated by bending a soft foam bar with stripes marked perpendicularly
to the centreline).

See [Sad09] for methods of finding solutions to the torsion problem analyt-
ically as well as technical differences in case S is multiply connected.

2.2.2 Bending

Next we examine the other set of equations, related to bending:

∂σs2
∂x2

+
∂σs3
∂x3

= 0,

σrs = 2µers +λ(e11 + e22 + e33)δrs,

ers =
1
2

(︃∂αr
∂xs

+
∂αs
∂xr

)︃
, αs(x1,0,0, t) = 0, r, s ∈ {2,3},

σs2ν2 + σs3ν3 = 0 on ∂S, s ∈ {2,3}.

The classical solution of this boundary value problem is:

α2 = − λ
2(λ+µ)

[−κ3x2x3 −
1
2
κ2(x2

2 − x
2
3)], (2.9a)

α3 = − λ
2(λ+µ)

[−κ2x2x3 +
1
2
κ3(x2

2 − x
2
3)]. (2.9b)

We recall that λ
2(λ+µ) is Poisson’s ratio, commonly denoted by ν. Another com-

mon material constant, Young’s modulus E = µ(3λ+2µ)
λ+µ , will appear in the se-

quel.
Determination of the extra displacements αk, k = 1,2,3, is also an integral

part of the variationally formulated model in [MM03]. By restricting their
model to an isotropic material, Mora and Müller recover, in fact, formulas
(2.8)–(2.9). In the ultrathin model for nanowires (see Chapter 3), α has a dis-
crete nature, since the cross section consists of a finite number of particles.

2.3 Bending and torsional rigidity

With the formulas for αk it is now straightforward to express e, σ , and theO(δ)
part of T (1) in terms of κ2, κ3, τ , and φ. The resultant moment M = M(x1, t)
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about a point y(x1, t) on the deformed axis of the stress vector T (1)e1 onto the
cross section is

M =
∫︂
S
(x2d2 + x3d3 +Rα)×T (1)e1dx2dx3.

We write M = R(M1,M2,M3)⊤ and further assume5 that 1
h2φ(x2,x3) = φ(x2

h ,
x3
h )

= O(δ0) and 1
h
∂φ
∂xs

(x2,x3) = ∂φ
∂xs

(x2
h ,

x3
h ) = O(δ0) for s = 2,3. Using the expression

for T (1) and the choice of referential coordinate system, up to terms of order
O(δ) we obtain

M1 = µJτ,
M2 = −EI3κ3, (2.10)
M3 = EI2κ2,

where the second moments of area are Is =
∫︁
S
x2
s dx2dx3 with s = 2 or s = 3 and

the torsional rigidity, calculated for the particular shape of a cross section, is
defined as

J =
∫︂
S
x2

2 + x2
3 + x2

∂φ

∂x3
− x3

∂φ

∂x2
dx2dx3

(cf. [MM03, p. 298]). The products EI2 and EI2 are known as bending stiffnesses.
(In this context the shear modulus µ is often denoted by G.)

2.4 Balance of angular momentum

Restricting the balance of linear momentum (2.5) to a segment of the form
(x1 − η,x1 + η)× S, dividing it by η > 0, and then letting η→ 0+, we find

∂
∂x1

∫︂
S
T (1)e1dx2dx3 +

∫︂
S
ρ0bdx2dx3 =

∫︂
S
ρ0
∂2y3D

∂t2
dx2dx3 in (0,L), (2.11)

neglecting the O(δ2) contribution from tractions on the lateral surface. Fur-
ther, the balance of angular momentum for the rod can be expressed as∫︂

∂Ω
y3D ×T

(1)ndS +
∫︂
Ω

ρ0y3D ×bdx =
∂
∂t

∫︂
Ω

ρ0y3D ×
∂y3D

∂t
dx.

In analogy to the previous step, we consider the above equation for an
η-segment and in the limit η→ 0+ we get

∂M
∂x1

+
∂
∂x1

∫︂
S
y×T (1)e1 dx2dx3 +

∫︂
S
ρ0y3D×bdx2dx3 =

∫︂
S
ρ0y3D×

∂2y3D

∂t2
dx2dx3,

(2.12)
again leaving out theO(δ2) lateral tractions. In a static equilibrium, combining
(2.12) with (2.11) gives

∂M
∂x1

+
∂y
∂x1

×
∫︂
S
T (1)e1dx2dx3 +

∫︂
S
ρ0

(︃ 3∑︂
s=2

xsds + Rα
)︃
× bdx2dx3 = 0.

5Dill [Dil92] proceeds by making strong assumptions on φ, probably motivated by the
analytical solution φe(x2,x3) = cx2x3 for an elliptic cross section.
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By formula (2.10) for the moments and by grouping the coefficients in front
of each dk, this implies the following nonlinear system of ordinary differential
equations:

EI2κ
′
2 +κ3τ(µJ −EI3) =

∫︂
S
ρ0

[︂
α1b ·d2 − (x2 +α2)b ·d1 − g ·d2

]︂
dx2dx3

EI3κ
′
3 −κ2τ(µJ −EI2) =

∫︂
S
ρ0

[︂
α1b ·d3 − (x3 +α3)b ·d1 − g ·d3

]︂
dx2dx3

µJτ ′ +κ2κ3(EI3 −EI2) =
∫︂
S
ρ0

[︂
(x2 +α2)b ·d3 − (x3 +α3)b ·d2

]︂
dx2dx3,

where f ′ denotes ∂x1
f for f depending on x1 and g :=

∫︁
S
T (1)e1dx2dx3. An

analogous system can be found in [MM08] on page 878, where it arises as
the Euler–Lagrange equations of the elastic energy functional, which for an
isotropic material takes the form

E(y,d2,d3) :=
∫︂ L

0

1
2

[︂
E(I2κ

2
2 + I3κ

2
3) +µJτ2

]︂
dx1 −

∫︂ L

0
ḡ · ydx1

with ḡ : (0,L)→ R3 being a forcing term. The first integrand also reminds of a
classical expression for the stored energy density of a Kirchhoff rod (cf. [O’R17,
Equation (5.64)]).
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3. A bending-torsion theory for thin
and ultrathin rods as a Γ -limit of
atomistic models

‘However, as is always the case
for intuition-based models, an
all-important experimental
confirmation does not replace for
a rigorous justification, that is,
validation as a convincing
approximation of an accepted
parent theory.’

L. Falach, R. Paroni, and P.
Podio-Guidugli [FPPG15]

3.1 Introduction

In this chapter, we treat continuum limits of discrete energies of the type

E(k)(y(k)) =
∑︂
x∈Λ′εk

Wcell

(︂
y⃗ (k)(x)

)︂
+ surface terms,

where Λ′εk is an εk-fine cubic crystalline lattice in the shape of a thin rod,

y(k) its deformation and the matrix y⃗ (k)(x) describes the deformation of an
atomic cube around the point x. Such cell energies Wcell cover the case of
nearest neighbour and next-to-nearest neighbour interactions and appeared
previously e.g. in [FT02, CDKM06, Sch06, SZ23a].

Section 2 sets up basic notation and introduces model assumptions that are
common for the rest of this chapter. A compactness theorem is also formu-
lated that complements theorems on Γ -convergence in the following sections.
Having appeared in [MM03], the result needs only minor adjustments in our
discrete framework.

We seek a limiting energy functional Elim for the continuum model. To
get a nontrivial limit with k →∞, we multiply the energy E(k) by the volume
element ε3

k and divide it by the fourth power of the rod thickness hk, which
is the energy scaling corresponding to bending and torsion without extending
the rod, cf. [MM03].

We are interested in two possible limit processes, which yield different ef-
fective models in the end (see Figure 3.1 for an illustration).

1. To model an ultrathin rod composed of a small number of atomic fibres,
we let the interatomic distance εk → 0 and keep hk/εk fixed. This is the
content of Section 3.3, which includes the Γ -convergence Theorem 3.5 –
the main contribution in this chapter. Remarkably, even though this new
bending/torsion theory for ultrathin rods thus derived can be related to the
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Figure 3.1: An illustration of the simultaneous dimension reduction and
discrete-to-continuum limit.

findings in [MM03], our elastic energy functional features a so-called ul-
trathin correction and surface terms, none of which would be present in
a limiting theory based on the Cauchy-Born rule. Moreover, in the lim-
iting functional we identify a discrete minimization formula accounting
for warping the rod’s cross section – a more complex ingredient than
in plate theories from [Sch06] and [BS22]. With these traits, the author
believes that the proposed effective model might describe very thin 1D
nanostructures more accurately than would conventional elasticity.

2. When the numbers of atoms in the rod in the directions x1, x2, x3 are
large, we speak of a thin rod and study the simultaneous limit with εk→ 0
and hk → 0 in such a way that hk

εk
→ ∞. In this regime, which is inves-

tigated in Section 3.4, all discreteness fades away and we recover the
continuum functional from [MM03] (see Theorem 3.8).

For ease of notation, we only consider εk := 1/k in the following, but it
would be possible to work with arbitrary interatomic distances too, see [BS22].

3.2 Notation, common model assumptions

3.2.1 Discrete model

Our starting point is an atomistic interaction model for an elastic rod. We
consider a cubic atomic lattice Λk, given by

Λk =
(︃
[0,L]× 1

k
Sk

)︃
∩ 1
k
Z3,

where 1
k is the interatomic spacing and L > 0 denotes the length of the rod. Its

cross section is the polygonal set ∅ ≠ Sk ⊂ R2 (possibly not simply connected)
determining a cross-sectional lattice Lk := Sk ∩Z2 and for which there is a set
L′k ⊂ (1

2 +Z)2 such that

Sk = Int
⋃︂
x′∈L′k

(︃
x′ +

[︃
−1

2
,
1
2

]︃2)︃
. (3.1)
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(It is assumed that x′ ∈ L′k whenever x′+{−1
2 ,

1
2 }

2 ⊂ Lk – like this we avoid holes
that are too narrow to be interaction-free.) If Sk = S is a fixed cross section that
does not depend on k we will speak of an ultrathin rod. The rod’s thickness
is then comparable to the typical interatomic spacing. By contrast, in a thin
rod the scaled cross section 1

kSk eventually exhausts a domain of diameter h,
where 1

k ≪ h≪ 1. We use the symbol Λ′k for the lattice of midpoints of open
cubes with sidelength 1/k and corners in Λk.

These set-ups may be described simultaneously by our fixing a positive null
sequence (hk) with hk ≥ 1/k that we choose as equal to 1/k in the ultrathin case
and for which we suppose khk→∞ for merely thin rods. We then assume that
there exists a fixed bounded Lipschitz domain S ⊂ R2 such that the above Sk is
the unique largest (in terms of cardinality) connected set of the form (3.1) that
is contained in khkS.

The lattice Λk corresponds to an undeformed reference configuration that
is subject to a static deformation y(k) : Λk → R3, which stores elastic energy
into the rod. As the energy originates from interactions of nearby atoms we
introduce a rescaling to atomic units by passing to a rescaled lattice with unit
distances between atoms.

Points in this lattice are distinguished using the hat diacritic – here for a
point x = (x1,x2,x3) ∈ R3 we write x̂1 := kx1, x̂′ = (x̂2, x̂3) := kx′ = k(x2,x3) and
ŷ(k)(x̂1, x̂2, x̂3) := ky(k)(1

k x̂1,
1
k x̂
′) so that ŷ(k) : kΛk → R3. Then Λ̂k, Λ̂

′
k stand for

the sets of all x̂ = (x̂1, x̂2, x̂3) such that the corresponding downscaled points
x lie in the lattices Λk, Λ′k, respectively. We introduce eight direction vectors
z1, . . . ,z8:

z1 = 1
2(−1,−1,−1)⊤,

z2 = 1
2(−1,−1,+1)⊤,

z3 = 1
2(−1,+1,+1)⊤,

z4 = 1
2(−1,+1,−1)⊤,

z5 = 1
2(+1,−1,−1)⊤,

z6 = 1
2(+1,−1,+1)⊤,

z7 = 1
2(+1,+1,+1)⊤,

z8 = 1
2(+1,+1,−1)⊤.

z8

z7 z6

z5

z4

z3
z2

z1

This allows us to collect into a matrix the information about the deformation
of a unit cell x̂+ {−1

2 ,
1
2 }

3, x̂ ∈ Λ̂′k:

y⃗ (k)(x̂) = (ŷ(k)(x̂+ z1)| · · · |ŷ(k)(x̂+ z8)) ∈ R3×8.

With ⟨ŷ(k)(x̂)⟩ = 1
8
∑︁8
i=1 ŷ

(k)(x̂ + zi), x̂ ∈ Λ̂′k, we further define the discrete gradi-
ent

∇̄ŷ(k)(x̂) = y⃗ (k)(x̂)− ⟨ŷ(k)(x̂)⟩(1, . . . ,1) ∈ R3×8.

Then the matrix Id̄ = (z1| · · · |z8) ∈ R3×8 is the discrete gradient of ŷ(k) = id. Note
that a discrete gradient has the sum of columns equal to 0.

There are two more important subsets of R3×8, used for characterizing rigid
motions:

SŌ(3) := {R Id̄; R ∈ SO(3)}, V0 := {(c| · · · |c) ∈ R3×8; c ∈ R3}.

25



3.2.2 Rescaling, interpolation and extension

It is desirable to have the deformations defined on a common domain Ω :=
(0,L)×S, independent of k, in order to handle their convergence. Given a pos-
itive null sequence (hk) such that hk ≥ 1/k (and hk = 1/k in the ultrathin case)
set ỹ(k)(x1,x2,x3) := y(k)(x1,hkx

′) for (x1,hkx
′) ∈ Λk. Furthermore, we introduce

an interpolation of ỹ(k) so that it is also defined outside lattice points.
Let z̃i = (1

kz
i
1,

1
khk

zi2,
1
khk

zi3) and Λ̃
′
k = {ξ ∈ R3; (kξ1, khkξ

′) ∈ Λ̂
′
k}. We split

every block Q̃(x̄) = x̄ + [− 1
2k ,

1
2k ] × [− 1

2khk
, 1

2khk
]2, x̄ ∈ Λ̃′k, into 24 simplices as in

[Sch06, BS22] and get a piecewise affine interpolation of ỹ(k), which we de-
note again by ỹ(k). More precisely, set ỹ(k)(x̄) := 1

8
∑︁8
i=1 ỹ

(k)(x̄ + z̃i) and for each
face F̃ of the block Q̃(x̄) and the corresponding centre xF̃ of the face F̃, define
ỹ(k)(xF̃) := 1

4
∑︁
j ỹ

(k)(x̄ + z̃j), where we sum over all j such that x̄ + z̃j is a corner
of F̃. In fact, a face can be labelled as F̃ij if it has x̄ + z̃i and x̄ + z̃j such that
|zi − zj | = 1 as vertices; the ambiguity in this notation can be resolved by using
the order of indices. Then, let ỹ(k) be interpolated in an affine way on every
simplex T̃ ij = conv{x̄, x̄ + z̃i , x̄ + z̃j ,xij} with xij being the centre of the face F̃ij ,
so that ỹ(k) is everywhere continuous.

We thus obtain ỹ(k) : [0,Lk] × S̄k → R3, where we have abbreviated Lk :=
⌊kL⌋/k. It satisfies

ỹ(k)(xF̃) = −
∫︂
F̃
ỹ(k)dH2, ỹ(k)(x̄) = −

∫︂
Q̃(x)

ỹ(k)(ξ)dξ (3.2)

for any face F̃ of Q̃(x) with face centre xF̃ .

Setting ∇k ỹ(k) :=
(︂
∂ỹ(k)

∂x1

⃓⃓⃓⃓
h−1
k
∂ỹ(k)

∂x2

⃓⃓⃓⃓
h−1
k
∂ỹ(k)

∂x3

)︂
, we proceed with an auxiliary re-

sult.

Lemma 3.1. There are c,C > 0 such that for any k ∈ N, hk > 0 and lattice block
Q̃(x̄) = x̄ + [− 1

2k ,
1

2k ] × [− 1
2khk

, 1
2khk

]2 with centre x̄ ∈ Λ̃
′
k and corresponding x̂ =

(kx̄1, khkx̄
′) ∈ Λ̂′k,

c|∇̄ŷ(k)(x̂)|2 ≤ k3h2
k

∫︂
Q̃(x̄)
|∇k ỹ(k)|2dξ ≤ C|∇̄ŷ(k)(x̂)|2. (3.3)

Proof. The statement is contained in [Sch09, Lemma 3.5].

In a tubular neighbourhood of the rod we now construct an extension to
‘ghost atoms’ whose rigidity is controlled by the original atom positions. For
m ∈ N set

Lext
k = Lk + {−m,. . . ,m}2, Λext

k = {−1
k ,0, . . . ,Lk + 1

k } ×
1
kL

ext
k ,

L′,ext
k = L′k + {−m,. . . ,m}2 Λ

′,ext
k = {− 1

2k ,
1

2k , . . . ,Lk + 1
2k } ×

1
kL
′,ext

Sext
k = Sk + (−m,m)2, Ωext

k = (−1
k ,Lk + 1

k )× 1
khk

Sext
k .

We suppress m, which will be a fixed constant, from our notation. It will be
equal to 1 for ultrathin rods and ≥ 1 such that Sext

k ⊃ khkS for thin rods. We
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also consider the lattices Λ̃
ext
k and Λ̃

′,ext
k that are related to their unrescaled

versions Λext
k and Λ

′,ext
k like we saw it for Λ̃

′
k above.

Our extension follows a scheme from [Sch09, Section 3.1], see in particular
[Sch09, Lemmas 3.1, 3.2 and 3.4] and cf. also [BS22, Lemma 3.1]. Notice that
for our choice of Sk as the largest connected set of the form (3.1) that is con-
tained in khkS for a bounded Lipschitz domain S ⊂ R2 in particular guarantees
that there is a constant C > 0, independent of k, such that for any two points
x̂′, ŷ′ ∈ L′k

distL′k (x̂
′, ŷ′) ≤ C|x̂′ − ŷ′ |,

where

distL′k (x̂
′, ŷ′) = min

{︂
N ∈ N0 :

∃ x̂′ = x̂′0, . . . , x̂
′
N = ŷ′ ∈ L′k with |x̂n+1 − x̂n| = 1∀n < N

}︂
denotes the lattice geodesic distance of two elements x̂′, ŷ′ ∈ L′k.

Lemma 3.2. There are extensions y(k) : Λext
k → R3 such that their interpolations

ỹ(k) satisfy

esssupΩext
k

dist2(∇k ỹ(k),SO(3)) ≤ C esssup(0,Lk)× 1
khk

Sk
dist2(∇k ỹ(k),SO(3))

and ∫︂
Ωext
k

dist2(∇k ỹ(k),SO(3))dx ≤ C
∫︂

(0,Lk)× 1
khk

Sk

dist2(∇k ỹ(k),SO(3))dx.

Proof. Let y(k) : Λk → R3 be a lattice deformation. We partition Λ
′,ext
k \Λ′k into

the 8 sublattices Λ′k,i = (Λ′,ext
k \Λ′k)∩

1
k (zi +2Z3) and apply the following exten-

sion procedure consecutively for i = 1, . . . ,8:
If x ∈ Λ′k,i we write BR(x) for the set of those z ∈ Λ

′,ext
k with |z − x| ≤ R/k

for which y(k)(z + 1
kz
j) is defined already for all j with 1 ≤ j ≤ 8. Now if

B1(x) ≠ ∅, extend y(k) to all z + 1
kz
j , 1 ≤ j ≤ 8, by choosing an extension such

that dist2(∇̄ŷ(k)(x̂),SO(3)Id̄) is minimal.
Due to [Sch09, Lemma 3.1] and the property of lattice geodesics within L′k,

this distance will then be controlled by

C
∑︂

z∈BR(x)

dist2(∇̄ŷ(k)(ẑ),SŌ(3)),

for some uniformly bounded R. We repeat this extension step 8m times.

Remark 3.1. The construction implies that for ultrathin rods, the following
local estimate holds: For any x ∈ Λ

′,ext
k , defining U (x) =

(︂
{x1 − 1

k ,x1,x1 + 1
k } ×

1
kL
′
k

)︂
∩Λ′k we have

dist2(∇̄ŷ(k)(x̂),SŌ(3)) ≤ C
∑︂

ξ∈kU (x)

dist2(∇̄ŷ(k)(ξ),SŌ(3)).

27



3.2.3 Elastic energy

In the expression for total elastic energy, we group contributions from indi-
vidual atomic cells (cf. [CDKM06, Sch06]).

Definition 3.2.1. We say that W : R3×8→ [0,∞) is a full cell energy function if
the following assertions hold true:

(E1) Frame-indifference: W (Ry⃗ + (c| · · · |c)) =W (y⃗), R ∈ SO(3), y⃗ ∈ R3×8, c ∈ R3,

(E2) W attains its minimum (equal to 0) at and only at all rigid deformations, i.e.
deformations y⃗ = (ŷ1| · · · |ŷ8) with ŷi = Rzi + c for all i ∈ {1, . . . ,8} and some
R ∈ SO(3), c ∈ R3,

(E3) W is everywhere Borel measurable and of class C2 in a neighbourhood of
SŌ(3) and the quadratic form associated with ∇2W (Id̄) is positive definite
when restricted to span{V0 ∪R3×3

skewId̄}⊥,

(E4) liminf|y⃗|→∞,
y⃗∈V ⊥0

W (y⃗)
|y⃗|2 > 0.

We say that W : R3×8 → [0,∞) is a partial cell energy function if it fulfils (E1)
together with

(E2’) W equals zero for all rigid deformations,

(E3’) W is everywhere Borel measurable and of class C2 in a neighbourhood of
SŌ(3).

Trivially, we see that W ≡ 0 is a partial cell energy function.
To model surface energy, let T be the power set of {1, . . . ,8}. We classify

the cells centred at Λ̂
′,ext
k = kΛ′,ext

k by the set of corners they share with Λ̂k,

i.e. tk(x̂) =
{︂
i ∈ {1, . . . ,8}; x̂ + zi ∈ Λ̂k

}︂
for x̂ ∈ Λ̂′,ext

k . (Obviously, tk(x̂) = {1, . . . ,8}
iff x̂ ∈ Λ̂′k and tk(x̂) ≠ ∅ iff x̂ ∈ Λ̂′,ext

k for the specific choice m = 1.) Also note
that on the lateral boundary, i.e. for x̂1 ∉ {−1

2 , kLk + 1
2 }, we have i ∈ tk(x̂) iff

i + 4 ∈ tk(x̂) for i = 1,2,3,4 and so tk(x̂) = tk(x̂
′) :=

{︂
i ∈ {1, . . . ,8} : x̂′ + (zi)′ ∈ Lk

}︂
.

Let Λ̂
′,surf
k = {12 , . . . , kLk −

1
2 } × (L′,ext

k \ L′k) and Λ̂
′,end
k = {−1

2 , kLk + 1
2 } × L

′,ext
k . Our

total elastic interaction energy reads

E(k)(y(k)) =
∑︂
x̂∈Λ̂′k

Wcell

(︂
y⃗ (k)(x̂)

)︂
+

∑︂
x̂∈Λ̂′,surf

k

Wsurf

(︂
tk(x̂

′), y⃗ (k)(x̂)
)︂

+
∑︂

x̂∈Λ̂′,end
k

Wend

(︂
tk(x̂), y⃗ (k)(x̂)

)︂
,

(3.4)

where Wcell is a full cell energy and Wsurf(t, ·), Wend(t, ·) with t ∈ T are par-
tial cell energy functions according to Definition 3.2.1. In order to avoid ar-
tificial contributions we assume that the values of Wsurf(t, y⃗) and Wend(t, y⃗),
y⃗ = (ŷ1| · · · |ŷ8), may depend on ŷi only if i ∈ t.

We remark that the terms involving Wend for cells near the rod’s endpoints
vanish as k → ∞ for both ultrathin and thin rods. While for thin rods also
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the lateral boundary contributions vanish, this is no longer the case for ultra-
thin rods. Our set-up allows us to model extra-cross-sectional interactions of
atoms which lie in different atomic cells but which are, in fact, their mutual
neighbours due to the cross section’s potentially jagged shape.

Hereafter we write Qcell and Qsurf(t, ·) for the quadratic forms generated by
∇2Wcell(Id̄) and ∇2Wsurf(t, Id̄), t ∈ T, respectively.
Example 3.1. To explain the motivation behind Wsurf and Wend, let us consider
a simple mass-spring model with harmonic springs for a rod with its cross
section determined by L′k ≡ L

′ = {−1
2 ,

1
2 ,

3
2 }

2∪{(1
2 ,−

3
2 ), (1

2 ,
5
2 )} (m := 1). The aim is

to rewrite

E(k)(y) =
1
2

∑︂
x̂∗,x̂∗∗∈Λ̂k
|x̂∗−x̂∗∗|=1

K1

2
(|ŷ(x̂∗)− ŷ(x̂∗∗)| − 1)2 +

1
2

∑︂
x̂∗,x̂∗∗∈Λ̂k

|x̂∗−x̂∗∗|=
√

2

K2

2
(|ŷ(x̂∗)− ŷ(x̂∗∗)| −

√
2)2

using Wcell, Wsurf, and Wend (K1 > 0 and K2 > 0 are constant stiffnesses). While
in the bulk, we set

Wcell(y⃗) =
1
8

∑︂
|zi−zj |=1

K1

2
(|ŷi − ŷj | − 1)2 +

1
4

∑︂
|zi−zj |=

√
2

K2

2
(|ŷi − ŷj | −

√
2)2,

the functions Wsurf(tk(
5
2 ,

3
2 ), ·), Wsurf(tk(−3

2 ,
3
2 ), ·) etc., and Wend in turn include

surface terms, e.g.

Wsurf

(︃
tk

(︂
5
2 ,

1
2

)︂
, y⃗

)︃
=Wsurf

(︂
{3,4,7,8}, y⃗

)︂
=

∑︂
i∈{3,7}

K1

8
(|ŷi+1 − ŷi | − 1)2

+
4∑︂
i=3

K1

8
(|ŷi+4 − ŷi | − 1)2 +

K2

4
(|ŷ7 − ŷ4| −

√
2)2 +

K2

4
(|ŷ8 − ŷ3| −

√
2)2,

Wend

(︃
tk

(︂
−1

2 ,
1
2 ,

1
2

)︂
, y⃗

)︃
=Wend

(︂
{5,6,7,8}, y⃗

)︂
=

3∑︂
i=1

K1

8
(|ŷi+1 − ŷi | − 1)2

+
K1

8
(|ŷ4 − ŷ1| − 1)2 +

2∑︂
i=1

K2

4
(|ŷi+2 − ŷi | −

√
2)2.

The auxiliary square Q′(x′e) = x′e + (−1
2 ,

1
2 )2 centred at x′e := (3

2 ,
5
2 ) is adjacent

to two physically relevant cross-sectional squares, so in particular, the atoms
with x′-coordinates (2,2) and (1,3), belonging to different ‘real’ atomic squares
Q′(1

2 ,
5
2 ) and Q′(3

2 ,
3
2 ), can still interact – this interaction should be comprised

in Wsurf(tk(x′e), ·). Like this, E(k) is expressible by (3.4). After adding a suitable
penalty term positive in a neighbourhood of O(3)Id̄ \ SŌ(3), such Wcell, Wsurf,
and Wend fulfil all the assumptions for our results to apply.

Remark 3.2. In a more general case we now find an expression for the quadratic
form Qcell. If E(k) is given by

E(k)(y) =
1
2

∑︂
x̂∗,x̂∗∗∈Λ̂k
|x̂∗−x̂∗∗|=1

WNN(|ŷ(x̂∗)− ŷ(x̂∗∗)|) +
1
2

∑︂
x̂∗,x̂∗∗∈Λ̂k

|x̂∗−x̂∗∗|=
√

2

WNNN

(︂ |ŷ(x̂∗)− ŷ(x̂∗∗)|√
2

)︂
,
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where WNN(N) : [0,∞)→ [0,∞) is continuous on [0,∞) and C2 in a neighbour-
hood of 1 with W ′′NN(N)(1) > 0 and WNN(N)(r) = 0 if and only if r = 1, then the
corresponding Wcell is

Wcell(y⃗) =
1
8

∑︂
|zi−zj |=1

WNN(|ŷi − ŷj |) +
1
4

∑︂
|zi−zj |=

√
2

WNNN

(︃ |ŷi − ŷj |√
2

)︃

and

Qcell(H̄) = 1
4W

′′
NN(1)

[︂
(H32 −H31)2 + (H23 −H22)2 + (H34 −H33)2 + (H21 −H24)2

+(H15 −H11)2 + (H16 −H12)2 + (H17 −H13)2 + (H18 −H14)2+

+(H36 −H35)2 + (H27 −H26)2 + (H38 −H37)2 + (H25 −H28)2
]︂

+1
4W

′′
NNN(1)

[︂
(H23 −H21 +H33 −H31)2 + (H22 −H24 +H34 −H32)2

+(H16 −H11 +H36 −H31)2 + (H15 −H12 +H32 −H35)2

+(H18 −H11 +H28 −H21)2 + (H14 −H15 +H25 −H24)2

+(H17 −H12 +H27 −H22)2 + (H13 −H16 +H26 −H23)2

+(H17 −H14 +H37 −H34)2 + (H13 −H18 +H38 −H33)2

+(H27 −H25 +H37 −H35)2 + (H26 −H28 +H38 −H36)2
]︂

for any H̄ ∈ R3×8 with components Hij .

Lemma 3.3. Under the assumptions of Lemma 3.1, let W be a full cell energy
function. Then

k3h2
k

∫︂
Q̃(x̄)

dist2(∇k ỹ(k)(ξ),SO(3))dξ ≤ CW
(︂
∇̄ŷ(k)(x̂)

)︂
. (3.5)

Proof. See [Sch06, Lemma 3.2]; the claim is only restated in our notation.

3.2.4 Compactness of low-energy sequences

We provide a compactness theorem that complements our Γ -convergence re-
sults in the following sections and is also the first step towards their proofs.
It is based on Theorem 1.1 (a now well-known result about geometric rigidity
from [FJM02]) and is essentially contained in [MM03].

We fix a null sequence (hk) with 1
k ≤ hk and abbreviate h′k = 1

k ⌊khk⌋. Set
Ωk = (0,Lk)× 1

khk
Sk.

Theorem 3.4. Let (ỹ(k))∞k=1 be a sequence with y(k) : Λext
k → R3 such that their

interpolations ỹ(k) constructed in Section 3.2.2 satisfy the estimate

limsup
k→∞

1

h2
k

∫︂
Ωk

dist2(∇k ỹ(k),SO(3))dx <∞. (3.6)
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Then, there exist a (not relabelled) subsequence (ỹ(k)) and a sequence of piece-
wise constant mappings R(k) : R→ SO(3) whose discontinuity set is contained in
{h′k ,2h

′
k , . . . , (⌊Lk/h

′
k⌋ − 1)h′k} such that

R(k)→ R in L2([0,L];R3×3), (3.7)

where R ∈ SO(3) a.e. and R(x1) =
(︃
∂ỹ
∂x1

(x)
⃓⃓⃓
d2(x)

⃓⃓⃓
d3(x)

)︃
for ỹ ∈ H2(Ω;R3), ds ∈

H1(Ω;R3), s = 2,3, that are independent of x2 and x3. Moreover, we have∫︂
Ωext
k

|∇k ỹ(k) −R(k)|2dx ≤ Ch2
k . (3.8)

and

|R(k)(ih′k + 3
2h
′
k)−R

(k)(ih′k + 1
2h
′
k)|

2 ≤ C
hk
∥dist(∇k ỹ(k),SO(3))∥2

L2((u(k)
i ,v

(k)
i )×Sext

k )
, (3.9)

where u(k)
i = ih′k, v

(k)
i = u(k)

i +2hk for i = 1, . . . ,⌊Lk/h′k⌋−3, u(k)
0 = −1

k , v(k)
0 = −1

k +3hk
and u(k)

i = min{(⌊Lk/h′k⌋ − 2)h′k ,Lk + 1
k − 3hk}, v

(k)
i = Lk + 1

k for i = ⌊Lk/h′k⌋ − 2.

Note that in the ultrathin case one has hk = 1/k and hence h′k = 1
k so that

(⌊Lk/h′k⌋ − 1)h′k = Lk − 1
k .

Proof. By Lemma 3.2, property (3.6) is equivalent to

limsup
k→∞

1

h2
k

∫︂
Ωext
k

dist2(∇k ỹ(k),SO(3))dx <∞,

hence also to the same inequality with Ωext
k replaced by (−1

k ,Lk+ 1
k )×S or (0,L)×

S. Except for the specific choice of the discontinuity set, these statements are
thus proven in [MM03] by applying Theorem 1.1 to sets of the form (a,a +
bhk) × hkS.1 If we do this here for b = 1 and the special choices a = ih′k, i =
1, . . . ,⌊Lk/h′k⌋ − 2 as well as b = 3 and a ∈ {−1

k ,Lk + 1
k − 3hk}, we see that R(k) can

be arranged to jump only in {h′k ,2h
′
k , . . . , (⌊Lk/h

′
k⌋ − 1)h′k}.

We remark that, for a suitable choice of translation vectors ck (which does
not change the energy), ỹ(k) − ck→ ỹ in H1(Ω;R3).

Remark 3.3. The proof mathematically utilizes one idea that already appeared
in the investigations of Kirchhoff [Kir59] – he also viewed the rod as a union
of short segments with their length comparable to the rod thickness.

1Because of lattice squares that only share one corner, in the ultrathin case Sk might not

be Lipschitz, but in that case Theorem 1.1 can be first invoked for domains U (ε)
a,b,hk

instead of

Ua,b,hk = (a,a + bhk) × hkS, where V (ε) = {x ∈ V ; dist(x,∂V ) > ε} for V ⊂ Rn. Since ∇k ỹ(k) is
piecewise constant, the inequality∫︂

Q̃
|∇k ỹ(k) −R(k)|2dξ ≤ C

∫︂
Q̃

(ε)
|∇k ỹ(k) −R(k)|2dξ

for Q̃ = x̄+(− 1
2k ,

1
2k )× (−1

2 ,
1
2 )2 then allows us to extend the rigidity estimate to Ua,b,hk . Thus we

can assume S = Sk for ultrathin rods to simplify the presentation.
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3.3 Resulting theory for ultrathin rods

We now specialize to ultrathin rods for which the cross sectional lattice Lk = L
is assumed to be fixed. We set hk = 1/k and fix m = 1. Since also Lext

k , L′,ext
k , Sk

(which equals S without loss of generality) and Sext
k are independent of k, we

drop the subscript.

3.3.1 Difference operators

In addition to ∇̄, we define several other difference operators, applicable to
any function f : [−1

k ,Lk + 1
k ] ×Lext → Rℓ, ℓ ∈ N. If x ∈ Ωext

k , we denote by x̄ an

element of Λ̃
′,ext
k that is closest to x. For x ∈Ωext

k we set

∇̄2d
k f (x) = k

[︄
f (x1, (x̄+ z̃i)′)− 1

4

4∑︂
j=1

f (x1, (x̄+ z̃j)′)
]︄4

i=1
,

∇̄2d f (x) =
[︄
f (x1, (x̄+ zi)′)− 1

4

4∑︂
j=1

f (x1, (x̄+ zj)′)
]︄4

i=1
,

∇̄k f (x) = k
[︄
f (x̄+ z̃i)− 1

8

8∑︂
j=1

f (x̄+ z̃j)
]︄8

i=1

=
(︂
∇̄left

k f (x)| ∇̄right
k f (x)

)︂
, ∇̄left

k f (x), ∇̄right
k f (x) ∈ Rℓ×4,

∆1f (x) = k
[︄
1
4

8∑︂
j=5

f (x̄+ z̃j)− 1
4

4∑︂
j=1

f (x̄+ z̃j)
]︄
,

whose interpretations are ‘2D-differences in the x2x3-plane’ (divided by 1/k
or not), ‘3D-differences’ and ‘averaged difference in the x1-direction’, respec-
tively. Note that the functions ∇̄2d

k f (x1, ·) and ∇̄2d f (x1, ·) are piecewise con-
stant on lattice squares of the form x′ + (−1

2 ,
1
2 )2, where x′ ∈ L′, and ∇̄2d f (x) is

independent of k. The functions ∇̄k f and ∆1f are piecewise constant on lattice
blocks that are centred in points of Λ̃

′,ext
k .

Set ỹ(k)
i = ỹ(k)(x̄+ z̃i), i = 1,2, . . . ,8, then property (3.2) yields

∆1ỹ
(k)(x) = k

(︄
ỹ

(k)
5 + ỹ(k)

6 + ỹ(k)
7 + ỹ(k)

8

4
−
ỹ

(k)
1 + ỹ(k)

2 + ỹ(k)
3 + ỹ(k)

4

4

)︄
= k−

∫︂
x̄′+(− 1

2 ,
1
2 )2
ỹ(k)(x̄1 + 1

2k ,ξ
′)− ỹ(k)(x̄1 − 1

2k ,ξ
′)dξ ′

= k−
∫︂
x̄′+(− 1

2 ,
1
2 )2

∫︂ x̄1+ 1
2k

x̄1− 1
2k

∂ỹ(k)

∂x1
(ξ1,ξ

′)dξ1dξ ′ = −
∫︂
Q̃(x)

∂ỹ(k)

∂x1
dξ.

(3.10)

Direct computation shows:

∇̄left
k f (x) = ∇̄2d

k f (x̄1 − 1
2k ,x

′)− 1
2
∆1f (x)(1,1,1,1),

∇̄right
k f (x) = ∇̄2d

k f (x̄1 + 1
2k ,x

′) +
1
2
∆1f (x)(1,1,1,1)
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and so, with all columns grouped together,

∇̄k f (x) =
(︂
∇̄2d

k f (x̄1 − 1
2k ,x

′)| ∇̄2d
k f (x̄1 + 1

2k ,x
′)
)︂

+
1
2
∆1f (x)(−1,−1,−1,−1,1,1,1,1).

(3.11)

3.3.2 Gamma-convergence

Recall that Ω = (0,L) × S. In order to specify an appropriate limit space we
first note that in view of Theorem 3.4 and (3.5) it suffices to consider limit-
ing configurations ỹ ∈ H1(Ω;R3) and d2,d3 ∈ L2(Ω;R3) that do not depend on
(x2,x3). We will then simply write ỹ ∈ H1((0,L);R3) and d2,d3 ∈ L2((0,L);R3).
The following observation shows that the convergence in L2(Ω,R3) to such ỹ
and d2,d3 is naturally described in terms of asymptotic atomic positions and
independent of our interpolation scheme, cf. also Remark 3.6.

For ỹ ∈H1((0,L);R3) and a sequence (y(k))∞k=1 of (extended) lattice deforma-
tions the convergence ỹ(k)→ ỹ in L2(Ω;R3) is equivalent to

ỹ(k)(·,x′)→ ỹ in L2((0,L);R3) for every x′ ∈ L.

We note here that for x′ ∈ L the map ỹ(k)(·,x′) is nothing but the piecewise affine
interpolation of ỹ(k)(·,x′) on {−1

k ,0, . . . ,Lk + 1
k }. If moreover d2,d3 ∈ L2((0,L);R3),

then ∇k ỹ(k) L
2

→ R = ( ∂ỹ∂x1
|d2 |d3) is equivalent to

∇̄k ỹ(k)→ R Id̄ in L2(Ω;R3×8)

by Lemma 3.1 (recall that ∇̄k ỹ(k) is a function in L2(Ω;R3×8) constant on each
cell x̄+ (− 1

2k ,
1

2k )× (−1
2 ,

1
2 )2, x̄ ∈ Λ̃′,ext

k ).

Theorem 3.5. If k → ∞, the functionals kE(k) Γ -converge to the functional Eult
defined below, in the following sense:

(i) (liminf inequality) Let (y(k))∞k=1 be a sequence of (extended) lattice deforma-
tions such that their piecewise affine interpolations (ỹ(k))∞k=1, defined in Sec-
tion 3.2, converge to ỹ ∈ H1((0,L);R3) in L2(Ω;R3). Let us also assume that
k∂xs ỹ

(k)→ ds ∈ L2((0,L);R3) in L2(Ω;R3), s = 2,3. Then

Eult(ỹ,d2,d3) ≤ liminf
k→∞

kE(k)(y(k)).

(ii) (existence of a recovery sequence) For any ỹ ∈ H1((0,L);R3) and d2,d3 ∈
L2((0,L);R3) there is a sequence of (extended) lattice deformations (y(k))∞k=1
such that their interpolations (ỹ(k)), defined in Section 3.2, satisfy ỹ(k)→ ỹ in

L2(Ω;R3), k ∂ỹ
(k)

∂xs
→ ds in L2(Ω;R3) for s = 2,3, and

lim
k→∞

kE(k)(y(k)) = Eult(ỹ,d2,d3).
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The limit energy functional is given by

Eult(ỹ,d2,d3) =

⎧⎪⎪⎨⎪⎪⎩1
2

∫︁ L
0
Qrel

cell(R
⊤∂x1

R)dx1 if (ỹ,d2,d3) ∈ A,
+∞ otherwise,

where R := (∂x1
ỹ|d2|d3) and the class of admissible deformations is

A :=
{︂
(ỹ,d2,d3) ∈H2(Ω;R3)×H1(Ω;R3)×H1(Ω;R3);

ỹ,d2,d3 do not depend on x2,x3,
(︂
∂ỹ
∂x1
|d2 |d3

)︂
∈ SO(3) a.e. in (0,L)

}︂
.

The relaxed quadratic form Qrel
cell : R3×3

skew→ [0,+∞) is defined as

Qrel
cell(A) := min

α : Lext→R3

g∈R3

∑︂
x′∈L′,ext

Qtot

(︄
x′,

1
2

(︂
A

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x2
x3

⎞⎟⎟⎟⎟⎟⎟⎠+ g
)︂
(−1,−1,−1,−1,1,1,1,1)

+
1
4
A

⎛⎜⎜⎜⎜⎜⎜⎝0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠+
(︂
∇̄2dα| ∇̄2dα

)︂)︄
(3.12)

with Qtot(x′, ·) =Qcell if x′ ∈ L′ and Qtot(x′, ·) =Qsurf(t(x′), ·) if x′ ∈ L′,ext \L′.

Remark 3.4. In comparison with the rod theory in [MM03], the functional Eult
takes into account the fewer degrees of freedom of the cross section leading to
the discrete minimization in (3.12) and it also features an ultrathin correction
term C, explicitly given in (3.14) below, which captures effects in our very thin
atomic structures that could not be described by a Cauchy–Born continuum
approximation.

Remark 3.5. Let us comment on the existence of a minimizer in (3.12). Fix
A ∈ R3×3

skew and let

CA(x′) =
1
2
A(0,x′)⊤(−1,−1,− 1,−1,1,1,1,1)

+
1
4
A

⎛⎜⎜⎜⎜⎜⎜⎝0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .
The mapping J : (R3)L

ext ×R3→ R given by

J(α,g) =
∑︂

x′∈L′,ext

Qtot

(︂
x′,CA(x′) +

(︂
∇̄2dα(x′)| ∇̄2dα(x′)

)︂
+ 1

2(−g | · · · | − g |g | · · · |g)
)︂

is, in fact, a real-valued function of 3 · ♯Lext + 3 variables. Since Qtot(x′, ·) is
positive semidefinite on R3×8 for any x′ ∈ L′,ext, the function J is a positive
semidefinite quadratic form. It thus attains a minimum and a minimizer (α,g)
of J can be chosen in linear dependence on A, so Qrel

cell is a quadratic form as
well. Besides, since the components of A := R⊤∂x1

R are L2 in x1, we obtain

(α,g) ∈ L2([0,L]; (R3)L
ext
×R3).
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Label the points in the 2D lattice Lext as Lext = {p1,p2, . . . ,p♯Lext} and express

J(α,g) = J(αp1 ,αp2 , . . . ,αp♯Lext , g),

where αpj = (α
pj
1 ,α

pj
2 ,α

pj
3 ) ∈ R3 is the variable corresponding to the value α(pj)

of α : Lext→ R3 for every j = 1,2, . . . , ♯Lext.
If (α,g) is a minimizer of J , it satisfies the condition ∇J(α,g) = 0, which,

written componentwise, reads

∂

∂α
pj
i

J(α,g) =
4∑︂
r=1

8∑︂
ℓ=1

3∑︂
m=1

8∑︂
n=1

2
(︃
∇2Wtot

(︂
t(pj − (zr)′), Id̄

)︂)︃
iℓmn

(︃
−1

4
+ δℓr + δℓ(r+4)

)︃
·
[︃
(CA(pj − (zr)′))mn +

(︃
−1

2

)︃⌊ n−1
4 ⌋
gm

+α
pj−(zr )′+(zn)′

m − 1
4

4∑︂
q=1

α
pj−(zr )′+(zq)′

m

]︃
= 0, i = 1,2,3, j = 1,2, . . . , ♯Lext,

∂
∂gi

J(α,g) =
∑︂

x′∈L′,ext

8∑︂
ℓ=1

3∑︂
m=1

8∑︂
n=1

2
(︃
−1

2

)︃⌊ l−1
4 ⌋

(∇2Wtot(t(x
′), Id̄))iℓmn

·
[︃
(CA(x′))mn +

(︃
−1

2

)︃⌊ n−1
4 ⌋
gm +αx

′+(zn)′
m − 1

4

4∑︂
q=1

α
x′+(zq)′
m

]︃
= 0, i = 1,2,3

(the terms CA, Wtot(t(·), y⃗) for y⃗ ∈ R3×8, and α are understood to equal zero
outside Sext). Thus we have a linear algebraic system for the components of
the minimizer (α,g), which can be expressed as

M(αp1
1 ,α

p1
2 ,α

p1
3 ,α

p2
1 ,α

p2
2 ,α

p2
3 , . . . ,α

p♯Lext

1 ,α
p♯Lext

2 ,α
p♯Lext

3 , g1, g2, g3)⊤ = bA

for a matrix M ∈ R(3♯Lext+3)×(3♯Lext+3) and a vector bA ∈ R3♯Lext+3. (The right-
hand side bA, unlike the matrix M, depends on A.)

Basic code for approximating (α,g) can be found in [Zem23].
Remark 3.6. One could also consider limiting configurations with an explicit
dependence on x′. Due to the discrete nature of L, however, only a subspace of
H1(Ω;R3) can be realized as limits of interpolated deformations ỹ(k). That is,
ỹ(k) can converge to ỹ in L2(Ω;R3) if and only if ỹ is piecewise affine in x′, more
precisely, if for a. e. x1 ∈ (0,L) and x′ ∈ L′ one has ỹ(x1,x

′) = 1
4
∑︁4
i=1 ỹ(x1,x

′ +
(zi)′) and ỹ(x1, ·) is affine on conv{x′,x′ + (zi)′,x′ + (zj)′} if i, j ∈ {1,2,3,4}, |i −
j | = 1. Similarly, limiting directors (d2,d3) are restricted to be gradients with
respect to x′ of such functions. By Theorem 3.4, (3.4) and (3.5) one still has
Γ -convergence with such a class of limiting configurations if Eult is extended
by the value +∞ outside of H1((0,L);R3)×L2((0,L);R3)×L2((0,L);R3).
Remark 3.7. Standard arguments show that forcing terms of the form

−k−3h−2
k

∑︂
x∈Λk

f (x1) · y(k)(x),

f ∈ L2((0,L);R3), could be added to k−3h−4
k E

(k) and Γ -convergence as well as
compactness claims would still hold (see e.g. [Sch07, Corollary 3.4] or [BS22]
for more details).
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Correspondence between almost-minimizers of the discrete energies and
minimizers of the effective functional Eult is expressed in the corollary below.
Analogous statements would also be available in the thin-rod regime or Chap-
ter 4.

Corollary 3.6. Suppose that kE(k) Γ→ Eult as k→∞ and that the following property
holds:

(∃C > 0∃ (y(k)); y(k) : Λk→ R3∀k ∈ N : kE(k)(y(k)) ≤ C)

⇒∃ (kj) ⊂ N∃R ∈ L2([0,L];SO(3)) : ∇kj ỹ
(kj )→ R in L2([0,L];R3).

(3.13)
Then any sequence (y(k)), y(k) : Λk→ R3, with

lim
k→∞

(︂
kE(k)(y(k))− inf

z : Λk→R3
kE(k)(z)

)︂
= 0

has a subsequence (y(kj )) such that ∇kj ỹ
(kj )→ R ∈ L2([0,L];SO(3)) in L2([0,L];R3)

and for every such cluster point R = (ỹ′ |d2|d3) and ỹ being a primitive function of
ỹ′ it follows that (ỹ,d2,d3) is a minimizer of Eult.

Condition (3.13) is satisfied due to compactness Theorem 3.4 and Lemma
3.3. The proof of Corollary 3.6 is based on classical arguments.

3.3.3 Proof of the lower bound

In this section, we prove Theorem 3.5(i). We may assume that kE(k)(y(k)) ≤ C
and so (3.6) holds true by (3.4) and (3.5). We set Ωext = (0,L)× Sext. Let R(k) be
as in Theorem 3.4. By (3.8) and in analogy with [MM03], for

G(k)(x) :=
(R(k))⊤(x1)∇k ỹ(k)(x)− Id

1/k
, x ∈Ωext

k ,

we have G(k)⇀G ∈ L2(Ωext;R3×3) in L2(Ωext;R3×3), up to a subsequence.

Remark 3.8. The quantity G(k) can be interpreted as a measure of strain. More
specifically, note the resemblance of G(k) to a rescaled approximation of the
Biot strain tensor E1/2 = U − Id from the Seth–Hill family of strain measures
[Ogd97, p. 119], where F = RU is the polar decomposition of the deformation
gradient F.

In our discrete setting we instead need to study

Ḡ
(k)(x) :=

(R(k))⊤(x1) ∇̄k ỹ
(k) − Id̄

1/k
, x ∈Ωext

k .

By virtue of (3.3), the L2-boundedness of (G(k)) implies the boundedness of
(Ḡ(k)) in L2(Ωext;R3×8). Hence Ḡ(k)

⇀Ḡ for a subsequence, which we do not
relabel. We state a proposition about the structure of Ḡ.
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Proposition 3.7. Ḡ(k)
⇀Ḡ in L2(Ωext;R3×8) for

Ḡ(x) =
1
2

[︃
G1(x1) +R⊤(x1)

∂R
∂x1

(x1)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠]︃(−1,−1,−1,−1,1,1,1,1)

+C(x1) +
(︂
∇̄2dα(x)| ∇̄2dα(x)

)︂
,

where G1 ∈ L2((0,L);R3), α ∈ L2((0,L) × Lext;R3) ≅ L2((0,L); (R3)L
ext

) and C is
explicitly given by

C =
1
4

⎛⎜⎜⎜⎜⎜⎜⎝−κ2 −κ3 κ3 −κ2 κ2 +κ3 κ2 −κ3 κ2 +κ3 κ2 −κ3 −κ2 −κ3 κ3 −κ2
−τ τ τ −τ τ −τ −τ τ
τ τ −τ −τ −τ −τ τ τ

⎞⎟⎟⎟⎟⎟⎟⎠
(3.14)

with κ2(x1) = ∂2ỹ

∂x2
1
· d2, κ3(x1) = ∂2ỹ

∂x2
1
· d3, τ(x1) = ∂d2

∂x1
· d3, and R from Theorem 3.5.

Proof. Formula (3.11) enables us to find the longitudinal and transversal con-
tributions separately.
1. Longitudinal contributions. We consider the piecewise constant function

Ḡ
(k)
long :=

k
2

[︃
(R(k))⊤∆1ỹ

(k)(−1,−1,−1,−1,1,1,1,1)− e1e
⊤
1 Id̄

]︃
and observe that for each x ∈ Ωext

k with Q̃(x) := Q̃(x̄) = x̄ + (− 1
2k ,

1
2k ) × (−1

2 ,
1
2 )2

property (3.10) of the piecewise affine interpolation ỹ(k) yields

Ḡ
(k)
long =

k
2

(︃
(R(k))⊤−

∫︂
Q̃

∂ỹ(k)

∂x1
dξ − e1

)︃
(−1,−1,−1,−1,1,1,1,1)

=
1
2
−
∫︂
Q̃
G(k)e1dξ(−1,−1,−1,−1,1,1,1,1).

This converges weakly to

1
2
−
∫︂
Q̃
′(x′)

G(x1,ξ
′)e1dξ ′(−1,−1,−1,−1,1,1,1,1),

where Q̃′(x′) = (x̄2 − 1
2 , x̄2 + 1

2 )× (x̄3 − 1
2 , x̄3 + 1

2 ), since for any ϕ ∈ C∞c (Ωext)∫︂
Ωext
−
∫︂
Q̃(x̄)

G(k)(ξ)dξϕ(x)dx =
∫︂
Ωext

G(k)(ξ)−
∫︂
Q̃(ξ̄)

ϕ(x)dxdξ

→
∫︂
Ωext

G(ξ)
∫︂
Q̃
′(ξ ′)

ϕ(ξ1,x
′)dx′dξ

=
∫︂
Ωext

∫︂
Q̃
′(x′)

G(x1,ξ
′)dξ ′ϕ(x)dx.

(A similar property is also used in [BS22, Proposition 4.6].) In view of [MM03,
equation (3.10)], the first column of G reads

Ge1 = G1(x1) +R⊤(x1)
∂R
∂x1

(x1)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x2
x3

⎞⎟⎟⎟⎟⎟⎟⎠
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for some G1 ∈ L2((0,L);R3) and hence

−
∫︂
Q̃
′(x′)

G(x1,ξ
′)e1dξ ′ = G1(x1) +R⊤(x1)

∂R
∂x1

(x1)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠ .
It follows that in L2(Ωext;R3×8),

Ḡ
(k)
long⇀

1
2

(︂
G1(x1) +R⊤(x1)

∂R
∂x1

(x1)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠)︂(−1,−1,−1,−1,1,1,1,1).

2. Transversal contributions. Here the left 3 × 4 submatrix of some Ā ∈ R3×8 is
referred to as the left part of Ā, whereas the other 3 × 4 submatrix as the right
part of Ā.

First let us look at the left part

Ḡ
(k)
left(x) := k

[︃
(R(k))⊤(x1) ∇̄2d

k ỹ(k)(x̄1 − 1
2k , x̄

′)−
(︄

0 0 0 0
(z1)′ (z2)′ (z3)′ (z4)′

)︄]︃
.

We define the auxiliary function

α
(k)
left(x) := k

[︂
kR(k)(x1)⊤ỹ(k)(x̄1 − 1

2k ,x
′)− x2e2 − x3e3

]︂
, x ∈Ωext

k ,

whose average over the cross-sectional lattice is

α
(k)
left,0(x1) :=

1
♯Lext

∑︂
x′∈Lext

α
(k)
left(x1,x

′)

and its two-dimensional discrete gradient is equal to Ḡ(k)
left, since

∇̄2dα
(k)
left(x) = k

[︃
(R(k)(x1)⊤ ∇̄2d

k ỹ(k)(x̄1 − 1
2k , x̄

′)− 1
2

⎛⎜⎜⎜⎜⎜⎜⎝ 0 0 0 0
−1 −1 1 1
−1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠]︃.
Since Sext is a polygonal domain, setting ∇′f = (∂x2

f |∂x3
f ) and bounding

the maxSext with a successive maximization over L′,ext and over the interpola-
tion tetrahedra, we have

|α(k)
left(x)−α(k)

left,0(x1)|2 ≤ C max
ζ′∈Sext

|∇′α(k)
left(x1,ζ

′)|2

= C max
ζ′∈Sext

k2
⃓⃓⃓⃓⃓
R(k)(x1)⊤

[︂
k∇′ỹ(k)(x̄1 − 1

2k ,ζ
′)
]︂
−

⎛⎜⎜⎜⎜⎜⎜⎝0 0
1 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎠
⃓⃓⃓⃓⃓2

≤ 24 max
ζ′∈L′,ext

C−
∫︂
Q̃(x̄1,ζ′)

k2
⃓⃓⃓
R(k)(ξ1)⊤∇k ỹ(k)(ξ)− Id

⃓⃓⃓2
dξ

≤ C−
∫︂ x̄1+ 1

2k

x̄1− 1
2k

∫︂
Sext

⃓⃓⃓
G(k)(ξ)

⃓⃓⃓2
dξ.

38



Integrating over Ωext
k shows that α(k)

left − α
(k)
left,0 and ∂xs(α

(k)
left − α

(k)
left,0) = ∂xsα

(k)
left,

s = 2,3, are bounded in L2(Ωext
k ;R3). We thus find αleft ∈ L2(Ωext;R3) with

∇′αleft ∈ L2(Ωext;R3×2) such that, passing to a subsequence,

α
(k)
left −α

(k)
left,0⇀αleft and ∂xs

(︂
α

(k)
left −α

(k)
left,0

)︂
⇀∂xsαleft, s = 2,3,

in L2(Ωext;R3). In particular, for any x̄′ ∈ L′,ext and i, j ∈ {1,2,3,4}with |zi−zj | =
1 considering the triangle T = conv{x̄′, x̄′ + (zi)′, x̄′ + (zj)′} ⊂ Sext we still have

∇′
(︂
α

(k)
left −α

(k)
left,0

)︂
⇀∇′αleft in L2((0,L)× T ;R3×2).

Our piecewise affine interpolation scheme and the definition of α(k)
left guarantee

that∇′α(k)
left(x) is independent of x′ and piecewise constant in x1 for x ∈ (0,L)×T .

Therefore ∇′αleft(x) does not depend on x′ ∈ T either and we may conclude that[︂
∇̄2d (︂

α
(k)
left −α

(k)
left,0

)︂]︂
•i

= ∇′
(︂
α

(k)
left −α

(k)
left,0

)︂
(zi)′⇀∇′αleft(z

i)′ =
[︂
∇̄2dαleft

]︂
•i

in L2((0,L)×T ;R3). As both ∇̄2d(α(k)
left −α

(k)
left,0) and ∇̄2dαleft are in fact indepen-

dent of x′ ∈ Q̃′ = x̄′ + (−1
2 ,

1
2 )2, we even have [∇̄2d(α(k)

left − α
(k)
left,0)]•i⇀ [∇̄2dαleft

]︂
•i

in L2((0,L)× Q̃′;R3) and so, since x̄′ and i were arbitrary,

∇̄2d(α(k)
left −α

(k)
left,0) = Ḡ(k)

left⇀ ∇̄
2dαleft in L2(Ωext;R3×4)

and the restriction of αleft to (0,L) × Lext is well defined. Similarly we find
αright ∈ L2(Ωext;R3), the weak limit of α(k)

right −α
(k)
right,0, so that

Ḡ
(k)
right = k

[︃
(R(k))⊤ ∇̄2d

k ỹ(k)( ·̄+ 1
2k e1)−

(︄
0 0 0 0

(z5)′ (z6)′ (z7)′ (z8)′

)︄]︃
⇀ ∇̄2dαright.

It would be nice to express αright in terms of αleft and R. We see that

α
(k)
right(x −

1
k e1) = k

[︂
k(R(k)(x1 − 1

k )⊤ỹ(k)(x̄1 − 1
2k ,x

′)− x2e2 − x3e3

]︂
and so

α
(k)
right(x −

1
k e1)−α(k)

left(x) = k2
[︂
(R(k))(x1 − 1

k )− (R(k))(x1)]⊤ỹ(k)(x̄1 − 1
2k ,x

′).

For the discrete gradient of the above expression, we have

∇̄2d(︂α(k)
right(x −

1
k e1)−α(k)

left(x)
)︂

=
(R(k))⊤(x1 − 1

k )− (R(k))⊤(x1)

1/k
∇̄2d

k ỹ(k)(x̄1 − 1
2k ,x

′).
(3.15)

From (3.9) and (3.6), we see that
(︂
k(R(k)(· − 1

k )−R(k))
)︂
k∈N

is bounded in L2 and
therefore has a subsequence weakly converging to, say, F. Moreover, conver-
gence (3.7) gives F = − ∂R∂x1

, thus

k
(︂
R(k)(· − 1

k )−R(k)
)︂
⇀ − ∂R

∂x1
in L2(Ωext;R3×3). (3.16)
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Now we notice that

∇̄2d
k ỹ(k)(x̄1 − 1

2k ,x
′)→ R(x1)

(︄
0 0 0 0

(z1)′ (z2)′ (z3)′ (z4)′

)︄
in L2(Ωext;R3×4). (3.17)

Indeed, for x̄′ ∈ L′,ext and i, j ∈ {1,2,3,4}with |zi −zj | = 1 we let Tℓ = ( ℓk + 1
2k , x̄

′)+
conv{0,− 1

2k e1, z̃
i , z̃j}, ℓ = −1,0, . . . , kLk, so that ỹ(k) is affine on every Tℓ. Also set

T =
⋃︁
ℓ Tℓ and let χk be the characteristic function of T . Since ∇̄2d

k ỹ(k)(x̄1− 1
2k , ·)

is constant on each Q̃′(x̄′) = x̄′ + (−1
2 ,

1
2 )2 and R(k) is independent of x′, we have∫︂

(− 1
k ,Lk+ 1

k )×Q̃′(x̄′)

⃓⃓⃓[︂
∇̄2d

k ỹ(k)(x̄1 − 1
2k ,ξ

′)
]︂
•i
−R(k)(x1)(0, (zi)′)⊤

⃓⃓⃓2
dx1dξ ′

= 24
∫︂
Ωext
k

χk
⃓⃓⃓(︂
∇k ỹ(k)(x)−R(k)(x1)

)︂
(0, (zi)′)⊤

⃓⃓⃓2
dx→ 0

as k→∞ by (3.8). Since x̄′ and i were arbitrary, (3.17) now follows from (3.7).
Thus in (3.15), we combine (3.16) with (3.17) to obtain the limit

∇̄2dαright − ∇̄
2dαleft = R⊤

∂R
∂x1

(︄
0 0 0 0

(z1)′ (z2)′ (z3)′ (z4)′

)︄
, (3.18)

as −(∂x1
R⊤)R = −(R⊤∂x1

R)⊤ = R⊤∂x1
R.

3. Finally we bring all contributions together:

Ḡ
(k) = Ḡ(k)

long +
(︂
Ḡ

(k)
left | Ḡ

(k)
right

)︂
⇀

1
2

(︃
G1(x1) +R⊤(x1)

∂R
∂x1

(x1)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠)︃(−1,−1,−1,−1,1,1,1,1)

+
(︂
∇̄2dαleft | ∇̄

2dαright

)︂
.

To finish the proof, we set α := (αleft +αright)/2 (restricted to (0,L) ×Lext), and
use (3.18) as well as

R⊤
∂R
∂x1

=

⎛⎜⎜⎜⎜⎜⎜⎝ 0 −κ2 −κ3
κ2 0 −τ
κ3 τ 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
With the help of Proposition 3.7, the proof of Theorem 3.5(i) can now be

completed following [FJM02] (see also [MM03, Sch06]). For y⃗ ∈ R3×8 we set
Wtot(x′, y⃗) = Wcell(y⃗) if x′ ∈ S and Wtot(x′, y⃗) = Wsurf(t(x′), y⃗) if x′ ∈ Sext \ S so
that Qtot(x′, ·) is the quadratic form generated by ∇2Wtot(x′, Id̄). Using (3.4),
the non-negativity of Wend and the frame-indifference of Wtot, we can write

E(k)(y(k)) ≥
∑︂

x̂∈Λ̂′k∪Λ̂
′,surf
k

Wtot

(︂
x̂′, y⃗ (k)(x̂)

)︂
=

∫︂
(0,kLk)×Sext

Wtot

(︂
x̂′, [R(k)(

x̂1

k
)]⊤∇̄ŷ(k)(x̂)

)︂
dx̂

= k
∫︂

(0,Lk)×Sext
Wtot

(︂
x′,R(k)(x1)⊤∇̄k ỹ(k)(x)

)︂
dx

= k
∫︂

(0,Lk)×Sext
Wtot

(︂
x′, Id̄ + 1

k Ḡ
(k)(x)

)︂
dx

(3.19)
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We let χk be the characteristic function of {|Ḡ(k)| ≤
√
k}∩ [(0,Lk)×Sext] and note

that χk → 1 boundedly in measure on Ωext. As both Wtot(x′, ·) and ∇Wtot(x′, ·)
vanish at Id̄, a Taylor expansion yields

χkWtot

(︂
x′, Id̄ + 1

k Ḡ
(k))︂ ≥ 1

2k2χkQtot(x
′, Ḡ

(k))−χkω
(︂

1
k |Ḡ

(k)|
)︂
,

where ω(t) = o(t2), t→ 0. We deduce that

kE(k)(y(k)) ≥ 1
2

∫︂
Ωext

χkQtot(x
′, Ḡ

(k))dx − k
∫︂
Ωext

χk |Ḡ
(k)|2

ω(1
k |Ḡ

(k)|)

(1
k |Ḡ

(k)|)2
dx. (3.20)

We can move χk inside the second argument of Qtot. Further, as Wtot(x′, ·) has
a local minimum at Id̄, Qtot(x′, ·) is positive semidefinite and therefore, convex.
The convergence χkḠ

(k)
⇀Ḡ thus yields

liminf
k→∞

kE(k)(y(k)) ≥ 1
2

∫︂
Ωext

Qtot(x
′, Ḡ)dx

if the second term in (3.20) goes to zero. But that follows from the bounded-
ness of Ḡ(k) in L2(Ωext;R3×8) and the cut-off by χk forcing L∞-convergence of
the fraction involving ω.

We substitute in Qtot the representation of Ḡ. By Proposition 3.7,

∫︂
Sext

Qtot(x
′, Ḡ)dx′ =

∫︂
Sext

Qtot

(︃
x′,

1
2

[︃
G1 +R⊤

∂R
∂x1

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠]︃(−1,−1,−1,−1,1,1,1,1)

+
1
4
R⊤

∂R
∂x1

⎛⎜⎜⎜⎜⎜⎜⎝0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
C

+(∇̄2dα| ∇̄2dα)
)︃
dx′.

The definition of Qrel
cell lets us eliminate G1, which only depends on x1, and

conclude that

liminf
k→∞

kE(k)(y(k)) ≥ 1
2

∫︂
Ωext

Qtot(x
′, Ḡ)dx ≥ 1

2

∫︂ L

0
Qrel

cell

(︄
R⊤

∂R
∂x1

)︄
dx1.

Remark 3.9. Although in continuum theories with homogeneous materials, it
can be proved that (an analogue of) the minimizing x1-stretch g in (3.12) is 0
[Sca06], here in ultrathin rods it does not seem so clear how to investigate this
question.

3.3.4 Proof of the upper bound

Proof of Theorem 3.5(ii). Thanks to the Γ -liminf inequality, it is enough to show

limsup
k→∞

kE(k)(y(k)) ≤ Eult(ỹ,d2,d3).
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This trivially holds if (ỹ,d2,d3) ∉ A. By contrast, if (ỹ,d2,d3) ∈ A, we first ad-
ditionally suppose that ỹ ∈ C3([0,L];R3), d2,d3 ∈ C2([0,L];R3). Define the se-
quence of lattice deformations

ỹ(k)(x) := ỹ(x1)+
1
k
x2d2(x1)+

1
k
x3d3(x1)+

1
k
q(x1)+

1
k2β(x), x ∈ {0, 1

k , . . . ,Lk}×L
ext,

where β(·,x′) ∈ C1([0,L];R3) for each x′ ∈ Lext and q ∈ C2([0,L];R3) are arbitrary
for the time being. We interpolate and extend the sequence ỹ(k) to a piecewise
affine mapping on Ωext

k as in Section 3.2.2 (by now applying Lemma 3.2 to Sext
k

instead of Sk and then restricting ỹ(k) to Ωext
k , as no new external atomic layers

are needed) so that

esssupΩext
k

dist2(∇k ỹ(k),SO(3)) ≤ C esssup(0,Lk)× 1
khk

Sext
k

dist2(∇k ỹ(k),SO(3)).

(3.21)
The rescaled discrete gradient of ỹ(k) is

[∇̄k ỹ(k)(x)]•i = k
[︃
ỹ(x̄1 + 1

kz
i
1)− 1

2

(︂
ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k )

)︂]︃
+

3∑︂
s=2

[︃
(x̄s + zis)ds(x̄1 + 1

kz
i
1)− 1

2
x̄s

(︂
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )

)︂]︃
+ q(x̄1 + 1

kz
i
1)− 1

2

(︂
q(x̄1 − 1

2k ) + q(x̄1 + 1
2k )

)︂
+ 1
k

(︂
β̃(x̄+ z̃i)− β̃(x̄)

)︂
,

where β̃ denotes the usual piecewise affine interpolation of β. Let furthermore
R = ( ∂ỹ∂x1

|d2 |d3). As in (3.19), frame-indifference for the energy defined in (3.4)
yields

E(k)(y(k)) = k
∫︂

(0,Lk)×Sext
Wtot

(︂
x′, Id̄ + 1

k F̄
(k)(x)

)︂
dx

+
∑︂

x∈{− 1
2k ,Lk+ 1

2k }×L′,ext

Wend

(︂
tk(kx1,x

′), ∇̄k ỹ(k)(x)
)︂
,

(3.22)

where

F̄(k)(x) =
R(x̄1)⊤∇̄k ỹ(k)(x)− Id̄

1/k
.

We would like to find the limits of F̄(k) and 1
k F̄

(k) so that we can let k→∞ in
(3.22). Fix i ∈ {1,2, . . . ,8}. For x′ ∈ Sext we denote by x̄′ an element of L′,ext that
is closest to x. Taylor expanding the functions d2,d3,q ∈ C2([0,L];R3) about x̄1
we deduce that

k
[︃
(x̄s + zis)ds(x̄1 + 1

kz
i
1)

− x̄s
2

(︂
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )

)︂
− ds(x̄1)zis

]︃
→ (x̄s + zis)

∂ds
∂x1

(x1)zi1,

k
[︃
q(x̄1 + 1

kz
i
1)− 1

2

(︂
q(x̄1 − 1

2k ) + q(x̄1 + 1
2k )

)︂]︃
→ zi1

∂q

∂x1
(x1),
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s = 2,3, uniformly in x ∈Ωext. Similarly, we get by the C3-regularity of ỹ

k2
[︃
ỹ(x̄1 + 1

kz
i
1)− 1

2
(ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k ))

]︃
− k

∂ỹ

∂x1
(x̄1)zi1→

(︃1
2

(zi1)2 − 1
8

)︃∂2ỹ

∂x2
1

(x1) = 0

uniformly in x ∈ Ωext. Finally, the function β, being uniformly continuous,
satisfies

β̃(x̄+ z̃i)− β̃(x̄)→
[︂
∇̄2dβ(x) | ∇̄2dβ(x)

]︂
•i
,

uniformly in x ∈Ωext. Summing up gives

k
[︃[︂
∇̄k ỹ(k)(x)

]︂
•i
−
(︂
∂ỹ
∂x1

⃓⃓⃓
d2

⃓⃓⃓
d3

)︂
(x̄1)zi

]︃
→

3∑︂
s=2

(x̄s + zis)
∂ds
∂x1

zi1 +
∂q

∂x1
zi1 + [∇̄2dβ(x) | ∇̄2dβ(x)]•i

(3.23)

for any i ∈ {1,2, . . . ,8} and so

F̄(k)(x)→ R⊤(x1)
(︃ ∂R
∂x1

(x1)(0, x̄2, x̄3)⊤ +
∂q

∂x1
(x1)

)︃
e⊤1 Id̄

+R⊤(x1)
∂R
∂x1

(x1)
[︃
zi1(0,zi2,z

i
3)⊤

]︃8

i=1
+R⊤(x1)

(︂
∇̄2dβ(x)| ∇̄2dβ(x)

)︂
and 1

k F̄
(k)(x)→ 0 uniformly in x ∈Ωext.

We first note that by Wend(t, ·) ≤ Cdist2(·,SŌ(3)), (3.23) and (3.21),∑︂
x∈{− 1

2k ,Lk+ 1
2k }×L′,ext

Wend

(︂
tk(kx1,x

′), ∇̄k ỹ(k)(x)
)︂
≤ C

k2 ,

so that this term can be neglected in what follows. Now Taylor’s approximation
in (3.22) gives

kE(k)(y(k))→ 1
2

∫︂
Ωext

Qtot

(︄
x′,R⊤(x1)

(︃ ∂R
∂x1

(x1)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠+
∂q

∂x1
(x1)

)︃
e⊤1 Id̄

+R⊤(x1)
∂R
∂x1

(x1)
[︂
zi1(0,zi2,z

i
3)⊤

]︂8
i=1

+R⊤(x1)
(︂
∇̄2dβ(x)| ∇̄2dβ(x)

)︂)︄
dx.

(3.24)

Next we turn to the case that (ỹ,d2,d3) ∈ A, butR = (∂x1
ỹ|d2|d3) only belongs

to H1((0,L);R3×3). Approximation will allow us to build upon the already fin-
ished part of the proof. The procedure is analogous to [MM03].

Let (α(x1, ·), g(x1)) be a solution of the minimizing problem in the definition
of Qrel

cell. Recall that α ∈ L2((0,L) × Lext;R3), g ∈ L2((0,L);R3). It would be de-
sirable to see α instead of R⊤β and g instead of R⊤∂x1

q on the right-hand side
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of (3.24). Hence, find approximating sequences (α(j)) ⊂ C1([0,L] × Lext;R3),
(R̃(j)) ⊂ C2([0,L];R3×3), (g(j)) ⊂ C2([0,L];R3) such that α(j) → α in L2((0,L) ×
Lext;R3), g(j) → g in L2((0,L);R3) and R̃

(j) → R in H1([0,L];R3×3) so that also
R̃

(j)→ R uniformly in [0,L] by the Sobolev embedding.

It cannot be guaranteed straight away, though, that R̃(j)(x1), x1 ∈ [0,L], are
orthogonal matrices. To sidestep this issue, we project R̃(j)(x1) for every x1 ∈
[0,L] smoothly onto SO(3) (if j is large enough, projecting is possible on the
basis of the tubular neighbourhood theorem, see [Lee02, p. 137–140]) and get
a sequence (R(j)) ⊂ C2([0,L];R3×3) of mappings with values in SO(3). Then
R(j)→ R in H1([0,L];R3×3) by smoothness of the projection map.

Further, write R(j) = (∂x1
ỹ(j)|d(j)

2 |d
(j)
3 ) with d

(j)
2 ,d

(j)
3 ∈ C2([0,L];R3) and ỹ(j)

belonging to C3([0,L];R3) such that ỹ(j)(0) = ỹ(0); this gives (ỹ(j)|d(j)
2 |d

(j)
3 ) ∈ A.

For every j ∈ N, β := R(j)α(j) and ∂x1
q := R(j)g(j) we can construct, by the

first part of the proof, (ỹ(k,j))∞k=1 such that

ỹ(k,j)→ ỹ(j) in L2(Ωext;R3), k→∞,

k
∂ỹ(k,j)

∂xs
→ d

(j)
s in L2(Ωext;R3), s = 2,3, k→∞

so that (3.24) holds with y(k), d2, d3, β and ∂x1
q replaced with y(k,j), d(j)

2 , d(j)
3 ,

R(j)α(j) and R(j)g(j), respectively. Finally, diagonalize (take ỹ(k,jk) for a suitable
sequence (jk)) and the proof is finished, since the integral in (3.24) behaves
continuously in R, β and ∂x1

q with respect to the required topologies.

3.4 Resulting theory for thin rods

We now consider the situation of ‘thin rods’ when the cross section of the rod
is not given by a fixed 2D lattice L but rather by a macroscopic set hS ⊂ R2

whose diameter h = hk satisfies 1
k ≪ h≪ 1 so that (0,L)× hS is eventually filled

with atoms. Again, L > 0 stands for the rod’s length and the cross section is
defined in terms of S and Sk as described in Section 3.2.1. For convenience we
also suppose that |S | = 1 and that the axes are oriented in such a way that∫︂

S
x2x3dx′ =

∫︂
S
x2dx′ =

∫︂
S
x3dx′ = 0. (3.25)

(For ultrathin rods this was not assumed.) Since S has a Lipschitz boundary,
we can fix m ≥ 1 such that Sext

k ⊃ khkS for all k.

3.4.1 Gamma-convergence

As in Section 3.3.2 in view of Theorem 3.4 and (3.5) the convergence in Theo-
rem 3.8 is stated in terms of the piecewise affine interpolations ỹ(k) and their
rescaled gradients ∇k ỹ(k) on Ω = (0,L) × S and it suffices to consider limiting
configurations ỹ ∈ H1((0,L);R3) and d2,d3 ∈ L2((0,L);R3). We remark that, by
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Theorem 3.4, one could equivalently consider the Γ -limit in the L2
loc(Ω) topol-

ogy. Also, the convergence could be alternatively formulated in terms of L2

convergence of piecewise constant interpolations of ỹ(k)|Λ̃k
and the piecewise

constant ∇̄k ỹ(k) to ỹ and R Id̄, respectively; see [BS22].

Theorem 3.8. If k → ∞ and hk → 0+ with khk → ∞, the functionals 1
k3h4

k

E(k)

Γ -converge to the functional Eth defined below, in the following sense:

(i) Let (y(k))∞k=1 be a sequence of lattice deformations such that their piecewise
affine interpolated extensions (ỹ(k))∞k=1, defined in Section 3.2, converge to
ỹ ∈ H1((0,L);R3) in L2(Ω;R3). Let us also assume that 1

hk
∂xs ỹ

(k) → ds ∈
L2((0,L);R3) in L2(Ω;R3), s = 2,3. Then

Eth(ỹ,d2,d3) ≤ liminf
k→∞

1

k3h4
k

E(k)(y(k)).

(ii) For every ỹ ∈H1((0,L);R3), d2,d3 ∈ L2((0,L);R3) there is a sequence of lattice
deformations (y(k))∞k=1 such that their piecewise affine interpolated extensions

(ỹ(k))∞k=1, defined in Section 3.2, satisfy ỹ(k)→ ỹ in L2(Ω;R3), 1
hk

∂ỹ(k)

∂xs
→ ds in

L2
loc(Ω;R3) for s = 2,3, and

lim
k→∞

1

k3h4
k

E(k)(y(k)) = Eth(ỹ,d2,d3).

The limit energy functional is given by

Eth(ỹ,d2,d3) =

⎧⎪⎪⎨⎪⎪⎩1
2

∫︁ L
0
Qrel

cell(R
⊤∂x1

R)dx1 if (ỹ,d2,d3) ∈ A,
+∞ otherwise,

where R := (∂x1
ỹ|d2|d3) and the classA of admissible deformations is as in Theorem

3.5. The relaxed quadratic form Qrel
cell : R3×3

skew→ [0,+∞) is defined as

Qrel
cell(A) := min

α∈H1(S;R3)

∫︂
S
Qcell

⎛⎜⎜⎜⎜⎜⎜⎝(︃A
⎛⎜⎜⎜⎜⎜⎜⎝ 0
x2
x3

⎞⎟⎟⎟⎟⎟⎟⎠ ⃓⃓⃓⃓ ∂α∂x2

⃓⃓⃓⃓ ∂α
∂x3

)︃
Id̄

⎞⎟⎟⎟⎟⎟⎟⎠dx′. (3.26)

Remark 3.10. Theorem 3.8 is in direct correspondence with the Γ -limit derived
in [MM03]. In fact, the work [CDKM06] shows that for Wcell admissible as full
in Definition 3.2.1 and boundary conditions close to a rigid motion, defining
the 3D continuum stored energy density W as W (F) = Wcell(FId̄), F ∈ R3×3,
is justified (the Cauchy–Born rule is valid). If W is defined this way, then
A : ∂2

FW (Id) : A = Qcell(AId̄) := Q3(A) and with Q2 derived from Q3 by the
auxiliary minimization (3.1) in [MM03], we get the bending-torsion functional
from [MM03], since Qrel

cell(A) =Q2(A).

Remark 3.11. Like in [MM03], it can be proved that a solution to the minimum
problem in (3.26) exists. Since all skew-symmetric matrices are in the kernel of
F ↦→ ∇2Wcell(Id̄) : FId̄, we can replace the components of∇α by the components
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of 1
2(∇α+∇⊤α) on the right-hand side of (3.26) and getH1-bounds by a version

of Korn’s inequality [OSY92, Theorem 2.5] if we require that α belong to the
class

V =
{︃
β ∈H1(S;R3);

∫︂
S
βdx′ = 0,

∫︂
S
∇βdx′ = 0

}︃
.

Since Qcell is convex, we obtain the existence of a minimizer α by the direct
method of the calculus of variations. Strict convexity ofQcell on R3×3

symId̄ implies
that the minimizer is unique in V . Further, by analyzing the Euler-Lagrange
equations we see that α depends linearly on the entries of A so that Qrel

cell is a
quadratic form and if α(x1, ·) is the solution of (3.26) in V and A := [R⊤R′](x1),
x1 ∈ [0,L], we get α ∈ L2(Ω;R3) and ∂xsα ∈ L

2(Ω;R3), s = 2,3, thanks to R⊤R′ ∈
L2([0,L];R3×3).

In fact, the Euler-Lagrange equations for this minimum problem can be de-
rived by a straightforward computation as in [MM08] (note that the integrand
in (3.26) has quadratic growth). For k = 1,2,3, the minimizer α is a weak solu-
tion to the Neumann problem

3∑︂
r,s=2

3∑︂
i=1

8∑︂
j,ℓ=1

∂
∂xs

(︂
z
j
r[∇2Wcell(Id̄)]ijkℓz

ℓ
s
∂αi
∂xr

)︂
=

= −
3∑︂
s=2

3∑︂
i=1

8∑︂
j,ℓ=1

[∇2Wcell(Id̄)]ijkℓz
j
1Aisz

ℓ
s in S,

3∑︂
r,s=2

3∑︂
i=1

8∑︂
j,ℓ=1

∂αi
∂xr

z
j
r[∇2Wcell(Id̄)]ijkℓnsz

ℓ
s =

= −
3∑︂

p,s=2

3∑︂
i=1

8∑︂
j,ℓ=1

Aipxpz
j
1[∇2Wcell(Id̄)]ijkℓnsz

ℓ
s on ∂S,

where n = (n2,n3)⊤ ∈ R2 denotes the unit outward normal to S. Introducing
the tensor K = (Kkisr )s,r,k,i and vectors φ,γ ∈ R3 (which depend on x′ and A) by

Kkisr =
8∑︂

j,ℓ=1

z
j
r[∇2Wcell(Id̄)]ijkℓz

ℓ
s , r, s ∈ {2,3}, i, k ∈ {1,2,3},

φk = −
3∑︂
s=2

3∑︂
i=1

8∑︂
j,ℓ=1

[∇2Wcell(Id̄)]ijkℓz
j
1Aisz

ℓ
s ,

γk = −
3∑︂

p,s=2

3∑︂
i=1

8∑︂
j,ℓ=1

Aipxpz
j
1[∇2Wcell(Id̄)]ijkℓnsz

ℓ
s , k ∈ {1,2,3},

we can write the system in the more compact form

divx2,x3

(︂
K∇x2,x3

α
)︂

= φ in S,

K∇x2,x3
α ·n = γ on ∂S.

(3.27)

The structure of eigenspaces of ∇2Wcell(Id̄) gives an ellipticity condition

(FId̄) : ∇2Wcell(Id̄) : (FId̄) ≥ C|symF|2
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for any F ∈ R3×3 so by the aforementioned Korn’s inequality and standard PDE
theory, we discover that the minimizer α is a weak solution of system (3.27)
unique in V . For physical background of this system of PDEs, see Chapter 2.

Remark 3.12. As mentioned in Example 3.1, cell energies given by a sum of
pairwise interactions may not satisfy assumption (E2) if they do not include
an additional penalty term which prevents them from being minimized on
improper rotations. Besides, a deficiency of our approach in terms of physical
modelling is that interatomic potentials from molecular dynamics are typi-
cally bounded near infinity, so the growth assumption (E4) does not apply.
However, even energies that are O(3)-invariant and do not grow quadratically
away from SŌ(3) can be treated in case of ‘sufficiently thin’ rods. Following
[BS22, Section 2.4], let us suppose that Wcell only fulfils (E1), (E3), but also the
following alternative assumptions:

(E1.1) Wcell(y⃗) =Wcell(−y⃗) for all y⃗ ∈ V ⊥0 ,

(E2.1) miny⃗∈R3×8Wcell(y⃗) = 0 and Wcell(y⃗) = minWcell if and only if y⃗ = OId̄ + c⃗
for some O ∈O(3) and c⃗ ∈ V0,

(E4.1) there is a constant η > 0 such that Wcell(y⃗) ≥ η for every y⃗ ∈ V ⊥0 \ U±,
where U is the neighbourhood of SŌ(3) from (E3) and U± := U ∪ (−U ).

Since reflections may lead to unnatural folded configurations with zero en-
ergy, we also add a nonlocal term to E(k) to avoid colliding atoms, see [BS22].
Moreover, if we assume that k3h4

k → 0+ (in particular, this also holds in the

ultrathin case), then due to our energy scaling, Wcell(y⃗
(k)) must be small on

every atomic cell. As a result, Wcell is never evaluated at points for which a
growth assumption would manifest itself. In this setting, Theorem 3.8 holds
with R(k),R ∈ O(3) (analogously in Theorem 3.5 and up to replacing ỹ(k) with
−ỹ(k) in Theorem 3.4).

3.4.2 Proof of the lower bound

To prove Theorem 3.8(i), let us assume that k−3h−4
k E

(k)(y(k)) ≤ C, whence (3.6)
holds due to (3.4) and (3.5). Without loss of generality passing to a suit-
able subsequence, we obtain the piecewise constant R(k) converging to R(x1) =
( ∂ỹ∂x1

(x) |d2(x) |d3(x)) as in Theorem 3.4. From (3.8), for

G(k)(x) :=
(R(k))⊤(x1)∇k ỹ(k)(x)− Id

hk
, x ∈Ωext

k ,

we have G(k)⇀G ∈ L2(Ω;R3×3) in L2(Ω;R3×3), up to a subsequence. Its discrete
version

Ḡ
(k)(x) :=

k(R(k))⊤(x1)(ỹ(k)(x̄+ z̃i)− ỹ(k)(x̄))8
i=1 − Id̄

hk
, x ∈Ωext

k .

is again bounded in L2(Ω;R3×8) (cf. (3.3)). Thus Ḡ(k)
⇀Ḡ in L2(Ω;R3×8) for a

(not relabelled) subsequence.
The following proposition is contained in [MM03].
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Proposition 3.9. Suppose G(k)⇀G ∈ L2(Ω;R3×3) in L2(Ω;R3×3). Then there are
G1 ∈ L2((0,L);R3) and α ∈ L2(Ω;R3) with ∇′α ∈ L2(Ω;R3×2) such that

G(x) =
(︃
G1(x1) +R⊤

∂R
∂x1

(0,x2,x3)⊤
⃓⃓⃓
∇′α(x)

)︃
.

Proof. See [MM03, (3.10) and (3.13)].

Now we explore how the limits G and Ḡ are connected. Recall the notation
Ḡ•i for the i-th column of Ḡ.

Proposition 3.10. The representation Ḡ•i = Gzi holds for every i ∈ {1,2, . . . ,8}.

Proof. Our method is, loosely speaking, to shift everything to a neighbouring
lattice block by a direction vector a and handle the resulting remainder. The
approach is inspired by [Sch06]. Recall that for x ∈ Ωext

k , we denote by x̄ an

element of Λ̃
′,ext
k that is closest to x. Take x̄, x̄+ = x̄+a ∈ Λ̃′,ext

k , where a := z̃i − z̃j ,
and compute

k(R(k))⊤
(︂
ỹ(k)(x̄+ z̃i)− ỹ(k)(x̄)

)︂
− zi = k(R(k))⊤

(︂
ỹ(k)(x̄+ + z̃j)− ỹ(k)(x̄+)

)︂
− zj

+ k(R(k))⊤
(︂
ỹ(k)(x̄+)− ỹ(k)(x̄)

)︂
+ (zj − zi)

(3.28)

(note that x̄+ z̃i = x̄+ + z̃j). Let Q̃ = Q̃(x̄) = x̄+ (− 1
2k ,

1
2k )× (− 1

2khk
, 1

2khk
)2. Property

(3.2) of the piecewise affine interpolation gives

k(ỹ(k)(x̄+)− ỹ(k)(x̄)) = k−
∫︂
Q̃
ỹ(k)(ξ+)− ỹ(k)(ξ)dξ

= −
∫︂
Q̃

∫︂ 1

0
k

d
dt

(ỹ(k)(ξ + ta))dtdξ = −
∫︂
Q̃

∫︂ 1

0
k∇ỹ(k)(ξ + ta)adtdξ.

(3.29)

Dividing (3.28) by the rod thickness hk and using (3.29), we derive

Ḡ
(k)
•i = [Ḡ(k)

+ ]•j +
1
hk

[︃
(R(k))⊤−

∫︂
Q̃

∫︂ 1

0
∇k ỹ(k)(ξ + ta)dtdξ(zi − zj)− (zi − zj)

]︃
, (3.30)

where we have set

[Ḡ(k)
+ (x)]•j :=

1
hk

[k(R(k)(x1))⊤
(︂
ỹ(k)(x̄+ + z̃j)− ỹ(k)(x̄+)

)︂
− zj].

Fix Ω′ ⊂⊂Ω. Let us prove that

Ḡ
(k)
+ ⇀Ḡ in L1(Ω′;R3×8). (3.31)

In the first place, shifts by a preserve weak convergence so that in L2(Ω′;R3×8),

1
hk

[︃
k
(︂
R(k)(·+ a1)

)︂⊤(︂
ỹ(k)(·+ a+ z̃i)− ỹ(k)(·+ a)

)︂8

i=1
− Id̄

]︃
⇀Ḡ. (3.32)
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In the second place, due to our construction of R(k) as constant on intervals of
length h′k, the difference R(k)(·+ a1)−R(k) can only be nonzero on interfaces of
those intervals of constancy. The length of each such interface equals |a1| ≤ 1

k .
Estimate (3.9) then implies that

∫︂
Ω′
|R(k)(x1 + a1)−R(k)(x1)|2dx ≤ |S |

k

⌊Lk/h′k⌋−2∑︂
i=0

⃓⃓⃓
R(k)(ih′k + 3

2h
′
k)−R

(k)(ih′k + 1
2h
′
k)
⃓⃓⃓2

≤ C
khk

∫︂
Ωext
k

dist2
(︂
∇k ỹ(k),SO(3)

)︂
dx ≤ Chk

k
,

where the last step followed from (3.6). Thus 1
hk

(R(k)(·+ a1)−R(k)) tends to 0 in

L2. As (k(ỹ(k)(·+ a+ z̃ℓ) − ỹ(k)(·+ a))8
ℓ=1) is L2-bounded for an analogous reason

as (Ḡ(k)), the convergence

1
hk

(︂
R(k)(·+ a1)⊤ − (R(k))⊤

)︂
k
(︂
ỹ(k)(·+ a+ z̃ℓ)− ỹ(k)(·+ a)

)︂8

ℓ=1

L1

→ 0

combined with (3.32) establishes (3.31).
By definition, R(k) is constant on Q̃, so the remainder term in (3.30) equals∫︂ 1

0
−
∫︂
Q̃

1
hk

[︂
(R(k)(ξ1))⊤∇k ỹ(k)(ξ + ta)(zi − zj)− (zi − zj)

]︂
dξdt

= −
∫︂
Q̃

∫︂ 1

0
G(k)(ξ + ta)(zi − zj)dtdξ (3.33)

+
∫︂ 1

0
−
∫︂
Q̃

[︃ 1
hk

(︃(︂
R(k)(ξ1)−R(k)(ξ1 + ta1)

)︂⊤
∇k ỹ(k)(ξ + ta)(zi − zj)

)︃]︃
dt. (3.34)

Term (3.33) weakly converges to G(zi − zj) since for any ϕ ∈ C∞c (Ω)∫︂
Ω

−
∫︂
Q̃(x̄)

∫︂ 1

0
G(k)(ξ + ta)dtdξϕ(x)dx =

∫︂
Ω

∫︂ 1

0
G(k)(ξ + ta)dt−

∫︂
Q̃(ξ̄)

ϕ(x)dxdξ

→
∫︂
Ω

G(ξ)ϕ(ξ)dξ.

In (3.34), ∇k ỹ(k)(· + ta) is L2-bounded uniformly in t by (3.8) and as above we
see that 1

hk
(R(k)(· + ta1) −R(k)) converges to 0 in L2(Ω′;R3×3) uniformly in t, so

the whole term vanishes in the limit.
Thus, passing to the limit in (3.30), we conclude that

Ḡ•i − Ḡ•j = G(zi − zj).

The assertion now follows by summing over j and using the fact that the
columns satisfy

∑︁8
j=1 Ḡ•j =

∑︁8
j=1 z

j = 0.

We can now finish the proof of Theorem 3.8(i).
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By (3.4), the non-negativity of Wsurf and Wend, and the frame-indifference
of Wcell, we estimate as in (3.19)

E(k)(y(k)) ≥
∑︂
x̂∈Λ̂′k

Wcell

(︂
y⃗ (k)(x̂)

)︂
= k3h2

k

∫︂
Ω

χk(x)Wcell

(︂
Id̄ + hkḠ

(k)(x)
)︂
dx,

where now χk is the characteristic function of {|Ḡ(k)| ≤
√︁

1/hk}∩ [(0,Lk)× 1
khk
Sk].

The same arguments as in the ultrathin case, cf. also [FJM02, MM03, Sch06],
lead to

liminf
k→∞

1

k3h4
k

E(k)(y(k)) ≥
∫︂
Ω

1
2
Qcell(Ḡ)dx.

By Proposition 3.10, Qcell(Ḡ) = Qcell(GId̄). The proof is completed as in
[MM03]: Setting cs(x1) =

∫︁
S
∂α
∂xs

dx′, s = 2,3, invoking Proposition 3.9 and (3.25),
and using the fact that certain quantities are independent of x2, x3, we find∫︂

S
Qcell(Ḡ)dx′ =

∫︂
S
Qcell

(︂
(G1(x1)

⃓⃓⃓
c2(x1)

⃓⃓⃓
c3(x1))Id̄

)︂
dx′

+
∫︂
S
Qcell

(︃(︃
R⊤

∂R
∂x1

(0,x2,x3)⊤
⃓⃓⃓⃓ ∂ᾱ
∂x2

⃓⃓⃓⃓ ∂ᾱ
∂x3

)︃
Id̄

)︃
dx′,

where ᾱ(x) := α(x) − x2c2(x1) − x3c3(x1). Thus the definition of Qrel
cell lets us

conclude that

liminf
k→∞

1

k3h4
k

E(k)(y(k)) ≥
∫︂
Ω

1
2
Qcell(Ḡ)dx ≥ 0 +

1
2

∫︂ L

0
Qrel

cell

(︄
R⊤

∂R
∂x1

)︄
dx1.

3.4.3 Proof of the upper bound

Proof of Theorem 3.8(ii). In the nontrivial case that (ỹ,d2,d3) ∈ A, we first addi-
tionally suppose that ỹ ∈ C3([0,L];R3), d2,d3 ∈ C2([0,L];R3). For β ∈ C1(R3;R3)
to be fixed later, define the sequence

ỹ(k)(x) := ỹ(x1) + hkx2d2(x1) + hkx3d3(x1) + h2
kβ(x), x ∈ {0, 1

k , . . . ,Lk} ×
1
khk
Lext
k .

We extend and interpolate the sequence ỹ(k) on Ωext
k in the same way as in Sec-

tion 3.3.4 so that, in particular, (3.21) holds true again. The rescaled discrete
gradient ∇̄k ỹ(k)(x) = k[ỹ(k)(x̄+ z̃i)− 1

8
∑︁8
j=1 ỹ

(k)(x̄+ z̃j)]8
i=1 of ỹ(k) reads

[∇̄k ỹ(k)(x)]•i = k
[︃
ỹ(x̄1 + 1

kz
i
1)− 1

2

(︂
ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k )

)︂]︃
+

3∑︂
s=2

khk

[︃
(x̄s + z̃is)ds(x̄1 + 1

kz
i
1)− 1

2
x̄s

(︂
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )

)︂]︃
+ kh2

k

(︂
β̃(x̄+ z̃i)− β̃(x̄)

)︂
,

where β̃ denotes the piecewise affine discretization of β|
Λ̃

ext
k

described in Sec-
tion 3.2.
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As in (3.22) we obtain

E(k)(y(k)) = k3h2
k

∫︂
(0,Lk)×Sk

Wcell

(︂
x′, Id̄ + hkF̄

(k)(x)
)︂
dx+

∑︂
x̂∈Λ̂′,surf

k

Wsurf

(︂
tk(x̂

′), ∇̄ŷ(k)(x̂)
)︂

+
∑︂

x∈{− 1
2k ,Lk+ 1

2k }×L
′,ext
k

Wend

(︂
tk(kx1,x

′), ∇̄k ỹ(k)(x)
)︂
,

(3.35)

where

F̄(k)(x) =
R⊤(x̄1)∇̄k ỹ(k)(x)− Id̄

hk
.

Fixing i ∈ {1,2, . . . ,8}, we deduce the following convergences, analogous
to their counterparts in ultrathin rods, uniformly in x ∈ [0,L] × S ′ for each
bounded domain S ′ ⊃⊃ S:

khk
(︂
β̃(x̄+ z̃i)− β̃(x̄)

)︂
→

∂β

∂x2
(x)zi2 +

∂β

∂x3
(x)zi3

and

k
[︃
(x̄s + z̃is)ds(x̄1 + 1

kz
i
1)− 1

2
x̄s

(︂
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )

)︂]︃
− 1
hk
ds(x̄1)zis→ xs

∂ds
∂x1

(x1)zi1

for s = 2,3, as well as

k
hk

[︃
ỹ(x̄1 + 1

kz
i
1)− 1

2

(︂
ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k )

)︂]︃
− 1
hk

∂ỹ

∂x1
(x̄1)zi1→ 0.

Summing them up leads to

1
hk

[︃[︂
∇̄k ỹ(k)(x)

]︂
•i
−
(︂
∂ỹ
∂x1

⃓⃓⃓
d2

⃓⃓⃓
d3

)︂
(x̄1)zi

]︃
→

3∑︂
s=2

xs
∂ds
∂x1

zi1 +
∂β

∂xs
zis (3.36)

for any i ∈ {1,2, . . . ,8}.
Now we first notice that maxt∈T

(︂
Wsurf(t, ·) + Wend(t, ·)

)︂
≤ Cdist2(·,SŌ(3)),

(3.36), (3.21), and the estimate ♯(Λext
k \Λk) ≤ C(k2hk + k2h2

k) ≤ Ck2hk give∑︂
x̂∈Λ̂′,surf

k

Wsurf

(︂
tk(x̂

′), ∇̄y(k)(x̂)
)︂

+
∑︂

x̂∈{− 1
2 ,kLk+ 1

2 }×L
′,ext
k

Wend

(︂
tk(x̂), ∇̄y(k)(x̂)

)︂
≤ Ck2h3

k .

Hence, Taylor’s approximation in (3.35) yields

1

k3h4
k

E(k)(y(k))→ 1
2

∫︂
Ω

Qcell

(︃
R⊤

(︂
x2

∂d2
∂x1

+ x3
∂d3
∂x1

⃓⃓⃓
∂β
∂x2

⃓⃓⃓
∂β
∂x3

)︂
Id̄

)︃
dx.

For general (ỹ,d2,d3) ∈ A with R = (∂x1
ỹ|d2|d3) ∈ H1((0,L);R3×3) we may pro-

ceed by approximation exactly as in Section 3.3.4, now using that the solu-
tion α(x1, ·) of the minimizing problem in the definition of Qrel

cell is such that
α ∈ L2(Ω;R3) and ∂xsα ∈ L

2(Ω;R3), s = 2,3.
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4. A continuum model for brittle
nanowires derived from an
atomistic description by
Γ -convergence

‘There’s more than one way to
crack an egg.’

English proverb

By changing the assumptions on interaction potentials seen in the previous
chapter, we obtain a model that can also describe brittle fracture of ultrathin
rods (see Figure 4 for an illustration).

After specifying the discrete model in Section 2, we prove a compactness
theorem for sequences of bounded energy in Section 3. The lower bound in the
Γ -convergence result from Section 4 is shown in Section 5 and then followed
in Section 6 by an analysis of the cell formula and the construction of recov-
ery sequences for Theorem 4.3(ii). A simplified model is treated in Section 7.
Section 8 provides examples of interatomic potentials to which the presented
approach applies. In Section 9, we show that for full cracks and a class of mass-
spring models there is an explicit expression for the cell formula. Moreover,
it is proved that in such models, the energy needed to produce a full crack is
strictly greater than the energy of a mere kink.

Figure 4.1: Fracture of a thin rod composed of atoms.

4.1 Model assumptions and preliminaries

Notation here does not differ much from that used for ultrathin rods in Section
3.3. Nevertheless, we will go through all important definitions now so that this
chapter can be read independently.

4.1.1 Atomic lattice and discrete gradients

In our particle interaction model, Λk = ([0,L] × 1
k S̄) ∩ 1

kZ
3, k ∈ N, is a cubic

atomic lattice – the reference configuration of a thin rod of length L > 0. The
interatomic distance 1/k is directly proportional to the thickness of the rod.
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The rod’s cross section is represented with a bounded domain ∅ ≠ S ⊂ R2.
We assume that there is a set L′ ⊂ (1

2 +Z)2 such that

S = Int
⋃︂
x′∈L′

(︂
x′ +

[︃
−1

2
,
1
2

]︃2)︂
.

Moreover, should it happen that x′ + {−1
2 ,

1
2 } ⊂ L := S̄ ∩ Z2, it is assumed that

x′ ∈ L′ as well. The symbol Λ′k is used for the lattice of midpoints of open
lattice cubes with sidelength 1/k and corners in Λk.

Our lattice Λk undergoes a static deformation y(k) : Λk→ R3. The main aim
in this chapter is to investigate the asymptotic behaviour as k becomes large
and to establish an effective continuum model as k→ +∞.

Sometimes it will be advantageous to work with a rescaled lattice that has
unit distances between neighbouring atoms. The points of this lattice are writ-
ten with hats over their coordinates, i.e. if x = (x1,x2,x3) ∈ Λk we introduce
x̂1 := kx1, x̂′ = (x̂2, x̂3) := kx′ = k(x2,x3) and ŷ(k)(x̂1, x̂2, x̂3) := ky(k)(1

k x̂1,
1
k x̂
′) so

that ŷ(k) : kΛk → R3. Then Λ̂k and Λ̂
′
k denote the sets of all x̂ = (x̂1, x̂2, x̂3) such

that the corresponding downscaled points x are elements of the sets Λk and
Λ′k, respectively. Again we will use the eight direction vectors z1,z2, . . . ,z8, the
discrete gradient ∇̄ŷ(k), the matrix Id̄ = (z1| · · · |z8), and the sets SŌ(3), V0 as in
Subsection 3.2.1.

4.1.2 Rescaling, interpolation and extension of deformations

To handle sequences of deformations defined on a common domain Ω = (0,L)×
S, we set ỹ(k)(x1,x2,x3) := y(k)(x1,

1
kx
′) for (x1,

1
kx
′) ∈Λk and interpolate ỹ(k) as in

Subsection 3.2.2 so that it is defined even outside lattice points.
Like this, ỹ(k) is differentiable almost everywhere, so we can define

∇k ỹ(k) :=
(︂∂ỹ(k)

∂x1
|k
∂ỹ(k)

∂x2
|k
∂ỹ(k)

∂x3

)︂
.

For any face F̃ of Q̃(x̄) = x̄ + (− 1
2k ,

1
2k )× (−1

2 ,
1
2 )2, x̄ ∈ Λ̃′k, with face centre xF̃ , the

piecewise affine interpolation satisfies

ỹ(k)(xF̃) = −
∫︂
F̃
ỹ(k)dH2 and ỹ(k)(x̄) = −

∫︂
Q̃(x̄)

ỹ(k)(ξ)dξ. (4.1)

We also set ∇̄k ỹ(k)(x̄) := k(ỹ(k)(x̄1 + 1
kz
i
1, x̄
′ + (zi)′) −

∑︁8
j=1 ỹ

(k)(x̄1 + 1
kz
j
1, x̄
′ +

(zj)′))8
i=1.

For the following reasons we now extend deformations to certain auxiliary
surface lattices:

• surface energy needs to be modelled;

• in part we would like to apply Γ -convergence results from Chapter 3;

• a fixed domain on which the convergence of (ỹ(k)) is formulated some-
times does not match with its inscribed crystalline lattice (specifically in
the x1-direction).
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We present here the necessary tools, without too much emphasis on this tech-
nical issue later, referring to Subsection 3.2.2 for more details and a proof,
adapted from [Sch09]. Consider a portion (a,b) × S ⊂ (0,L) × S of the rod. Let
ak = 1

k ⌈ka⌉, bk = 1
k ⌊kb⌋, and

Lext = L+ {−1,0,1}2, Λext
k = {ak − 1

k , ak , . . . , bk + 1
k } ×

1
kL

ext,

L′,ext = L′ + {−1,0,1}2, Λ
′,ext
k = {ak − 1

2k , ak + 1
2k , . . . , bk + 1

2k } ×
1
kL
′,ext,

Sext = S + (−1,1)2, Ωext
k = (ak − 1

k ,bk + 1
k )× Sext,

Λ̃
ext
k = {ak − 1

k , ak , . . . , bk + 1
k } ×L

ext, Λ̃
′,ext
k = {ak − 1

2k , ak + 1
2k , . . . , bk + 1

2k } ×L
′,ext.

Lemma 4.1. There are extensions y(k) : Λext
k → R3 of y(k) : Λk→ R3 such that their

interpolations ỹ(k) satisfy

esssup
Ωext
k

dist2(∇k ỹ(k),SO(3)) ≤ C esssup
(ak ,bk)×S

dist2(∇k ỹ(k),SO(3))

and ∫︂
Ωext
k

dist2(∇k ỹ(k),SO(3))dx ≤ C
∫︂

(ak ,bk)×S
dist2(∇k ỹ(k),SO(3))dx.

For x ∈ Ωext
k , we denote by x̄ an element of Λ̃

′,ext
k that is closest to x. In

what follows we always understand the symbols Λext
k , Λ′,ext

k etc. with a := 0
and b := L, unless stated otherwise. We also set Ωext := (0,L)× Sext.

4.1.3 Energy

Let Lk = 1
k ⌊kL⌋, Λ̂

′,surf
k = {12 , . . . , kLk −

1
2 } × (L′,ext \L′), and Λ̂

′,end
k = {−1

2 , kLk + 1
2 } ×

L′,ext. We give this definition of strain energy E(k):

E(k)(y(k)) =
∑︂
x̂∈Λ̂′k

W
(k)
cell

(︂
y⃗ (k)(x̂)

)︂
+

∑︂
x̂∈Λ̂′,surf

k

W
(k)
surf

(︂
x̂′, y⃗ (k)(x̂)

)︂
+

∑︂
x̂∈Λ̂′,end

k

W
(k)
end

(︃1
k
x̂1, x̂

′, y⃗ (k)(x̂)
)︃ (4.2)

withW (k)
cell : R3×8→ [0,∞],W (k)

surf : (L′,ext\L′)×R3×8→ [0,∞] andW (k)
end : {− 1

2k ,Lk+
1

2k } × L
′,ext ×R3×8 → [0,∞]. The terms with W (k)

surf and W
(k)
end are useful for in-

corporating surface energy (see Chapter 3 for further clarification). For conve-
nience we assume that for every y⃗ ∈ R3×8, W (k)

surf(·, y⃗) is extended to a piecewise

constant function on Sext\S̄ which is equal toW (k)
surf(x̂

′, y⃗) on x̂′+(−1
2 ,

1
2 )2. Some-

times it will be useful to group the terms, so for y⃗ ∈ R3×8 we set

W
(k)
tot (x̂′, y⃗) =

⎧⎪⎪⎨⎪⎪⎩W (k)
cell(y⃗) x̂′ ∈ S̄,

W
(k)
surf(x̂

′, y⃗) x̂′ ∈ (Sext \ S̄).

In our Γ -convergence statement, we consider the rescaled energy 1/k3

1/k4E
(k) =

kE(k), where k3 is the order of the number of particles per unit volume in a
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bulk system and 1/k4 is the appropriate power of a rod’s thickness for studying
the bending/torsion energy regime (see e.g. [MM04] for more context).

Assumptions on the cell energy functions W (k)
cell, W

(k)
surf, and W (k)

end.

Hereafter W(k) stands for W (k)
cell, W

(k)
surf(x̂

′, ·) with x̂′ ∈ L′,ext \ L′, and for

W
(k)
end( x̂1

k , x̂
′, ·) with x̂ ∈ Λ̂′,end

k .

(W1) Frame-indifference: W(k)(Ry⃗ + (c| · · · |c)) = W(k)(y⃗) for all R ∈ SO(3), y⃗ ∈
R3×8, c ∈ R3, and k ∈ N.

(W2) Energy well: For every k ∈ N, W(k) attains a minimum (equal to 0) at
rigid deformations, i.e. deformations y⃗ = (ŷ1| · · · |ŷ8) with ŷi = Rzi + c for
all i ∈ {1, . . . ,8} and some R ∈ SO(3), c ∈ R3.

(W3) Independence of k in the elastic regime: There are parameters c(k)
frac↘ 0

such that limk→∞ k(c(k)
frac)2 ∈ (0,∞) and an elastic stored energy function

W0 : L′,ext×R3×8→ [0,∞] such that we have ∀k ∈ N ∀ y⃗ ∈ R3×8 ∀x′ ∈ L′,ext:

W
(k)
tot (x′, y⃗) =W0(x′, y⃗) if dist(∇̄ŷ,SŌ(3)) ≤ c(k)

frac.

Further, there exists a C > 0 independent of k ∈ N such that

W
(k)
end(1

k x̂1, x̂
′, y⃗) ≤ Cdist2(∇̄ŷ,SŌ(3))

for any x̂ ∈ Λ̂
′,end
k , y⃗ = (ŷ1| · · · |ŷ8) ∈ R3×8, and ∇̄ŷ = y⃗ − (

∑︁8
j=1 ŷj)(1, . . . ,1)

with dist(∇̄ŷ,SŌ(3)) ≤ c(k)
frac.

(W4) Regularity in k: W (k+1)
tot (x′, y⃗) ≥ k

k+1W
(k)
tot (x′, y⃗) for all k ∈ N, y⃗ ∈ R3×8, and

x′ ∈ L′,ext.

(W5) Non-degeneracy in the elastic and the fracture regime: The function
W0|L′×R3×8 is independent of x′ (hence we omit it from the notation in
this region) and satisfies

W0(y⃗) ≥ cWdist2(∇̄ŷ,SŌ(3)) ∀ ỹ ∈ R3×8

for a constant cW > 0. Writing W (k)
cell(y⃗) = W̄ (k)(y⃗) if dist(∇̄ŷ,SŌ(3)) > c(k)

frac,

we assume that the mappings W̄ (k) can be chosen such that

W̄ (k)(y⃗) ≥ c̄(k)
1 ∀k ∈ N ∀ y⃗ ∈ R3×8

for a sequence (c̄(k)
1 )∞k=1 of positive numbers with limk→∞ kc̄

(k)
1 ∈ (0,∞).

(W6) W(k) is everywhere Borel measurable and W0(x̂′, ·), x̂′ ∈ L′ ,ext, is of class
C2 in a neighbourhood of SŌ(3).

(W7) If i ∈ {1,2, . . . ,8}, x̂′ ∈ L′,ext \ L′, and y⃗ = (ŷ1| · · · |ŷ8), then y⃗ ↦→ W
(k)
surf(x̂

′, y⃗)
may depend on ŷi only if x̂′ + (zi)′ ∈ L. If x1 ∈ {− 1

2k ,Lk + 1
2k }, then y⃗ ↦→

W
(k)
end(x1, x̂

′, y⃗) may depend on ŷi only if (x1, x̂
′) + z̃i ∈ Λ̃k.
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The quadratic form associated with ∇2W
(k)
surf(x

′, Id̄) is denoted by Qsurf(x′, ·).
Throughout we will assume that Assumptions (W1)–(W7) are satisfied. We

also introduce conditions which imply that long-range interactions of atoms
are bounded or even are negligible.

(W8) We say that inelastic interactions are bounded if

W(k)(y⃗) ≤ C̄(k)
1 ∀k ∈ N ∀ y⃗ ∈ R3×8

for a sequence (C̄(k)
1 )∞k=1 of positive numbers with limk→∞ kC̄

(k)
1 ∈ (0,∞).

(W9) We say that the cell energies have maximum interaction range scaling with
(Mk), where Mk → 0, Mkk→∞, if the following holds true: If there is a
partition {1, . . . ,8} = J1 ∪̇ J2 ∪̇ · · · ∪̇ JnC

such that for some y⃗, y⃗ ′ ∈ R3×8 one
has

min
1≤ℓ<m≤nC

dist({ŷiℓ }iℓ∈Jℓ , {ŷim}im∈Jm) ≥Mkk and

min
1≤ℓ<m≤nC

dist({ŷ′iℓ }iℓ∈Jℓ , {ŷ
′
im
}im∈Jm) ≥Mkk

and there are rigid motions given by Rm ∈ SO(3) and cm ∈ R3 such that

ŷ′im = Rmŷim + cm ∀ im ∈ Jm, m = 1, . . . ,nC,

then
|W(k)(y⃗ ′)−W(k)(y⃗)| ≤ Cfar

Mkk2

for a uniform constant Cfar > 0.

Remark 4.1. We remark that the assumption in (W4) is a monotonicity assump-
tion only for kW (k)

tot (x′, ·) but not for W (k)
tot (x′, ·) itself. It is in line with our as-

suming that the elastic energy is independent of k in (W3) and the fracture
toughness scales with 1

k , cf. (W5).

Remark 4.2. By (W2), (W3), and (W6) have

W(k)(y⃗) ≤ cwdist2(∇̄ŷ,SŌ(3))

for a constant cw and all y⃗ ∈ R3×8 such that dist(∇̄ŷ,SŌ(3)) ≤ c(k)
frac. Moreover,

by (W2), (W5) and (W6) the quadratic form Q3 associated with ∇2W0(Id̄) is
positive definite on span{V0 ∪R3×3

skewId̄}⊥.

4.1.4 Piecewise Sobolev functions

We work with the linear spaces P -Hm(0,L;Rℓ), m = 1,2, ℓ ∈ N, of functions that
are piecewise Sobolev in the following sense:

P -Hm(0,L;Rℓ) :=
{︂
ỹ ∈ L1((0,L);Rℓ); ∃ partition (σ i)n+1

i=0 of [0,L]

∀i ∈ {1,2, . . . ,n+ 1} : ỹ|(σi−1,σi ) ∈H
m((σi−1,σi);Rℓ)

}︂
. (4.3)
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Here we say that (σ i)n+1
i=0 is a partition of [0,L] if 0 = σ0 < σ1 < · · · < σn+1 = L.

Suppose ỹ ∈ P -Hm(0,L;Rℓ) and {σ i}n+1
i=0 is the minimal set with property (4.3).

For m = 1 one has

Sỹ := {σ ∈ (0,L); ỹ(σ−) ≠ ỹ(σ+)} = {σ i}n+1
i=0 .

For m = 2 we have

Sỹ′ := {σ ∈ {σ i}ni=1; ỹ(σ−) = ỹ(σ+)}, Sỹ := {σ i}ni=1 \ Sỹ′ ,

where the set Sỹ is the jump set of ỹ and Sỹ′ the jump set of the derivative ∂x1
ỹ.

4.2 Compactness

Theorem 4.2. Suppose the sequence (y(k))∞k=1 of lattice deformations fulfils

limsup
k→∞

(︂
kE(k)(y(k)) + ||y(k)||ℓ∞(Λk ;R3)

)︂
< +∞. (4.4)

Then after applying the extension scheme from Subsection 4.1.2 we can find an in-
creasing sequence (kj)∞j=1 ⊂ N, functions ỹ ∈ P -H2(0,L;R3), d2,d3 ∈ P -H1(0,L;R3)

with R = (∂x1
ỹ|d2|d3) ∈ SO(3) a.e., and a partition (σ i)n̄f+1

i=0 of [0,L] such that for
any

η ∈ (0,
1
2

min
0≤i≤n̄f

|σ i+1 − σ i |)

and every 0 ≤ i ≤ n̄f we have:

(i) ỹ(kj )→ ỹ in L2(Ωext;R3);

(ii) ∇kj ỹ
(kj )→ R = (∂x1

ỹ|d2|d3) in L2((σ i + η,σ i+1 − η)× Sext;R3×3);

(iii) dist(∇̄kj ỹ
(kj ),SŌ(3)) ≤ c(k)

frac on (σ i + η,σ i+1 − η)× Sext, for j sufficiently large;

(iv) if we define the measures µk on [0,L] by

µk(A) =
∑︂

x̂∈Λ̂′,ext
k ,

x̂1∈kA

kW
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂
,

for Borel sets A, then µkj ⇀
∗ µ for a Radon measure µ (Λ̂

′,ext
k := kΛ′,ext

k ).

Proof. By properties of the extension scheme from Subsection 4.1.2 (see Re-
mark 3.1) there is a constant Ĉe ≥ 1 such that for any x ∈ Λ̃′,ext

k , setting U (x) =(︂
{x1 − 1

k ,x1,x1 + 1
k } ×L

′
)︂
∩ Λ̃′k we have

dist2(∇̄k ỹ(k)(x),SŌ(3)) ≤ Ĉ2
e

∑︂
ξ∈U (x)

dist2(∇̄k ỹ(k)(ξ),SŌ(3)). (4.5)
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Let Sk(x1) denote a slice of the rod at the point x1:

Sk(x1) =
(︂1
k
⌊kx1⌋,

1
k
⌊kx1⌋+

1
k

)︂
× Sext, x1 ∈ [0,L].

A slice Sk(x1) is regarded as broken if there is an x′ ∈ S such that

dist
(︂
∇̄ŷ(k)(kx1,x

′),SŌ(3)
)︂
>

c
(k)
frac√︁

3♯L′Ĉe

.

Like this, for any x such that the slice Sk(x1) and, if existent, the neighbouring
slices Sk(x1 ± 1

k ) are not broken, ∇̄k ỹ(k)(x) is at most c(k)
frac-far from SŌ(3) even if

x ∈Ωext
k \ (0,Lk)×S. Write X(k)

1 for the set of all midpoints of the x1-projections
of broken slices:

X
(k)
1 =

{︂
x1 ∈

(︂ 1
2k

+
1
k
Z
)︂
∩ [0,L); Sk(x1) is broken

}︂
.

We have ♯X(k)
1 ≤ Cf with Cf > 0 independent of k, since by Assumptions (W3)

and (W5)

min
{︃
W

(k)
cell(y⃗); y⃗ ∈ R3×8, dist(∇̄ŷ,SŌ(3)) ≥

c
(k)
frac√︁

3♯L′Ĉe

}︃
≥min

{︃cW(c(k)
frac)2

3♯L′Ĉ2
e

, c̄
(k)
1

}︃
≥ c
k

for a constant c > 0 and so

C ≥ kE(k)(y(k)) ≥
∑︂

x̂∈Λ̂′,ext
k

kW
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂
(4.6)

≥ c♯X(k)
1 + k

∑︂
x̂∈Λ̂′,ext

k , x̂1∉kX
(k)
1

W
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

elastic part (≥0)

. (4.7)

If we pass to a subsequence {kj}∞j=1 ⊂ N, we find nf ∈ N, 0 ≤ nf ≤ C/c, such that

for every j ∈ N, there are always precisely nf broken slices, i.e. ∀j ∈ N : ♯X
(kj )
1 =

nf, and

X
(kj )
1 = {s1j , s

2
j , . . . , s

nf
j }, s1j < s

2
j < · · · < s

nf
j .

We observe that the location sij of the i-th broken slice, 1 ≤ i ≤ nf, remains in
the compact interval [0,L], so we construct a further subsequence, which we
still denote by (kj)∞j=1, so that

∀i ∈ {1,2, . . . ,nf} : lim
j→∞

sij = si ∈ [0,L].
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Naturally it can be that some of the limiting positions of cracks si , i = 1,2, . . .nf,
coincide or appear at the endpoints of the rod, hence we rewrite

X1 := {si ; 0 < si < L, 1 ≤ i ≤ nf} = {σ i}
n̄f
i=1,

where the number n̄f ≤ nf. Further, σ0 := 0 and σ n̄f+1 := L.
Suppose 0 < η < 1

2 min0≤i≤n̄f |σ
i+1 − σ i |. If j is large enough, then for all i,

0 ≤ i ≤ n̄f,

[σ i + η,σ i+1 − η]∩
(︂
x1 −

3
2kj

,x1 +
3

2kj

)︂
= ∅.

Thus the regions [σ i + η,σ i+1 − η]× S are intact, so we can replace W (k)
cell by W0

and safely apply the results about purely elastic rods here (see Theorem 3.4).
Specifically, ỹ(kj )→ ỹ in L2((σ i+η,σ i+1−η)×Sext;R3), ∇kj ỹ

(kj )→ R = (∂x1
ỹ|d2|d3)

in L2((σ i + η,σ i+1 − η) × Sext;R3×3), and the x′-independent limit satisfies ỹ ∈
H2((σ i+η,σ i+1−η);R3), d2,d3 ∈H1((σ i+η,σ i+1−η);R3), and R ∈ SO(3) a.e. (We
extracted another subsequence without changing the subindices.) By passing
to a diagonal sequence we find a single sequence that satisfies convergence
properties (i)–(ii) for any choice of η. Moreover, the L∞ bound in (4.4) and
the uniform energy bound in (4.7) show that indeed ỹ ∈ P -H2(0,L;R3) and
R ∈ P -H1(0,L;R3×3).

Finally, every µk, k ∈ N, is a Radon measure (i.e. Borel regular with com-
pacts having finite measure). Passing to yet another subsequence (not rela-
belled), we find µkj ⇀

∗ µ for some Radon measure µ by [EG15, Theorem 1.41]
since (4.6) implies supk µk([0,L]) <∞.

4.3 Main result

Theorem 4.3. If k→∞, we have kE(k) Γ→ Elim, more precisely:

(i) (liminf inequality) Let (y(k))∞k=1 be a sequence of lattice deformations such
that their piecewise aff. interpolations and extensions (ỹ(k)) ⊂ H1(Ωext

k ;R3),
defined in Subsection 4.1.2, converge in L2(Ωext;R3) to ỹ ∈ L2((0,L);R3) for
which there is a partition (ςi)ñf+1

i=0 of [0,L] such that ỹ|(ςi ,ςi+1) ∈H1((ςi ,ςi+1)×
Sext;R3), 0 ≤ i ≤ ñf.

Assume further that there are ds ∈ L2((0,L);R3) such that for any η > 0 suffi-
ciently small, we have k∂xs ỹ

(k)→ ds in L2((ςi+η,ςi+1−η)×Sext;R3), s = 2,3,
0 ≤ i ≤ ñf (L2

loc-convergence). Then

Elim(ỹ,d2,d3) ≤ liminf
k→∞

kE(k)(y(k)).

(ii) (existence of a recovery sequence) Let ỹ ∈ L2((0,L);R3) be such that there
is a partition (ςi)ñf+1

i=0 of [0,L] for which ỹ|(ςi ,ςi+1) ∈ H1((ςi ,ςi+1);R3), and
let d2,d3 ∈ L2((0,L);R3). Then there exists a sequence of lattice deformations
(y(k))∞k=1 such that their piecewise affine interpolations and extensions (ỹ(k)) ⊂
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H1(Ωext
k ;R3) satisfy ỹ(k) → ỹ in L2(Ωext;R3), k ∂ỹ

(k)

∂xs
→ ds in L2

loc((ςi ,ςi+1) ×
Sext;R3) for s = 2,3, 0 ≤ i ≤ ñf, and

lim
k→∞

kE(k)(y(k)) = Elim(ỹ,d2,d3).

Moreover, if ||ỹ||L∞((0,L);R3) ≤ M and the cell energies satisfy the maximum
interaction range property (W9), then for any (ζk)∞k=1 ⊂ (0,1) with ζk ↘ 0
and ζk/Mk→∞ one can choose y(k) such that ||y(k)||ℓ∞(Λk ;R3) ≤M + ζk.

The limit energy functional is given by

Elim(ỹ,d2,d3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∫︂ L

0
Qrel

3 (R⊤∂x1
R)dx1

+
∑︂

σ∈Sỹ∪SR

ϕ
(︂
ỹ(σ+)− ỹ(σ−), (R(σ−))−1R(σ+)

)︂ if (ỹ,d2,d3) ∈ A,

+∞ otherwise,

where R := (∂x1
ỹ|d2|d3), SR := Sỹ′ ∪ Sd2

∪ Sd3
, and the class of admissible deforma-

tions

A :=
{︂
(ỹ,d2,d3) ∈ (L1(Ω;R3))3; ỹ,d2,d3 do not depend on x2,x3,

(ỹ,d2,d3) ∈ P -H2(0,L;R3)× (P -H1(0,L;R3))2 as functions of x1 only,(︃ ∂ỹ
∂x1

⃓⃓⃓⃓
d2

⃓⃓⃓⃓
d3

)︃
∈ SO(3) a.e. in (0,L)

}︂
.

The relaxed quadratic form Qrel
3 : R3×3

skew→ [0,+∞) is defined as

Qrel
3 (A) := min

α : Lext→R3

g∈R3

∑︂
x′∈L′,ext

Qtot

(︃
x′,

1
2

(︃
A

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x2
x3

⎞⎟⎟⎟⎟⎟⎟⎠+ g
)︃
(−1,−1,−1,−1,1,1,1,1)

+
1
4
A

⎛⎜⎜⎜⎜⎜⎜⎝0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠+ (∇̄2dα| ∇̄2dα)
)︃

(4.8)

with Qtot(x′, ·) = Q3 + Qsurf(x′, ·), and ϕ : R3 × SO(3) → [0,∞] is introduced in
(4.11).

Remark 4.3. It follows from the positive semidefiniteness of Qtot that the min-
imum in (4.8) is attained (see Remark 3.5).

Remark 4.4. The elastic part of our limiting functional includes a matrix ex-
pressing what we call an ultrathin correction – it is the first term on the second
line of (4.8). The term is responsible for atomic effects that a continuum theory
merely based on the Cauchy–Born rule would not capture.

Remark 4.5. Assumptions (W3), (W5) and compactness Theorem 3.4 in the
elastic case imply that ϕ ≥ c̄1 for some constant c̄1 > 0 on R3 × SO(3) \ {(0, Id)}
(and ϕ(0, Id) = 0). If (W8) holds true, then we also have ϕ ≤ C̄1 for a constant
C̄1 <∞.
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Remark 4.6. The universality of the sequence ζk obtained in (ii) would allow
to impose an L∞ constraint energetically by simply setting E(k)(y(k)) = +∞ if
||y(k)||∞ >M +ζk. One then has a directly matching compactness result in The-
orem 4.2.
Remark 4.7. The convergence of deformations used in Theorem 4.3 is equiva-
lent to

ỹ(k)(·,x′)→ ỹ in L2((0,L);R3) for every x′ ∈ L and

∇̄k ỹ(k)→ R Id̄ in L2
loc((ςi ,ςi+1)× S;R3×8) for 0 ≤ i ≤ ñf,

which shows the limit’s independence of our interpolation scheme.

4.4 Proof of the lower bound

The proof of Theorem 4.3(i) is divided into four parts.

4.4.1 First step – elastic part

Since the conclusion is immediate if the liminf is infinite, let us assume the
contrary; ỹ(k)→ ỹ in L2(Ωext;R3) and after extracting a subsequence,

lim
k→∞

kE(k)(y(k)) = liminf
k→∞

kE(k)(y(k)) <∞. (4.9)

Let (σ i)n̄f+1
i=0 , ∇kj ỹ

(kj ), µk, µ be as in Theorem 4.2 and fix η > 0 small (note that

the assumption that ∥y(k)∥∞ ≤ C is not necessary here, because we know that
ỹ ∈ L2((0,L);R3)). Then by the results about purely elastic rods (Theorem 3.5),
the bound

liminf
k→∞

∑︂
x̂∈Λ̂′,ext

k

x̂1∈k[σ i+η,σ i+1−η]

kW
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂

≥ 1
2

∫︂ σ i+1−η

σ i+η
Qrel

3 (R⊤∂x1
R)dx1, i = 0,1, . . . , n̄f,

holds true. Since this is fulfilled for any η, we can let η → 0+ and use the
monotone convergence theorem, as we will see later.

4.4.2 Second step – w∗-limit in measures

For the crack contribution to the strain energy, we use the blow-up method of
Fonseca and Müller [FM92]. We will not make a notational distinction be-
tween (ỹ(k)) and its hitherto constructed subsequence (ỹ(kj )) any more, as this
is not relevant for our Γ -convergence proof.

Now note that Sỹ ∪ SR ⊂ X1, where the set X1 = {σ i}n̄f
i=1 is from the proof

of Theorem 4.2. Write H̃ := H0 ¬Sỹ ∪ SR. Decomposing µ into an absolutely
continuous part and a singular part, we have

µ =
dµ

dH̃
H̃+µs
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with µs ≥ 0. The w∗-convergence then gives (cf. [EG15, Theorem 1.40])

liminf
k→∞

n̄f∑︂
i=1

∑︂
x̂∈Λ̂

′ ,ext
k

x̂1∈k(σ i−η,σ i+η)

kW
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂
≥ µ

(︃ n̄f⋃︂
i=1

(σ i−η,σ i+η)
)︃
≥

∑︂
σ∈Sỹ∪SR

dµ

dH̃
(σ ).

The goal now is to find the asymptotic minimal energy ϕ = ϕ(ỹ+ − ỹ−, (R−)−1R+)
necessary to produce a crack or kink and for every 1 ≤ i ≤ nf, show that

dµ

dH̃
(σ i) ≥ ϕ

(︂
ỹ(σ i+)− ỹ(σ i−), (R(σ i−))−1R(σ i+)

)︂
.

Let us expand the definition of the derivative of µ:

dµ

dH̃
(σ i) def= lim

r→0+

µ([σ i − r,σ i + r])

H̃([σ i − r,σ i + r])
= lim
r→0+

µ([σ i − r,σ i + r])
1

.

By [FL07, Prop. 1.15] and [EG15, Th. 1.40], we can find rn↘ 0 such that

dµ

dH̃
(σ i) = lim

n→∞
lim
k→∞

µk((σ
i − rn,σ i + rn))

= lim
n→∞

lim
k→∞

∑︂
x̂∈Λ̂′,ext

k

x̂1∈k(σ i−rn,σ i+rn)

kW
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂
.

4.4.3 Third step – prelim. cell formula obtained by blowup

First we shall find a preliminary lower bound ψ by rescaling (σ i−rn,σ i+rn) to a
fixed interval (cf. [AFP00, proof of Theorem 5.14, Step 3]). There is a sequence
(kn)∞n=1 such that kn ≥ n, rnkn→∞,

dµ

dH̃
(σ i) = lim

n→∞

∑︂
x̂∈Λ̂′,ext

kn
x̂1∈kn(σ i−rn,σ i+rn)

knW
(kn)
tot

(︂
x̂′, y⃗ (kn)(x̂)

)︂
,

as well as∫︂
(σ i−2rn,σ i+2rn)×Sext

|ỹ(kn) − ỹ|2dx1dx′

+
∫︂
{σ i+[(−2rn,− 1

4 rn)∪( 1
4 rn,2rn)]}×Sext

|∇kn ỹ
(kn) −R|2dx ≤ r2

n (4.10)

and σ i − rn2 + 2
kn
< s

j
kn
< σ i + rn

2 −
2
kn

for every n ∈ N and each of the (finitely many)

sequences (sjkn)
∞
n=1 of midpoints of broken slices satisfying sjkn → σ i as n→∞.

Since the restrictions of ỹ and R to left and right neighbourhoods of σ i are H1,
we get for the rescaled functions

y‡,n(w1) := ỹ(σ i + rnw1),

R‡,n(w1) := R(σ i + rnw1), w1 ∈ [−1,1],
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the convergences y‡,n→ yPC in L2([−1,1];R3) and R‡,n→ RPC in L2([−1,1];R3×3)
for n→∞, where the piecewise constant functions yPC, RPC are defined by

yPC(w1) :=

⎧⎪⎪⎨⎪⎪⎩ỹ(σ i−) = ỹ− w1 < 0,
ỹ(σ i+) = ỹ+ w1 ≥ 0,

and RPC(w1) :=

⎧⎪⎪⎨⎪⎪⎩R(σ i−) = R− w1 < 0,
R(σ i+) = R+ w1 ≥ 0.

We also set, for w1 ∈ [−1,1],

y(kn)(w1,x
′) := ỹ(kn)(σ ikn + rnw1,x

′),

∇rn,kny
(kn)(w1,x

′) :=
(︂ 1
rn
∂w1

y(kn)|kn∂x2
y(kn)|kn∂x3

y(kn)
)︂

= ∇kn ỹ
(kn)(σ ikn + rnw1,x

′),

where σ ikn = 1
kn
⌊knσ i⌋. Then using (4.10), we get y(kn) → yPC in L2([−1,1] ×

Sext;R3) and ∇rn,kny
(kn)→ RPC in L2([I−ψ ∪ I

+
ψ]× Sext];R3×3), where I−ψ = [−1,−1

2 ]

and I+
ψ = [1

2 ,1]. This gives the preliminary estimate with ‘converging boundary
conditions’:

dµ

dH̃
(σ i) ≥min

{︃
limsup
n→∞

∑︂
(w1,x′)∈Λ′rn,kn

knW
(kn)
tot

(︂
x′, y⃗(kn)(w1,x

′)
)︂
;

y(kn) ∈ PAff(Λrn,kn), rn↘ 0, rnkn→∞,

||y(kn) − yPC||L2(I±ψ×Sext)→ 0, ||∇rn,kny
(kn) −RPC||L2(I±ψ×Sext)→ 0

}︃
=: ψ̃(ỹ−, ỹ+,R−,R+),

where

y⃗
(kn)(w1,x

′) := kn
(︂
y(kn)

(︂
w1 +

1
rnkn

zi1,x
′ + (zi)′

)︂)︂8

i=1
,

Λrn,kn :=
(︃ 1
rnkn

Z∩
(︂
−1− 1

rnkn
,1 +

1
rnkn

)︂)︃
×Lext,

Λ′rn,kn :=
(︃(︂ 1

2rnkn
+

1
rnkn

Z
)︂
∩

(︂
−1− 1

2rnkn
,1 +

1
2rnkn

)︂)︃
×L′,ext,

and PAff(Λrn,kn) denotes the class of piecewise affine mappings v : [−1− 1
rnkn

,1+
1
rnkn

]× Sext→ R3 which are generated by interpolating their values from Λrn,kn

by the scheme from Subsection 4.1.2. The minimum in ψ̃ runs over all se-
quences (rn) ⊂ (0,∞), (kn) ⊂ N and (y(kn)) with the above properties.

It can be shown by a diagonalization argument that the minimum is at-
tained; this is also the case in (4.11). From the translation and rotation invari-
ance of W (k)

tot we see that ψ̃(ỹ−, ỹ+,R−,R+) = ψ(ỹ+ − ỹ−, (R−)−1R+) for a function
ψ : R3 × SO(3)→ [0,∞].
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4.4.4 Fourth step – rigid boundary conditions in the cell for-
mula

At last, we relate the preliminary cell formula ψ to the final cell formula which
uses rigid boundary conditions instead of L2-converging ones:

ϕ
(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
= min

{︃
limsup
n→∞

∑︂
(w1,x′)∈Λ′rn,kn

knW
(kn)
tot

(︂
x′, y⃗(kn)(w1,x

′)
)︂
;

(︂
(rn)∞n=1, (kn)∞n=1, (y

(kn))∞n=1

)︂
∈ Vỹ+−ỹ−,(R−)−1R+

}︃
(4.11)

with

Vỹ+−ỹ−,(R−)−1R+ =
{︃(︂

(rn)∞n=1, (kn)∞n=1, (y
(kn))∞n=1

)︂
∈ (0,∞)N ×NN ×PAff(Λrn,kn)

N;

y(kn)(w1,x
′) = R(kn)

±
(︂
rnw1,

1
kn
x′
)︂⊤

+ y(kn)
± on I± × Sext, rn↘ 0,

rnkn→∞, y
(kn)
± ∈ R3, R

(kn)
± ∈ SO(3), y(kn)

± → ỹ±, R
(kn)
± → R±

}︃
,

I− = [−1,−3
4 ] and I+ = [3

4 ,1].

Remark 4.8. The particular choice

y(kn)(w1,x
′) =

⎧⎪⎪⎨⎪⎪⎩R(kn)
− (rnw1,

1
kn
x′)⊤ + y(kn)

− if w1 ≤ 0,

R
(kn)
+ (rnw1,

1
kn
x′)⊤ + y(kn)

+ if w1 > 0

for given ỹ+, ỹ− ∈ R3 and R−,R+ ∈ SO(3) shows that, in case inelastic interac-
tions are bounded (see (W8)), one has ϕ ≤ C̄1 for some C̄1 <∞.

We now show that we have ψ ≥ ϕ. Suppose ε > 0 and that (rn) ⊂ (0,∞),
(kn) ⊂ N, and (y(kn))∞n=1 in PAff(Λrn,kn) are sequences such that rn ↘ 0 with
rnkn→∞,

||y(kn) − yPC||L2(I±ψ×Sext)→ 0, ||∇rn,kny
(kn) −RPC||L2(I±ψ×Sext)→ 0 (4.12)

and
limsup
n→∞

Ekn(y
(kn), [−1,1]) ≤ ψ(ỹ+ − ỹ−, (R−)−1R+) + ε,

where for any I ⊂ [−1,1] we set

Ekn(y
(kn), I) :=

∑︂
w1∈L′n(I)
x′∈L′,ext

knW
(kn)
tot

(︂
x′, y⃗(kn)(w1,x

′)
)︂

and L′n(I) = ( 1
2rnkn

+ 1
rnkn

Z)∩ I . The definition of a rod slice in this section reads

Skn(w1) =
[︂
w̄1 −

1
2rnkn

, w̄1 +
1

2rnkn

)︂
× Sext, where w̄1 =

1
rnkn
⌊rnknw1⌋+

1
2rnkn

.

Our goal now is to find a sequence v(kn) which is admissible as a competitor in
the definition of ϕ and has asymptotically lower energy than y(kn). We provide
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the construction only for v(kn)|[−1,0]×Sext , as for v(kn)|(0,1]×Sext we could proceed

analogously. Writing I−0,n := 1
rnkn

(⌊−3
4rnkn⌋+ 1,⌊−1

2rnkn⌋) for a discrete approxi-

mation of I−ψ \ I− from inside and N−n = ⌊−1
2rnkn⌋ − ⌊−

3
4rnkn⌋ − 3 = ♯L′(I−0,n) − 2

for the number of (interior) slices intersecting I−0,n×Sext, we introduce the sets

W
(n)
1 =

{︃
w1 ∈L′(I−0,n); w1 ± i

rnkn
∈L′(I−0,n),∑︂

i∈{−1,0,1}

∑︂
x′∈L′,ext

knW
(kn)
tot

(︂
x′, ∇̄rn,kny

(kn)(w1 + i
rnkn

,x′)
)︂
≤ 12
N−n
Ekn(y

(kn), I−0,n)
}︃
,

(4.13a)

W
(n)
2 =

{︃
w1 ∈L′(I−0,n); w1 ± i

rnkn
∈L′(I−0,n),∫︂

Skn (w1)
|∇rn,kny

(kn) −R−|2dw1dx′ ≤ 4
N−n
||∇rn,kny

(kn) −R−||2L2(I−0,n×Sext;R3×3)

}︃
,

(4.13b)

W
(n)
3 =

{︃
w1 ∈L′(I−0,n); w1 ± i

rnkn
∈L′(I−0,n),∫︂

Skn (w1)
|y(kn) − ỹ−|2dw1dx′ ≤ 4

N−n
||y(kn) − ỹ−||2L2(I−0,n×Sext;R3)

}︃
,

(4.13c)

where ∇̄rn,kny
(kn)(w1,x

′) = kn(y(kn)(w̄1 + 1
rnkn

zi1, x̄
′ + (zi)′)−

∑︁8
j=1 y

(kn)(w̄1 + 1
rnkn

z
j
1,

x̄′ + (zj)′))8
i=1. The sets W (n)

i , i = 1,2,3, are comprised of the centres of the
w1-projections of slices on which, loosely speaking, a certain quantity is below
four times its average. By Lemma 4.5 with p = 4 we see that for every i ∈ {1,2,3}
and n ∈ N, the set W (n)

i contains at least ⌊(3/4)N−n ⌋ elements. The pigeonhole

principle then implies that for every n large enough there isw(n)
− ∈W

(n)
1 ∩W

(n)
2 ∩

W
(n)
3 . Since N−n ≥ 1

4rnkn − 4, the inequality in (4.13a) and the finiteness in (4.9)
imply an estimate in integral form:∑︂
i∈{−1,0,1}

rnkn

∫︂
Skn (w(n)

− + i
rnkn

)
knW

(kn)
tot

(︂
x′, ∇̄rn,kny

(kn)
)︂
dw1dx′

≤ 48
rnkn − 16

Ekn(y
(kn), I−0,n) ≤ Ce

rnkn
(4.14)

for a constant Ce > 0. Hence we can employ growth assumption (W5) on the
elastic cell energy W0, properties of the extension scheme (cf. (4.5)), and The-
orem 1.1 (in unrescaled variables) to get R(kn)

− ∈ SO(3) such that

1
C
||∇rn,kny

(kn) −R(kn)
− ||2

L2(Skn (w(n)
− );R3×3)

≤
∑︂

i∈{−1,0,1}

∫︂
Skn (w(n)

− + i
rnkn

)
W

(kn)
tot

(︂
x′, ∇̄rn,kny

(kn)
)︂
dw1dx′

for a constant C > 0. Combining the previous inequality with (4.14) we deduce
that

||∇rn,kny
(kn) −R(kn)

− ||L2(Skn (w(n)
− );R3×3)

=O
(︃ 1

rnk
3/2
n

)︃
. (4.15)
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Setting

y(kn)
− = −

∫︂
Skn (w(n)

− )
y(kn)(w1,x

′)−R(kn)
−

(︂
rnw1,

1
kn
x′
)︂⊤

dw1dx′,

we achieve that a Poincaré inequality is satisfied, with a C > 0:√︄∫︂
Skn (w(n)

− )
|y(kn)(w1,x′)−R(kn)

−
(︂
rnw1,

1
kn
x′
)︂⊤
− y(kn)
− |2dw1dx′

≤ C 1
kn
||∇rn,kny

(kn) −R(kn)
− ||L2(Skn (w(n)

− );R3×3)
.

(4.16)

Define v(kn) : [−1,0]× Sext→ R3 as follows:

v(kn)(w1,x
′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R(kn)
− (rnw1,

1
kn
x′)⊤ + y(kn)

− −1 ≤ w1 ≤ w(n)
− − 1

2rnkn

pcw. affine (24 simplices/cell) w(n)
− − 1

2rnkn
< w1 < w

(n)
− + 1

2rnkn
y(kn)(w1,x

′) 0 ≥ w1 ≥ w(n)
− + 1

2rnkn
.

We claim that

limsup
n→∞

Ekn
(︂
v(kn), [−1,0)

)︂
≤ limsup

n→∞
Ekn

(︂
y(kn), [−1,0)

)︂
, (4.17)

lim
n→∞

y(kn)
− = ỹ−, lim

n→∞
R(kn)
− = R−. (4.18)

Concerning (4.17), we notice that for all n ∈ N,

Ekn
(︃
y(kn),

(︂
w(n)
− +

1
2rnkn

,0
)︂)︃

= Ekn
(︃
v(kn),

(︂
w(n)
− +

1
2rnkn

,0
)︂)︃

and that Ekn(v
(kn), (−1,w(n)

− − 1
2rnkn

)) = 0 since ∇̄rn,knv
(kn) = R(kn)

− Id̄ ∈ SŌ(3) on

(−1,w(n)
− − 1

2rnkn
)× Sext. Hence it remains to show that the energy on the transi-

tion slice Skn(w
(n)
− ) vanishes in the limit.

Lemma 4.4. The following is true:

lim
n→∞
Ekn

(︃
y(kn),w(n)

− +
1

2rnkn

(︂
−1,1

)︂)︃
+ Ekn

(︃
v(kn),w(n)

− +
1

2rnkn

(︂
−1,1

)︂)︃
= 0.

Proof. The proof is divided into several steps. LetQ = [w(n)
− − 1

2rnkn
,w(n)
− + 1

2rnkn
]×

Q′, where Q′ = x′ + [−1
2 ,

1
2 ]2 for some x′ ∈ L′,ext, be any atomic cell contained in

the slice Skn(w
(n)
− ).

Step 1. Using Lemma 3.1 and (4.15), we can obtain the relation

c|∇̄rn,kny
(kn)(w(n)

− ,x
′)−R(kn)

− Id̄|2 ≤ rnkn
∫︂
Q
|∇rn,kny

(kn) −R(kn)
− |2dw1dw′ =O

(︃ 1

rnk
2
n

)︃
(4.19)

with a constant c > 0.
Step 2. The symbol ⟨y(kn)⟩ denotes the ‘barycentre of the deformation’ on

Q,

⟨y(kn)⟩ :=
1
8

8∑︂
j=1

y(kn)
(︂
w(n)
− +

1
rnkn

z
j
1,x
′ + (zj)′

)︂
.
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We now compare y⃗
(kn)(w(n)

− ,x
′) and v⃗

(kn)(w1,x
′). By construction, [y⃗(kn)]·i =

[v⃗(kn)]·i for i = 5,6,7,8 and from Step 1 we get, for i = 1,2,3,4,

[y⃗(kn)(w(n)
− ,x

′)]·i − [v⃗(kn)(w(n)
− ,x

′)]·i

=
⃓⃓⃓⃓
kn

(︃
y(kn)

(︂
w(n)
− +

1
rnkn

zi1,x
′ + (zi)′

)︂
−R(kn)
−

(︂
rnw

(n)
− +

1
kn

zi1,
1
kn

(x+ zi)′
)︂⊤
− y(kn)
−

)︃⃓⃓⃓⃓
≤

⃓⃓⃓
[∇̄rn,kny

(kn)(w(n)
− ,x

′)]·i −R(kn)
− zi

⃓⃓⃓
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=O(r−1/2
n k−1

n )

+kn
⃓⃓⃓
⟨y(kn)⟩ −R(kn)

−
(︂
rnw

(n)
− ,

1
kn
x′
)︂⊤
− y(kn)
−

⃓⃓⃓
.

Property (4.1) of our piecewise affine interpolation, Hölder’s inequality, (4.16)
and (4.15) give

kn
⃓⃓⃓
⟨y(kn)⟩ −R(kn)

−
(︂
rnw

(n)
− ,

1
kn
x′
)︂⊤
− y(kn)
−

⃓⃓⃓
= rnk

2
n

⃓⃓⃓⃓∫︂
Q

y(kn)(w1,w
′)−R(kn)

−
(︂
rnw1,

1
kn
w′

)︂⊤
− y(kn)
− dw1dw′

⃓⃓⃓⃓
≤ C

√︁
|Q|rnk2

n
1
kn
||∇rn,kny

(kn) −R(kn)
− ||L2(Skn (w(n)

− );R3×3)
=O

(︃ 1
√
rnkn

)︃
so that |y⃗(kn)(w(n)

− ,x
′)− v⃗(kn)(w(n)

− ,x
′)| =O(r−1/2

n k−1
n ) and, in particular,

|∇̄rn,kny
(kn)(w(n)

− ,x
′)− ∇̄rn,knv

(kn)(w(n)
− ,x

′)| =O
(︃ 1
√
rnkn

)︃
as ∇̄rn,kny

(kn)(w(n)
− ,x

′) = y⃗
(kn)(w(n)

− ,x
′) − 1

8
∑︁8
i=1[y⃗(kn)(w(n)

− ,x
′)]·i(1, . . . ,1) and like-

wise for v(kn). Together with (4.19) this shows that also v(kn) satisfies

|∇̄rn,knv
(kn)(w(n)

− ,x
′)−R(kn)

− Id̄| =O
(︃ 1
√
rnkn

)︃
. (4.20)

Step 3. Now we use that W (kn)
tot is independent of kn on a tubular neighbour-

hood of SO(3) of size O(k−1
n ) and, by Taylor expansion, satisfies an estimate of

the form W
(kn)
tot ≤ Cdist2(·,SO(3)) there. Thus, (4.19) and (4.20) give

knW
(kn)
tot

(︂
x′, ∇̄rn,kny

(kn)
)︂

+ knW
(kn)
tot

(︂
x′, ∇̄rn,knv

(kn)
)︂

=O
(︃ 1
rnkn

)︃
.

This implies the assertion.

The second convergence in (4.18) is a consequence of (4.13b), (4.12), and
(4.15):

|R(kn)
− −R−|2 =

rnkn
|Sext|

∫︂
Skn (w(n)

− )
|R(kn)
− −R−|2dw1dx′

≤ 2rnkn
|Sext|

(︃∫︂
Skn (w(n)

− )
|R− −∇rn,kny

(kn)|2dw1dx′

+
∫︂
Skn (w(n)

− )
|R(kn)
− −∇rn,kny

(kn)|2dw1dx′
)︃

≤ 2rnkn
|Sext|

· 4
1
4rnkn − 4

||∇rn,kny
(kn) −R−||2L2(I−0,n×S;R3×3) +O

(︃ 1

rnk
2
n

)︃
−→ 0.
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The first convergence in (4.18) follows similarly from (4.13c) and (4.12) if we
use (4.16) and (4.15) to show that

2rnkn
|Sext|

∫︂
Skn (w(n)

− )

|y(kn)
− − y(kn)|2dw1dx′ ≤ C

[︂
rn||∇rn,kny

(kn) −R(kn)
− ||2

L2(Skn (w(n)
− );R3×3)

+ |R(kn)
− |2rnkn

1
|Sext|rnkn

⃓⃓⃓(︂
rn,

1
kn
,

1
kn

)︂⃓⃓⃓2]︂ −→ 0,

with a constant C > 0.
In the same way, we could construct (R(kn)

+ )∞n=1, (y(kn)
+ )∞n=1, and v(kn)|(0,1]×Sext

and prove a version of (4.17)–(4.18) on (0,1]. Thus, as

ϕ
(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
≤ limsup

n→∞
Ekn

(︂
v(kn), [−1,1]

)︂
≤ limsup

n→∞
Ekn

(︂
y(kn), [−1,1]

)︂
≤ ψ

(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ ε

and ε > 0 was arbitrary, the claim that ϕ ≤ ψ is proved.

Lemma 4.5. Let c1, c2, . . . , cN be nonnegative reals and p ≥ 1. Then

♯
{︃
i ∈ {1, . . . ,N }; ci ≤

p

N

N∑︂
j=1

cj

}︃
>
⌊︂(︂

1− 1
p

)︂
N

⌋︂
.

Proof. We denote by c̄ the averageN−1∑︁
j cj . If the statement were not true, the

number of cj ’s such that cj > pc̄ would be greater than or equal to N/p. Hence

c̄ ≥ 1
N

∑︂
j; cj>pc̄

cj >
1
N
pc̄
N
p

= c̄,

but that is a contradiction.

Summing up the elastic and crack energy contributions, we get

lim
k→∞

kE(k)(y(k)) ≥ liminf
k→∞

k
[︃ n̄f∑︂
i=0

∑︂
x̂∈Λ̂′,ext

k

x̂1∈k[σ i+η,σ i+1−η]

W
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂

+
n̄f∑︂
i=1

∑︂
x̂∈Λ̂′,ext

k

x̂1∈k(σ i−η,σ i+η)

W
(k)
tot

(︂
x̂′, y⃗ (k)(x̂)

)︂]︃

≥
n̄f∑︂
i=0

1
2

σ i+1−η∫︂
σ i+η

Qrel
3 (R⊤∂x1

R)dx1 +
∑︂

σ∈Sỹ∪SR

ϕ
(︂
ỹ(σ+)− ỹ(σ−), (R(σ−))−1R(σ+)

)︂
.

To obtain the Γ -liminf inequality, we apply the monotone convergence theo-
rem with η→ 0+.
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4.5 Proof of the upper bound

For a construction of recovery sequences it is crucial to first analyze the cell
formula more precisely. In particular, we will need to prove that the crack set
is essentially localized on the atomic scale.

4.5.1 Analysis of the cell formula

Lemma 4.6 (localization of crack). Let ỹ−, ỹ+ ∈ R3 and R−,R+ ∈ SO(3). Then for
any ε∗ > 0, there is an N∗ ∈ N, sequences (kn)∞n=1 ⊂ N, (rn) ⊂ (0,∞) and mappings
+
y(kn) ∈ PAff(Λrn,kn), n ∈ N, with the following properties:

limsup
n→∞

Ekn(
+
y(kn), [−1,1]) ≤ ϕ

(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ ε∗, (4.21)

rn ↘ 0, rnkn → ∞, and, for suitable
+
y

(kn)
± ∈ R3,

+
R

(kn)
± ∈ SO(3) with

+
y

(kn)
± → ỹ±,

+
R

(kn)
± → R±,

+
y(kn)(w1,x

′) =

⎧⎪⎪⎨⎪⎪⎩
+
R(kn)
−

(︂
rnw1,

x′

kn

)︂⊤
+

+
y(kn)
− on

(︂
[−1,0] \ I (n)

c

)︂
× Sext,

+
R

(kn)
+

(︂
rnw1,

x′

kn

)︂⊤
+

+
y

(kn)
+ on

(︂
(0,1] \ I (n)

c

)︂
× Sext,

where I (n)
c = 1

rnkn
[−N∗,N∗].

Proof. Find (kn)∞n=1 ⊂ N, (rn)∞n=1 ⊂ (0,∞) with rn↘ 0 and limn→∞ rnkn =∞, and
(y(kn)) in PAff(Λrn,kn) such that

lim
n→∞
Ekn(y

(kn), [−1,1]) = ϕ
(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
and, for some y(kn)

± ∈ R3, R(kn)
± ∈ SO(3) with y(kn)

± → ỹ±, R(kn)
± → R±,

y(kn)(w1,x
′) = R(kn)

±
(︂
rnw1,

1
kn
x′
)︂⊤

+ y(kn)
± on I± × Sext.

Recalling assumption (W5) on W
(kn)
cell and passing to a subsequence (without

relabelling it), we can assert that there is anNf ∈ N0,Nf ≤ Cϕ(ỹ+−ỹ−, (R−)−1R+),
such that for every n, only the slices

Skn(s
j
n) :=

[︂
s
j
n −

1
2rnkn

, s
j
n +

1
2rnkn

)︂
× Sext, j ∈ {1, . . . ,Nf},

are broken in the sense from the proof of Theorem 4.2, where s1n < · · · < s
Nf
n

are the midpoints of the w1-projections of the broken slices and limn→∞ s
j
n =

sj ∈ [−3/4,3/4]. This means that ∇̄rn,kny
(kn) on the remaining ‘intact’ slices is at

most c(kn)
frac-far from SŌ(3). Then

Ĩ
(n)
1 =

[︃
−
⌊3

4rnkn⌋
rnkn

+
1
rnkn

, s1n −
1

2rnkn

]︃
,

Ĩ
(n)
2 =

[︂
s1n +

1
2rnkn

, s2n −
1

2rnkn

]︂
, . . . , Ĩ

(n)
Nf+1 =

[︃
sNf
n +

1
2rnkn

,
⌊3

4rnkn⌋
rnkn

]︃
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are the w1-projections of elastically deformed parts of the region surrounding
the crack. We fix a numberN ′∗ := ⌊2NfCE/ε∗⌋+1, where CE is a positive constant
(independent of n and ε∗) that will be introduced in (4.25). Let {Ĩ (n)

ji
}NU
i=1 ⊂

{Ĩ (n)
j }

Nf+1
j=1 denote those intervals Ĩ (n)

ji
for which rnkn|Ĩ

(n)
ji
| ≥ 2N ′∗ +4 (the ‘too long’

intervals). On extracting a further subsequence, NU = NU(N ′∗ ) is independent
of n. We assume NU > 0, since otherwise the next ‘rigidification’ procedure
is redundant and it is enough to construct

+
y(kn) directly from y(kn) later. To

shorten notation, we set Ĩ (n)
ji

=: I (n)
i = [a(n)

i −
1
rnkn

,b
(n)
i + 1

rnkn
].

As an intermediate step, we now construct mappings
↼
y(kn) (illustrated in

Figure 4.2(b)) which have the property that middle parts of the segments I (n)
i ×

Sext are only subject to a rigid motion, instead of an elastic deformation. The
complements of these middle parts contain no more than 2N ′∗ +2 slices. Below,
the rigidifying procedure is presented for an arbitrary but fixed i ∈ {1, . . . ,NU}.

Figure 4.2: Main steps in the proof of Lemma 4.6. Rigid parts of the rod are
drawn in grey. (a) The original mapping y(kn). (b) Rigidification of rod seg-
ments to construct

↼
y(kn). (c) Subsequent shortening of the rigid parts to obtain

+
y(kn).

Procedure (R). As in Theorem 3.4, we get piecewise constant mappings R(kn)

defined on I (n)
i with discontinuity set contained in 1

rnkn
Z and values in SO(3),
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fulfilling

rn

∫︂
Skn (w̄1)

|∇rn,kny
(kn) −R(kn)|2dw1dx′

≤
1∑︂

m=−1

Crn

∫︂
S

∫︂ w̄1+ m+1
rnkn

w̄1+ m
rnkn

dist2(∇rn,kny
(kn),SO(3))dw1dx′

≤ 3Crn|Skn(w̄1)|(c(kn)
frac)2 ≤ C

k2
n

(4.22)

for all w1 ∈ [a(n)
i ,b

(n)
i ) by Theorem 1.1, growth assumptions on W0, and bounds

related to our extension scheme (cf. (4.5)). Moreover, Theorem 3.4 implies

1
rnkn

⃓⃓⃓⃓
R(kn)(w1)−R(kn)

(︂
w1 ±

1
rnkn

)︂⃓⃓⃓⃓2
≤ C

∫︂
1⋃︁

m=−1
Skn (w̄1+ m

rnkn
)
dist2(∇rn,kny

(kn),SO(3))dw1dx′ (4.23)

for all w1 ∈ [a(n)
i ,b

(n)
i ).

We now define points that delimit the middle part of I (n)
i ×Sext (where y(kn)

has to be ‘rigidified’) and the sets W (n)
− , W (n)

+ containing the w1-coordinates of
cell midpoints left of or right of this middle part:

a
(n)
0,i = a(n)

i +
N ′∗
rnkn

, b
(n)
0,i = b(n)

i −
N ′∗
rnkn

W (n)
− =

(︂ 1
2rnkn

+
1
rnkn

Z
)︂
∩ (a(n)

i , a
(n)
0,i )

W
(n)
+ =

(︂ 1
2rnkn

+
1
rnkn

Z
)︂
∩ (b(n)

0,i ,b
(n)
i ).

The next few steps, till (4.25), are similar to the proof of the inequality ϕ ≤ ψ
(cf. Subsection 4.4.4), so not all computations will be described in full here.
We find w(n)

− ∈W (n)
− and w(n)

+ ∈W
(n)
+ such that

1∑︂
ℓ=−1

∑︂
x′∈L′,ext

knW
(kn)
tot

(︂
x′, ∇̄rn,kny

(kn)(w(n)
− + ℓ

rnkn
,x′)

)︂
≤ 3
N ′∗
Ekn

(︂
y(kn), (a(n)

i , a
(n)
0,i )

)︂
,

1∑︂
ℓ=−1

∑︂
x′∈L′,ext

knW
(kn)
tot

(︂
x′, ∇̄rn,kny

(kn)(w(n)
+ + ℓ

rnkn
,x′)

)︂
≤ 3
N ′∗
Ekn

(︂
y(kn), (b(n)

0,i ,b
(n)
i )

)︂
.

Writing R(i,kn)
± in place of R(kn)(w(n)

± ) for short and using that all the slices cen-
tred in W (n)

± are intact, from the first inequality in (4.22) we get

||∇rn,kny
(kn) −R(i,kn)

± ||
L2(Skn (w(n)

± );R3×3)
=O

(︃ 1
√
N ′∗ rnkn

)︃
.

Choosing vectors c(n)
− , c(n)

+ as

c
(n)
± = −

∫︂
Skn (w(n)

± )
y(kn)(w1,x

′)−R(i,kn)
±

(︂
rn(w1 −w

(n)
± ),

1
kn
x′
)︂⊤

dw1dx′,
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we get Poincaré inequalities√︄∫︂
Skn (w(n)

± )
|y(kn)(w1,x′)−R

(i,kn)
±

(︂
rn(w1 −w

(n)
± ),

1
kn
x′
)︂⊤
− c(n)
± |2dw1dx′

≤ C 1
kn
||∇rn,kny

(kn) −R(i,kn)
± ||

L2(Skn (w(n)
± );R3×3)

with a constant C > 0.
With the rotated and shifted version of y(kn), given by

y
(kn)
r (w1,x

′) := R(i,kn)
−

[︃(︂
R

(i,kn)
+

)︂⊤
(y(kn)(w1,x

′)−c(n)
+ )+

(︄
rn(w(n)

+ −w(n)
− )

0

)︄]︃
+c(n)
− , (4.24)

set

↼
y(kn)(w1,x

′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(kn)(w1,x
′) a

(n)
i −

1
rnkn
≤ w1 ≤ w(n)

− − 1
2rnkn

pcw. affine (24 simplices/cell) w(n)
− − 1

2rnkn
< w1 < w

(n)
− + 1

2rnkn

R(i,kn)
− (rn(w1 −w(n)

− ), 1
kn
x′)⊤ + c(n)

− w(n)
− + 1

2rnkn
≤ w1 ≤ w

(n)
+ − 1

2rnkn

pcw. affine (24 simplices/cell) w
(n)
+ − 1

2rnkn
< w1 < w

(n)
+ + 1

2rnkn

y
(kn)
r (w1,x

′) w
(n)
+ + 1

2rnkn
< w1 ≤ b

(n)
i + 1

rnkn

so that
↼
y(kn) is defined on I (n)

i ×Sext. Besides, to prepare future rigidification on

possible next intervals, we redefine y(kn) by y(kn) := y
(kn)
r on [b(n)

i + 1
rnkn

,1]×Sext.
After calculations as in the proof of Lemma 4.4 we deduce that on any

atomic cell Q such that IntQ ⊂ Skn(w
(kn)
− ),⃓⃓⃓

∇̄rn,kny
(kn)|Q −R(i,kn)

− Id̄
⃓⃓⃓
=O

(︃ 1√︁
N ′∗kn

)︃
and consequently,

⃓⃓⃓
∇̄rn,kn

↼
y(kn)|Q −R(i,kn)

− Id̄
⃓⃓⃓
=O

(︃ 1√︁
N ′∗kn

)︃
,

which implies that for all n sufficiently large, the energetic error occurring on
the transition slice Skn(w

(kn)
− ) is controlled by our choice of N ′∗ :⃓⃓⃓

Ekn
(︂
y(kn),w(n)

− +
1

2rnkn
(−1,1)

)︂
−Ekn

(︂↼
y(kn),w(n)

− +
1

2rnkn
(−1,1)

)︂⃓⃓⃓
≤ CE

N ′∗
. (4.25)

It should be stressed that the constant CE above does not depend on n or ε∗.
Due to the definition of y

(kn)
r , an analogous computation reveals that (4.25)

also holds if w(n)
− is replaced with w(n)

+ .
Later we will have to check that (

↼
y(kn))∞n=1 is an admissible competitor of

(y(kn))∞n=1 in the cell formula. Therefore we now show that the error incurred
by the boundary condition due to the previous steps of Procedure (R) tends to
zero.
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By our interpolation scheme, on any atomic cell Q contained in I (n)
i × Sext

we have (cf. Lemma 3.1)⃦⃦⃦
∇rn,kny

(kn)|Q
⃦⃦⃦
∞ ≤ 24−

∫︂
Q
|∇rn,kny

(kn)|dw1dx′ ≤ C
⃓⃓⃓
∇̄rn,kny

(kn)|Q
⃓⃓⃓
≤ C

since dist2(∇̄rn,kny
(kn),SŌ(3)) ≤ (c(kn)

frac)2. This proves that the mappings y(kn) are

Lipschitz on I (n)
i × Sext with the uniform constant Crn. In particular,

lim
n→∞
|c(n)

+ − c(n)
− | = 0.

Since by iterating (4.23) we derive a ‘pointwise curvature estimate’ (as in
[MM03, FJM02])

|R(i,kn)
+ −R(i,kn)

− |2 ≤ Cr2
nk

2
n

∫︂
I

(n)
i ×S

dist2(∇rn,kny
(kn),SO(3))dw1dx′ =O(rn)

we obtain for y
(kn)
r from (4.24) that |y(kn)

r − y(kn)| → 0 uniformly.
This finishes Procedure (R) for the chosen i.
We construct

↼
y(kn) by letting

↼
y(kn)(w1,x

′) := y(kn)(w1,x
′) for every −1 ≤ w1 ≤

a
(n)
1 −

1
rnkn

and x′ ∈ Sext and then by successively applying Procedure (R) for i =
1,2, . . . ,NU (it should be kept in mind that after each invocation of Procedure
(R), y(kn) is redefined on [b(n)

i + 1
rnkn

,1] × Sext so that in step i + 1 we get the

modified mapping y(kn) from step i as input).
On ( 1

rnkn
⌊3

4rnkn⌋,1] × Sext, we define
↼
y(kn) as

↼
y(kn) := y(kn), where y(kn) is

understood as the transformed mapping after the NU-th step of rigidification.
As we have seen above, the affine transformations given by (4.24) at each

step vanish in the limit. Hence, ((rn)∞n=1, (kn)∞n=1, (
↼
y(kn))∞n=1) ∈ Vỹ+−ỹ−,(R−)−1R+ .

To summarize, the sequence (
↼
y(kn))∞n=1 satisfies

ϕ
(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
≤ limsup

n→∞
Ekn

(︂↼
y(kn), [−1,1]

)︂
≤ ϕ

(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ 2NU

CE

N ′∗
≤ ϕ

(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ ε∗.

Now we proceed to construct the modifications
+
y(kn) of

↼
y(kn) which will

have more localized non-rigid parts (as depicted in Figure 4.2(c)).
Since no confusion arises, we again use R(kn)

± and y
(kn)
± to denote the rigid

deformations near the interval boundaries, i.e.

↼
y((kn))(w1,x

′) = R(kn)
±

(︂
rnw1,

1
kn
x′
)︂⊤

+ y(kn)
± on I± × Sext.

Now we first extend
↼
y(kn) rigidly to a function on R × Sext by requiring this

formula to hold true on (−∞,−3
4 ) × Sext and (3

4 ,∞) × Sext, with the obvious in-
terpretation of the ± sign.

If j = ji for some i ∈ {1,2, . . . ,NU}, then we write w(i,n)
− , w(i,n)

+ in place of w(n)
− ,

w
(n)
+ from Procedure (R), respectively, to stress the dependence on i. We set
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d(i,n) = w(i,n)
+ −w(i,n)

− − 1
rnkn

and also recall the definition of R(i,kn)
− on this interval.

Now consecutively do the following steps for i ∈ {1,2, . . . ,NU}, in reverse order
starting with i =NU:

+
y(kn)(w1,x

′) :=

⎧⎪⎪⎨⎪⎪⎩
↼
y(kn)(w1,x

′) w1 ≤ w(i,n)
− + 1

2rnkn
,

↼
y(kn)(w1 + d(i,n),x′)− rnd(i,n)R(i,kn)

− e1 w1 > w
(i,n)
− + 1

2rnkn
,

↼
y(kn)(w1,x

′) :=
+
y(kn)(w1,x

′), w1 ≥ w(i,n)
− + 1

2rnkn
, x′ ∈ Sext.

This finally results in a configuration with

+
y(kn)(w1,x

′) =
↼
y(kn)(w1,x

′) = R(kn)
−

(︂
rnw1,

1
kn
x′
)︂⊤

+ y(kn)
−

if w1 ≤ −3
4 , x′ ∈ Sext, and

+
y(kn)(w1,x

′) =
↼
y(kn)(w1 + d(n),x′)− rnc(n)

= R(kn)
+

(︂
rnw1,

1
kn
x′
)︂⊤

+ rnd
(n)R

(kn)
+ e1 + y(kn)

+ − rnc(n)

where d(n) =
∑︁NU
i=1d

(i,n) and c(n) =
∑︁NU
i=1d

(i,n)R(i,kn)
− e1, if w1 ≥ 3

4−d
(n) and x′ ∈ Sext.

Observe that Ekn(
+
y(kn), [−1,1]) = Ekn(

↼
y(kn), [−1,1]) for every n ∈ N as we have

only shortened the intermediate rigid parts. Also, the length of the non-rigid
part now satisfies

1
rnkn

⌊︃3
4
rnkn

⌋︃
− d(n) − 1

rnkn

(︃
−
⌊︃3

4
rnkn

⌋︃
+ 1

)︃
≤ 1
rnkn

(︂
(2N ′∗ + 4)(Nf + 1) +Nf

)︂
.

SettingN∗ = (2N∗+4)(Nf+1)+Nf and shifting we finally obtain
+
y(kn) as claimed.

Remark 4.9. Lemma 4.6 shows that the choice of I± in the definition of ϕ
was arbitrary and that a different positive length of I± which still leaves a
nonempty middle interval for fracture would give the same value of ϕ.

Our next task is to prove that the passages to subsequences (kn) can be
avoided when approximating the value of the cell formula.

Proposition 4.7. Suppose that ỹ−, ỹ+ ∈ R3 and R−,R+ ∈ SO(3). Then for any
ε∗ > 0 and any nonincreasing sequence (ρk)∞k=1 ⊂ (0,∞) with limk→∞ρk = 0 and
limk→∞ρkk = ∞ there exist deformations ȳ(k) : ([−1,1] × Sext) → R3 such that
((ρk)∞k=1, (k)∞k=1, (ȳ

(k))∞k=1) ∈ Vỹ+−ỹ−,(R−)−1R+ and

limsup
k→∞

Ek(ȳ(k), [−1,1]) ≤ ϕ
(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ ε∗.

Proof. For a given ε∗ > 0 we choose N∗ ∈ N, a (without loss of generality nonde-
creasing) sequence (kn)∞n=1, and mappings

+
y(kn) ∈ PAff(Λrn,kn) as in Lemma 4.6

so that

limsup
n→∞

Ekn(
+
y(kn), [−1,1]) ≤ϕ

(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ ε∗,
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and, for suitable
+
y

(kn)
± ∈ R3,

+
R

(kn)
± ∈ SO(3) with

+
y

(kn)
± → ỹ±,

+
R

(kn)
± → R±, after a

rigid extension to the left and to the right,

+
y(kn)(w1,x

′) =
+
R

(kn)
±

(︂
rnw1,

x′

kn

)︂⊤
+

+
y

(kn)
± on

(︂
R \ I (n)

c

)︂
× Sext

where I (n)
c = 1

rnkn
[−N∗,N∗].

For each k ∈ N find nk ∈ N such that k−1
nk ≤ k

−1 ≤ k−1
nk−1. Set

ȳ(k)(w1,x
′) :=

knk
k

+
y(knk )

(︂ ρkk

rnkknk
w1,x

′
)︂
, (w1,x

′) ∈ [−1,1]× Sext.

Like this, ȳ(k) is well-defined (as far as the boundary condition on I± × Sext is
concerned), at worst for all k larger than a certain k̄ ∈ N. If it is the case that
k̄ > 1, we define y(1), . . . ,y(k̄−1) as we like, e.g. by extending the boundary rigid
motions to all of [−1,1]× Sext. Then for k ≥ k̄,

∇̄ρk ,ky
(k)(w1,x

′) = ∇̄rnk ,knk
+
y(knk )

(︂ ρkk

rnkknk
w1,x

′
)︂

and

kW
(k)
tot

(︃
x′, ∇̄ρk ,ky

(k)(w1,x
′)
)︃
≤ knkW

(knk )
tot

(︃
x′, ∇̄rnk ,knk

+
y(knk )

(︂ ρkk

rnkknk
w1,x

′
)︂)︃

by assumption (W4) on the cell energy. This yields

ϕ
(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
≤ limsup

k→∞
Ek(ȳ(k), [−1,1])

≤ limsup
k→∞

Eknk (
+
y(knk ), [−1,1]) ≤ ϕ

(︂
ỹ+ − ỹ−, (R−)−1R+

)︂
+ ε∗.

The approximating sequence (y(k)) in the vicinity of crack points can be
chosen to be bounded in L∞ in a universal way – this is the content of

Proposition 4.8. Suppose that ỹ−, ỹ+ ∈ R3, R−,R+ ∈ SO(3) and (rk)∞k=1 ⊂ (0,∞) is
a nonincreasing sequence with limk→∞ rk = 0 and limk→∞ rkk = ∞. Assume that
y(k) : ([−1,1] × Sext) → R3 is such that ((rk)∞k=1, (k)∞k=1, (y

(k))∞k=1) ∈ Vỹ+−ỹ−,(R−)−1R+

with
y(k)(w1,x

′) = R(k)
±

(︂
rnw1,

1
k
x′
)︂⊤

+ y(k)
± on I± × Sext

for R(k)
± → R±, y(k)

± → ỹ±. If the maximum interaction range property (W9) with
rate (Mk)∞k=1 holds true, then there exists a modification ȳ(k) of y(k) with the corre-
sponding triple ((rk)∞k=1, (k)∞k=1, (ȳ

(k))∞k=1) ∈ Vỹ+−ỹ−,(R−)−1R+ such that

|Ek(ȳ(k), [−1,1])−Ek(y(k), [−1,1])| ≤ C
kMk
Ek(y(k), [−1,1]),

ȳ(k) = y(k) on (I− ∪ I+)× Sext and

||dist(ȳ(k), {y(k)
− , y

(k)
+ })||∞ ≤ CrkMkkEk(y(k), [−1,1]).

76



Proof. We write D(x̄) = x̄ + {( 1
rkk

zi1, (z
i)′); i = 1, . . . ,8} for the corners of the cell

with midpoint x̄ ∈ Λ′rk ,k. Our strategy is to move back all pieces of the rod

that are too far from {y(k)
− , y

(k)
+ }. Fix k ∈ N and consider the undirected graph

G = (V,E), where V = Λrk ,k and

{x,x†} ∈ E⇔ (∃ x̄ ∈Λ′rk ,k : x,x† ∈D(x̄)∧ |y(k)(x)− y(k)(x†)| <Mk).

Let G1,G2, . . . ,GnG
be the connected components of G, numbered in such a way

that (I−×Sext)∩Λrk ,k ∈G1 and (I+×Sext)∩Λrk ,k ∈GnG
. Accordingly we partition

{z1, . . . ,z8} = Z1(x̄)∪̇Z2(x̄)∪̇ · · ·∪̇Znx̄(x̄) for every x̄ ∈Λ′rk ,k, where Zi(x̄) ≠ ∅, so that

zj ,zm ∈ Zℓ(x̄) for some ℓ ∈ {1,2, . . . ,nx̄} if and only if there is iV ∈ {1,2, . . . ,nG}
such that x̄ + 1

kz
j , x̄ + 1

kz
m ∈ ViV , the set of vertices of GiV . Then the induced

components of atomic cells are far apart: for any x̄ ∈ Λ′rk ,k and 1 ≤ i < j ≤ nx̄,
we have dist(y(k)(x̄+Zi(x̄)), y(k)(x̄+Zj(x̄))) ≥Mk.

Similarly as before we observe that the number of atomic cells ‘broken’ by
y(k) is controlled by the energy so that the number nG of connected compo-
nents of G satisfies a bound of the form

nG ≤ C1Ek(y(k), [−1,1])

with a constant C1 > 0. The construction further implies that the diameter of
each component after deformation is bounded by

diamy(k)(Vi) ≤ C2Mkrkk, i = 1, . . . ,nG,

with another constant C2 > 0.
For the first and last component we have

dist(y(k)(V1), {y(k)
− }) ≤ C3Mkrkk and dist(y(k)(VnG

), {y(k)
+ }) ≤ C3Mkrkk.

If nG ≥ 3, we can shift graph components Gi , i = 2, . . . ,nG − 1, without consid-
erably changing the total energy, provided we do not put the components at
a distance less than Mk. Specifically, for γ = 2Mk + (C2 +C3)Mkrkk ≤ (2 +C2 +

C3)Mkrkk and |e| = 1 with e ⊥ y(k)
+ −y(k)

− the points y(k)
− +(i−1)γe, i = 2, . . . ,nG−1,

have a distance ≥ γ from each other and from {y(k)
+ , y(k)

− }. We then define ȳ(k)

by shifting Gi rigidly in such a way that y(k)
− +(i−1)γe ∈ ȳ(k)(Vi), i = 2, . . . ,nG−1.

Then indeed the shifted components have the required minimal distances
and moreover

dist(y(k)(Vi), {y(k)
− }) ≤ nGγ ≤ C1Ek(y(k), [−1,1])(2 +C2 +C3)Mkrkk,

i = 2, . . . ,nG−1. The assertion follows now by noting that ȳ(k) = y(k) on V1∪VnG
and

1
k |Ek(ȳ

(k), [−1,1])−Ek(y(k), [−1,1])| ≤ CEk(y(k), [−1,1])
Cfar

k2Mk
,

as only broken cells have been altered.
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4.5.2 Construction of recovery sequences

Proof of Theorem 4.3(ii). It is known from the theory of Γ -convergence that for
any ε > 0 it suffices to find a recovery sequence with limsupk→∞ kE

(k)(y(k)) ≤
Elim(ỹ,d2,d3)+ε, which is trivial if (ỹ,d2,d3) ∉A. In the case that (ỹ,d2,d3) ∈ A,
let (σ i)n̄f+1

i=0 be the partition of [0,L] such that {σ i}n̄f
i=1 = Sỹ ∪ SR, where SR :=

Sỹ′∪Sd2
∪Sd3

. Depending on the assumptions on ỹ, d2, d3, we treat two different
cases separately.

Piecewise smooth case

Denoting by UCn(U ;Rm) the space of functions f : U → Rm, U ⊂ Rℓ, such that
their derivatives of order 0,1, . . . ,n are uniformly continuous on U , we first
additionally suppose that ỹ|(σ i−1,σ i ) ∈ UC3((σ i−1,σ i);R3), ds|(σ i−1,σ i ) ∈ UC2((σ i−1,

σ i);R3), s = 2,3, for all i ∈ {1,2, . . . , n̄f +1} and that R = (∂1ỹ|d2|d3) is constant on
the sets (σ0,σ0 +η), (σ i −η,σ i), (σ i ,σ i +η), i ∈ {1,2, . . . , n̄f}, and (σ n̄f+1 −η,σ n̄f+1)
for some η > 0. If k ∈ N, write Ik0 := [0, 1

k ⌊kσ
1⌋], Iki := [1

k ⌊kσ
i⌋ + 1

k ,
1
k ⌊kσ

i+1⌋] for
i = 1,2, . . . , n̄f − 1 and Ikn̄f

:= [1
k ⌊kσ

n̄f⌋+ 1
k ,Lk].

Let β(·,x′) ∈ C1([0,L];R3) for each x′ ∈ Lext and q ∈ C2([0,L];R3). It turns out
that the sequence

ỹ(k)(x) := ỹ(x1)+
1
k
x2d2(x1)+

1
k
x3d3(x1)+

1
k
q(x1)+

1
k2β(x), x ∈ {0, 1

k , . . . ,Lk}×L
ext,

(4.26)
appropriately extended and interpolated on [−1

k ,Lk + 1
k ] × Sext, behaves elasti-

cally in every region Iki × S
ext, i = 0,1, . . . , n̄f.

To show this, choose i ∈ {0,1, . . . , n̄f}. Excluding the contributions withW (k)
end,

the strain energy contained in the portion Iki × S
ext is

k

∫︂
Iki ×Sext

W
(k)
tot (x′, ∇̄k ỹ(k))dx = k

∫︂
Iki ×Sext

W
(k)
tot

(︂
x′,R⊤(x̄1)∇̄k ỹ(k)(x)

)︂
dx =

= k
∫︂
Iki ×Sext

W
(k)
tot

(︂
x′, Id̄ +R⊤(x̄1)

(︂
∇̄k ỹ(k)(x)−R(x̄1)Id̄

)︂)︂
dx.

Using Taylor expansions as in the purely elastic case, we find

∥∇̄k ỹ(k) −R(·̄)Id̄∥L∞(Iki ×Sext;R3×8) =O
(︃1
k

)︃
due to the sufficient smoothness of the restrictions of ỹ, d2, d3, q, or β, to
(σ i ,σ i+1), or to (σ i ,σ i+1)× Sext. But this implies that

dist(∇̄k ỹ(k)
⃓⃓⃓
Iki ×Sext ,SŌ(3)) ≤ c(k)

frac

for all k large enough, since c(k)
frac =O( 1√

k
), and W (k)

tot does not enter the fracture

regime on any atomic cell in Iki × S
ext.

Hence, the analysis of elastic rods in Chapter 3 shows that one has ỹ(k)→ ỹ
in L2 on (0,L)× Sext as well as∑︂

x∈{− 1
2k ,Lk+ 1

2k }×L′,ext

kW
(k)
end

(︂
x1,x

′, ∇̄k ỹ(k)(x)
)︂
→ 0
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and, for a suitable choice of β and q,

k

∫︂
Iki ×Sext

W
(k)
tot (x′, ∇̄k ỹ(k))dx

→ 1
2

∫︂ σ i+1

σ i

∫︂
Sext

Qtot

(︄
x′,R⊤(x1)

(︃ ∂R
∂x1

(x1)(0, x̄2, x̄3)⊤ +
∂q

∂x1
(x1)

)︃
e⊤1 Id̄

+R⊤(x1)
∂R
∂x1

(x1)
[︂
zi1(0,zi2,z

i
3)⊤

]︂8
i=1

+R⊤(x1)
(︂
∇̄2dβ(x)| ∇̄2dβ(x)

)︂)︄
dx

(4.27)

≤ 1
2

∫︂ σ i+1

σ i

∫︂
Sext

Qrel
3

(︃
R⊤(x1)

∂R
∂x1

(x1)
)︃
dx1 + ε. (4.28)

Indeed one can choose β ≡ 0 and q ≡ 0 on (σ i ,σ i + η
2 )∪ (σ i+1 − η

2 ,σ
i+1) as R by

assumption is constant on a neighbourhood of these sets. So we have

ỹ(k)(x) =

⎧⎪⎪⎨⎪⎪⎩ỹ(σ i+) +R(σ i+)(x1 − σ i ,x′)⊤ for x1 ∈ (σ i ,σ i + η
2 ),

ỹ(σ i+1−) +R(σ i+1−)(x1 − σ i+1,x′)⊤ for x1 ∈ (σ i+1 − η2 ,σ
i+1).

We now update ỹ(k) by replacing portions near the jumps σ i (and match-
ing all parts by applying suitable rigid motions). Fix a sequence (rk)∞k=1 such
that rk → 0 and rkk → ∞. By Proposition 4.7 for each i = 1, . . . , n̄f we can
choose y

(k)
i : ([−1,1] × Sext)→ R3 such that ((rk)∞k=1, (k)∞k=1, (y

(k)
i )∞k=1) belongs to

Vỹ(σ i+)−ỹ(σ i−),(R(σ i−))−1R(σ i+) with

y
(k)
i (w1,x

′) = R(k,i)
±

(︂
rnw1,

1
k
x′
)︂⊤

+ y(k,i)
± on I± × Sext

for R(k,i)
± → R(σ i±), y(k,i)

± → ỹ± which satisfies the energy estimate

limsup
k→∞

Ek
(︂
y

(k)
i , [−1,1]

)︂
≤ ϕ(ỹ(σ i+)− ỹ(σ i−),R(σ i−)−1R(σ i+)) + ε. (4.29)

Let Hσ,r(x) := (1
r (x1 − σ ),x′) for any r > 0 and recall σ ik = 1

k ⌊kσ
i⌋. Noticing

that ỹ(k) is rigid near a jump as are the y
(k)
i near ±1, we can now define a

modification ỹ(k)
tot of ỹ(k) by setting

ỹ
(k)
tot(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ỹ(k)(x) −1

k ≤ x1 ≤ σ1
k − rk ,

O(k,i)
− y

(k)
i ◦Hσ ik ,rk (x) + c(k,i)

− σ ik − rk < x1 ≤ σ ik + rk , i = 1, . . . , n̄f,

O
(k,i)
+ ỹ(k)(x) + c(k,i)

+ σ ik + rk < x1 ≤ σ i+1
k − rk , i = 1, . . . , n̄f − 1,

O
(k,n̄f)
+ ỹ(k)(x) + c(k,n̄f)

+ σ n̄f
k + rk < x1 ≤ Lk + 1

k ,

where O(k,i)
± ∈ SO(3) and c(k,i)

± ∈ R3 are such that

O(k,i)
− y

(k)
i ◦Hσ ik ,rk + c(k,i)

− =

⎧⎪⎪⎨⎪⎪⎩O(k,i−1)
+ ỹ(k) + c(k,i−1)

+ on (σ ik − rk ,σ
i
k −

3
4rk)× S

ext,

O
(k,i)
+ ỹ(k) + c(k,i)

+ on (σ ik + 3
4rk ,σ

i
k + rk)× Sext
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for i = 1, . . . , n̄f (and we have set O(k,0)
+ := Id, c(k,0)

+ := 0). Since R(k,i)
± → R(σ i±),

y
(k,i)
± → ỹ± we get O(k,i)

± → Id and c
(k,i)
± → 0 as k → ∞. Thus we still have

ỹ
(k)
tot → ỹ in L2((0,L) × Sext;R3). By (4.28) and (4.29) the sequence ỹ(k)

tot satisfies
the envisioned energy estimate

limsup
k→∞

kE(k)(ỹ(k)
tot) ≤ Elim(ỹ,d2,d3) +Cε.

It remains to observe that in case (W9) holds true with a sequence (Mk)∞k=1
and ||ỹ||∞ ≤ M, then for any (ζk)∞k=1 ⊂ (0,1) with ζk ↘ 0 and ζk/Mk → ∞ one

can choose ỹ(k)
tot such that ||ỹ(k)

tot||∞ ≤M +ζk. This is clear by construction for ỹ(k)

in (4.26) instead of ỹ(k)
tot since ζk ≫ 1

k . The bound is indeed preserved by the

passage to ỹ(k)
tot due to Proposition 4.8 once we have rkMkk ≪ ζk. As Proposi-

tion 4.7 allows us to choose rk ↘ 0 as fast as we wish as long as rkk →∞, the
claim follows.

Nonsmooth case

Now let us assume that ỹ, d2, d3 are general as in Theorem 4.3(ii). Interestingly,
a related approximation problem was treated recently by P. Hornung. [Hor21]
However, a more elementary construction is sufficient in our case. By a density
argument, it is enough to show that there are sequences (ỹ(j)

tot)
∞
j=1, (d(j)

s )∞j=1, s =
2,3, such that:

(i) for every j and all i ∈ {1,2, . . . , n̄f + 1}, the functions satisfy ỹ(j)
tot|(σ i−1,σ i ) ∈

UC3((σ i−1,σ i);R3), d(j)
2 |(σ i−1,σ i ),d

(j)
3 |(σ i−1,σ i ) ∈ UC2((σ i−1,σ i);R3) with R(j)

tot =

(∂x1
ỹ

(j)
tot|d

(j)
2 |d

(j)
3 ) constant on (σ i − ηj ,σ i) and on (σ i ,σ i + ηj), ηj > 0, and

(ỹ(j)
tot,d

(j)
2 ,d

(j)
3 ) ∈ A;

(ii) ỹ(j)
tot→ ỹ in L2((0,L);R3), R(j)

tot→ R = (∂x1
ỹ|d2|d3) in H1((σ i−1,σ i);R3×3) for

any i ∈ {1, . . . , n̄f + 1};

(iii) Elim(ỹ(j)
tot,d

(j)
2 ,d

(j)
3 )→ Elim(ỹ,d2,d3), j→∞.

Let (ηj) be a positive null sequence. For each i ∈ {1,2, . . . , n̄f + 1} we find an

approximating sequence (R̃(j)|(σ i−1,σ i )) ⊂ UC2([σ i−1,σ i];R3×3), such that R̃(j) is

constant on (σ i−1,σ i−1 + ηj) and (σ i − ηj ,σ i) and R̃(j)→ R in H1((σ i−1,σ i);R3×3)

so that R̃(j) → R uniformly in (σ i−1,σ i) by the Sobolev embedding theorem.
Then we project R̃(j)(x1) for every x1 ∈ (σ i−1,σ i) smoothly onto SO(3) and get
a sequence {R(j)} ⊂ C1([σ i−1,σ i];R3×3) of mappings with values in SO(3). This
implies that R(j)→ R in H1((σ i−1,σ i);R3×3) for i = 1,2, . . . , n̄f + 1.

We write R(j) = (∂x1
ỹ(j)|d̄(j)

2 |d̄
(j)
3 ) for d̄(j)

2 , d̄
(j)
3 ∈ C2([σ i−1,σ i];R3) and ỹ(j) ∈

C3([σ i−1,σ i];R3) such that ỹ(j)(σ i−1+) = ỹ(σ i−1+); thus we have (ỹ(j)|d̄(j)
2 |d̄

(j)
3 ) ∈

A. To avoid issues with crack terms, we rigidly move the pieces of the rod so
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as to obtain a j-independent contribution from the cracks that is exactly equal
to the limiting crack energy. We set

ỹ
(j)
tot(x) =O(j,i)ỹ(j)(x) + c(j,i) and d

(j)
s =O(j,i)d̄

(j)
s , s = 2,3,

if σ i−1 < x1 < σ
i , i = 1,2, . . . , n̄f+1, whereO(j,i) ∈ SO(3) and c(j,i) ∈ R3 are defined

consecutively by O(j,0) = Id, c(j,0) = 0, and requiring that

ỹ
(j)
tot(σ

i+)− ỹ(j)
tot(σ

i−) = ỹ(σ i+)− ỹ(σ i−) and

[R(j)
tot(σ

i−)]−1R
(j)
tot(σ

i+) = [R(σ i−)]−1R(σ i+)

for i = 1, . . . , n̄f, R
(j)
tot = (∂x1

ỹ
(j)
tot|d

(j)
2 |d

(j)
3 ), j ∈ N. By frame indifference, the elastic

energy is not changed by such an operation. Noting thatO(j,i)→ Id and c(j,i)→
0 for j → ∞, we see that these mappings are such that (i)–(iii) hold (for (iii)
observe that the integral in (4.27) behaves continuously in R with respect to
the topologies used here).

4.6* A more simple proof for a highly brittle model

If we use stronger assumptions on our interaction potentials, Γ -convergence
can be proved more easily. The effective ‘highly brittle’ continuum model is
specified in Theorem 4.9. Due to the explicit expression for crack energy, tech-
nical constructions like in Subsections 4.4.4 or 4.5.1 can be avoided.

Our total strain energy E(k) in this section is a sum of x′-dependent cell
energies:

E(k)(y(k)) =
∑︂
x̂∈Λ̂′k

W
(k)
cell

(︂
x̂′, y⃗ (k)(x̂)

)︂
,

where W (k)
cell : L′ ×R3×8→ [0,∞), and no stand-alone surface terms are present

this time. (Firstly, the dependence on x′ allows some basic surface energy mod-
elling by defining W (k)

cell differently near the rod’s surface; secondly, more so-
phisticated surface terms would make it difficult to characterize the limiting
functional explicitly in the presence of rod kinks.)

These considerations also indicate that it is sufficient to extend lattice de-
formations only in the longitudinal direction x1, in order to have y(k) : Λk ∪
({Lk + 1

k } ×L)→ R3.

As for W (k)
cell, we rely on a new, simplified set of assumptions:

(V1) W (k)
cell(x

′,Ry⃗ + (c| · · · |c)) = W
(k)
cell(x

′, y⃗) for all x′ ∈ L′, R ∈ SO(3), y⃗ ∈ R3×8,
c ∈ R3, and k ∈ N.

(V2) For every k ∈ N and x′ ∈ L′, W (k)
cell(x

′, ·) attains a minimum (equal to 0) at
and only at deformations of the form y⃗ = (ŷ1| · · · |ŷ8) with ŷi = Rzi + c for
all i ∈ {1, . . . ,8} and some R ∈ SO(3), c ∈ R3.
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(V3) There are cw ≥ cW > 0,W0 : L′×R3×8→ [0,∞), and cut-off values c(k)
cut(x

′) >
0, k ∈ N, x′ ∈ L′, where

lim
k→∞

k
(︂
c

(k)
cut(x

′)
)︂2

= ccut(x
′) ∈ (0,∞),

such that for any x′ ∈ L′ and y⃗ = (ŷ1|ŷ2| · · · |ŷ8) ∈ R3×8, (recall the formula
y⃗ = ∇̄ŷ + 1

8
∑︁8
i=1 ŷi(1, . . . ,1)) we have

W
(k)
cell(x

′, y⃗) = min
{︂
W0(x′, y⃗), cW

(︂
c

(k)
cut(x

′)
)︂2}︂
,

cwdist2(∇̄ŷ,SŌ(3)) ≥W0(x′, y⃗) ≥ cWdist2(∇̄ŷ,SŌ(3)).

(V4) W (k)
cell(x

′, ·) is everywhere Borel measurable and W0(x′, ·), x′ ∈ L′, is of class
C2 in a neighbourhood of SŌ(3).

Remark 4.10. The sequence (c(k)
cut)
∞
k=1 need not be monotone.

Theorem 4.9. Under assumptions (V1)–(V4) we have kE(k) Γ→ Ehb as k → ∞,
more precisely:

(i) Let (y(k))∞k=1 be a sequence of lattice deformations such that their piecewise
affine interpolations and extensions (ỹ(k))∞k=1 ⊂ H

1(Ω;R3), defined in Sub-
section 4.1.2, converge in L2(Ω;R3) to ỹ ∈ L2((0,L);R3) for which there is a
partition (ςi)ñf+1

i=0 of [0,L] such that ỹ
⃓⃓⃓
(ςi ,ςi+1)

∈H1((ςi ,ςi+1);R3), 0 ≤ i ≤ ñf.

Assume further that there are ds ∈ L2((0,L);R3) such that for any η > 0 suffi-
ciently small, we have k∂xs ỹ

(k)→ ds in L2((ςi + η,ςi+1 − η)× S;R3), s = 2,3,
1 ≤ i ≤ ñf. Then

Ehb(ỹ,d2,d3) ≤ liminf
k→∞

kE(k)(y(k)).

(ii) Let ỹ ∈ L2((0,L);R3) be such there is a partition (ςi)ñf+1
i=0 of [0,L] for which

ỹ
⃓⃓⃓
(ςi ,ςi+1)

∈ H1((ςi ,ςi+1);R3), and let d2,d3 ∈ L2((0,L);R3). Then there exists

a sequence of lattice deformations (y(k))∞k=1 such that their piecewise affine
interpolations and extensions (ỹ(k))∞k=1 ⊂ H

1(Ω;R3), defined in Subsection

4.1.2, satisfy ỹ(k) → ỹ in L2(Ω;R3), k ∂ỹ
(k)

∂xs
→ ds in L2

loc((ςi ,ςi+1) × S;R3) for
s = 2,3, 0 ≤ i ≤ ñf, and

lim
k→∞

kE(k)(y(k)) = Ehb(ỹ,d2,d3).

The limit energy functional is given by

Ehb(ỹ,d2,d3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∫︂ L

0
Qrel

3 (R⊤∂x1
R)dx1

+ ♯(Sỹ ∪ SR)
∑︂
x′∈L′

cWccut(x
′)

if (ỹ,d2,d3) ∈ A,

+∞ otherwise,
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where R = (∂x1
ỹ|d2|d3), SR = Sỹ′∪Sd2

∪Sd3
, and the class of admissible deformations

A is defined as in Theorem 4.3. Here the relaxed quadratic form Qrel
3 : R3×3

skew →
[0,+∞) is

Qrel
3 (A) := min

α : L→R3

g∈R3

∑︂
x′∈L′

Qcell

(︃
x′,

1
2

(︃
A

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x2
x3

⎞⎟⎟⎟⎟⎟⎟⎠+ g
)︃
(−1,−1,−1,−1,1,1,1,1)

+
1
4
A

⎛⎜⎜⎜⎜⎜⎜⎝0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠+ (∇̄2dα| ∇̄2dα)
)︃

(4.30)

with Qcell(x′, ·) being the quadratic form associated with ∇2W0(x′, Id̄).

Remark 4.11. In the homogeneous case where ccut is independent of the loca-
tion x′ ∈ L′, the limiting crack energy

∑︁
x′∈L′ cWccut(x′) reduces to (♯L′)cWccut.

This can be viewed as an explicit expression for the associated cell formula
ϕ(u,R) from the previous part of this chapter for (u,R) ∈ R3 × SO(3) \ {(0, Id)}.
The Γ -convergence is accompanied by a corresponding compactness theorem.

Theorem 4.10. Suppose the sequence (y(k))∞k=1 of lattice deformations fulfils

limsup
k→∞

(︂
kE(k)(y(k)) + ||y(k)||ℓ∞(Λk ;R3)

)︂
< +∞ (4.31)

Then after applying the extension scheme from Subsection 4.1.2 we can find an in-
creasing sequence (kj)∞j=1 ⊂ N, functions ỹ ∈ P -H2(0,L;R3), d2,d3 ∈ P -H1(0,L;R3)

with R = (∂x1
ỹ|d2|d3) ∈ SO(3) a.e., and a partition (σ i)n̄f+1

i=0 of [0,L] such that for
any

η ∈
(︂
0, 1

2 min
0≤i≤n̄f

|σ i+1 − σ i |
)︂

and every 0 ≤ i ≤ n̄f we have:

(i) ỹ(kj )→ ỹ in L2(Ω;R3) and a.e. in Ω;

(ii) ∇kj ỹ
(kj )→ R = (∂x1

ỹ|d2|d3) in L2((σ i + η,σ i+1 − η)× S;R3×3);

(iii) W0(x′, ∇̄ŷ(kj )(kx1,x
′)) ≤ cW(c

(kj )
cut (x′))2 on (σ i+η,σ i+1−η)×S, for j sufficiently

large.

Proof. Here a slice Sk(x1) is called broken if there is an x′ ∈ S such that

W0

(︂
x′, ∇̄ŷ(k)(kx1,x

′)
)︂
> cW

(︂
c

(k)
cut(x

′)
)︂2
.

This ensures that on any slice that is not broken,W (k)
cell(x

′, ∇̄ŷ(k)(kx1,x
′)) remains

in the elastic regime (W (k)
cell =W0).

The rest of the proof is omitted due to its similarity with the procedure
used for Theorem 4.2.
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4.6.3 Lower bound

In this subsection we show Theorem 4.9(i). We can assume that ỹ(k) → ỹ in
L2(Ω;R3) and

lim
k→∞

kE(k)(y(k)) = liminf
k→∞

kE(k)(y(k)) <∞.

Recall (σ i)n̄f+1
i=0 and ∇kj ỹ

(kj ) from Theorem 4.9.

Let η > 0 be arbitrary, but strictly less than min0≤i≤n̄f |σ
i+1 − σ i | (we will fix

the precise value by Lemmas 4.11–4.12). If j ≥ j0 for j0 large enough, then the
regions [σ i +η,σ i+1−η]×S, 0 ≤ i ≤ n̄f, are not intersected by any broken slices.
By results in the case without fracture (Theorem 3.5(i)), the bound

lim
k→∞

k
∑︂
x̂∈Λ̂′k

x̂1∈k[σ i+η,σ i+1−η]

W
(k)
cell

(︂
x̂′, y⃗ (k)(x̂)

)︂
≥ 1

2

∫︂ σ i+1−η

σ i+η
Qrel

3 (R⊤∂x1
R)dx1

holds true.
Now we turn to the crack contribution to the strain energy. For ease of

notation, we write k in place of the double subscripts kj . We have Sỹ ∪ SR ⊂
{σ i}n̄f

i=1, where SR := Sỹ′ ∪Sd2
∪Sd3

. A lower bound on the energy at an arbitrary
crack point σ ∈ Sỹ ∪ SR will now be derived.

Case 1: σ ∈ Sỹ

As H1 functions on bounded intervals are uniformly continuous, the limits
ỹ(σ+) =: ỹ+, ỹ(σ−) =: ỹ− exist and are finite. The goal is to prove that in each
prism (σ − ϱ,σ + ϱ)× Q̃′ with ϱ > 0 and Q̃′ = x′ + (−1

2 ,
1
2 )2 for some x′ ∈ L′, there

is a broken atomic cell for all large k’s.
Take x′ ∈ L′ and Q̃′ = x′ + (−1

2 ,
1
2 )2.

Lemma 4.11. For any γ > 0 there is ϱ > 0 and k0 ∈ N such that for all k ≥ k0

there exists Q̃ = ( ik ,
i+1
k )× Q̃′ for some i ∈ N, Q̃∩ [(σ − ϱ,σ + ϱ)× Q̃′] ≠ ∅, such that

|∇̄k ỹ
(k)

⃓⃓⃓
Q̃
| > γ .

Proof. By Lemma 3.1, there exists Ce > 0 such that for any Q̃ = (i/k, (i + 1)/k)×
Q̃
′, i ∈ {0,1, . . . ,⌊kL⌋},

1
|Q̃|

∫︂
Q̃
|∇k ỹ(k)(ξ)|2dξ ≤ Ce

⃓⃓⃓⃓
∇̄k ỹ

(k)
⃓⃓⃓
Q̃

⃓⃓⃓⃓2
. (4.32)

Given γ > 0, choose 0 < ε < |ỹ+ − ỹ−|/4. Find ϱ > 0 such that

2
√︁

6Ceγ < (|ỹ+ − ỹ−| − 4ε)/(2ϱ), and
∥ỹ − ỹ+∥L∞(σ,σ+ϱ;R3) < ε, ∥ỹ − ỹ−∥L∞(σ−ϱ,σ ;R3) < ε

by the uniform continuity of ỹ on one-sided neighbourhoods of σ . As stated in
Theorem 4.10(i), we can suppose that ỹ(k) → ỹ a.e. in Ω. This means that for
some a ∈ (σ −ϱ,σ )×S, b ∈ (σ,σ+ϱ)×S, such that their orthogonal projections a′,
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b′ onto {0}×S are equal, we have limk→∞ ỹ
(k)(b) = ỹ(b) and limk→∞ ỹ

(k)(a) = ỹ(a).
Let k0 ∈ N be such that for all k ≥ k0: |ỹ(k)(b) − ỹ(b)| < ε and |ỹ(k)(a) − ỹ(a)| < ε.
Then, by triangle inequality,

|ỹ+ − ỹ−| − 4ε ≤ |ỹ(b)− ỹ(a)| − |ỹ(k)(b)− ỹ(b)| − |ỹ(k)(a)− ỹ(a)|
≤ |ỹ(k)(b)− ỹ(k)(a)| ≤ ∥∂x1

ỹ(k)∥L∞((σ−ϱ,σ+ϱ)×Q̃′ ;R3)|b − a|

≤ 2∥∇k ỹ(k)∥L∞((σ−ϱ,σ+ϱ)×Q̃′ ;R3×3)ϱ

so that

∥∇k ỹ(k)∥L∞((σ−ϱ,σ+ϱ)×Q̃′ ;R3×3) ≥
|ỹ+ − ỹ−| − 4ε

2ϱ
> 2

√︁
6Ceγ. (4.33)

Inequality (4.33) implies that there is a cell Q̃ = (i/k, (i + 1)/k)× Q̃′, with i ∈ N,
such that Q̃ ∩ (σ − ϱ,σ + ϱ) × Q̃′ ≠ ∅, and a simplex T̆ ⊂ Q̃ on which ∇k ỹ(k) is
constant and

∥∇k ỹ(k)∥L∞((σ−ϱ,σ+ϱ)×Q̃′ ;R3×3) = |∇k ỹ(k)
⃓⃓⃓
T̆
| > 2

√︁
6Ceγ.

Combining this with (4.32), we finally get

(2
√

6Ce)2

24
γ2 <

1
24k

k|∇k ỹ(k)
⃓⃓⃓
T̆
|2 ≤ k

∫︂
Q̃
|∇k ỹ(k)(ξ)|2dξ ≤ Ce

⃓⃓⃓⃓
∇̄k ỹ

(k)
⃓⃓⃓
Q̃

⃓⃓⃓⃓2
.

If we let γ := rSŌ(3) + γ0, where the radius rSŌ(3) := |Id̄| =
√

6 and γ0 ≥
maxx′ c

(k)
cut(x

′) for all sufficiently large values of k, then the cell Q̂ = (i, i + 1)× Q̃′

is deformed inelastically, as dist(∇̄ŷ(k)
⃓⃓⃓
Q̂
,SŌ(3)) ≥ c(k)

cut(x
′).

Case 2: σ ∈ SR
The function ỹ is continuous at σ and the restriction of (∂x1

ỹ|d2|d3) to a left (or
right) neighbourhood of σ is H1, so there are finite limits (∂x1

ỹ|d2|d3)(σ+) =:
R+ ∈ SO(3) and (∂x1

ỹ|d2|d3)(σ−) =: R− ∈ SO(3). We claim that again, there is
a broken cell in any prism (σ − ϱ,σ + ϱ) × Q̃′ if k ≥ k0. Consider x′ ∈ L′ and
Q̃
′ = x′ + (−1

2 ,
1
2 )2.

Lemma 4.12. There is ϱ > 0 and k0 ∈ N such that for all k ≥ k0 there exists Q̃ =
( ik ,

i+1
k )× Q̃′ for some i ∈ N, Q̃∩ [(σ − ϱ,σ + ϱ)× Q̃′] ≠ ∅, such that

dist(∇̄ŷ(k)
⃓⃓⃓
Q̂
,SŌ(3)) ≥ c(k)

cut(x
′),

where Q̂ = (i, i + 1)× Q̃′.

Proof. We proceed by contradiction. Fix ϱ > 0 small enough and construct a
subsequence, denoted again by ỹ(k), such that for all Q̃ as in the statement, the

discrete gradients are close to SŌ(3): dist(∇̄ŷ(k)
⃓⃓⃓
Q̂
,SŌ(3)) < c(k)

cut(x
′). This means

that

W
(k)
cell(x

′, ∇̄k ỹ(k)(x)) = min
{︂
W0(x′,∇̄k ỹ(k)(x)), cW[c(k)

cut(x
′)]2

}︂
≥ cWdist2(∇̄k ỹ(k)(x),SŌ(3))
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on any such cell Q̃. For the total energy in this region we get

C ≥ k
∑︂

(x1,x
′)∈Λ̃′k

Q̃(x1,x
′)∩[(σ−ϱ,σ+ϱ)×Q̃′]≠∅

W
(k)
cell(x

′, ∇̄k ỹ(k)(x))

≥ k2cW

∫︂
(σ−ϱ,σ+ϱ)×Q̃′

dist2(∇k ỹ(k)(ξ),SO(3))dξ,

setting Q̃(x1,x
′) = (x1 − 1

2k ,x1 + 1
2k ) × Q̃′ and using an estimate for the distance

to SŌ(3) [Sch09, Lemma 3.6]. Hence, we deduce that∫︂
(σ−ϱ,σ+ϱ)×Q̃′

dist2(∇k ỹ(k),SO(3))dx ≤ C

k2 .

Now as in Theorem 3.4, a further subsequence (∇k ỹ(k)) is obtained which L2-
converges to R̃ ∈ H1((σ − ϱ,σ + ϱ);R3×3). But this contradicts the fact that the
point σ lies in SR.

After we have chosen a suitable γ > 0 in Lemma 4.11 and picked the
smaller ϱ from Lemmas 4.11–4.12, we let η := ϱ and sum up the elastic and
crack energy contributions:

kE(k)(y(k)) = k
n̄f∑︂
i=0

[︃ ∑︂
x̂∈Λ̂′k

x̂1− 1
2k≥σ

i+ϱ, x̂1+ 1
2k≤σ

i+1−ϱ

W
(k)
cell

(︂
x̂′, y⃗ (k)(x̂)

)︂

+
∑︂
x̂∈Λ̂′k

Q̂(x̂)∩k(σ i−ϱ,σ i+ϱ)×S≠∅

W
(k)
cell

(︂
x̂′, y⃗ (k)(x̂)

)︂]︃

≥
n̄f∑︂
i=0

[︃ ∑︂
x̂∈Λ̂′k , x̂1− 1

2k≥σ
i+ϱ,

x̂1+ 1
2k≤σ

i+1−ϱ

kW
(k)
cell

(︂
x̂′, y⃗ (k)(x̂)

)︂
+ k♯(Sỹ ∪ SR)

∑︂
x′∈L′

cW

(︂
c

(k)
cut(x

′)
)︂2

]︃
.

If k→∞, we get

lim
k→∞

kE(k)(y(k)) ≥
[︃ n̄f∑︂
i=0

1
2

∫︂ σ i+1−ϱ

σ i+ϱ
Qrel

3 (R⊤∂x1
R)dx1 + ♯(Sỹ ∪ SR)

∑︂
x′∈L′

cWccut(x
′)
]︃
.

The Γ -liminf inequality is established by letting ϱ→ 0+.

4.6.4 Upper bound

Proof of Theorem 4.9(ii). We show limsupk→∞ kE
(k)(y(k)) ≤ Ehb(y,d2,d3) for a

suitably defined sequence (y(k)). Suppose (ỹ,d2,d3) ∈ A and that (σ i)n̄f+1
i=0 is

the partition of [0,L] such that {σ i}n̄f
i=1 = Sỹ ∪ SR, where SR := Sỹ′ ∪ Sd2

∪ Sd3
.
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As in Subsection 4.5.2, we first suppose that ỹ
⃓⃓⃓
(σ i−1,σ i )

∈ UC3((σ i−1,σ i);R3),

d2

⃓⃓⃓
(σ i−1,σ i )

,d3

⃓⃓⃓
(σ i−1,σ i )

∈ UC2((σ i−1,σ i);R3) for all i ∈ {1, . . . , n̄f + 1}. For k ∈ N we

also set Ik0 := [0, 1
k ⌊kσ

1⌋], Iki := [1
k ⌊kσ

i⌋ + 1
k ,

1
k ⌊kσ

i+1⌋] for i = 1,2, . . . , n̄f − 1 and
Ikn̄f

:= [1
k ⌊kσ

n̄f⌋+ 1
k ,Lk]. Then define the sequence of lattice deformations

ỹ(k)(x) := ỹ(x1) +
1
k
x2d2(x1) +

1
k
x3d3(x1) +

1
k
q(x1) +

1
k2β(x), x ∈ Λ̃k ∩

(︂
[0,L]∩S

)︂
,

where β : [0,L] × L → R3 with β(·,x′) of class C1 on [0,L] and q ∈ C2([0,L];R3)
will be used to approximate the minimizers of problem (4.9) as before. On the
set Ω \ Λ̃k, we extend and interpolate the sequence ỹ(k) in the same way as in
Sections 4.1 and 3.3.4 so that ỹ(k) is piecewise affine on Ω.

The sequence ỹ(k) satisfies, for every i = 0,1, . . . , n̄f,

∥∇̄k ỹ(k) −R(·̄)Id̄∥L∞(Iki ×S;R3×8) =O
(︃1
k

)︃
by Taylor expanding the functions ỹ, d2, d3, q, and β as in Chapter 3.

Thus

dist(∇̄k ỹ(k)
⃓⃓⃓
Iki ×S

,SŌ(3)) ≤
√︃
cW

cw
c

(k)
cut

for all k large enough, as c(k)
cut = O( 1√

k
), so we can treat each segment Iki × S,

i = 0,1, . . . , n̄f, as purely elastic. By the already proved results, we get

k
n̄f∑︂
i=0

∑︂
x̂∈Λ̂′k
x̂1∈kIki

W
(k)
cell

(︂
x′, y⃗ (k)(x̂)

)︂
→ 1

2

n̄f∑︂
i=0

σ i+1∫︂
σ i

∫︂
S

Qcell

(︄
x′,R⊤

∂R
∂x1

⎛⎜⎜⎜⎜⎜⎜⎝ 0
x̄2
x̄3

⎞⎟⎟⎟⎟⎟⎟⎠ (e1)⊤z⃗+

+
1
4

⎛⎜⎜⎜⎜⎜⎜⎝−κ2 −κ3 κ3 −κ2 κ2 +κ3 κ2 −κ3 κ2 +κ3 κ2 −κ3 −κ2 −κ3 κ3 −κ2
−τ τ τ −τ τ −τ −τ τ
τ τ −τ −τ −τ −τ τ τ

⎞⎟⎟⎟⎟⎟⎟⎠+

+R⊤
∂q

∂x1
(x1)(e1)⊤Id̄ +R⊤(∇̄2dβ(x)| ∇̄2dβ(x))

)︄
dx′dx1.

Near the crack points, regardless of the specific values of W (k)
cell, we have

limsup
k→∞

k
n̄f∑︂
i=1

∑︂
x̂∈Λ̂′k

x̂1=⌊kσ i⌋+ 1
2

W
(k)
cell

(︂
x̂′, y⃗ (k)(x̂)

)︂
≤ ♯(Sỹ ∪ SR)

∑︂
x′∈L′

cWccut.

Repeating the diagonalization as at the end of the proof in the purely elastic
case, we reach the conclusion that

limsup
k→∞

kE(k)(y(k)) ≤ Ehb(ỹ,d2,d3).
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4.7 Examples

Finally, we list a few examples of mass-spring models treatable by our meth-
ods: a model with rather general pair interactions, the so-called truncated and
shifted Lennard-Jones potential (LJTS), and a simplified model with ‘truncated
harmonic springs’.

Example 4.1. We can consider, as general nearest-neighbour (NN) and next-to-
nearest-neighbour (NNN) interactions on a cubic lattice,

E(k)(y) =
1
2

∑︂
x̂∗,x̂∗∗∈Λ̂k
|x̂∗−x̂∗∗|=1

W
(k)
NN(|ŷ(x̂∗)−ŷ(x̂∗∗)|)+

1
2

∑︂
x̂∗,x̂∗∗∈Λ̂k

|x̂∗−x̂∗∗|=
√

2

W
(k)
NNN

(︂ |ŷ(x̂∗)− ŷ(x̂∗∗)|√
2

)︂
+Xk(y),

(4.34)
where y : Λk→ R3, ŷ(x̂) = ky(1

k x̂), x̂ ∈ Λ̂k, andW (k)
NN,W (k)

NNN satisfy the following
list of assumptions:¨

(P1) W (k)
NN(N) : [0,∞)→ [0,∞] is continuous and finite on (0,∞) andW (k)

NN(N)(r)=
0 if and only if r = 1;

(P2) there is a sequence (c(k)
f )∞k=1 with c(k)

f ↘ 0 and limk→∞ k[c(k)
f ]2 ∈ (0,∞) such

that
W

(k)
NN(N)(r) =W0NN(N)(r)

for all r ∈ (1−c(k)
f ,1+c(k)

f ), whereW0NN(N) is of class C2 andW ′′0NN (N )(1) > 0;

(P3) W (k)
NN(N)(r) = W̄ (k)

NN(N)(r) if r ∈ [0,1−c(k)
f ]∪ [1+c(k)

f ,∞); the function W̄ (k)
NN(N)

is bounded from below by c̄
(k)
NN(N) such that kc̄(k)

NN(N) → c̄NN(N) > 0 and

(k + 1)W (k+1)
NN(N) ≥ kW

(k)
NN(N) for every k ∈ N;

(P4) W̄ (k)
NN(N)(r) = ω

(k)
NN(N) + 1

k rNN(N)(r) if r ≥ kM̄k for M̄k → 0 with kM̄k →∞,

rNN(N)(r) =O(r−1), r→∞, and limk→∞ kω
(k)
NN(N) ∈ (0,∞).

To guarantee preservation of orientation, in (4.34) we have included a nonneg-
ative term Xk(y) that gives rise to χ(k) below. Thus E(k) can be written in the
form (4.2) as a sum of cell energies with

W
(k)
cell(y⃗) =

1
8

∑︂
|zi−zj |=1

W
(k)
NN(|ŷi − ŷj |) +

1
4

∑︂
|zi−zj |=

√
2

W
(k)
NNN

(︃ |ŷi − ŷj |√
2

)︃
+χ(k)(y⃗) (4.35)

for y⃗ = (ŷ1| · · · |ŷ8) ∈ R3×8 and the functions W (k)
surf, W

(k)
end constructed in a simi-

lar manner to account for surface contributions to atomic bonds lying on the
rod’s boundary (see Subsection 3.2.3). The frame-indifferent term χ(k), C/k ≥
χ(k) ≥ 0, penalizes deformations that are not locally orientation-preserving, i.e.
it is greater than or equal to c̄/k, c̄ > 0, on a k-independent neighbourhood of
O(3)Id̄ \ SŌ(3) and vanishes otherwise (see [Sch06, FS15a]). An alternative to
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penalties such as Xk and χ(k) is cell energies with O(3)-invariance, see Remark
3.12 or [BS22, Section 2.4].

It can be shown that potentials W (k)
NN, W (k)

NNN as above make the correspond-

ing W (k)
cell admissible, i.e. (W1)–(W6), and (W9) hold ((W9) is a consequence

of (P4)). In particular, the truncated and splined Lennard-Jones potential from
[HE83] and versions thereof fall under this case, with appropriately chosen
parameters.

Example 4.2. Let

WLJ(r) = d
(︃ 1
r12 −

2
r6

)︃
+ d,

where r ∈ (0,∞) and d > 0 is a parameter (note that limr→∞WLJ(r) = d and
argminr>0WLJ(r) = 1). Further we set

W
(k)
LJTS(r) =

⎧⎪⎪⎨⎪⎪⎩WLJ(r) r ∈ (0,1)
min{WLJ(r),

1
k } r ∈ [1,∞)

.

We again consider pair interactions, so the cell energy function takes the form
(4.35) with W

(k)
LJTS in place of W (k)

NN and W
(k)
NNN. The property (k + 1)W (k+1)

cell ≥
kW

(k)
cell can be proved by discussing for each bond if it is deformed elastically or

if the truncation is active. Computing the value of r beyond which truncation
applies in W (k)

LJTS, we observe that assumptions (W3) and (W5) hold with c(k)
frac =

[ 6
√︁
d +
√
d/k− 6

√︁
d − (1/k)]/(2 6

√︁
d − (1/k)) and W0 being the sum of Lennard-Jones

interactions with no truncation. By the properties of ∇2W0(Id̄), the estimate
ĈW0(y⃗) ≥ dist2(∇̄ŷ,SO(3)) holds with a constant Ĉ > 0 and the usual symbol
∇̄ŷ denoting the discrete gradient of y⃗ ∈ R3×8 (cf. [Sch06, Lemma 3.2 and Sec-
tion 7]).

Moreover, we claim that if dist(∇̄ŷ,SŌ(3)) > c(k)
frac, thenW (k)

cell(y⃗) ≥min{1/(8k),

[c(k)
frac]2/Ĉ} =: c̄(k)

1 . Indeed, as long as W (k)
cell(y⃗) < c̄(k)

1 , the cutoff is not active in

any interatomic bond (the arguments of W (k)
LJTS are close enough to 1) and thus

W
(k)
cell(y⃗) = W0(y⃗) so that dist(∇̄ŷ,SŌ(3)) ≤ c(k)

frac. This shows the second part of
assumption (W5).

Example 4.3. For the functions

Wharm(r) = K(r − 1)2, W
(k)
TH(r) =

⎧⎪⎪⎨⎪⎪⎩min{Wharm(r), c
+
TH
k } r ≥ 1

min{Wharm(r), c
−
TH
k } r < 1

with positive constants K , c−TH, c−TH, one can similarly find c(k)
frac and c̄(k)

1 so that

W
(k)
cell defined by (4.35) with W (k)

NN and W (k)
NNN replaced by W (k)

TH is an admissible
cell energy.

4.8 Explicit calculation of crack energy

For mass-spring models, it is possible to simplify further (4.11) in specific
situations.
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Proposition 4.13. If E(k) is given by (4.34) and assumptions (P1)–(P4) hold, to-
gether with

(P5) limk→∞ kW̄
(k)
NN(N)(rk) = ωNN(N) for any sequence rk→∞,

for W (k)
NN and W (k)

NNN, then

ϕ(u,R) = (♯L)ωNN + ♯{(x′,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN

for any 0 ≠ u ∈ R3 and R ∈ SO(3).

Proof. Step 1. The mapping v(k) defined as

v(k)(w1,x
′) =

⎧⎪⎪⎨⎪⎪⎩R(k)
− (rkw1,

1
kx
′)⊤ + y(k)

− on [−1,0]× Sext

R
(k)
+ (rkw1,

1
kx
′)⊤ + y(k)

+ on [r−1
k k−1,1]× Sext,

R
(k)
± ∈ SO(3), y(k)

± ∈ R3, (R(k)
− )−1R

(k)
+ → R, y

(k)
+ − y(k)

− → u; r−1
k →∞ as o(k),

and interpolated to be piecewise affine (v(k) ∈ PAff(Λrk ,k)) has the property that

lim
k→∞
Ek(v(k), [−1,1]) = (♯L)ωNN + ♯{(x′,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN.

Thus we find that ϕ(u,R) is less than or equal to the right-hand side in the
above equation.

Step 2. Given ε > 0, we find sequences ((rk)∞k=1, (k)∞k=1, (y
(k))∞k=1) ∈ Vu,R such

that
limsup
k→∞

Ek(y(k), [−1,1]) ≤ ϕ(u,R) + ε, (4.36)

using Proposition 4.7. Set

W̄
(k)
1 :=

1
rkk

{︃⌊︂
−rkk

⌋︂
+

3
2
,
⌊︂
−rkk

⌋︂
+

5
2
, . . . ,

⌊︂
rkk

⌋︂
−1

2

}︃
.

We show that the nature of our pair interactions causes at least one large gap
in the spacing of atoms within each fibre which the rod consists of.

Claim 1: For each x′ ∈ L and every T > 1 there is a k0 ∈ N such that whenever
k ≥ k0, we can find some w̄1 ∈ W̄

(k)
1 satisfying

|y(k)(w̄1 + 1
2rkk

,x′)− y(k)(w̄1 − 1
2rkk

,x′)|
1/k

> T .

Proof of claim: If the converse were true, there would be a T̃ > 1 and an increas-
ing sequence {kn}∞n=1 ⊂ N such that for all w̄1 ∈ W̄

(kn)
1 :

kn|y(kn)(w̄1 +
1

2rknkn
,x′)− y(kn)(w̄1 −

1
2rknkn

,x′)| ≤ T̃ .

Then we would get

0 ≠ |u| =
⃓⃓⃓
y(kn)(maxW̄ (kn)

1 +
1

2rknkn
,x′)− y(kn)(minW̄ (kn)

1 − 1
2rknkn

,x′)
⃓⃓⃓
+ on→∞(1)

≤
∑︂

w̄1∈W̄
(kn)
1

⃓⃓⃓
y(kn)(w̄1 +

1
2rknkn

,x′)− y(kn)(w̄1 −
1

2rknkn
,x′)

⃓⃓⃓
+ on→∞(1)

≤ 2rkn
kn
kn
T̃ + on→∞(1)→ 0,
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which is a contradiction.
Step 3. A similar argument applies to NNN bonds (‘diagonal springs’) – if

we use zigzag chains of atoms instead of straight atomic fibres. We state the
corresponding claim without proof.

Claim
√

2: For each (x′,x′∗) ∈ L×L with |x′∗ − x′ | = 1 and every T > 1 there is
a k0 ∈ N such that whenever k ≥ k0, we can find a j ∈ N and w̄1 = 1

rkk
(⌊−rkk⌋ +

2j+1
2 ) ∈ W̄ (k)

1 such that y(k) from (4.36) satisfies:

|y(k)(w̄1 + (−1)j+1 1
2rkk

,x′∗)− y(k)(w̄1 + (−1)j 1
2rkk

,x′)|
√

2/k
> T .

Step 4. Since Claims 1 and
√

2 hold for every approximating sequence
(y(k))∞k=1 fulfilling (4.36), we get

(♯L)ωNN + ♯{(x′,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN ≤ ϕ(u,R) + ε.

As this is valid for any ε > 0, the desired conclusion follows.

Proposition 4.14. Under the assumptions of Proposition 4.13 and further suppos-
ing

(P6) W (k)
NN, W (k)

NNN are nondecreasing on [1,∞),

we have
0 < ϕ(0,R) < ϕ(u,R̃)

for any R,R̃ ∈ SO(3), R ≠ Id and 0 ≠ u ∈ R3.

Proof. The first inequality was shown in Remark 4.5.
As to the second inequality, Proposition 4.13 implies that for a nonzero

u, the crack energy ϕ(u,R) is independent of R, hence we limit ourselves to
the case R̃ = R without loss of generality. If R ∈ SO(3) and u ∈ R3 \ {0} are
fixed, it is enough to find a sequence (v(k)

0 )∞k=1 of deformations admissible in
the definition of ϕ(0,R) such that

limsup
k→∞

Ek(v
(k)
0 ; [−1,1]) < (♯L)ωNN + ♯{(x′,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN

by Proposition 4.13. Fix k ∈ N and let v(k), R(k)
± , rk, and y(k)

± be as in the proof
of Proposition 4.13 with our new definitions of R and u. We define

F± :=
{︃
R

(k)
±

(︂ 1
2k
± 1

2k
,
1
k
x′
)︂⊤

+ y(k)
± ; x′ ∈ L

}︃
and observe that dist(F+,F−) = |y(k)

+ −y(k)
− |+O(1

k ) = |u|+ok→∞(1). Now we choose
x′0 ∈ L and consider configurations with shifted right parts, given by

v(k)(w1,x
′; t) =

⎧⎪⎪⎨⎪⎪⎩R(k)
− (rkw1,

1
kx
′)⊤ + y(k)

− on [−1,0]× Sext

R
(k)
+ (rkw1,

1
kx
′)⊤ + y(k)

+ − c
(k)
0 (t) on [r−1

k k−1,1]× Sext,
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where c(k)
0 (t) = t[v(k)( 1

rkk
,x′0)− v(k)(0,x′0)], t ∈ [0,1]. We then define t(k)

0 to be the
smallest t ∈ [0,1] such that

⃓⃓⃓
v(k)

(︂ 1
rkk

,x′; t
)︂
− v(k)(0,x′; t)

⃓⃓⃓
=

1
k

or
⃓⃓⃓
v(k)

(︂ 1
rkk

,x′∗; t
)︂
− v(k)(0,x′∗∗; t)

⃓⃓⃓
=

√
2
k

for some x′ ∈ L, or else, x′∗,x
′
∗∗ ∈ L with |x′∗ − x′∗∗| = 1, respectively. By construc-

tion such t(k)
0 ∈ (0,1) exists if k is large enough and we have |c(k)

0 (t(k)
0 )−u| → 0 as

k→∞. Setting v
(k)
0 = v(k)( · ; t(k)

0 ) and recalling (P6) we find

Ek(v
(k)
0 ; [−1,1]) ≤ (♯L)ωNN + ♯{(x′,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN −min{ωNN,ωNNN}.

(4.37)
We still need to check that the sequence (v(k)

0 )∞k=1 thus constructed satisfies the

correct boundary conditions for ϕ(0,R). But this is clear, since |y(k)
+ − c

(k)
0 (t(k)

0 )−
y(k)
− | → 0.
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Conclusion and outlook
The main goal this thesis was to derive continuum-mechanical theories for thin
rods by performing a dimension reduction and a many-particle limit at the
same time. If the frame-invariant discrete energies grow quadratically (Chap-
ter 3), purely elastic models are obtained in the Γ -limit, whereas for interaction
potentials with suitably scaled far-field asymptotic values (Chapter 4), the ef-
fective strain energy functional also includes a term related to cracks and kinks
in the rod. In this way the present work makes a contribution to the mod-
elling of elastic-brittle ultrathin structures, but as such, it could be certainly
extended in various directions.

It should be also possible to apply the techniques seen in Chapter 3 to en-
ergies scaled by a higher power of the rod thickness, namely 1

k3h6
k
E(k) instead

of 1
kh4
k

E(k). The expected Γ -limits would correspond to thin and ultrathin rod

theories similar to the von-Kármán theory of plates (see [MM04, BS22]). Al-
though compactness of low-energy sequences y(k) can be proved analogously
to [MM04] and otherwise the lower and upper bounds seem deducible, the
probably most difficult part of the problem is to identify the discrete limiting
strain Ḡ (cf. [BS22]).

As linearization around a global rigid motion pertains to von-Kármán-like
theories, the possibility of combining them with fracture mechanics appears
unclear.

Furthermore, the situation from Chapter 4 becomes considerably more dif-
ficult for plates due to a much richer phenomenology of crack and kink pat-
terns. For bending-dominated configurations also severe geometric obstruc-
tions that result from the isometry constraints are encountered. However, a
first step has recently been achieved in [SS23], where a ‘Blake–Zisserman–
Kirchhoff theory’ was derived for plates with soft inclusions.

From the point of view of applications, it would be interesting to extend the
presented findings to other crystallographic lattices (such as diamond cubic as
in [LPS17] or zincblende), heterogeneous nanostructures with several different
types of atoms, or to study the influence of lattice defects.

The models could also be studied computationally (e.g. numerical approx-
imations of the cell formula could be implemented). For finite-element dis-
cretizations of the purely elastic rod models, the author considered (but did
not pursue for time reasons) adapting one of the FEniCS libraries [Bou20,
dBD17].
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