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Performance Bounds For Co-/Sparse Box Constrained
Signal Recovery

Jan Kuske and Stefania Petra

Abstract

The recovery of structured signals from a few linear measurements is a cen-
tral point in both compressed sensing (CS) and discrete tomography. In CS
the signal structure is described by means of a low complexity model e.g. co-
/sparsity. The CS theory shows that any signal/image can be undersampled at
a rate dependent on its intrinsic complexity. Moreover, in such undersampling
regimes, the signal can be recovered by sparsity promoting convex regularization
like `1- or total variation (TV-) minimization. Precise relations between many
low complexity measures and the sufficient number of random measurements are
known for many sparsity promoting norms. However, a precise estimate of the
undersampling rate for the TV seminorm is still lacking. We address this issue
by: a) providing dual certificates testing uniqueness of a given cosparse signal
with bounded signal values, b) approximating the undersampling rates via the
statistical dimension of the TV descent cone and c) showing empirically that the
provided rates also hold for tomographic measurements.

1 Introduction

The current work is motivated by the image reconstruction problem from few linear
measurements, e.g. discrete tomography [HK99], where typically bounds on the
image values are available. This explains why we are concerned with the recovery
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of box constrained signals. Moreover, we aim to reconstruct an image that exhibits
some structure, e.g. sparsity/gradient-sparsity.

Recovering a structured signal/image from few linear measurements is a central
point in both compressed sensing (CS) [FR13] and discrete tomography [HK99].
In CS the signal structure is described by means of a low complexity model. For
instance, signal sparsity s := ‖x‖0, that equals the number of non-zero components
in x, and the associated `0-minimization is typically relaxed to `1-minimization. The
theory of CS implies that if the number of measurements m ≥ C · s log(n/s) and the
entries of the measurement matrix A follow a normal distribution, i.e. aij ∼ N(0, 1),
the solution of `0-minimization is equal to the solution of `1-minimization. Thus, a
combinatorial problem can be solved by a convex optimization problem.

In the present work we consider the noiseless setting

Ax = b, (1.1)

where the unknown (structured) signal x ∈ Rn is undersampled either by a Gaussian
matrix A ∈ R

m×n, i.e. A has independent standard normal entries, or by a tomo-
graphic projection matrix A.

For the reconstruction of the sparse or gradient-sparse box constrained signal of
interest we consider some structure enforcing regularizer f : Rn → R, that is a proper
convex function, and solve

min
x
f(x) subject to Ax = Ax, (1.2)

where f is specialized to one of the following functions

f1(x) = ‖x‖1, (1.3a)
f2(x) = ‖x‖1 + δRn

+
(x), (1.3b)

f3(x) = ‖x‖1 + δ[0,1]n(x), (1.3c)
f4(x) = ‖Dx‖1, (1.3d)
f5(x) = ‖Dx‖1 + δRn

+
(x), (1.3e)

f6(x) = ‖Dx‖1 + δ[0,1]n(x). (1.3f)

In the first part of the paper D ∈ R
p×n is an arbitrary matrix, while in the latter

part D is specialized to the discrete gradient operator, in view of the (anisotropic)
TV-regularizer we are interested in.

1.1 Contribution, Related Work, Organization

Our main objectives are:
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Individual Uniqueness We derive practical tests for individual uniqueness: Given a
signal x and an instance of the optimization problem above, can we efficiently
verify whether the signal is the unique solution? Our approach will be to ap-
ply the uniqueness condition 0 ∈ int ∂f(x) [Gil17] to several types of poly-
hedral functions f including `1- and TV-minimization with and without box
constraints, as detailed in Sect. 2. Such testable uniqueness conditions for TV-
minimization were also developed in [JKL15, ZMY16], but these use different
mathematical tools. Our derivation is shorter and additionally considers box
constrained TV-minimization.

Probabilistic Uniqueness We wish to accurately describe the relation between the
signal sparsity and the number of measurements that guarantee uniqueness
with high probability. We build on recent CS theory [ALMT14, OH16, DJM13,
FM14] that upper bounds the statistical dimension of the descent cone of the
structure enforcing regularization. The difficulty lies in the fact that certain
CS guarantees are missing for TV-minimization. Moreover, the CS recovery
performance bounds based on the statistical dimension (also called phase tran-
sitions) do not apply directly to tomography, since tomographic measurements
are known to be ill-conditioned on the common structured signal classes from
CS. Phase transitions in CS are discussed in Section 3.

Empirical validation We verify the theoretical probabilistic results for Gaussian ma-
trices along with the theoretical uniqueness tools and compare them to the
recovery and uniqueness performance of typical tomographic measurements.
We stress that tomographic projections fall short of the common assumptions
(e.g. restricted isometry property) underlying compressed sensing, see [PS14],
and CS recovery guarantees do not apply for tomography. In view of its practi-
cal importance (reducing radiation exposure) we emphasize the need of accu-
rately describing how much undersampling is tolerable in tomographic recov-
ery. We empirically validate our theoretical results in Sect. 4. Hence, our work
is closely related to the work in [JKL15], but additionally provides approxima-
tions to the theoretical phase transition curves that are validated empirically.

1.2 Notation

For n ∈ N, we use the shorthands [n] = {1, 2, . . . , n}. We define Rn+ := {x ∈
R
n : xi ≥ 0,∀i ∈ [n]} and Rn++ := {x ∈ Rn : xi > 0,∀i ∈ [n]}. Analogously, we

define Rn− and Rn−−. The extended real line is denoted by R := R ∪ {±∞}. Vectors
x ∈ Rn are column vectors and indexed by superscripts. x> denotes the transposed
vector x and 〈x, y〉 or x>y the Euclidean inner product. > stands for the transpose.
For a vector x ∈ Rn, sign(x) ∈ Rn is the sign vector of x defined component-wise as
sign(x)i = 1 if xi > 0 and sign(x)i = −1 if xi < 0. For some matrix A ∈ Rm×n,
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the nullspace is denoted by N(A) and its range by R(A). For some matrix Ω ∈ Rp×n
we denote the submatrix indexed by the rows in Λ ⊂ [p] by ΩΛ,•. Similarly, for
some matrix A ∈ R

m×n the columns indexed by S ⊂ [n] are denoted by A•,S .
The complement of an index set S ⊂ [n] will be denoted by Sc := [n] \ S. For a
subspace X , X⊥ will denote its orthogonal complement. The affine hull of a set X ,
see Appendix, is denoted by aff(X). The conic hull is denoted by coneX . We use
the `1-norm ‖x‖1 =

∑
i∈[n] |xi| and the maximum norm ‖x‖∞ := maxi∈[n] |xi|.

The `0-measure (not a norm!) stands for the cardinality of the support of x, i.e.
‖x‖0 := | supp(x)|, with supp(x) = {i ∈ [n] : xi 6= 0}. The cosupport of x is
denoted by cosupp(x) = {i ∈ [n] : xi = 0}.

We define the one-dimensional discrete derivative operator ∂n : Rn → R
n−1,

(∂n)ij = −1 if i = j, (∂n)ij = 1 if j = i+ 1 and (∂n)ij = 0 otherwise. For m× n
images the discrete gradient operator is defined as

∇ =

(
In ⊗ ∂m
∂n ⊗ Im

)
∈ Rp×n, (1.4)

where ⊗ denotes the Kronecker product and Im, In, are identity matrices. The
anisotropic discretized total variation (TV) is given by TV(x) := ‖∇x‖1. The image
gradient sparsity is given by ‖∇x‖0.

We further denote the indicator function of a convex set as δC : Rn → R. Recall,
δC(x) = 0 if x ∈ C and δC(x) = ∞, otherwise. The subdifferential of a function f
at x will be denoted by ∂f(x), see Appendix for the definition. We will use that the
subdifferential of the indicator function equals the normal cone ∂δC(x) = NC(x) :=
{v ∈ Rn : v>(y − x) ≤ 0,∀y ∈ C}. The distance of a vector x to C is denoted by
dist(x,C) and defined as dist(x,C) = miny∈C ‖x− y‖. Finally, E(X) will denote
the expectation of the random variable X .

2 Individual Uniqueness and Dual Certificates

In this section we derive testable uniqueness conditions for our six problems of inter-
est. We will first provide some recovery conditions called dual certificates. More pre-
cisely, consider that we are given a specific vector x and we have to decide whether
it is the unique solution of (1.2). We will provide necessary and sufficient condi-
tions which certify the existence and uniqueness of a solution (1.2) for the case of
a polyhedral function f . Our analysis closely follows [Gil17]. These conditions are
formulated in terms of a solution to the dual problem of (1.2). For the cases enumer-
ated in (1.3), we will see that it is possible to test uniqueness by simply solving a
linear program.

In this section, it will be useful to recast (1.2) as an unconstrained optimization
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problem

min f(x) subject to Ax = b ⇐⇒ min
x∈Rn

g(x), g(x) := f(x) + δX(x),

(2.1)
where δX denotes the indicator function of the feasible set of (1.2) with

X := {x ∈ Rn : Ax = b}, (2.2)

f the objective in (1.2) and
b := Ax. (2.3)

Hence, the function g considered in this section is convex polyhedral, meaning
that its epigraph is a convex polyhedron.

2.1 Uniqueness of a Minimizer of a Polyhedral Function

We will use that the condition 0 ∈ int ∂g(x) is equivalent to the uniqueness of the
solution x, in the case of a polyhedral convex function g. The following result gives
us a necessary and sufficient condition for the uniqueness of a polyhedral function
minimizer and was recently emphasized in [Gil17].

Lemma 2.1. [Gil17, Lem 2.2] Let g ∈ F0(Rn) be any proper, convex and lsc function
that is in addition polyhedral. Then

argmin g = {x} ⇔ 0 ∈ int ∂g(x). (2.4)

We note: the necessity part uses polyhedrality, the sufficiency part is straight-
forward and does not require polyhedrality. We will see, in Sect. 3, Prop. 3.1, an
alternative uniqueness condition for the problem (1.2). The advantage of (2.4) is that
it directly allows the derivation of testable uniqueness conditions as detailed next.

2.2 Certifying Recovery of Individual Vectors via Dual Certificates

In this section we show how to decide if a given solution for (1.3) is unique. To this
end, we derive uniqueness conditions for the problem

min
x∈Rn

‖Dx‖1 + δX(x) + δ[l,u](x), (2.5)

where li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, li < ui, i ∈ [n]. Hence, (2.5) can be
regarded as a generalization of (1.3a)-(1.3f). For example (1.3b) can be obtained
from (2.5) by setting D := In, l := 0 ∈ Rn and ui := +∞, i ∈ [n]. In order to apply
the uniqueness criterion of Lem. (2.1) we will need to calculate the subdifferential of
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the objective function in (2.5). To compute the subdifferentials at a feasible point x
one can apply the sum rule [RW09, Cor. 10.9]

∂
(
‖Dx‖1 + δX(x) + δ[l,u]n(x)

)
= ∂‖Dx‖1 + ∂δX(x) + ∂δ[l,u]n(x). (2.6)

Since all individual components are polyhedral functions and x ∈ dom ‖D · ‖1 ∩ X∩
[l, u]

n holds by construction, we can simply add the subdifferentials of the individual
terms

∂‖Dx‖1 = {D>α : αΛc = sign(DΛc,•x), ‖αΛ‖∞ ≤ 1}, (2.7a)

∂δX(x) = NX(x) = N(A)⊥, (2.7b)

∂δ[l,u](x) = N[l,u](x). (2.7c)

The normal cone corresponding to the box constraints reads

N[l,u](x) = N[l1,u1](x1)× · · · ×N[ln,un](xn) = R
|Sl|
− × {0}|Slu| × R|Su|

+ , (2.8)

since

N[li,ui](xi) =


0, xi ∈ (li, ui),

(−∞, 0], xi = li,

[0,∞), xi = ui,

(2.9)

where Sl = {i ∈ [n] : xi = li}, Su = {i ∈ [n] : xi = ui} and Slu = (Sl∪Su)c =
{i ∈ [n] : xi ∈ (li, ui)}. If for example we specialize (2.5) to (1.3b), the normal cone
of the nonnegative orthant becomes relevant and specializes to

∂δRn
+

(x) = NR
n
+

(x) = NR+
(x1)× · · · ×NR+

(xn) = {0}|S| × R|S
c|
− , (2.10)

since Su = ∅, Slu = {i ∈ [n] : xi ∈ (0,+∞)} = supp(x) =: S and Sl = Sc. Based
on the considerations above we now derive the main result of this section.

Theorem 2.2 (Dual Certificate). A solution x to (2.5) is unique, if and only if the
following conditions hold

(i) N(A) ∩ N(DΛ,•) ∩ N(Ψ) = {0},

(ii) ∃α ∈ Rp,∃µ ∈ Rn :
D>α+ Ψµ ∈ R(A>), αΛc = sign(DΛc,•x), ‖αΛ‖∞ < 1, µ > 0,

where Λ := cosupp(Dx) and Ψ = Ψ(x) is a diagonal matrix that depends on x with
entries

Ψii =


−1, xi = li,

1, xi = ui,

0, otherwise.
(2.11)
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Proof. By Lem. 2.1 the uniqueness of x as the unique solution of (2.5) is equivalent
to

0 ∈ int
(
∂
(
‖Dx‖1 + δX(x) + δ[l,u]n(x)

))
. (2.12)

We rewrite (2.12) in the form of the two conditions

(a) Rn = aff
(
∂
(
‖Dx‖1 + ∂δX(x) + ∂δ[l,u](x)

))
,

(b) 0 ∈ rint
(
∂
(
‖Dx‖1 + ∂δX(x) + ∂δ[l,u](x)

))
.

Condition (a) ensures that the interior of the subdifferential is not-empty, and can be
recast as

R
n = aff(∂‖Dx‖1) + aff(∂δX(x)) + aff(∂δ[l,u](x)). (2.13)

By (2.7a) we get

aff(∂‖Dx‖1) = aff({D>α : αΛc = sign(DΛc,•x), ‖αΛ‖∞ ≤ 1}) (2.14)

= aff(DΛc,•
> sign(DΛc,•x) + {DΛ,•

>α : ‖α‖∞ ≤ 1}) (2.15)

= DΛc,•
> sign(DΛc,•x)︸ ︷︷ ︸

=:y0

+ aff({D>Λ,•α : ‖α‖∞ ≤ 1}) (2.16)

= y0 + R(D>Λ,•). (2.17)

By (2.7b) we obtain

aff(∂δX(x)) = aff(NX(x)) = aff(N(A)⊥) = N(A)⊥. (2.18)

And finally, by (2.8) we write

aff(∂δ[l,u](x)) = aff(N[l,u](x)) = aff(R
|Sl|
− × {0}|Slu| × R|Su|

+ ) (2.19)

= R
|Sl| × {0}|Slu| × R|Su| = R(Ψ). (2.20)

Hence, (2.13) is equivalent to Rn = R(D>Λ,•) + N(A)⊥ + R(Ψ). Taking the orthog-
onal, condition (a) now becomes

R(D>Λ,•)
⊥ ∩ (N(A)⊥)⊥ ∩ R(Ψ)⊥ (2.21)

= N(DΛ,•) ∩ N(A) ∩ N(Ψ) = {0}, (2.22)

that yields (i).
Further we reformulate condition (b). We use that for two convex sets C1, C2 it

holds
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rint(C1 + C2) = rint(C1) + rint(C2),

see (5.2), and so we get

0 = rint(∂‖Dx‖1 + ∂δX(x) + ∂δ[l,u](x)) (2.23)
=rint(∂‖Dx‖1) + rint(∂δX(x)) + rint(∂δ[l,u](x)) (2.24)

=rint(y0 + {D>Λ,•α : ‖α‖∞ ≤ 1}) + rint(R(A>)) + rint(R
|Sl|
− × {0}|Slu| × R|Su|

+ )

(2.25)

=y0 + {D>Λ,•α : ‖α‖∞ < 1}+ R(A>) + R
|Sl|
−− × {0}|Slu| × R|Su|

++ (2.26)

=y0 + {D>Λ,•α : ‖α‖∞ < 1}+ R(A>) + {Ψµ : µ > 0}. (2.27)

This shows (ii) and concludes the proof.

Remark 2.1. By Thm. 2.2 we can show that x is the unique solution of (2.5) if and
only if (i) and (ii) holds. Condition (i) is tested by evaluating whether(
A>, D>Λ,•, Ψ>

)>
has full column rank. For verifying (ii) we need to test

whether there exist y ∈ R
m, α ∈ R

p, µ ∈ R
n : D>α + Ψµ = A>y, αΛc =

sign(DΛc,•x), ‖αΛ‖∞ < 1, µ > 0.
The second condition (ii) could be verified in practice by minimizing ‖αΛ‖∞

w.r.t. y, α, µ while respecting the equality constraints and converting the strict in-
equality constraint µ > 0 to µ >= ε1 for a small ε, e.g. ε = 10−8, to ensure that the
inequality is satisfied strictly. This results in a linear program (LP),

min
t,y,α,µ

t s.t. − t1 ≤ αΛ ≤ t1, (2.28)

A>y = D>α+ Ψµ (2.29)
µ ≥ ε1 . (2.30)

For the optimal solution (t∗, y∗, α∗, µ∗) we have by definition the smallest possible
t := ‖αΛ‖∞. If t∗ is not smaller than one, then no y exists with smaller t. We
therefore declare x the unique minimizer if t∗ < 1, and if t∗ ≥ 1, x cannot be the
unique minimizer. Numerically, we would test whether t∗ ≤ 1 − ε. Technically,
by applying the above procedure we risk rejecting a unique solution x, for which
1− ε < t∗ < 1. Recall that the choice for ε is ad hoc.

In order to resolve this issue we provide next a theoretically well-founded method-
ology to deal with the strict feasibility problem
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D>α+ Ψµ = A>y, (2.31)
αΛc = sign(DΛc,•x), (2.32)
‖αΛ‖∞ < 1, (2.33)
µ > 0. (2.34)

The above feasibility problem can be recast as a linear system of inequalities, as
we will see next. For this purpose we transform the above problem into the form
Mz = q, Pz < p.

Theorem 2.3. Let M be a matrix so that N(M>) = {0}. Then there is a point z
withMz = q, Pz < d if and only if v = 0 is the only feasible solution of the problem

q>u+ p>v ≤ 0, M>u+ P>v = 0, v ≥ 0. (2.35)

Proof. We consider the following pair of linear programs

max 0 (P)
s.t. Mz = q

Pz ≤ d,

min q>u+ d>v (DP)

s.t. M>u+ P>v = 0

v ≥ 0
where (P) is the primal problem and (DP) its dual.

First, note that under the assumption N(M>) = {0}, vector v = 0 is the only
feasible solution of (2.35) if and only if v = 0 is the only solution of (DP). Indeed,
the common constraint M>u+ P>v = 0 implies due to the assumptions v = 0 and
N(M>) = {0} that (u, v) = (0, 0).

Hence, we can show the statement of the theorem by showing that (P) is strictly
feasible if and only if v = 0 is the only solution of (DP).

Assume on one hand that (P) is strictly feasible. Since any feasible solution is also
a solution of (P) we can deduce from the existence of a primal solution the existence
of a dual solution. The optimality conditions yield in particular (d−Pz)>v∗ = 0 for
such a primal solution z of (P) and any dual solution (u∗, v∗) of (DP). Since Pz < d
holds, it follows that v∗ = 0 is the only solution.

Assume on the other hand that for each dual solution (u∗, v∗) it holds v∗ = 0.
In view of the strict complementarity condition [Van14, Thm 10.7] it exists a pair of
primal and dual solutions such that

(d− Pz∗) + v∗ > 0. (2.36)

Since by assumption v∗ = 0, (2.36) implies the existence of a primal solution z∗ with
Pz∗ < d.

This concludes the proof.
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Remark 2.2. In view of Thm. 2.3 we can check feasibility of the system (2.31) –
(2.34) by linear programming. We first associate to the system (2.31) – (2.34) with
strict inequality constraints the primal linear program

max
α,µ,y

0 (P<)

s.t.
(
D>Λ,• Ψ A>

)︸ ︷︷ ︸
=:M

αµ
y


︸ ︷︷ ︸

=:z

= −D>Λc,• sign(DΛc,•x)︸ ︷︷ ︸
=:q−I 0 0

I 0 0
0 −I 0


︸ ︷︷ ︸

=:P

αµ
y


︸ ︷︷ ︸

=:z

≤

11
0


︸ ︷︷ ︸

=:d

,

as in the Thm. 2.3. Assumption N(M>) = {0} in Thm. 2.3 now corresponds to
the first condition from Thm. 2.2. Assuming that it holds, we can now verify system
(2.31) – (2.34) and strict feasibility in (P<) and if

max 〈1, u+ + u− + w〉 (DP<)

s.t. 〈1, u+ + u−〉 ≤ 〈sign(DΛc,•x), DΛc,•v〉
DΛ,•v = u+ − u−

Ψv = w

Av = 0

u+, u−, w ≥ 0

has an optimal objective value equal to zero.

2.3 Case Studies: (1.3a)-(1.3f)

In the previous section we provided verifiable uniqueness conditions for problem
(2.5). In this section we specialize these conditions to verifiable uniqueness optimal-
ity conditions for our objective functions (1.3a)-(1.3f).

Corollary 2.4. (Case f1) A feasible point x of problem (1.2) with the objective func-
tion defined in (1.3a) is the unique solution if and only if

∃y ∈ Rm : A>•,Sy = sign(xS) ∧ ‖A>•,Scy‖∞ < 1 and
A•,S is injective,

where S := supp(x) and A•,S selects the columns indexed by S.
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Proof. We derive the above claim from Thm. 2.2. In view of the definition in (1.3a)
we set D = I the identity matrix and Ψ = 0 the zero matrix. The latter is due to the
fact that Rn can be seen as δ[l,u](x) with li = −∞, ui = ∞, for all i ∈ [n]. Hence
x always lies in the interior of Rn and NRn(x) = 0, compare (2.8). These choices
specialize the conditions of Thm. 2.2 to the following conditions

(i) N(A) ∩ N(ISc,•) = {0},

(ii) ∃α ∈ Rn : α ∈ R(A>), αS = sign(xS), ‖αSc‖∞ < 1,

taking into account also that Λ = Sc and N(Ψ) = R
n. Condition (i) can be further

simplified to

N(A) ∩ N(ISc,•) = N(A) ∩ N(I•,Sc) = N(A) ∩ {x : xSc = 0} = N(A•,S) = {0},
(2.37)

which yields the condition that A•,S has to be injective. We conclude the proof by
transforming the condition (ii) to

∃α ∈ Rn, y ∈ Rm : α = A>y ∧ αS = sign(xS) ∧ ‖αSc‖∞ < 1 (2.38)

⇔ ∃y ∈ Rm : A>•,Sy = sign(xS) ∧ ‖A>•,Scy‖∞ < 1. (2.39)

Corollary 2.5. (Case f2) A feasible point x of problem (1.2) with the objective func-
tion defined in (1.3b) is the unique solution if and only if

∃y ∈ Rm : A>•,Sy = 1S ∧A>•,Scy < 1Sc and
A•,S is injective,

with S := supp(x).

Proof. As in the proof of Cor. 2.4 we apply Thm. 2.2 with D = I and Ψii = 0, for
i ∈ S and Ψii = −1, for i ∈ Sc, since NRn

+
(x) = {0}|S| ×R|S

c|
− . Conditions (i) and

(ii) in Thm. 2.2 become

(i) N(A) ∩ N(ISc,•) ∩ N(Ψ) = {0},

(ii) ∃α ∈ Rn,∃µ ∈ Rn :
α+ Ψµ ∈ R(A>), αS = sign(xS), ‖αSc‖∞ < 1, µ > 0.
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Since N(ISc,•) = N(Ψ) condition (i) above simplifies as in the proof of Cor. 2.4 to
condition: A•,S is injective.

Since {Ψµ : µ ∈ Rn++} = ΨRn++ = {0}|S| × R|S
c|
−− and

{αSc : ‖αSc‖∞ < 1}+ R
|Sc|
−− = 1Sc + R

|Sc|
−− ,

condition (ii) above is equivalent to the existence of a vector y ∈ Rm such that

A>y ∈ 1+ {0}|S| × R|S
c|
−− ,

that can be written as
A>•,Sy = 1S , A>•,Scy < 1Sc . (2.40)

This completes the proof.

Corollary 2.6. (Case f3) A binary feasible point x ∈ {0, 1}n of problem (1.2) with
the objective function defined in (1.3c) is the unique solution if and only if

∃y ∈ Rm : A>•,Sy > 1 ∧A>•,Scy < 1, (2.41)

with S := supp(x).

Proof. As above we specialize Thm. 2.2 with D = I and Ψii = −1, for i ∈ Sc

and Ψii = 1, for i ∈ S, since N[0,1]n(x) = R
|S|
+ × R|S

c|
− for x ∈ {0, 1}n. Hence

N(Ψ) = {0}. As a consequence condition (i) Thm. 2.2 is automatically fulfilled.
We now focus on condition (ii) that now reads

(
αS
αSc

)
+

(
µ+

µ−

)
∈ R

((
A>•,S
A>•,Sc

))
, with µ− < 0, µ+ > 0, αS = 1, ‖αSc‖∞ < 1,

(2.42)

since for x ∈ {0, 1}n we have αS = sign(xS) = 1. In view of

{αSc : ‖αSc‖∞ < 1}+ R
|Sc|
−− = 1Sc + R

|Sc|
−− ,

condition (2.42) is equivalent to the existence of a vector y ∈ Rm such that

A>y ∈ 1+ R
|S|
++ × R

|Sc|
−− ,

that can be written as
A>•,Sy > 1S , A>•,Scy < 1Sc . (2.43)
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Corollary 2.7. (Case f4) A feasible point x ∈ Rn of problem (1.2) with the objective
function defined in (1.3d) is the unique solution if and only if

(i) N(A) ∩ N(DΛ,•) = {0},

(ii) ∃α : D>α ∈ R(A>), αΛc = sign(DΛc,•x), ‖αΛ‖∞ < 1,

where Λ = cosupp(Dx).

Proof. As in the proof of Cor. 2.4 we conclude that Ψ = 0 is the zero matrix. Hence,
the two conditions of Thm. 2.2 simplify to the two conditions above, that do not
involve the variable µ.

Corollary 2.8. (Case f5) A feasible point x ∈ Rn+ of problem (1.2) with the objective
function defined in (1.3e) is the unique solution if and only if

(i) N(A) ∩ N(DΛ,•) ∩ N(Ψ) = {0},

(ii) ∃α,∃µ : D>α+ Ψµ ∈ R(A>), α = sign(DΛc,•x), ‖αΛ‖∞ < 1, µ > 0

where Λ = cosupp(Dx) and

Ψii =

{
−1, xi = 0,

0, otherwise.
(2.44)

Proof. Immediate from Thm. 2.2 and the definition of f5 in (1.3e) and Ψ.

Corollary 2.9. (Case f6) A binary feasible point x ∈ {0, 1}n of problem (1.2) with
the objective function defined in (1.3f) is the unique solution if and only if

(i) N(A) ∩ N(DΛ,•) ∩ N(Ψ) = {0},

(ii) ∃α,∃µ : D>α+ Ψµ ∈ R(A>), α = sign(DΛc,•x), ‖αΛ‖∞ < 1, µ > 0

where Λ = cosupp(Dx) and

Ψii =

{
−1, xi = 0,

1, xi = 1.
(2.45)

Proof. In view of the definition of f6 in (1.3f) and Ψ above N(Ψ) = {0}. As a
consequence condition (i) Thm. 2.2 is automatically fulfilled. Condition (ii) from
Thm. 2.2 is kept unchanged.
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3 Probabilistic Uniqueness

In this section we are concerned with probabilistic solution uniqueness when mini-
mizing some structure enforcing regularizer f : Rn → R via (1.2) in the noiseless
setting of (1.1). In particular we address the question of predicting uniqueness with
high probability for a specific number of random linear measurements, when know-
ing only the solution co-/sparsity.

For f = ‖ · ‖1 and a Gaussian matrix A it is well-known that the recovery of a
sparse vector x depends only on its sparsity level, and is independent of the locations
or values of the nonzero entries. There are precise relations between the sparsity
s, ambient dimension n, and the number of samples m that guarantees success of
(1.2). Moreover, several authors have shown that there is a transition from absolute
success to absolute failure, and they have accurately characterized the location of the
threshold, also called phase transition, in the `1-case and other norms, e.g. nuclear
norm. For the TV-seminorm such a complete analysis is still missing. As mentioned
in the introduction, the authors in [ZXCL16] have recently shown that in the case of
1D TV-minimization, case (1.3d), the phase transition can be accurately described by
an effective bound for the statistical dimension of a descent cone, which is based on
the squared distance of a standard normal vector to the subdifferential of the objective
function at the sought solution x,

min
τ≥0

E[dist(X, τ∂f(x)].

We will explore next if the same relation that describes phase transitions for `1-
minimization and 1D TV-minimization also hold for all our objective functions in
(1.3a)-(1.3f).

3.1 Phase Transitions in Random Linear Inverse Problems

We collect here some recent results of convex signal reconstruction with a Gaussian
sampling model and briefly explain how classical results for Gaussian processes lead
to a sharp bound for the number of Gaussian measurements that suffice for exact
recovery.

Definition 3.1. (Statistical dimension, [ALMT14]) The statistical dimension δ(K)
of a closed, convex cone K ⊂ R

n is the quantity

δ(K) = E[‖ΠK(X)‖22], (3.1)

where ΠK is the Euclidean projection onto K and X is a standard normal vector, i.e.
X ∼ N(0, In).
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Definition 3.2. (Descent cone) The descent cone of a proper convex function f :
R
n → R at a point x is

Df (x) := cone{z − x : f(z) ≤ f(x)}, (3.2)

i.e. the conic hull of the directions that do not increase f near x.

Definition 3.3. (Gaussian width, [CRPW12]) The Gaussian width of C ⊂ R
n is

ω(C) = E[sup
z∈C
〈X, z〉],

where X is a standard normal vector, i.e. X ∼ N(0, In).

Remark 3.1. One has, see [ALMT14], the relationship

ω(K)2 ≤ δ(K) ≤ ω(K)2 + 1. (3.3)

A classic result for solution uniqueness, equivalent to the exact recovery of indi-
vidual vectors [FR13, Thm. 4.35], is given next.

Proposition 3.1. The vector x is the unique solution of the convex program (1.2) if
and only if

Df (x) ∩ N(A) = {0}. (3.4)

Condition (3.4) holds with high probability for a random matrix A is equal to the
probability that a randomly rotated convex cone, here N(A), shares a ray with a fixed
convex cone Df (x). This probability is bounded in terms of the statistical dimension
δ(Df (x)) as stated next.

Theorem 3.2. [ALMT14, Thm. II] Fix a tolerance parameter ε ∈ (0, 1). Let x ∈ Rn
be a fixed vector, and let f : Rn → R be a proper convex function. Suppose A ∈
R
m×n has independent standard normal entries, and let b = Ax. Then

• m ≤ δ(Df (x))− an
√
n =⇒ (1.2) succeeds with probability ≤ ε;

• m ≥ δ(Df (x)) + an
√
n =⇒ (1.2) succeeds with probability ≥ 1− ε,

with an :=
√

8 log(4/ε).

There is a useful tool for bounding the statistical dimension in terms of ∂f(x).
Interestingly, this bound is tight for some classes of f , e.g. norms.

Proposition 3.3. [CRPW12, ALMT14] Let f : Rn → R be a proper convex function
and let x ∈ R

n. Assume that the subdifferential ∂f(x) is nonempty, compact, and
does not contain the origin. Define the function

J(τ) = J(τ ; ∂f(x)) := E[dist(X, τ∂f(x)], for τ ≥ 0, (3.5)
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where X ∼ N(0, I). We have

δ(Df (x)) ≤ inf
τ≥0

J(τ). (3.6)

Furthermore, the function J is strictly convex, continuous at τ = 0, and differentiable
for τ ≥ 0. It achieves its minimum at a unique point.

The above results provide a recipe to upper bound δ(Df (x)). This consists of the
following steps.

• Compute ∂f(x);

• For each τ > 0, compute J(τ) = E[dist(X, τ∂f(x)];

• Find the unique solution to J ′(τ) = 0.

We also have the following error bound.

Theorem 3.4. [ALMT14, Thm. 4.3.] Let f : Rn → R be a norm on Rn and let
x ∈ Rn \ {0}. Then

0 ≤ inf
τ≥0

J(τ)− δ(Df (x)) ≤ 2 sup{‖p‖ : p ∈ ∂f(x)}
f(x/‖x‖)

(3.7)

For the `1-case the r.h.s. can be made very accurate for large sparsity parameters
s providing an accurate estimate of the statistical dimension of the `1-descent cone.
On the other hand, this error estimate is not very accurate when the sparsity s is small.
The work in [FM14] contains a bound that improves this result and also extends to
more general functions with some additional properties.

Theorem 3.5. [FM14, Prop. 1] Suppose that, for x 6= 0, the subdifferential ∂f(x)
satisfies a weak decomposability assumption, i.e.

∃p ∈ ∂f(x) such that 〈p− p, p〉 = 0, ∀p ∈ ∂f(x). (3.8)

Then
δ(Df (x)) ≤ inf

τ≥0
J(τ) ≤ δ(Df (x)) + 6, (3.9)

with J(τ) = E[dist(X, τ∂f(x)].

3.2 Phase Transitions for Case Studies: (1.3a)-(1.3f)

Above we discussed probabilistic uniqueness for the general problem

min
Ax=Ax

f(x).

In this section we discuss how and if we can specialize these results to predict unique-
ness for our objective functions (1.3a)-(1.3f).
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Remark 3.2. In the case of f1(x) = ‖x‖1 from (1.3a) and f4(x) = ‖Dx‖1 from
(1.3d) the statistical dimension of the descent cone Df (x) can be well approximated
in terms of the expected squared distance to the scaled subdifferential. The reason is
that the subdifferential ∂f(x) is compact, see (2.7a), and thus by Prop. 3.3 we know
that J(·) : R+ → R+ has a unique minimizer. Moreover, minτ≥0 J(τ) provides a
tight approximation in view of Thm. 3.4 and Thm. 3.5, since f1 is a norm and ∂f4 is
weakly decomposable for the choice D equal to the 1D finite difference operator, as
shown in [ZXCL16]. For the 2D finite difference operator the weakly decomposable
property has not been previously investigated.

Remark 3.3. The above situation changes for the objectives

f2(x) = ‖x‖1 + δRn
+

(x), f3(x) = ‖x‖1 + δ[0,1]n(x)

f5(x) = ‖Dx‖1 + δRn
+

(x), f6(x) = ‖Dx‖1 + δ[0,1]n(x),

from (1.3b), (1.3c), (1.3e) and (1.3f). It is clear that ∂f(x) is not compact, for all
above choices, compare (2.7a) and (2.7c). Thus, we have no guarantee that, J has
even a minimizer. Since ∂f(x) is not weakly decomposable, even if minτ≥0 J(τ) ex-
ists, we are not guaranteed a tight upper bound on the statistical dimension δ(Df (x))
and consequently on the number of sufficient Gaussian measurements m for exact
recovery of x with high probability.

Explicit curves for minτ J(τ) can be computed only in the case of f1, f2, f3

along the lines of [ALMT14]. We skip the details here and illustrate this curves
in Sect. 4. For f4, f5 and f6 explicit curves for J and for minτ J(τ) are missing.
We use an approximation to the upper bound J(τ) = E

[
dist2(X, τ∂f(x))

]
where

X ∼ N(0, I). To approximate the expected value we use a very large k ∈ N and
calculate

hk(τ) =
1

k

k∑
i=1

dist2(Xi, τ∂f(x)) =: Japprox(τ) ≈ J(τ),

where each Xi is sampled from the normal distribution N(0, I). Note that for com-
puting each dist2(Xi, τ∂f(x)) one is faced with solving a quadratic program, i.e.

min ‖Xi − τy‖22 subject to y ∈ ∂f(x).

Note that the constraints are linear since ∂f(x) is described by linear equalities and
inequalities, compare (2.7a) and (2.7c).

Based on the empirical results from Sect. 4 we conjecture.
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Conjecture 3.1. For the choices of f in Remark 3.3 the statistical dimension is well
approximated similar to (3.9) by the squared Euclidean distance to the scaled subd-
ifferential, i.e.

min
τ
J(τ) := E

[
dist2(X, τ∂f(x))

]
≈ δ(∂f(x)).

4 Experiments

Our objective in this section is to empirically verify whether phase transitions occur
at

min
τ≥0

J(τ),

which is a guaranteed upper bound to the statistical dimension δ(Df (x)) only in
some of the considered cases. We note further, that precise expressions for J(τ) are
only available for `1-minimization and cases (1.3a)–(1.3c). For the TV-minimization
and cases (1.3d)–(1.3f) we construct phase diagrams by numerically estimating
minτ≥0 J(τ) and comparing the resulting bounds to the average-case results for both
solving the reconstruction problems (1.2) and certifying uniqueness by the procedure
derived in Sect. 2.

4.1 1D Empirical Phase Transitions and Theoretical Bounds

In this section we address `1-minimization and one dimensional TV-minimization
without and with constraints. The 1D TV-regularizer reads ‖∂nx‖1, where ∂n ∈
R
n−1×n is the one-dimensional discrete derivative operator. Applying D = ∂n to a

signal x gives the the entries’ differences for consecutive indices

Dx = ∂nx =

 x1 − x0

...
xn − xn−1

 . (4.1)

4.1.1 Testset

Our testset consists of several randomly generated signals with specified relative spar-
sity ρ ranging from 0.05 to 0.95 with step size 0.05. For each of these relative spar-
sities we create a signal so that

ρ ≈ ‖x‖0
n

resp. ρ ≈ ‖Dx‖0
p

. (4.2)
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Figure 4.1: Testset for 1D sparse signals. The rows display signals x with equal
number of non-zeros in x, i.e. ‖x‖0. The columns display signals that have entries
sampled either from R,R+ or {0, 1} from left to right.

Figure 4.2: Testset for 1D gradient sparse signals. The rows display signals x with
equal number of non-zeros inDx, i.e. ‖Dx‖0, with respect to the 1D finite difference
operator. The columns display signals that have entries sampled either from R,R+ or
{0, 1} from left to right.
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Algorithm 1: Algorithm for converting a random gradient sparse signal
(w.r.t. the 1D finite differences operator) into a binary gradient sparse sig-
nal.

Input: Λ ⊆ [n− 1]
Output: Binary signal x ∈ {0, 1}n
x0 = 1;
for i ∈ [n− 1] do

if i ∈ Λ then
xi+1 ← xi;

else
xi+1 ← 1− xi;

return x;

Hence, we cover almost the full range from highly sparse to dense signals. In addi-
tion, we create three different classes of signals: with real-valued, non-negative or
binary entries, i.e. xi ∈ R, xi ≥ 0 are xi ∈ {0, 1} for all i ∈ [n].

Creating random real-valued, non-negative or binary signals of a given sparsity is
immediate. To create signals that are sparse in a transformed domain we use an idea
from of [NDEG13]. Instead of choosing the support of x uniformly at random, ones
chooses a set Λ ⊆ [p] in order to create a signal with DΛ,•x = 0. Having the subset
Λ and a randomly created vector v with non-zero entries we obtain the desired signal
by calculating

x = (I −D>Λ,•(DΛ,•D
>
Λ,•)

−1DΛ,•)v. (4.3)

Since Dx represents differences of signal entries for consecutive indices, taking the
absolute value of each signal entry will most likely not change the cosupport of the
resulting signal. Therefore, we can use this method to generate non-negative signals.
Binary signals can be obtained by using Algorithm 1.

4.1.2 `1-Minimization

In this section we compare the existing tight upper bounds for the statistical dimen-
sion δ(Df (x)) for f defined in (1.3a)–(1.3c) to the empirical phase transition ob-
tained for the above set of signals.

To this end we first set the ambient dimension n = 100 and generate 10 instances
of a sparse 1D signal, see Figure 4.1, and a random Gaussian matrix A ∈ Rm×. For
each pair of relative sparsity and given number m of random linear measurements
we verify if the signal is the unique solution of (1.2) with f defined in (1.3a)–(1.3c).
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Uniqueness is tested as detailed in Sect. 2. We used Mosek∗ to solve the optimization
problems. The gray value plots in Figure 4.4, first row, show the empirical probability
that a given 1D sparse signal is uniquely reconstructed by the convex relaxation.
White means recovered and unique, and black non recovered. The red curves show
minτ≥0 J(τ), plotted with Mathematica†, and separate these regions accurately.

4.1.3 TV-Minimization

To generate the phase diagrams we proceed as above but use the gradient sparse 1D
test signals, see Figure 4.2. Since explicit curves for J are missing we use an approx-
imation to the upper bound J(τ) = E

[
dist2(X, τ∂f(x))

]
, where X ∼ N(0, I). To

approximate the expected value we use a large k = 10000 and calculate

hk(τ) =
1

k

k∑
i=1

dist2(Xi, τ∂f(x)) =: Japprox(τ) ≈ J(τ),

where each Xi is sampled from the normal distribution N(0, I). Additionally we
know from [ALMT14, Lem C.1] that the minimum is unique and lies in the interval[
0, 2‖x‖2

b

]
with b ≤ ‖w‖2 for all w ∈ ∂f(x), provided ∂f(x) is bounded. This latter

condition is only satisfied for f4, but not for f5 and f6. Nevertheless, we success-
fully minimize numerically the univariate function Japprox above by using the BiSec-
tion [BF85] method. Note that for computing each dist2(Xi, τ∂f(x)) one is faced
with solving a quadratic program. Note that ∂f(x) is described by linear equalities
and inequalities, compare (2.7a) and (2.7c). The empirical probability of uniqueness
shown as gray value plots in Figure 4.4, middle row, is plotted along with the curves
describing minτ≥0 Japprox(τ). We emphasize the perfect agreement of the phase
transition.

4.2 2D Empirical Phase Transitions and Theoretical Bounds

4.2.1 Testset

Creating gradient sparse images with a given gradient sparsity is more involved than
in the one dimensional case. Using random support sets Λ ⊆ [p] with |Λ| ≥ n and
the projecting technique used in the 1D case, one would most likely obtain constant
2D images. Thus we use a different approach to construct random gradient sparse
images. To this end, we randomly add binary images with homogeneous areas and
use the modulo operation to binarize again the result. We show some results in Figure
4.3. Since it is easy to identify all connected components in a binary image, we
can assign random real values to the different connected components. The resulting
∗https://www.mosek.com/
†https://www.wolfram.com/mathematica/
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Figure 4.3: Testset for 2D gradient sparse images. Each image label shows the rela-
tive sparsity of Dx, i.e. ‖Dx‖0/p, with respect to the 2D finite difference operator.
Our test images are 64× 64.

discrete gradient of the new image has the same number of non-zeros, but the image
is non binary.

4.2.2 Tomographic Measuremnts

Making our experiments more general, we applied the idea from [RLH14] to reduce
the influence of angles in tomographic reconstructions. The basic idea is, that each
projection should carry the same amount of information independent of the angle.
In Figure 4.6 we illustrate the difference the effect on the tomographic projections
when sensing an images embedded in a rectangle shape resp. to a circular shape. We
emphasize that our testset for 2D contains only images embedded in a circular shape.

4.2.3 `1-Minimization

The phase diagrams for 2D images coincide with the ones for 1D signals, shown in
Figure 4.4, first row, and are omitted here. The two regions are accurately separated
by the minτ J(τ) curve.
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Figure 4.4: Phase diagrams for random measurements. The gray value shows the
empirical probability of uniqueness for each pair of parameters (relative sparsity or
relative gradient sparsity, #measurements): black ↔ 0% uniqueness rate, white ↔
100% uniqueness rate. Both regions are accurately separated by our approximation
to the statistical dimension. Rows from top to bottom show results for: `1-, 1D TV-
and 2D TV-minimization. Columns for left to right show the signal/image entries:
R
n, Rn+ or {0, 1}n.
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Figure 4.5: Phase diagrams for tomographic measurements. As in Figure 4.4 we
display the empirical probability of uniqueness in the case of tomographic measure-
ments for each pair of parameters (relative sparsity or relative gradient sparsity, #mea-
surements): black ↔ 0% uniqueness rate, white ↔ 100% uniqueness rate. Rows
from top to bottom show results for: binary, perturbed binary and standard matrices,
i.e. with nonnegative real entries. The results demonstrate a remarkable agreement
of the empirical phase transitions for tomographic recovery with the approximated
curve based on the statistical dimension for random measurements.
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(a) rectangle (b) circle

Figure 4.6: Illustration of parallel projections of a rectangle image (a) and of an
image embedded in a circular mask (a). In (a) one needs at different angles a different
amount of parallel rays to cover the whole image. For sensing an image in a circular
mask the number of parallel rays covering the whole image would be the same.

4.2.4 TV-Minimization

For fixed ambient dimension n = 64·64 we choose a relative image sparsity ‖Dx‖0p ∈
[0, 1], with D ∈ Rp×n, corresponding to a gradient sparse test image and also choose
the number of measurementsm. Measurements can be Gaussian or tomographic. We
consider three types of tomographic matrices:

• binary, as described in [RLH14];

• perturbed binary, that is we slightly perturb the nonzero entries above, in order
to remove linear dependencies between columns, and

• standard tomographic matrices, with nonnegative real entries. We use the
MATLAB routine paralleltomo.m from the AIR Tools package [HSH12]
that implements such a tomographic matrix for a arbitrary vector of angles. We
choose equidistant angles, set N = 64 the image size and use the default value
of p, i.e. the number of parallel rays for each angle p = round(sqrt(2)*N)

to obtain a tomographic matrix of size m× n.

Results are presented in Figure 4.4, last row, and Figure 4.5. We show the em-
pirical probability over the 10 repetitions. The success rate of image reconstruction
equals the uniqueness result and is displayed by gray values: black↔ 0% uniqueness
rate, white↔ 100% uniqueness rate.

All plots display a phase transition and thus exhibit regions where exact image
reconstruction has probability equal or close to one. All regions are accurately sepa-
rated by our approximation to the statistical dimension.
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5 Conclusions

The present work was motivated by the need of accurately describing how much
undersampling is tolerable to uniquely recover a sparse or gradient sparse box con-
strained signal from tomographic measurements. Our results show sharp average-
case phase transitions from non-uniqueness and non-recovery to uniqueness and ex-
act recovery as guaranteed by compressed sensing for random measurements. More-
over, we show that the phase transition occurs approximately at the statistical dimen-
sion of the descent cone of the structure enforcing objective, irrespectively of the
employed measuring device. The approximation of the statistical dimension is com-
puted empirically but cross-checked by the verifiable uniqueness test developed in
this work.

Appendix

We collect few results from [Roc70, RW09]. The subdifferential of a function f : Rn →
R at a point x where f(x) ∈ R, is defined by

∂f(x) =
{
p ∈ Rn : f(x)− f(x) ≥ 〈p, x− x〉, ∀x ∈ Rn

}
. (5.1)

We set ∂f(x) = ∅ if f(x) is not finite. A function f : Rn → R is said to be subd-
ifferentiable at x if ∂f(x) 6= ∅. Then the elements of ∂f(x) are called subgradients
of f at x. For a proper, convex function f and x ∈ rint(dom f), the subdifferential
∂f(x) is nonempty. Furthermore, ∂f(x) is nonempty and bounded if and only if
x ∈ int(dom f). Hence only for f1 and f4 from (1.3a) and (1.3f) ∂f(x) is compact.
For the remaining choices of f in (1.3) ∂f(x) is unbounded, since in these cases our
signals x lie on the boundary of dom f = R

n
+ or of dom f = {0, 1}n.

The relative interior of a non-empty convex set C is the interior relative to its
affine hull,

rintC =
{
x ∈ aff C : ∃ε > 0 such that (x+ εB(0)) ∩ aff C ⊂ C

}
.

The relative boundary of C is

rbdC = clC \ rintC.

We always have [Roc70, Cor. 6.6.2]

rint(C1 + C2) = rint(C1) + rint(C2). (5.2)

Recall that the affine hull of some set C ⊂ R
n is the set of all affine combinations of

its points,

aff C =
{
λ1x

1 + · · ·+ λdx
d : λ1 + · · ·+ λd = 1, x1, . . . , xd ∈ C

}
,
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while the conic hull equals

coneC =
{
λ1x

1 + · · ·+ λdx
d : λ1, . . . , λd ≥ 0, x1, . . . , xd ∈ C

}
.
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