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Audiovisual Affect Recognition for Autonomous
Vehicles: Applications and Future Agendas

Vincent Karas™, Dagmar M. Schuller, and Bjoérn W. Schuller, Fellow, IEEE

Abstract— Emotion and a broader range of affective and
cognitive states play an important role on the road. While
this has been predominantly investigated in terms of driver
safety, the approaching advent of autonomous vehicles (AVs)
is expected to bring a fundamental shift in focus for emotion
recognition in the car, from the driver to the passengers. This
work presents a number of affect-enabled applications, including
adapting the driving style for an emotional experience or tailoring
the infotainment to personal preferences. It attempts to foresee
upcoming challenges and provides suggestions for multimodal
affect modelling, with a focus on the audio and visual modalities.
In particular, this includes context awareness, reliable diarisation
of multiple passengers, group affect, and personalisation. Finally,
we provide some recommendations on future research directions,
including explainability, privacy, and holistic modelling.

Index Terms— Autonomous vehicles, interior sensing, human-
machine interaction, emotion recognition.

I. INTRODUCTION

ARS are becoming increasingly intelligent through more
Cpowerful on-board computational hardware, the ability
to communicate with and receive over-the-air (OTA) updates
from backend servers, and the integration of novel sensors.
While some of these sensors are directed outwards, such as
cameras and LIDAR used for parking and driving assistants
[1], others are built into the cabin to monitor the occupants.

Among the occupants, the driver has traditionally been the
focus of attention in order to improve driving safety [2], [3],
[4]. Driver-facing cameras are used to assess distraction and
fatigue by monitoring head and eye movements [5]. Steering
wheel sensors can determine muscular tension and infer driver
stress [6] and takeover readiness (TOR) [7]. Regulators have
also proposed to have the car detect alcohol in the driver’s
breath and intervene or restrict operation if the driver is
intoxicated [8].

Beyond driving-related sensory equipment (which also
includes monitoring speed, braking behaviour and steering
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wheel movements [5], [9]), other sensors serve as interfaces
with the increasing number of complex customer functions.
This enables new forms of interaction, e.g., neuromorphic
vision [10] or radar-based [11] gesture control for easily
accepting or rejecting incoming calls and adjusting sound
volume, or voice-based commands that control an intelli-
gent personal assistant (IPA) [12] like Alexa or Siri, which
can engage in conversations, answer questions and make
reservations, while adapting its output to the user’s needs
[13]. These new interaction modes, together with large touch
displays, frequently complement or replace more traditional
input devices like dials and buttons [14], as it is, e.g. eas-
ier to state an address than to type it into the navigation
system.

As the automotive industry moves towards autonomous
driving, tasks originally performed by the driver are increas-
ingly taken over by the vehicle. This means that the driver is
free to attend to other tasks, and that the distinction between
driver and passenger becomes less important [2], [9]. It has
been proposed that the vehicle of the future will be a kind
of “living room on wheels” [15], allowing its occupants
to perform a wide range of activities, e.g., remote work.
Advanced multimedia and infotainment systems are already
installed in premium vehicles. Since this requires adding even
more sophisticated and interconnected systems into the car,
it is important to avoid the users getting overwhelmed. Thus,
a smooth and natural Human-Machine-Interaction (HMI) is
necessary.

Affective computing, which aims to provide machines with
the ability to recognise, interpret, and influence emotions
[16], has the potential to greatly improve the transportation
experience. An emotionally intelligent car could continuously
assess the emotions of its passengers and adjust its various
interaction modes, e.g. the voice of its assistant, accordingly.
It could change its lighting or even physically rearrange the
interior, to ensure its occupants’ wellbeing.

There have been extensive research efforts towards affect
in the car. An early work which surveyed the influence of
emotions and the potential to improve user interfaces (UIs)
through affect sensing was [17]. Since then, many works have
focused on elicitation, measurement, and effects of emotions in
an automotive context [18], [19], [20], [21], [22], for instance,
on frustration [23], [24], [25], [26]. Among prior literature, the
majority focuses on the state of the driver, as their emotions
are very relevant to driving performance and therefore safety.
In particular, negative affective states can be dangerous, e.g.,
drivers behaving recklessly as a result of experiencing road


https://orcid.org/0000-0001-8364-8301

rage. Thus, it is important to recognise when a driver is
frustrated or distressed, so the car can take countermeasures.
While it is generally desirable to move the driver towards a
state of positive valence and balanced arousal, choosing the
appropriate mitigation strategy depends on the emotional state
[18]. For driver affect, supervised methods analysing the face
with convolutional neural networks (CNNs) are popular [27],
[28], [29], [30]. Meanwhile, other recent works attempt to
capture the cognitive state via unsupervised learning based on
vehicle signals or smart devices [31], [32], [33], [34], [35].
Two recent surveys on the state of driver affect recognition
and affective Uls respectively are [3] and [36]. Interaction
technologies are surveyed in [5] and [9]. A research agenda
by Vogel et al. [37] proposes a multi-disciplinary design
approach for the development of emotion-aware vehicle assis-
tants (EVAs), combining suggestions of researchers from the
industry and academia.

We argue that it is necessary to go beyond the driver-focused
perspective and examine the broader role of affect in vehicles
where the driving task is increasingly automated. In this paper,
we review current research and give an overview on how
affective computing could be applied to semi-autonomous and
autonomous vehicles (AVs). Our focus is on the audio and
visual modalities, for the following reasons:

1) Microphones and cameras are already being installed in
vehicles to enable, e.g., speech and gesture command
recognition. The same data could be used in emotion
recognition, possibly without needing additional sensors,
which is attractive from a cost perspective.

2) Both audio and visual data can be used to analyse the
entire interior space, providing important context.

3) Passengers are not required to wear additional sensors,
unlike e.g. for electroencephalogram (EEG) [38].

4) There is a general trend towards multimodal analysis
in affective computing, and audio and video are popular
choices [39], [40]. This may also appear natural to users,
as the same modalities are available and familiar to
humans.

In addition, we also touch upon other sensing methods,
e.g., physiological signals captured through dedicated devices.
This is motivated by the popularity of vital parameters in
driver monitoring [3], [41], the increasing availability of
compact fitness wearables, and the potential to use this data
for evaluating comfort [42].

Other related surveys examine only in-cabin sensing [5],
or they are focused on the driver [3], [4], [43] or UI improve-
ments [36] instead of the autonomous driving perspective.
In studies that center on AVs, emotions may be considered as
a contributor to accepting a new technology [44], [45], [46],
[47], but the focus is often more on social and psychological
factors [48], [49] or on safety and liability issues [50], [51].
Another related survey is the work of Xing et al. [52],
who investigate cognitive factors and make recommendations
for collaboration between humans and AVs. By comparison,
we focus more on technical challenges of integrating affect
into AVs.
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Fig. 1. Aspects concerning the development of affect-aware AVs. In-cabin

sensors provide data needed for various use cases, including functions for
emotional driving, infotainment and wellbeing. From these applications,
challenges such as context-awareness, priorisation among passengers, and
personalisation arise, motivating further research, which in turn leads to more
sophisticated sensing technologies.

Our contribution is two-fold:

1) We identify existing works on affect recognition in the
context of AVs and present applications.

2) We highlight challenges in creating an affect-aware vehi-
cle and offer perspectives on future research directions.

The rest of this paper is structured as follows: We describe
advances in sensors and functions for in-cabin monitoring in
Sec. II. Applications of affect in AVs, such as use cases related
to health and wellbeing, are discussed in Sec. III. Holistic in-
cabin monitoring of all occupants creates technical challenges,
which are presented in Sec. IV. Recommendations for future
research directions are given in Sec. V. An overview of these
topics is given in Sec. 1. Finally, Sec. VI sums up this paper.

II. ADVANCES OF SENSORS AND FUNCTIONS FOR
IN-CABIN MONITORING

We present a selection of in-cabin monitoring solutions
from the automotive industry, distinguishing between series-
production technology and concept cars. Tab. I summarises
those systems. An example of in-car interaction technologies
is also sketched in Fig. 2.

Many manufacturers are introducing camera-based driver
monitoring [53], in response to coming regulatory demands
like Vision Zero (i.e., many countries pursuing a zero accident
goal [4], [54]), and related consumer protection standards,
e.g., Euro NCAP’s Roadmap 2025 initiative [55]. Intelligent
comfort functions, often showcased in concept vehicles, extend
the sensing scope to the passengers.

A. Production Technology

GM uses Super Cruise for hands-free semi-autonomous
driving on compatible highways. The vehicle tracks the road
and independently executes manoeuvres like lane changes.
Driver attention is checked through a camera, and the vehicle
requests taking over the wheel if necessary [62]. A similar
feature named BlueCruise is used by Ford and has been
approved on selected highways in the US and UK [63].

Volvo has announced a camera-based system that will mon-
itor driver distraction, intoxication, and dangerous behaviour
in its upcoming generation of vehicles [64].
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TABLE I

OVERVIEW OF RECENT ADVANCES IN IN-CABIN MONITORING SOLUTIONS, BOTH IN CONCEPT CARS AND PRODUCTION VEHICLES. SENSORS FOR
AUDIO, VISUAL, AND PHYSIOLOGICAL SIGNALS ARE ABBREVIATED AS A, V, P, RESPECTIVELY

Company Year Name Sensors User Functions
Concept Cars
Audi 2017 Elaine [56] AP personalised recommendations, revitalising programs
Audi 2019 ALME [57] \'% gaze-based menu selection, 3D-HUD
Mercedes Benz 2020 Vision ATR [58] A,V,P breathing pattern based identification
adaptive illumination

EEG-based function selection
Toyota 2018 Concept-i [59] AV empathetic conversation
Toyota 2019 LQ [60] AV emotional conversation

adaptive illumination and music
air flow/fragrance regulation
seat adaptation for alertness/relaxation
Kia 2019 R.E.A.D [61] V,p emotion-based interior adaptation
Production technology

GM 2019 Super Cruise [62] \Y% driver attention monitoring
Ford 2021 BlueCruise [63] \"% driver attention monitoring
Volvo 2019  driver monitoring system [64] v driver distraction/intoxication/behaviour monitoring
Nio 2017 NOMI [65] AV personal assistant, emotional animations
BMW 2019  Driver Attention Camera [66] \ driver distraction/fatigue monitoring
BMW 2020 Snapshot [67] v emotion-based selfie trigger
Mercedes Benz 2022 MBUX [68] AV gesture control, adaptive illumination
Mercedes Benz 2023 DRIVE PILOT [69] \'% driver attention monitoring

Fig. 2.

Sensing and Interaction technologies in future intelligent vehicles:
a) Infotainment displays, b) Audio system, c) Seat integrated sensors and
comfort functions, d) VR rear seat entertainment / AR head-up display, e)
Haptic control interface, and f) Camera system.

Nio introduced NOMI [65], an in-vehicle assistant that can
understand spoken commands and can take selfies of the
passengers with a backward-facing interior camera. NOMI
is represented through a small sphere mounted atop the
dashboard, which can turn towards the speaker to give the
impression of looking at them. In addition, it displays cute
animations to evoke an emotional reaction.

BMW has recently integrated a camera mounted overhead
above the rear-view mirror in its iX model. The cam-
era’s location (c¢f. position e in Fig. 3) combined with its
wide-angle lens allows it to see occupants on all seats.
Passengers can take selfies, where the command can be given
either by voice, touch, or implicitly by smiling. Snaphots
can also be taken remotely via an app, or the car can
send a picture of the interior if its anti-theft protection is
triggered [67].

Mercedes Benz monitors the driver and co-driver with
cameras for its Mercedes-Benz User Experience (MBUX)

interior assistant, which can interpret gesture commands and
control the interior lighting based on user activity. MBUX also
responds to spoken commands and touch [70].

B. Concept Cars

In 2017, Audi presented Elaine, a concept car which con-
tains a voice-controlled assistant that adapts to the driver’s
behaviour and makes personalised recommendations. The Audi
Fit Driver function is supposed to improve health and wellbe-
ing by monitoring vital parameters via a wearable. If stress or
fatigue are detected, the car may activate revitalising programs
[56]. In 2019, Audi AI:ME was introduced, a show car with
an UI concept that includes eye-tracking. Infrared cameras
monitor the eye movements, which allows for menu selection.
In addition, the camera is used to track eye positions, in order
to project a three-dimensional head-up display (HUD) [57].

Mercedes-Benz presented its VISION AVTR concept vehi-
cle at CES 2020, which is supposed to recognise drivers by
their breathing [58].

Toyota promises multi-modal emotion recognition through
face, voice, and behaviour with its Concept-i prototype. The
car would be capable of having empathetic conversations and
offering assistance if the driver is stressed [59]. In 2019,
an updated version called the LQ was presented. It includes
an emotional Al named Yui, which can deliver a personalised
mobility experience. Yui is capable of having conversations
and playing music matching the drive environment, as well as
changing illumination, air flow, and air fragrance. In addition,
the driver seat can change shape to promote alertness or
relaxation [60].

Kia presented Real-Time Emotion Adaptive Driving
(R.E.A.D) at CES 2018, a concept that monitors facial expres-
sion and heart rate through camera and electrocardiogram
(ECG) sensors to determine the emotional state and adapt the
interior in real time [61].



TABLE I

USE CASES FOR AFFECT RECOGNITION IN AVS. THEY ARE BROADLY
SEPARATED INTO CLUSTERS RELATED TO EXPERIENCING THE JOUR-
NEY AND NON-DRIVING RELATED ACTIVITIES IN THE CAR

Cluster Use case

Natural and engaging driving style
Promote trust and avoid anxiety in passengers
Improve acceptance with other traffic participants
Emotion-based route planning

Driving Experience

Customisation of cabin style and configuration
Empathetic voice assistant and conversation partner
Guide group interactions and mediate conflicts
Provide immersive entertainment
Create calm and productive work environment
Optimise wellbeing programs

Adaptive Interior

III. APPLICATIONS OF AFFECT IN AUTONOMOUS
VEHICLES

We discuss selected applications for affective systems in the
vehicle cabin. Some of these arise from the driving task, which
is handled by the vehicle. When the vehicle is semi-automated,
affect and cognitive states play a role in deciding when to
take or cede control. In automated vehicles, affect is more
related to driving behaviour, where the vehicle makes decisions
and checks their impact on the passengers’ emotional states.
In addition, there are affective components in non-driving
related functions such as infotainment and communications.
We summarise the use cases in Tab. II.

A. Driving Style Adaptation

Emotions play an important role in driving, and the style
of the driver can in turn have an impact on the emotions
of the passengers, causing joy or thrill but also surprise or
fear with “sporty” high acceleration manoeuvres, or calm
and relaxation via a smooth ride. Current vehicles allow for
manual selection of driving dynamics with different Uls, e.g.,
BMW offers modes geared towards performance, comfort,
and fuel efficiency [71]. In automated vehicles, driving is
controlled not by a human but by algorithms that process data
captured by external sensors, e.g., cameras or LIDAR. Most
existing research is focused on making these algorithms more
reliable, whereas adaptation to drivers’ preferences receives
little attention [72]. Careful consideration needs to be given to
the question of how and to which extent emotion is integrated
into the driving style [73]. Otherwise, passengers might feel
uneasy because the vehicle moves in a way that seems robotic
and unnatural [74]. In addition, insecurity might arise from a
lack of transparency [75], leaving the passengers wondering
whether the vehicle judges the traffic situation correctly and
knows when to perform emergency manoeuvres. To increase
acceptance, Sini et al. [76] propose to adapt driving style based
on passengers’ facial expressions.

Issues of emotions towards and trust into an automated
actor not only arise for the passengers inside the vehicle, but
also for other traffic participants attempting to judge the AV’s
actions and intent from the outside [77]. A study by Dey
et al. [78], examined the interactions of pedestrians with a
3-series BMW and a Renault Twizy. The cars were chosen
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for contrasting appearance: familiar and aggressive design
(BMW) and futuristic and less threatening (Renault). Each
was operated by a visible driver and by a hidden operator
to simulate autonomous driving. The results suggested that
speed and driving behaviour have a larger impact on pedestrian
reactions than the physical appearance of the car. Wang et al.
[79] examined how AV could convey emotions to pedestrians,
suggesting that the AV should combine emotional displays
with movement cues, be not just proactive but responsive, and
consider contextual and environmental information, e.g., the
weather. AVs could share data with each other and react faster
than humans, allowing them to move in highly coordinated
formations. Bera et al. [80] examined group emotions related
to autonomous navigation, aiming to make it socially aware.
They argued that entitativity, i.e., similarity in appearance and
behaviour, as well as physical proximity, would make fleets
of autonomous cars stand out and elicit negative reactions
from pedestrians. In a user study, emotional reactions to
different entitativity profiles were examined, then, a navigation
algorithm was developed to minimise negative reactions and
increase social invisibility of vehicle groups.

Driver Affect already plays a role in customising the interior
in current generation vehicles. For instance, BMW offers
MyModes, allowing the driver to select visual and sound
themes fitting their current mood. At CES 2022, two new
modes named Relax and Expressive were presented [81]. AVs
could extend this concept by adapting both driving and interior
styles to create a more immersive emotional experience.

From this, it can be concluded that similar to a human
driver, an AV should monitor the affect of its passengers and
integrate that information into its driving behaviour to ensure
a comfortable ride. Simultaneously, a more natural movement
might help build trust with other traffic actors and improve
acceptance.

B. Driving Safety

Apart from adjusting its driving style to build trust implic-
itly, an AV may also interact directly with the passengers.
Here, affect again plays an important role to make the occu-
pants feel safe.

Lee et al. conducted a simulated autonomous driving study,
in which three different agents interacted with the drivers
before and after events. Some participants perceived the con-
versational agent, which imitated natural human interaction,
as more friendly and competent than agents which merely
conveyed information. However, others complained that the
agent was too verbose and distracting [82].

A study on semi-autonomous driving by Koo et al. investi-
gated the effects of the information given on driving safety and
driver satisfaction. Participants drove in a simulator where the
car had an automatic braking function. The car would inform
the drivers of an imminent action (how) or the reason for an
action (why). The former decreased driving performance, while
the latter improved it and was preferred. Giving both pieces
of information caused negative emotions but the best driving
performance. Thus, there is a trade-off between safety and
comfort when the driving is not fully automated. Giving the
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full information may be necessary in a critical situation, but in
non-critical situations, limiting to the why could help drivers
process the situation better and feel more involved [83].

For highly or fully automated vehicles, human driver inter-
vention with respect to road safety is rarely or never necessary.
However, the car should offer explanations or comments on
its actions to promote passenger trust and avoid anxiety [84].
Emotion recognition can be used to adjust the communication
to convey the proper amount of information in an engaging or
calming voice.

In case of an emergency, e.g., an accident in which the
vehicle is damaged, or an imminent danger, evacuation may
be necessary. Here, the vehicle could act as coordinator of the
evacuation procedure, and should take the affective states of its
occupants into account when doing so. Literature on emotions
in evacuations is mainly concerned with other transportation
modes or crowds [85], however, insights might be transferred
to emergency protocols for AVs.

An emotional vehicle may also help improve safety in non-
driving related scenarios, when passengers are angry and upset
with each other. Consider, e.g., small children arguing or
fighting on the rear seats, who may pose a risk to injuring
themselves or damaging the interior. The vehicle may choose
to either defer to an adult, or attempt to deescalate itself,
depending on its reading of the situation.

C. Route Planning

Route Planning is another application where passengers’
affect can play an important role. A human driver would
consider the feelings and preferences of other people in the car
when deciding on a route, and so should the AV. Here, affect
recognition can help improve the ride experience by selecting
routes that lead to positive emotions.

A user study by Braun et al. sought to identify use case
clusters for affect in the car, based on interviews with Ger-
man and Chinese testers of demo functions in a parked car.
They found that navigation-related functions were in highest
demand among participants of both cultures. Proposed use
cases included finding routes based on positive experiences of
other drivers, avoiding negative emotions by re-routing around
difficult situations, and recommending parking spots for stress-
free parking [86].

A navigation algorithm considering affective responses to
the environment was proposed in [87]. Routes were gener-
ated from crowd-sourced data that linked map locations to
emotional responses. A user study showed that routes which
considered affect were preferred to taking the shortest path.

Besides selecting destinations based on aggregated journeys
from other drivers, a personalised route planning system could
also learn to revisit destinations the passengers liked in the
past. Two examples of personalised tour recommendation
algorithms integrating point-of-interest information and user
behaviour are [88] and [89]. Passenger affect could also
influence the willingness to take shorter or longer routes [90].
However, this might co-depend on other, non-affect related
factors, making an accurate assessment difficult. Most of the
participants in [86] cited desire to explore a new region,

e.g., on vacation, as motivation to try an affective navigation
system. Chinese subjects in particular associated the function
with family trips.

Acceptance of these route planning features is expected to
be greater when they are seen as optional suggestions [86].
When it comes to selecting the route, the passengers should
be involved in making the choice, and the AV might participate
in the conversation to help guide them towards a consensus.

Knowledge of the affective states and preferences of passen-
gers has the potential to enrich autonomous driving by tailored,
scenic routes [91]. However, literature on the topic of affect-
based route planning is still scarce, and the efficacy of the
suggestions above is yet to be evaluated in studies on the road.

D. Communication

The AV can serve as a mediator between the passengers,
and possibly also between passengers and people outside
the vehicle. Being able to assess and convey affect in these
interactions is of great importance.

During regular operation, the vehicle could help guide
conversations, lighten mood and help solve conflicts between
passengers. The extent of the car’s interaction plays a crucial
role here. Previous studies on driver emotions show that drivers
benefit from and favour empathetic assistants [23], [92], [93].
However, they may reject help if they feel patronised [93].
In the broader context of affective Uls, the vehicle should
know when and how to communicate [86], [92].

AVs can be thought of as service robots, which must meet
wants and needs of users to build trust and acceptance. Emo-
tional design can help with this goal, but careful considerations
have to be made to account for the diversity of users [94].

E. Infotainment

With the reduced role of the driver, other activities become
more important. Current vehicles already include a wide
range of systems for information and entertainment, which
are summed up into the concept of infotainment. Infotainment
is commonly provided via touch displays mounted to or
integrated inside the dashboard. There is a trend towards
larger, merged displays, e.g., Mercedes-Benz’s Hyperscreen,
which combines multiple displays under a common glass cover
[95], and BMW’s iDrive Curved Display [96]. In combination
with the sound system and the vehicle’s car-to-x network
connectivity, these allow for reading news, listening to music,
or playing games. Premium brands also include extensive rear
seat infotainment options, e.g., the retractable Theatre Screen
presented by BMW at CES 2022 [97].

Infotainment systems in AVs could benefit greatly from
incorporating passengers’ affect. The vehicle may help sift
through the large amount of available content by providing
personalised recommendations for music playlists [98], video
games, or movies and TV shows. The user preferences may be
inferred implicitly from the browsing behaviour. Alternatively,
the system may derive the current emotional state from a
conversation and adapt its recommendations accordingly [99].

Future vehicles will allow their occupants to perform work-
related tasks, e.g., conference calls or writing and reviewing



documents, while on the road. For these use cases, the car
may provide an empathetic assistant that adjusts the UI and
presents information based on the passenger’s emotional state.
This could help improve productivity by minimising stress and
increasing focus.

F. Health and Wellbeing

Health and wellbeing are important factors in driving safety
and enjoyment, and closely linked to the emotional state.

As discussed above, existing approaches focus on camera-
based detection of the driver’s state, e.g., distraction, stress and
fatigue. This functionality could be extended to all occupants
with camera systems that can see the entire cabin. In addition,
these systems could be used to detect major health risks, such
as an imminent heart attack. The car could then stop and call
for help, or navigate to a nearby hospital.

Camera based systems could also be used to monitor infants
on the back seats. A direct camera stream is preferred to an
abstract state description, so that parents can observe and react
to the child’s actions [86].

Physiological sensors are also used to estimate a variety
of driving-related vital and cognitive states. Examples from
the literature include stress level via EEG [100], [101] and
heart rate variability (HRV) derived from ECG or blood
volume pulse (BVP) from wearables [102], cognitive load
[103], fatigue [104] and autonomic arousal [105] via HRV,
comfort [42] via EEG and HRV, and vigilance and take-over
readiness via EEG [106], [107]. Note that while those sensors
may become more lightweight and comfortable to wear, there
are competing research efforts to use cameras for remote
sensing of vital signs [20], [108], [109]. Provided that they
work reliably, car manufacturers may prefer these unobtrusive
methods.

Currently, premium vehicles incorporate programs for
improving driver wellbeing. For instance, BMW offers the
Caring Car program, which either vitalises or relaxes the
driver by changing ambient lighting, temperature, air flow, and
playing music [110]. Mercedes Benz has created a suite of
programs called ENERGIZING, which can adjust lighting and
sound, activate seat massages, and scent the air. The feature
can take drive duration, weather and traffic data into account,
as well as integrating vital parameters from a wearable [68].

Future AVs could extend these wellbeing functions to all
passengers. Affect recognition could then help the car detect
the impact of the wellbeing program in real time and optimise
its effectiveness. The vehicle may also adjust its interior, e.g.,
the lighting, proactively to improve the mood of the occupants,
or actively guide them towards a calm state of mind using, e.g.,
music [111]. A study by Paredes et al. investigated controlled
breathing exercises in a driving simulator. Participants were
guided by voice commands or haptic stimuli in the seat. The
interventions showed a lasting effect in reducing arousal, with
haptic feedback being preferred as less obtrusive [112].

Another technology that has significant potential for both
infotainment and wellbeing is virtual reality (VR). Displaying
calming content like an ocean dive has been shown to reduce
autonomic arousal, while the dynamic nature of the simulation
helped reduce motion sickness in a moving vehicle [113].
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IV. CHALLENGES IN HOLISTIC IN-CABIN MONITORING

We now discuss technical implications and challenges
arising when moving from driver state monitoring towards
passenger monitoring in future AVs.

A. Emotional Target and Context

The transition from manual to autonomous driving invali-
dates one of the central assumptions in many current systems
and studies on in-vehicle affect: That the driving task is
the target of the emotions. In an AV, affect may arise from
passengers using the infotainment systems to watch movies or
play games, talking to each other or having conversations with
other persons remotely, speaking to the in-car assistant, built-
in comfort functions attempting to enhance their wellbeing,
or reacting to the vehicle dynamics and the view outside.

Thus, in order to respond to passenger affect in any of the
use cases described in Sec. III, it is of paramount importance
for the vehicle to understand the target of the affective sen-
sation. For instance, when deciding on a driving behaviour
adjustment to promote relaxation or excitement, the vehicle
must know whether the passengers’ affect is actually influ-
enced by the driving style. If a passenger’s feeling of distress
or unhappiness is not directed towards vehicle movements,
other actions such as changing the interior lighting or seat
shape may be more effective for improving that person’s
wellbeing.

Separating the different influences on affect and determining
the targets requires the intelligent vehicle to possess context
awareness. However, there are still comparatively few works
on context in affective computing, audiovisual or otherwise.

Learning contextual information requires datasets that con-
tain rich scene information. In [114] and [115], the EMCO and
EMOTIC corpora for visual emotion recognition in context are
introduced. A larger dataset named CAER, compiled from TV
show scenes, together with an architecture that encodes and
fuses facial and context information, is presented in [116].
Joint emotion and game context recognition on live-streams
of the popular e-sports title League of Legends is performed
in [117].

For vehicles, the majority of work is again focused on
situations that trigger negative emotions, since these are most
relevant to driving safety [36]. An evaluation of 531 self-
reports of 33 participants, recorded while driving, found four
main clusters related to affect. Traffic-related events and issues
with navigation systems primarily caused negative emotions,
while the vehicle’s equipment and nice environments were
mostly leading to positive emotions. An asynchronous online
survey with 170 participants by Braun et al. found, unsurpris-
ingly, that dangerous situation and drivers being unsatisfied
with their own performance triggered negative emotions, while
positive emotions arose from satisfaction with vehicle perfor-
mance and driving skills [118].

B. Passenger Diarisation

Another challenge arises due to the possibility of multiple
people being in the car simultaneously. In this case, an audio-
visual system needs to perform a separation in terms of who
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Fig. 3. In-cabin camera system for a current generation vehicle interior.
Left: several possible locations for backward-facing cameras; a) A-pillars, b)
driver-facing, c) dashboard, d) rearview mirror, e) car roof. Right: field of
view for a camera mounted near the top center of the windscreen. Based
on camera placement and passenger activity, partial occlusions and extreme
angles may occur. In AVs, the camera systems will likely need to account for
greater freedom of movement, as well as different interior configurations.

is speaking when (speaker diarisation), as well as identifying
multiple persons in the camera footage (video segmentation).
While passenger diarisation can seem rather trivial today,
it may become more challenging as we move towards
autonomous cars. In present day vehicles, there is a clear
assignment of roles based on the seat occupation (driver, co-
driver, rear seat passengers). This distinction is expected to
disappear with autonomous driving. Advances in safety may
allow passengers to be less restricted by their seats than is
the case today. In addition, the cabin itself may transform to
accommodate various user needs, e.g., moving and rotating
seats, or retracting consoles for greater freedom of movement.
Thus, the assumption that passengers occupy fixed positions,
which change only between drives, no longer holds.
Fortunately, re-identification of persons in video is a fairly
mature area of research [119], [120], [121], as is speaker diari-
sation in combination with speech recognition systems [122].
For vehicles, identification via smartphone data has also been
proposed [123], although this is more error-prone if devices
and persons can move freely in the cabin. The simultaneous
detection of multiple faces is also reasonably well addressed
in current computer vision algorithms. However, the vehicle
environment presents challenges that dynamically impact how
well each passenger’s emotion can be recognised. These can
involve illumination (e.g., rapid changes due to entering a
tunnel or driving along a road partially shadowed by trees,
glare from low sun), unfavourable angles (e.g., looking out the
side window with the face in profile), or partial occlusions due
to camera placement and occupants’ movements and activities
(e.g., leaning across seats, gestures). All of these factors can
negatively impact detection and tracking [4], leading to perfor-
mance losses in face and body pose based emotion recognition.
The in-cabin monitoring system will need to be designed with
these issues in mind, e.g., by switching to infrared cameras
in low light conditions or integrating additional sensors like
LIDAR. Possible camera placements at the front of the cabin,
as well as an example field of view are illustrated in Fig. 3.
Speech Emotion Recognition (SER) in the vehicle faces
issues of noise, due to external sources like vibrations from
wind and the road surface, as well as internal sources like
people talking simultaneously or music [124]. External noise
may be reduced effectively due to quiet electric drives and

improved acoustic design. However, manufacturers may add
artificial sounds instead to make the driving more immersive.
Despite advances due to deep learning, SER inside vehicles is
currently still suffering from performance issues [125].

Algorithms for automatic in-car affect and emotion recogni-
tion will need to solve the challenges outlined above to identify
each individual in the cabin and access their affective states
even when data from some modalities is temporarily degraded,
as is the case with occlusions in video streams. Detecting
affect in such challenging situations is, however, still largely
unexplored in the literature today.

C. Group Affect and Priorisation

Another challenge related to the presence of multiple indi-
viduals in the car is the existence of a group-level affect
state, which a holistic in-cabin sensing system should be
able to detect. Automatic group emotion recognition received
comparatively little attention in the past [126], but has garnered
increasing interest in recent years. A comprehensive survey on
current approaches is given by Veltmeijer et al. [127].

Group-level affect can be considered bottom-up, also called
local context, arising from emotions of individuals, or top-
down derived influenced by the environment and called global
context, or as a hybrid mixture of the two [127]. Hybrid
approaches frequently combine face and scene information
using CNNs or visual attention [128], [129], [130].

While advances in group emotion recognition have been
made, existing approaches have shortcomings, such as assum-
ing the group to share one common emotion, largely relying
on just one modality and not considering the evolution of
emotions over time [127]. Group affect in the car is rarely
investigated, one such work being a study of Alyuz et al., who
examine the emotions of driver-passenger dyads in simulated
autonomous driving [131].

Beyond detecting group affect, the presence of multiple
occupants necessitates some form of priorisation strategy
which enables the car to weigh their wants and needs before
making a decision. For instance, the car could attempt to find a
course of action that maximises satisfaction for all occupants,
or it could strive to specifically improve the wellbeing of
passengers that are feeling very uncomfortable, e.g., when
choosing the driving style.

Affect-based priorisation among multiple users is mostly
a white space in the literature. In cars, the final decision is
usually made by the driver. However, some works exist for
other forms of transportation. Passengers of Chinese high-
speed rail (HSR) were surveyed on factors influencing in cabin
comfort in [132]. A fuzzy linguistic approach was then used
to reach a consensus on the most important factors.

D. Personalisation

Current affect recognition systems mostly follow the
paradigms of (semi-)supervised learning, in which a model is
trained on a set of (partially) human-labelled samples and then
deployed. The model is then expected to generalise well across
diverse users. However, in the use cases described in Sec. II1,
there exists a significant potential to use affective feedback to



continuously improve the vehicle. Passengers spend extended
periods of time travelling, and may regularly use the same car
for years. This gives plenty of opportunities for the empathetic
car to get to know its occupants and learn to better recognise
their feelings and preferences.

Learning on a daily basis in a wide range of situations
has the additional benefit of contributing to overcome the
bottleneck of limited data in affective computing. When
collecting data during the drive, instead of just performing
inference, the model can be adapted. One way to do this is
by reinforcement learning (RL). Here, the vehicle could use
the reactions of the passengers to better assess the affect.
For instance, in the driving style adaptation use case, the
vehicle may detect fear from a passenger and decide to drive
more conservatively. If it then detects that the passenger’s
affect is not improving or becoming more negative, indicating
dissatisfaction, the vehicle may rethink its assessment of
fear for future situations. RL has the advantage that it can
function without the need for explicit human labelling. Instead,
the agent makes decisions based on a reward function and
the positive or negative feedback it receives. The learning
process could also be considered weakly supervised or semi-
supervised when the interaction context is used to guide the
model. As an example, the reward function could be long-
term maximisation of wellbeing. The car could then observe
how the passengers’ affect evolves, and optimise its actions
towards that goal. At the same time, these interactions may
help improve its recognition of a user’s emotions. While
reinforcement learning for AVs has recently attracted much
interest [133], research focuses predominantly on problems
like motion planning [134], routing [135], decision-making
[136], vehicle control [137], [138], understanding pedestrians
[139], and cyber-physical safety [140], [141]. Applications to
affective computing are still scarce, but have shown promising
results [142]. For instance, Ling et al. propose a framework
for emotionally adaptive AVs using a driving simulator and
EEG sensors. Fuzzy logic is used to infer driver preferences
from emotional states. The vehicle behaviour is controlled by
a RL algorithm, with a composite reward function combining
safety with personalisation [72].

An alternative to reinforcement would be active learning,
where the vehicle gathers data, then asks a human for feedback
to improve its decision-making in cases where it is uncertain.
This may be less convenient than the implicit feedback used by
RL. Users constantly asked for comment would be distracted
and annoyed [37]. On the other hand, given that users value
having personal choice in their interactions with the vehicle
[86], they may welcome it asking for their input, provided it
is not done in an obnoxious or patronising manner.

Another option to utilise the large amounts of data collected
in the vehicle would be self-supervised learning, which does
not require explicit labelling. In this learning paradigm, models
are trained on pretext tasks that teach them information
implicitly contained in the data, e.g., the spatial orientation
of an object. The pre-trained model can then be adapted to a
variety of downstream tasks. This approach has been proven to
be effective in natural language processing with BERT [143]
and other Transformer-based architectures [144], and there are
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works on using self-supervision for autonomous navigation
[145], [146]. In affective computing, it has improved the
performance of SER [147]. Combining visual and audio data
for self-supervision can help generate more robust features for
emotion recognition in noisy environments by encoding com-
plementary information, outperforming unimodal approaches
[148]. Self-supervision is of particular interest for affective
computing since large amounts of audiovisual data are readily
available, but high-quality annotation of affect is expensive and
therefore only done on small datasets [149]. This encourages
cross-modal, cross-domain or cross-corpus approaches which
pre-train on large unlabeled corpora and then fine-tune on a
small labeled dataset [148], [150].

E. Privacy

Personalisation of the in-vehicle experience also raises
issues of privacy. Given the growing amount of sensors in
the car, and the networked nature of modern vehicles, which
will only increase with the shift to autonomous driving [151],
protecting the passengers’ personal data becomes more impor-
tant than ever. With holistic in-cabin monitoring, the vehicle
could potentially learn an enormous amount of information on
its users, including highly sensitive health data, habits, aspects
of their personal life, efc. At the same time, the automotive
industry is incentivised to monetise this data, while third
parties, e.g. insurance companies, seek to gain access to it
[53]. Data from built-in sensors can potentially reveal a lot
more than was originally intended [151], e.g., a camera system
for object detection and passenger identification may also be
used to detect health and affect. Audiovisual sensing through
camera systems and microphone arrays also has the inherent
disadvantage that these are potentially always on, capturing
information. This might lead some users to feel they are under
constant surveillance by their car [152], and fear that their
recording may be stored and analysed somewhere beyond their
control.

V. DISCUSSION AND FUTURE DEVELOPMENT
RECOMMENDATIONS

We have given a selection of potential use cases for affect
in AVs in Sec. III, and presented some technical challenges
in Sec. IV. This list does not claim to be comprehensive
or complete, since technological advances and social trends
will certainly open up new opportunities and issues. Here,
we discuss our findings and make suggestions for future
research directions, which we summarise in Tab. III.

A. Safety and Comfort

We have touched upon the relation of safety and affect in
particular in Sec. III-A and Sec. III-B. However, this was
through the lens of passengers’ perceptions of trust and safety,
and how integrating affective feedback can be beneficial. This
discussion would not be complete without examining how
affect might be harmful, if inappropriately used.

Before any affective use cases from Sec. III can be imple-
mented in series production, these functions will need to be
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TABLE III

FUTURE RESEARCH OPPORTUNITIES FOR AFFECTIVE AUTONOMOUS VEHICLES. THEY ARE BROADLY ORGANISED IN CHALLENGE CLUSTERS, RELATED
To: ATTITUDE TOWARDS AVS (BY PASSENGERS AND THE PUBLIC), PERSONALISED VEHICLES AND IMMERSIVE USER EXPERIENCE DRIVEN BY
HOLISTIC SENSING AND MODELS OF THE CAR INTERIOR

Challenge cluster

Research direction recommendations

Anthropomorphisation to build trust [153], [154], [155]

Improve acceptance of AVs

Intuitive explanations for passengers [83], [156], [52], [84]

Intent communication to other road users [78], [77], [157], [158], [159], [79]

Create a personalised vehicle

Emotional personal assistant [37], [160], [13], [161], [12], [72], [162]
Privacy preservation [163], [164], [165], [166]

Affect-responsive UI [167], [168], [169], [118], [93], [36]

Provide an immersive, intelligent in-cabin experience

New sensing and interaction technologies [170], [82], [14], [5], [9]

Context awareness [80], [131], [171], [172], [22]

carefully evaluated in terms of how they interact with the
primary goal of of a (semi-)autonomous vehicle, which is to
ensure the safety of its occupants and other members of traffic.

The affective components should be at least neutral in
regards to safety, i.e., there should be no way for them to
impact critical functions in a dangerous manner. For instance,
in case of driving style adaptation, there should obviously be
no way for extreme emotions to override basic heuristics for
safe driving. In other words, the AV should not behave so
human-like that it starts road-raging or thrill seeking.

For use cases that are not directly related to driving but more
to comfort, e.g., infotainment or health and wellbeing, safety
issues appear in the context of semi-autonomous driving, when
there is the potential of the driver having to take over in case
of an emergency but being distracted. The current solution is
to bar the driver from using such functions, at least while the
vehicle is on the road, or to limit their availability.

In a fully autonomous vehicle, comfort functions have less
of an immediate impact on transportation safety, and more
on the sense of safety of the passengers. In particular, the
interaction with the emotional vehicle assistant that governs
the functions has to be carefully designed so that is does not
cause anxiety or distress. For instance, it may monitor the
passengers’ vital parameters to improve their wellbeing, but
it should not make insensitive comments about their health.
Having multiple passengers in the cabin also brings the risk of
the vehicle inadvertently causing harm by revealing personal
information about one of them. A better understanding of
group affect might help prevent such situations. Knowing
when and how to convey information is a key competency
of an empathetic conversation partner, and should be compre-
hensively investigated in future work.

B. Trust and Explainability

As described in Sec. III-C and Sec. III-B, trust plays a
key role in the acceptance of AVs. This is closely linked to
affect, since passengers can be expected to feel apprehensive
and interact more hesitantly with the car when they do not
fully trust it. In order to provide the best possible experience
to customers, vehicle manufacturers need to be aware of
the interplay of psychological factors like trust and affect,
and incorporate this knowledge into the design [36], [160].
An empathetic vehicle that has a concept of trust could
deliberately adjust its actions, e.g., by initially exhibiting

slower, seemingly more careful driving to prevent anxiety, and
moving towards a more daring, but still safe style once its
occupants have learnt to be confident in its capabilities.

Likewise, the vehicle may integrate trust and cognitive
load, together with affect estimates, into its infotainment and
comfort functions. This could help strike a balance in terms
of the amount and type of information presented [156]. While
passengers might get frustrated with an overwhelming amount
of customisation options, they may, on the other hand, resent
the vehicle for trying to explain everything to them, which
may seem overbearing or patronising.

Explainability and trust are closely linked, especially when
dealing with HMI. Passengers may be inclined to mistrust a
disembodied intelligence, whose reasoning they see as non-
human. Besides making the design more anthropomorphic
to build trust [94], [153], [154], having the car be able to
explain its decisions, would be desirable. Simply displaying
the results of in-cabin analysis, such as the emotional state,
may cause negative reactions [160]. Instead, the car should
preferably communicate in an intuitive manner such as natural
speech, to appear more as a helpful companion than a detached
observer.

Explainable AI (XAI) is an active and growing research
field, due to the pervasiveness of deep models in many
aspects of life and the need to make sense of their decisions
[173], [174], [175], [176]. Using XAI to investigate intelligent
assistants for AVs would be an interesting research avenue.

C. Personalisation and Privacy

As shown in Sec. IV-D, personalisation can play an impor-
tant role in helping the vehicle understand the subjective
preferences of its passengers and improving the user expe-
rience. In particular, emotional personalisation is promising
[36]. Beyond the technical challenges of updating the on-board
intelligence with, e.g., reinforcement learning, there are also
psychological and ethical questions.

While personalisation can be very beneficial, it also involves
making specific inferences about individuals. How these
insights are gathered and how they are applied will be of
critical importance for how the intelligent vehicle is perceived.
As demonstrated by the literature, users welcome opportunities
for personalising their car, but they want personal choice [86].
One possible solution would be to run the adaptation of the
affect recognition system largely implicitly, but not changing



the behaviour of use cases without more explicit input. The
vehicle should involve the users in the determination of their
preferences by presenting them a selection of options, so the
users feel that they have agency. Nevertheless, the built-in
assistant could still be proactive in its suggestions and perform
a certain level of filtering options, if desired.

For privacy protection, it is recommended that the analysis
of in-cabin sensor streams be run on on-board hardware. Note
that this may not always be possible for computationally heavy
tasks, such as question answering by intelligent assistants.
However, there is significant potential in making, e.g., com-
puter vision and audio algorithms run efficiently on embedded
hardware [177], which has the added benefit of saving costs
and energy consumption. In situations where visual data has
to be sent to a backend, facial anonymisation via GANs [165],
[166], [178] is an interesting research direction.

D. Cultural and Social Influences

Cultural and social factors play an important role when
designing affect-based functions for AVs. Manufacturers who
want to appeal to global markets need to consider this to
improve sales and customer satisfaction.

On the one hand, acceptance and demand towards certain
clusters of functions may be impacted by socio-cultural con-
text [44], [48]. For instance, functions that let users share
emotional experiences may be highly sought in some cul-
tures or social groups but considered at best an unnecessary
gimmick in others. While highly dependent of the individual,
the desire for personalisation of the vehicle is also likely to
be impacted by social norms regarding personal expression.
Cultural attitudes may also change over time, defying initial
hypotheses. As reported in [86], German subjects were more
willing to share emotion detection data than Chinese subjects,
indicating shifts on privacy.

On the other hand, cultural background and origin also has
a significant impact on how people experience and express
emotions [179], which needs to be considered for automatic
affect recognition. Systems trained on insufficiently diverse
data, e.g., only on a small subset of cultures, will be less reli-
able when performing inference on people from a previously
unseen culture. Cross-cultural affective computing is explored
by relatively few works yet, but it is an important area of
research to make emotion-aware systems ready for large-scale
use [177].

E. Theoretical Frameworks

As the industry progresses towards autonomous driving and
better in-cabin sensing, much thought will need to be devoted
to solving challenges like the ones listed in Sec. IV. While
we have given a high-level overview here, manufacturers will
need to address numerous low-level technical issues, within the
constraints of commercial product development. Since affect-
enabled intelligent vehicles will be highly complex, future
work should also focus on developing broader theoretical
frameworks.

For instance, one way to make an autonomous car more
appealing and improve acceptance would be to consider certain
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profiles, or personas, in the design process. However, what
these personas should look like is still largely unexplored
for AVs, and would need to be carefully and systematically
validated across large populations [94].

As discussed above, turning the vehicle into an empathetic,
human-like companion should include a mental model of the
passengers [156] that not only encompasses affect and specific
emotions, but a broader psychological picture involving, e.g.,
trust and cognitive load. Future research should be multi-
disciplinary, involving psychologists and engineers. Emotions
should be studied in detail under realistic conditions, and
across many contexts [179].

To create a truly context-aware vehicle, as touched upon
in Sec. IV-A, there needs to be a sophisticated cabin model,
including the various Uls, built-in and connected sensors,
customer functions, as well as passenger states and external
influences. Such a model could also help combine interactive
technologies in new and interesting ways. For instance, haptic
surfaces may replace traditional buttons while maintaining
tactile feedback and providing distinctive sensations [5], [14],
[170]. Furthermore, soft materials like seats can be enhanced
via stretchable electronics [180]. Combining haptics with
affect can create a more immersive user experience, and affect
detection through touch remains an open research area [181].

In addition, means of sharing information between vehicles
(V2V), while protecting personal data, should be investigated.
Manufacturers could use rich data from vehicle fleets to
improve algorithms and provide OTA updates. Edge com-
puting is highly relevant here [30], [182], as are distributed
methods like federated learning with differential privacy [164].
Privacy preservation in AVs is a highly topical research field
[166], [183], as is fairness in machine learning [184].

VI. CONCLUSION

This paper examined automatic affect recognition and its
applications to future generations of autonomous vehicles.
It highlighted challenges and offered perspectives on future
research opportunities. We based our discussion on the obser-
vation that in-car sensing technologies and customer functions
are becoming increasingly numerous and sophisticated and
extrapolate that, as we move towards large-scale autonomous
driving, the focus will shift from driver affect to passenger
affect, enabling emotionally intelligent vehicles to adapt to
their occupants. An exemplary selection of affect-enabled
use cases and technical challenges was presented. Since the
majority of prior work is focused on driver affect, some of the
claims made herein will need further studies to substantiate
them. As new technologies emerge and the wants and needs
of passengers in autonomous driving become clearer, parts of
this work will undoubtedly need to be revised. Nevertheless,
one can assume a major shift in how affect is recognised and
used in (semi-)autonomous vehicles of the future.
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