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Abstract
We consider the quantum evolution of a fermion–hole pair in a d-dimensional
gas of non-interacting fermions in the presence of random phase scattering.
This system is mapped onto an effective Ising model, which enables us to show
rigorously that the probability of recombining the fermion and the hole decays
exponentially with the distance of their initial spatial separation. In contrast,
without random phase scattering the recombination probability decays like a
power law, which is reflected by an infinite mean square displacement. The
effective Ising model is studied within a saddle point approximation and yields
a finite mean square displacement that depends on the evolution time and on
the spectral properties of the deterministic part of the evolution operator.

Keywords: random phase scattering, localization of fermion–hole pairs,
effective Ising model

                                                    

1. Introduction

The creation of an electron–hole pair and its subsequent recombination is a fundamental pro-
cess in quantum physics with many applications in different fields, such as quantum elec-
trodynamics [1, 2] and semiconductor physics [3, 4] with applications in electronics, photo-
electric devices [5] and light-emitting diodes [6]. Although there exist phenomenological
descriptions of this process by classical decay models based on diffusion [7, 8], for a deeper
understanding a quantum approach is required. We will focus here on a fermion–hole pair in a
d-dimensional system of non-interacting fermions. The pair can be created either by photons
through the photoelectric effect [9] or by phonons through electron–phonon coupling [10] in a
real material. Then the question is, whether this pair recombines after some evolution by emit-
ting a photon/phonon or the fermion and the hole remain localized near the place where they
were created initially (see figure 1). Both possibilities can be studied by measuring the return
probability to the initial quantum state. This probability depends on the spatial separation of

                                                               1

https://orcid.org/0000-0001-7050-3883
mailto:Klaus.Ziegler@Physik.Uni-Augsburg.DE


                                          

Figure 1. (a) There is a recombination of a fermion created atR and a hole created atR ′

at the blue dot. (b) The localization of a fermion and a hole near their points of creation
implies an exponentially small probability for recombination. The localization radius
(or decay length) is indicated by the blue circles. In this sketch we consider |R−R ′|
much larger than the localization radius.

the fermion and the hole. Assuming that the hole is created at the site R and the fermion at
the site R ′, we can define the probability PRR ′ that the system returns to the initial state over
the finite time interval τ . Although it is plausible that this probability decreases with increas-
ing distance |R−R ′|, the law of change with the distance depends on the interaction with
the environment. For instance, on a periodic lattice this probability has a long range behavior,
which depends on the dimensionality of the underlying space. In the following we will focus
on the effect of random phase scattering on the spatial decay of this probability. In other words,
is it possible to control the spatial fermion–hole separation to avoid their recombination?

To analyze the evolution and calculate physical quantities, the standard procedure would
be to diagonalize the Hamiltonian H of the evolution operator e−iHτ/ℏ. For a translational
invariant system this can be achieved through a Fourier transformation. However, in a real-
istic system the Hamiltonian H is not translational invariant but subject to some disorder. In
this case the corresponding random Hamiltonian cannot be diagonalized by a Fourier trans-
formation. To mimic the effect of disorder in the evolution of a quantum state we ‘scramble’
a translational invariant e−iHτ/ℏ with a random phase factor eiα by using the evolution oper-
ator U= eiαe−iHτ/ℏ. This choice was inspired by the random unitary gate models that have
been discussed in the context of quantum circuits [11–13]. The following analysis is also
inspired by previous studies of the invariant measure of transport in systems with random
chiral Hamiltonians [14]. Although this seems to be an entirely different problem, there are
some striking similarities that are reflected by their graphical representations.

2. Summary of the main results

The central result of this work is that the random phase scattering of non-interacting fermions
is equivalent to scattering on discrete Ising spins or on a continuous (real) Ising field. This
is a consequence of a geometric restriction in the graphical representation due to the Fermi
statistics. In section 4 we derive the final result of equation (10), which states that the return
probability becomes an integral with respect to the Ising field ϕ as

PR′R = ⟨|(ϕ+ h)−1
RR′ |2⟩ϕ with ⟨. . .⟩ϕ =

1
Nϕ

ˆ
e−

1
2

∑
rϕ

2
r |det(ϕ+ h)|2 . . .

∏
r

dϕr.

This integral enables us to deform the Ising field integration such that the poles of the integrand
of the return probability PR ′R are avoided. This implies an exponential decay with respect to
|R−R ′|. For an explicit evaluation of the decay we employ a saddle point approximation of
the Ising field. This provides for h= e−iHτ

PR′R = ⟨|(ϕ+ h)−1
RR′ |2⟩ϕ ≈ |(ϕ0 + h)−1

R−R′ |2,
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where ϕ0 is determined by a saddle point equation. The corresponding mean square displace-
ment reads

[R2
ν ] =

τ 2

2

ˆ
k

(∂kν ϵk)
2

[1+ϕ2
0 + 2ϕ0 cos(E0 + ϵkτ)]2

/ˆ
k

1
1+ϕ2

0 + 2ϕ0 cos(E0 + ϵkτ)
,

where ϵk is the dispersion of the Hamiltonian H and E0 is related to the Fermi energy.
Moreover, in the absence of random phase scattering we have ϕ0 = 1, which implies for
E0 + ϵkτ ⩽ Ē

[R2
ν ]∼

2πτ
3dµ

(π− Ē)−2

when Ē< π, and [R2
ν ] is infinite for Ē⩾ π.

3. Quantum evolution with random phase scattering

A system of non-interacting fermions with the HamiltonianH evolves during a fixed time step
τ with the unitary evolution operator Uτ = eiαe−iHτ . Here and subsequently we have chosen
the scale of physical quantities such that ℏ= 1. The phases {αr} are randomly distributed
on [−π,π), independently on different lattice sites r. Uτ acts on the 2|Λ| dimensional Hilbert
space, spanned by the fermionic states |{nr}⟩ with occupation numbers nr = 0 or nr = 1 on a
lattice site r ∈ Λ. |Λ| is the number of lattice sites and |{n(0)}⟩ ≡ |{nr(0)}⟩ is the initial state,
in which the fermionic system is prepared at the beginning. Then we consider the situation
in which a fermion–hole pair is created by the anti-commuting fermion operators c†R ′ and cR
at time t= 0 at different sites R, R ′. To determine the spatial correlation of the fermion–hole
pair after the time τ , where the quantum state is the initial state again, we define the return
probability

⟨|⟨{n(0)|Uτc
†
R ′cR|{n(0)}⟩|2⟩α. (1)

It describes the probability of a process that starts from the initial state |{n(0)}⟩, immediately
followed by the creation a fermion–hole pair at time t= 0 at sites R and R ′. After a unitary
evolution over the time τ , represented by the random unitary operator Uτ , the probability for
the overlap with the initial state is determined. This probability is eventually averaged with
respect to the random phases of Uτ . To avoid the specific definition of the initial state, we
(i) sum over the return probabilities of all basis states and (ii) calculate the ratio of the return
probabilities with and without the fermion–hole pair

PRR ′ :=
⟨|Tr(Uτc

†
R ′cR)|2⟩α

⟨|TrUτ |2⟩α
, (2)

where Tr is the trace of 2|Λ| × 2|Λ| matrices. For τ = 0 we have

⟨{n}|c†R′cR|{n}⟩= δRR′δnR,1,

such that only the particle number operator c†RcR contributes to the trace, while the spatially
separated fermion–hole pair does not. For τ > 0, though, the evolution Uτc

†
R ′cR|{n}⟩ can cre-

ate some overlap with |{n}⟩, which contributes to the trace. Thus, the return probability PRR ′

(R ′ ̸= R) is a measure for how effective the evolution withUτ can move the fermion–hole pair
to the same site. It is plausible that this is less likely the larger the distance |R−R ′| is and
that it increases with increasing time τ . Therefore, PRR ′ decays with this distance and may
increase with τ .
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Besides creating a fermion and a hole simultaneously, we can also create a hole at site R
and time t= 0, let this hole evolve for the time τ and then annihilate it. The probability for this
annihilation process reads

P ′
RR ′ :=

⟨|Tr(c†R ′UτcR)|2⟩α
⟨|TrUτ |2⟩α

. (3)

In the following we drop the index τ for simplicity and use Uτ ≡ U. Assuming that
|{ñq}⟩ ≡ |{ñ}⟩ are eigenstates of U for a special realization of the phases {αr}, we obtain

C̃Q,t : = Tr(U(1−t)c†QU
tcQ)

=
∑

{ñq},{ñ ′
q}

⟨{ñ}|U(1−t){ñ}⟩⟨{ñ}|c†Q|{ñ
′}⟩⟨{ñ ′}|Ut|{ñ ′}⟩⟨{ñ ′}|cQ|{ñ}⟩ (4)

for t= 0,1. With ⟨{ñ}|c†Q|{ñ ′}⟩⟨{ñ ′}|cQ|{ñ}⟩= δñ ′
Q,0

δñQ,1
∏

q̸=Q δñ ′
q ,ñq we get

C̃Q,t =
∑

{ñq},{ñ′q}

⟨{ñ}|U(1−t)|{ñ}⟩⟨{ñ′}|Ut|{ñ′}⟩δñ′Q,0δñQ,1
∏
q ̸=Q

δñ′q,ñq .

Since U is diagonal in this basis with ⟨{ñ}|U|{ñ}⟩=
∏

q⟨ñq|e−iEqñq |ñq⟩=
∏

q e
−iEqñq , we

obtain a product of diagonal matrix elements

⟨{ñ}|U(1−t)|{ñ}⟩⟨{ñ′}|Ut|{ñ′}⟩=
∏
q

e−iEqñq(1−t)e−iEqñ
′
qt.

Inserting this into equation (4), we get for the sum due to the Kronecker deltas

C̃Q,t = Tr(U(1−t)c†QU
tcQ) = e−iEQ(1−t)

∏
q̸=Q

(1+ e−iEq) =
eiEQt

1+ eiEQ

∏
q

(1+ e−iEq). (5)

Finally, we return to the real-space representation to obtain e−iEq → Ûrr ′ , where Û is a
|Λ| × |Λ| matrix on the lattice, and

Tr(Uc†R ′cR) = (1+ Û†)−1
RR ′ det(1+ Û), Tr(c†R ′UcR) = (1+ Û)−1

RR ′ det(1+ Û), (6)

where det is the corresponding determinant. Hence the return probabilities become

PRR ′ =
⟨|(1+ Û†)−1

RR ′ det(1+ Û)|2⟩α
⟨|det(1+ Û)|2⟩α

, P ′
RR ′ =

⟨|(1+ Û)−1
RR ′ det(1+ Û)|2⟩α

⟨|det(1+ Û)|2⟩α
(7)

due to equations (2) and (3). The identity |(1+ Û†)−1
RR ′ |2 = |(1+ Û)−1

R ′R|2 implies that
P ′
RR ′ = PR ′R.

4. Functional integral representation

For the further treatment of the return probability P ′
RR ′ = PR ′R in equation (7) it is convenient

to separate the random phase factor and the deterministic evolution of Û as Ûrr ′ = eiαrhrr ′ .
Then we employ a Grassmann functional integral to write
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PR ′R =
1
N

ˆ
φ

exp
φ1

φ2
· 1+ eiαh 0

0 1+ h†e−iα
φ ′
1

φ ′
2

φ1Rφ
′
1R ′φ2R ′φ ′

2R
α

=
1
N ⟨adjRR ′(1+ eiαh)adjR ′R(1+ h†e−iα)⟩α =

1
N ⟨|det(1+ eiαh)|2|(1+ eiαh)−1

RR ′ |2⟩α,

(8)

where the adjugate matrix adjRR ′(ϕ+ h) obeys the relation adjRR ′(ϕ+ h) = det(ϕ+ h)(ϕ+
h)−1

RR ′ , and the normalization reads

N =

ˆ
φ

exp
φ1

φ2
· 1+ eiαh 0

0 1+ h†e−iα
φ′

1
φ′

2 α

= ⟨|det(1+ eiαh)|2⟩α.

We note that the kernel of the quadratic form has zero modes (i.e. eigenmodes of 1+ eαh
with vanishing eigenvalue) because the eigenvalues of the random unitary matrices eiαh and
h†e−iα are randomly distributed on the unit circle in the complex plane. These zero modes
depend on the realization of the random phase.

In the integral (8) we pull out the phase factors by rescaling the Grassmann fields to obtain

PR′R =
1
N

ˆ
φ

exp
φ1

φ2
· e−iα + h 0

0 eiα + h†
φ′

1
φ′

2
φ1Rφ

′
1R′φ2R′φ′

2R
α

=
1
N

ˆ
φ

∏
r

⟨(1+ e−iαrφ1rφ
′
1r)(1+ eiαrφ2rφ

′
2r)⟩α

× exp
φ1

φ2
· h 0

0 h†
φ′

1
φ′

2
φ1Rφ

′
1R′φ2R′φ′

2R⟩α,

which gives after phase averaging

=
1
N

ˆ
φ

∏
r

(1+φ1rφ
′
1rφ2rφ

′
2r)exp

φ1

φ2
· h 0

0 h†
φ ′

1
φ ′

2
φ1Rφ

′
1R ′φ2R ′φ ′

2R. (9)

We get the same result when we replace the phase factor by an Ising spin {Sr =±1} or by
a real Gaussian field ϕr which will be called Ising field in the following. For the latter we write

PR ′R =
1
Nϕ

ˆ
e−

1
2

∑
rϕ

2
r

ˆ
φ

exp
φ1

φ2
· ϕ+ h 0

0 ϕ+ h†
φ ′

1
φ ′

2
φ1Rφ

′
1R ′φ2R ′φ ′

2R

∏
r

dϕr

=
1
Nϕ

ˆ
e−

1
2

∑
rϕ

2
radjRR ′(ϕ+ h)adjR ′R(S+ h†)

∏
r

dϕr

=
1
Nϕ

ˆ
e−

1
2

∑
rϕ

2
r |adjRR ′(ϕ+ h)|2

∏
r

dϕr = ⟨|(ϕ+ h)−1
RR ′ |2⟩ϕ with

⟨. . .⟩ϕ =
1
Nϕ

ˆ
e−

1
2

∑
rϕ

2
r |det(ϕ+ h)|2 . . .

∏
r

dϕr. (10)

This result is reminiscent of the average two-particle Green’s function with respect to a
Gaussian distribution of ϕr, multiplied by the determinant term |det(ϕ+ h)|2. There are
two important differences in comparison to the average two-particle Green’s function ⟨|(V+
H0)

−1
RR ′ |2 of Anderson localization, though. The first is that the determinant can be written as

a product of the eigenvalues of ϕ+ h. This cancels poles of |(ϕ+ h)−1
RR ′ |2, implying that the

poles of the Green’s functions are not relevant for the ϕr integration. In other words, the adjug-
ate matrix adjRR ′(ϕ+ h) does not have any pole for |ϕr|<∞, and the integration with respect
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to ϕr can be deformed in any finite area of the complex plane. This reflects an exponential
decay with a finite decay length of the return probability PR ′R. The second difference is that
h is unitary and its eigenvalues are located on the unit circle of the complex plane, while the
Hamiltonian H0 in the Anderson localization problem is a Hermitian matrix with eigenvalues
on the real axis.

The deformation of the ϕr integration provides a rigorous but only qualitative result regard-
ing the decay of PR ′R. For a quantitative result of the decay we must perform the integration
explicitly. We will do that approximately within a saddle-point integration in section 5.2 and
appendix.

5. Discussion

First, we note that the expansion of the integrand of equation (8) and a subsequent Grassmann
and phase integration yields graphs with four-vertices, where two edges hrr ′ from φ1 and
two Hermitian conjugate edges h†rr ′ from φ2 are connected. This condition is enforced by the
Grassmann property, which requires a product of φ1rφ

′
1rφ2rφ

′
2r at each site r. Moreover, the

random phase factors glue h and h† at these products to form a four-vertex and to prevent a
two-vertex. The geometric property of the four-vertex enables us either to form loops of edges
or to connect the sites R and R ′ by a string of both types of edges. Both, the h edges as well as
the h† edges form loops and an R–R ′ string separately. This is a consequence of the diagonal
kernel of the quadratic form in equation (8). Moreover, each loop carries a factor −1 from the
Grassmann field. Two typical examples are depicted in figure 2 with the same formation of the
nine black edges but with different formations of the nine red edges. In the left example a loop
and a double string are separated by a special choice of red edges, while in the right example
there is only one connected graph.

This type of graphs is known from the invariant measure of chiral random
Hamiltonians [14]. There is a crucial difference though that is related to the zero mode:
in contrast to the random phase scattering eiαrhrr ′ , the scattering of the chiral model is
eiαrhrr ′

∑
r ′ ′ h

†
r ′r ′ ′e−iαr ′ ′ . For the latter we have a uniform zero mode

∑
r ′

[
δrr ′ − eiαrhrr ′

∑
r ′ ′

h†r ′r ′ ′e−iαr ′ ′

]
= 0 (11)

for any realization of the random phase.

5.1. Hopping expansion

In order to get a better understanding of the behavior of the return probability PR ′R we return
to the expression of equation (7) with random phases and simplify it by neglecting the determ-
inants. This leads to the product of the conjugate one-particle Green’s functions of only two
individual particles:

⟨(1+ heiα)−1
RR′(1+ e−iαh†)−1

R′R⟩α = ⟨(e−iα + h)−1
RR′(eiα + h†)−1

R′R⟩α.

A hopping expansion of the inverse matrices in powers of the evolution operator eiαh and its
Hermitian conjugate can be written as a truncated geometric series

(1+ eiαh)−1
RR′(1+ h†e−iα)−1

R′R =
N−1∑
l,m=0

(eiαh)lRR′(h†e−iα)mR′R,

6



                                          

Figure 2. Two typical graphs representing contributions to the functional integral of the
return probability PR ′R in equation (8). Black (red) edges represent h (h†). Both edges
form (i) a loop and (ii) a string connecting the sites R and R ′ of the fermion and the
hole. The strings are contributions to the inverse matrix elements (1+ eiαh)−1

RR ′ and
(1+ h†e−iα)−1

RR ′ , respectively, while loops are contributions to the determinants. There
are only four-vertices, except for the endpoints R and R ′, which are connecting to two
black and two red edges. Other edge crossings are not connected by vertices.

where the truncation with N<∞ is necessary because it is not clear whether the series con-
verges. Since after phase averaging only l=m survives, we can ignore terms with l ̸= m here.
This gives

N−1∑
l=0

(heiα)lRR ′(e−iαh†)lR ′R = δRR ′ + hRR ′h†R ′R +
∑
r1,r ′

1

hRr1hr1R ′h†R ′r ′
1
h†r ′

1R
e
iαr1−iαr ′1

+ · · ·+
∑

r1,r ′
1 ,r2,r

′
2 ,...,rN−1,r ′

N−1

hRr1hr1r2 · · ·hrN−1R ′h†R ′;r ′
N−1

h†r ′
N−1r

′
N−2

· · ·h†r ′
1R

N−1∏
j=1

e
iαrj−iαr ′j .

(12)

Now we can average over the random phases to obtain

⟨(1+ heiα)−1
RR ′(1+ e−iαh†)−1

R ′R⟩α = δRR ′ + hRR ′h†R ′R +
∑
r1

hRr1hr1R ′h†R ′r1h
†
r1R

+ · · ·+
∑

r1,r2,...,rN−1

∑
πN−1

hRr1hr1r2 · · ·hrN−1R ′h†R ′;π(rN−1)
h†π(rN−1)π(rN−2)

· · ·h†π(r1)R,

(13)

where we sum with respect to all permutations πN−1 of all non-degenerate sites of
{r1,r2, . . . ,rN−1}. Although this is a compact expression, it is difficult to perform the sum
over the permutations and to calculate the corresponding values. Nevertheless, as an import-
ant special case the identity πN−1 = id can be calculated. It is a contribution of an unrestricted
random walk on the lattice. This represents a long range correlation in the form of diffusion.
However, it will be destroyed by the determinant factor in equation (8), as mentioned in the
previous section, where the Ising field representation leads to an exponential decay. In other
words, the coupling of many fermions to the random phase scattering supports localization by
avoiding singularities that appear in the case of two particles. For a quantitative result of the
exponential decay we study themean square displacement within a saddle point approximation
in the next section.
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Figure 3. The Ising energy E(ϕ) as defined in equation (25) for a constant density of
states. (a) E(ϕ) is plotted at the symmetry point E0 = π/2 for the band width a= 1.9
(blue curve) and a= 2.1 (red curve). It indicates a jump of the Ising field from two
degenerate nonzero values to ϕ0;min = 0. (b) E(ϕ) is plotted with band width a= 7.5
for a symmetric band E0 = 0 (red curve) and a band that is shifted by E0 = π/2 (blue
curve).

5.2. Saddle point approximation

The return probability in equation (10) is treated within the saddle point integration of the Ising
field ϕ (see appendix). This yields

PR ′R = ⟨|(ϕ+ h)−1
RR ′ |2⟩ϕ ≈ |(ϕ0 + h)−1

R−R ′ |2, (14)

where we have neglected the fluctuations δϕr around the saddle point ϕ0. This approximation
enables us to factorize the return probability as

PR′R ≈ |CR−R′ |2, CR−R′ = (ϕ0 + h)−1
R−R′ ,

where CR−R ′ can be represented by its Fourier transform

C̃k =
1

ϕ0 + e−iEk
(15)

with the eigenvalue Ek of the translational invariant matrix Hτ . Thus, the effect of the random
phase scattering is associated only with the value of ϕ0, where the latter is determined by Ek

via the saddle point equation (24). Moreover, ϕ0 = 1 represents the absence of random phase
scattering.

The results for the Ising field ϕ0 of see appendix can be interpreted in terms of the magnetic
properties of the classical Ising model [15]. The asymmetric shift cosE0 plays the role of an
external magnetic field and ϕ0 corresponds to the magnetization [16]. Thus, the effective Ising
model has a unique Ising field ϕ0 > 0 or ϕ0 < 0 when cosE0 ̸= 0, while for cosE0 = 0 there
are either two degenerate solutions with opposite signs of ϕ0 (ferromagnetic phase) or a single
solution with ϕ0 = 0 (paramagnetic phase). In contrast to the classical Ising model with a
continuous transition though, figure 3 indicates a jump of ϕ0 for our effective Ising model.
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5.3. Mean square displacement

The mean square displacement provides a measure for the correlation length. It is defined as

[R2
ν ] :=

∑
R ′(Rν −R ′

ν)
2PR ′R∑

RPR ′R
=

−∂2
qν P̃q

q=0

P̃0
, (16)

where P̃q is the Fourier transform of the translational-invariant PR ′R ≡ PR ′−R. Now we study
PRR ′ = |CRR ′ |2 with the help of the saddle point integration. In this case the mean square
displacement reads

[R2
ν ] =

∑
RR

2
ν |CR|2∑

R |CR|2
, (17)

where the numerator is∑
R

R2
νe

iq·R|CR|2
q=0

=−∂2
qν

∑
R

eiq·R|CR|2
q=0

=−∂2
qν

∑
R

ˆ
k

ˆ
k′
ei(q−k−k′)·RC̃kC̃

∗
k′

q=0

with the Fourier transform C̃k of equation (15). Then the R summation can be performed and
leads to a Kronecker delta, which gives for equation (17)

[R2
ν ] =−∂2

qν

ˆ
k
C̃kC̃

∗
q−k

q=0

/ˆ
k
C̃kC̃

∗
−k.

Now we assume that C−k = Ck to obtain eventually

[R2
ν ] =

ˆ
k
|∂kν C̃k|2

/ˆ
k
|C̃k|2, (18)

which becomes with equation (15)

[R2
ν ] =

ˆ
k

(∂kνEk)
2

(1+ϕ2
0 + 2ϕ0 cosEk)2

/ˆ
k

1
1+ϕ2

0 + 2ϕ0 cosEk
. (19)

A special case is the one in which the energy in equation (23) is symmetric with respect to
ϕ0 →−ϕ0. Then there exists a critical value τc of the evolution time τ : if τ exceeds τc the
saddle point is always ϕ0;min = 0, as indicated in figure 3(a). This implies for equation (15)
that C̃k = eiEk , which yields for the corresponding mean square displacement

[R2
ν ] =

ˆ
k
(∂kνEk)

2 = τ 2
ˆ
k
(∂kν ϵk)

2. (20)

k is the dispersion of the Hamiltonian H. Thus, the mean square displacement increases with
the squared evolution time τ . For τ < τc, on the other hand, or when the energy is asymmetric
with respect to ϕ0 →−ϕ0, we have ϕ0 ̸= 0.

In the absence of random phase scattering we have ϕ0 = 1 directly from equation (8).
Then for the special case Ek = k2τ/2µ (0⩽ k⩽ λ) the mean square displacement on a d-
dimensional lattice reads

[R2
ν ] =

τ

dµ

ˆ Ē

0

Ed/2

(1+ cosE)2
dE

/ˆ Ē

0

Ed/2−1

1+ cosE
dE (21)

with the integration cut-off Ē= λ2τ/2µ. This is a finite expression for Ē< π, which diverges
with a power law as

[R2
ν ]∼

2πτ
3dµ

(π− Ē)−2 (22)

9



                                          

when we approach Ē= π from below. For Ē⩾ π the mean square displacement is always
infinite without random phase scattering. This result has the form of a diffusion relation with
time τ and a divergent diffusion coefficient for Ē→ π when we ignore the fact that Ē also
depends on τ . A possible interpretation is that the fermion–hole pair is subject to diffusion
due to its interaction with the other fermions of the system. The divergence, on the other hand,
reflects a long range correlation of the fermion and the hole that reflects the pole of C̃k =
1/(1+ e−iEk).

A more detailed analysis, especially for the evaluation of τc, requires specific expressions
of the dispersion ϵk. This would exceed the goal of this work to present a generic approach for
the effect of disorder on the recombination of fermion–hole pairs.

6. Conclusions and outlook

The probability PR ′R, which describes the probability to return to the initial quantum state
after the creation of a fermion at siteR and a hole at siteR ′ and their evolution, decays always
exponentially with the distance |R−R ′| in the presence of random phase scattering. To obtain
this rigorous result a mapping of the random phase model onto an Ising-like model was essen-
tial. This was supplemented by an approximative calculation of this decay, based on a saddle
point integration of the effective Ising model, to get some quantitative insight into the decay.
The latter calculation is instructive, since it demonstrates how the solution of the saddle point
equation avoids the singularities of the underlying fermion model. In the absence of random
phase scattering, one of these singularities leads to a non-exponential decay for a sufficiently
long evolution of the state with the fermion–hole pair. This is reflected by an infinite mean
square displacement of the fermion and the hole.

In our approximation we have not included the Gaussian fluctuations around the saddle
point solution. It would be interesting to include them and to determine their effect on the
decay of the return probability. In this context it would also be useful to understand the effect
of these fluctuations on the transition from ϕ0 ̸= 0 to ϕ0 = 0 at the symmetry point under an
increasing evolution time. Another extension of our approach is the application to the return
probability of a system under periodically repeated projective measurements [17, 18] or under
randomly repeated projective measurements [19]. Then the effect of random phase scattering
on the resulting monitored evolution could also be described by the effective Ising field model.
Even more interesting but also more challenging would be the extension of the approach to the
transition probability for the monitored evolution under randomly repeated projective meas-
urements [20].

Data availability statement

No new data were created or analysed in this study.

Appendix. Saddle point integration

We approximate the integral

⟨. . .⟩ϕ =
1
Nϕ

ˆ
e−

1
2

∑
rϕ

2
r |det(ϕ+ h)|2 . . .

∏
r

dϕr

by using a saddle-point integration. Then we determine the maximal contribution to the integ-
rand by assuming a uniform ϕ and write ϕr = ϕ+ δϕr. This enables us to approximate the
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integral in terms of Gaussian fluctuation around the uniform ϕ with respect to δϕr, where ϕ
must be fixed as ϕ0 at the minimum of the Ising energy

E(ϕ) = 1
2
ϕ2 −

ˆ ∞

−∞
log(1+ϕ2 + 2ϕcosE)ρ(E)dE (23)

with the density of states ρ(E). The integrand is singular for ϕ= 1, E= π and for ϕ =−1,
E= 0. These singularities yield large values for the energy. Therefore, they do not repres-
ent lowest energy contributions of the saddle point. This is also reflected in the curves of
figure 3(b). Moreover, the saddle-point solution ϕ0 must satisfy

E ′(ϕ) = ϕ− 2
ˆ ∞

−∞

ϕ+ cosE
1+ϕ2 + 2ϕcosE

ρ(E)dE= 0. (24)

For a constant density of states ρ(E) on the interval [−a/2+E0,a/2+E0] we get

E(ϕ) = 1
2
ϕ2 − 1

a

ˆ a/2+E0

−a/2+E0

log(1+ϕ2 + 2ϕcosE)dE. (25)

A special case is E0 = π/2, where we have

E(ϕ) = 1
2
ϕ2 − 1

a

ˆ a/2

−a/2
log(1+ϕ2 − 2ϕsinE)dE

with the symmetry relation E(ϕ) = E(−ϕ). This would also hold when the density of states
is symmetric with respect to E= π/2 in equation (23). The Ising energy is plotted for several
values of E0 and the band width a in figure 3.
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