OC 34

ONCO-FETAL REPROGRAMMING DRIVES HIGH-RISK JUVENILE MYELOMONOCYTIC LEUKEMIA, WHICH CAN BE TARGETED BY ANTI-CD52 TREATMENT

Mark Hartmann¹, Maximilian Schönung¹, Jovana Rajak², Joschka Hey³, Valentin Maurer¹, Ling Hai⁴, Sina Staeble¹, Jens Langstein¹, Katharina Bauer⁵, Mariam Hakobyan¹, Laura Jardine⁶, Sheila Bohler², Dominik Vonficht^{7,13}, Abdul-Habib Maag⁸, Dirk Lebrecht², Katrin M. Bernt⁹, Roland Roelz¹⁰, Tobias Boch¹¹, Eleonora Khabirova¹², Pavlo Lutsik³, Simon Haas¹⁴, Muzlifah Haniffa⁶, Sam Behjati¹², Jan-Philipp Mallm⁵, Christian Buske⁸, Michael D. Milsom^{7,15}, Stefan Fröhling^{16,17}, Marc-Jan Bonder^{18,19,20}, Charlotte Niemeyer², Christian Flotho^{2,17}, Christoph Plass³, Miriam Erlacher^{2,17}, Matthias Schlesner²¹, Daniel B. Lipka¹

 ¹ Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
 ² Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany

³ Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁴ Department of Neurology and Neurooncology,

University Hospital Heidelberg, Heidelberg, Germany

- ⁵ scOPEN Lab, German Cancer Research Center
- (DKFZ), Heidelberg, Germany

⁶ Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

⁷ Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany

⁸ Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany

⁹ Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, USA

¹⁰ Department of Neurosurgery, University of Freiburg, Faculty of Medicine, Medical Center, Freiburg, Germany

¹¹ Department of Hematology and Oncology, Heidelberg University, University Hospital Mannheim, Mannheim, Germany

 ¹² Wellcome Sanger Institute, Hinxton, UK
 ¹³ Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany

¹⁴ Berlin Institute of Health (BIH), Charité -

Universitätsmedizin Berlin, Berlin, Germany ¹⁵ Division of Experimental Hematology, German

Cancer Research Center (DKFZ), Heidelberg, Germany ¹⁶ Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg & German Cancer Research Center (DKFZ), Heidelberg, Germany
¹⁷ German Cancer Consortium (DKTK), Heidelberg, Germany
¹⁸ Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
¹⁹ Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
²⁰ European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, European Molecular Biology Laboratory (EMBL), Hinxton, United Kingdom
²¹ Faculty of Applied Computer Sciences, Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany

Background and aims: Juvenile myelomonocytic leukemia (JMML) is caused by genetic activation of RAS signaling and has a heterogeneous clinical course. JMML epitypes resolve this heterogeneity but high-risk patients lack efficient curative treatment options. To date, the mechanisms driving disease heterogeneity remain unclear. This study aimed to decipher the underlying molecular programs in order to identify disease-specific aberrations for diagnostic and therapeutic purposes.

Methods: We employed a multi-omics approach to dissect the epitype-specific molecular programs in primary JMML patient samples. Our findings were validated using an inducible *Ptpn11-E76K* knock-in mouse and a patient-derived xenotransplantation (PDX) model.

Results: Multi-modal analysis demonstrated conservation of epigenetic subgroups in hematopoietic stem cells (HSCs) of JMML patients. Epigenomic dysregulation affected binding motifs of developmental transcription factors and correlated with ectopic expression of fetal HSC signatures in high-risk patients, including HMGA2 and fetal hemoglobin. Mapping JMML HSC methylomes onto the normaldevelopmental trajectory from fetal to adult HSCs, generally revealed a post-natal HSC state. However, high-risk JMML HSCs were epigenetically more immature and presented fetal-like methylation patterns. Employing a JMML mouse model with postnatal induction of the Ptpn11-E76K mutation resulted in reactivation of fetal-like expression programs in HSCs akin to those observed in high-risk JMML, suggesting that high-risk JMML HSCs hijack fetal programs. In line with this, integrative analysis identified several subgroup-specific molecular markers which might serve as prognostic biomarkers for high-risk JMML. One of those markers, CD52, was both differentially methylated and highly expressed in high-risk JMML HSCs. Targeting CD52 with alemtuzumab in a JMML PDX mouse model demonstrated reduced human engraftment in treated recipients and increased survival of 2° recipients.

Conclusions: In summary, we identified onco-fetal reprogramming as a hallmark of high-risk JMML. We determined unique molecular programs which can be used to develop new treatment strategies for high-risk JMML and provide pre-clinical evidence for anti-leukemic activity of alemtuzumab.

Keywords: JMML, Multi-OMICS, targeted treatment, biomarkers

https://doi.org/10.1016/j.ejcped.2023.100065