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Chapter 1

Introduction

The history of modern space exploration already goes back over a hundred years, at least when
it comes to its theoretical consideration. In fact, the first widely recognised scientific book about
rockets and the planning of space missions was published in 1923 under the name “Die Rakete zu den
Planetenräumen” (The Rocket into Planetary Space) [Obe23]. It was written by one of the fathers
of modern space flight Hermann Oberth. Before this time celestial mechanics was of course already
widely studied, but the questions behind those considerations were always focused on understanding
the movement of the celestial bodies. Oberth, however, was one of the first persons to use our
knowledge about classical mechanics to explore how a human built space ship could move among these
celestial bodies. With these thoughts he was very much ahead of his time and unfortunately had to
face a lot of harsh opposition because of it. Originally the book “Die Rakete zu den Planetenräumen”
was his PhD thesis, but in 1922 it was rejected by the University of Heidelberg for being about an
unachievable fantasy. In the beginning Oberth also had a lot of difficulties to raise funding to build
the rockets he had designed in his work, because of the negative opinions of the established professors
of his time. Back then the idea of space flight seemed so strange to some scientists that they even
tried to prove that space flights are theoretically impossible. Oberth, however, was convinced of his
work and continued with his research until the success of the world wide space programs proved that
his ideas were right. But there is also a dark side to this story: The advancements in the technology
of rockets are not just used for the exploration of space, but are also heavily used in military weapons.
The most famous one to use the work of Oberth to build large scale rockets was, in fact, his former
student Wernher von Braun as an attempt to construct a powerful weapon for Nazi Germany in the
second world war. This effort culminated in the development of the V-2, which Oberth also helped
develop in 1941, and that would cost the lives of thousands of people. This serves as a good reminder
that even a purely theoretic work can cause a lot of damage if it is used for malicious purposes. It
is always an exciting prospect if one’s theoretical work is considered to be used in the real world,
but it is the goal of the one, who intents to use it, that determines whether we should support the
endeavour or even try to prevent it.

The main objects we are investigating in this thesis - namely the consecutive collision orbits -
can also trace back their origins to the work of Oberth. A consecutive collision orbit (c.c. orbit)
is a trajectory that starts and ends in the centre of gravity of the planet it circles around, i.e. if
we were to send a space ship on this course it would collide with the planet twice. In most cases
this is of course neither desirable nor physically possible, since it is very unlikely that the space
ship would survive even the first collision. The actual reason why we are interested in consecutive
collision orbits is based on the fact that close to every such c.c. orbit there is another orbit that
barley misses the planet. Those almost collision orbits are what we are really looking for. One
might ask the question: Why are we not just directly searching for an almost collision orbit? The
problem is that for those orbits it is not easy to find a sharp mathematical definition one can easily
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8 CHAPTER 1. INTRODUCTION

work with, where on the other hand a collision has a very clear description as a Lagrangian subspace
{collision pt.} ×Rn ⊂ R2n. When designing a space mission the almost collision orbits can fulfil a
lot of different purposes, for example if one wants to take detailed pictures of the surface of a planet
or wants to probe the upper atmosphere using an orbit that comes very close to the planet is a
valid strategy. The most prominent applications of almost collisions are, however, as powered flyby
orbits. The manoeuvre of a powered flyby was first thought of by Hermann Oberth and is based on
a well known concept in astronautics called the Oberth effect. In his 1923 book he explains the effect
roughly in the following way: Given a rocket with mass m and velocity v. If we use a short boost of
the rocket engine, we directly change the velocity by ∆v via conservation of momentum. The kinetic
energy before the boost was Eold

kin = 1
2mv

2 and after the boost is

Enew
kin =

1

2
m(v +∆v)2 =

1

2
mv2 +mv∆v +O

(︁
(∆v)2

)︁
.

Here we assume that we only used a negligible small part of the fuel and in return increase our
velocity only by a very small amount. Hence, the dominant term in the change of kinetic energy is

Enew
kin − Eold

kin = mv∆v.

This means that the gain of kinetic energy is directly proportional to the speed at which we perform
the boost. With a powered flyby manoeuvre one can use this effect to gain kinetic energy for a space
ship as efficient as possible: In a gravitational potential the velocity of an object is the biggest if the
potential energy is at its lowest, i.e. when the object is close to the centre of gravity. Therefore a
powered flyby orbit tries to get as close to the planet as possible and then boost exactly at the point
of minimal distance, which will result in the most effective gain in kinetic energy. Further, not just
the existence of these consecutive collision orbits is of importance, but also the orientation of the
“belly” of the orbits. This might be the case when one is planing the communication of the space
ship with the control station on earth to make sure that during the communication phase there is no
planet in the way blocking the signals. This is the motivation behind studying symmetric c.c orbits,
where the symmetry allows us to gain more information about the “orientation” of the orbit.

The main result of this thesis can be summarized in the following theorem:

Theorem A
In the restricted three body problem there are for all energies below the first Lagrange point

• infinitely many symmetric consecutive collision orbits or at least one periodic symmetric con-
secutive collision orbit all intersecting the symmetry axis in a solar eclipse point and

• infinitely many symmetric consecutive collision orbits or at least one periodic symmetric con-
secutive collision orbit all intersecting the symmetry axis in a lunar eclipse point,

where for a generic choice of energy and mass periodic symmetric c.c. orbits can not appear.

Note that the symmetry we want to consider here is given by the reflection of the space coordinate
at the axis between earth and sun combined with the reflection of the momentum coordinate at the
axis perpendicular to the first axis. A sketch of the position space picture for two different orbits
(one red, the other blue) would look like:

• •

EarthSun

solar eclipse point lunar eclipse point



9

Note that this is only a rough sketch and the actual orbits might be much more complicated then the
ones drawn above. We want to remark that the existence of infinitely many or one periodic consecutive
collision orbit in the three body problem was already discussed in [FZ19], but by studying symmetric
c.c. orbits we are able to derive additional information about the “orientation” of the orbits and can
exclude the case of a periodic c.c. orbit for a generic choice of energy and mass. Our main tool to
achieve this theorem is an equivariant version of Rabinowitz Floer homology, where the dimension
of the homology will give a lower bound for the number of symmetric c.c. orbits. To compute this
homology we uses the following connection between G-equivariant Rabinowitz Floer homology and
the Tate homology of the finite group G:

Theorem B
Let G be a finite group and a symmetry of the Hamiltonian system (M,ω,H) with Lagrangian L,
which acts free. Assume that L∩H−1(0) is a connected submanifold of dimension at least 1. Further,
let the system be displaceable and assume that the absolute value of the Maslov index for non-constant
chords is bounded from below by dim

(︁
L ∩H−1(0)

)︁
. Then the G-equivariant Lagrangian RF-homology

is equal to the Tate homology of G, i.e.

RFHG
∗ (M,H,L) = TH∗(G,Z2).

The idea behind the connection of these seemingly very different homologies is that the ordinary
Rabinowitz Floer homology is just zero in every degree for a displaceable Hamiltonian system, i.e.
if there is an additional symmetry of the system we can view the Rabinowitz Floer complex as a
complete resolution of the trivial Z2[G]-module Z2. The condition on the Maslov index ensures that
we can define the augmentation map and can be seen as the Lagrangian analogue to the notion of
dynamically convex. From this we see that the Rabinowitz Floer complex can also be used as the
underlying long exact sequence for the Tate homology.

Before starting with the main body of this thesis, we first want to give a short overview of
the content: We start in the second chapter with the introduction of some fundamental notions
concerning Hamiltonian systems and Liouville domains, which we will need throughout this work.
The third chapter introduces the restricted three body problem and the concept of its regularization.
At first we discuss the Levi-Civita regularization for the planar case in great detail, before we then
consider its generalization to the spatial case, namely the Kustaanheimo-Stiefel regularization. Since
we later on want to use techniques from Floer homology we prove for both regularizations that we can
view the energy hypersurface as the boundary of a Liouville domain for all energies below the first
critical energy value. The fourth chapter is all about introducing the Floer homology tools we need in
order to answer the main question of this thesis. We start the chapter by giving the definition of the
Rabinowitz action functional for the case of Lagrangian boundary conditions. Afterwards we invest
some time into explaining the Maslov index for Hamiltonian chords, since it is the grading of the
Lagrangian Rabinowitz Floer homology we will define later on and therefore plays an important roll
in its calculation. The next important ingredient for the Lagrangian Rabinowitz Floer homology are
the gradient flow lines. The definition is analogue to the ones in other Floer homologies, but since the
critical points in our case have Lagrangian boundary conditions, the proof of compactness needs some
more detailed explanations. In order to properly define the Lagrangian Rabinowitz Floer homology
we also need to introduce the concept of gradient flow lines with cascades and their breaking. With
this we then finally have all the ingredients to define the Lagrangian Rabinowitz Floer homology.
Afterwards we introduce the notion of leaf-wise intersection points in the Lagrangian boundary
setting and use it to prove that for a displaceable energy hypersurface the Lagrangian Rabinowitz
Floer homology vanishes. Since a vanishing homology is not sufficient to prove the existence of
infinitely many c.c. orbits (c.f. Theorem A), this shows us the necessity to define an equivariant
version of the Lagrangian RFH. The definition of the G-equivariant Lagrangian RFH for G being a
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compact Lie group acting free on the trajectories is very straight forward. The only technical difficulty
that arises is that we now need transversality for a generic choice of G-equivariant almost complex
structures. However, the usual proof for not necessarily G-equivariant almost complex structures
still works if we adapt one auxiliary theorem to the G-equivariant setting. The final step in this
chapter is to relate the G-equivariant Lagrangian RFH to the Tate homology of G in the case that G
is finite, or the positive part of the G-equivariant Lagrangian RFH to the group homology of G in the
general case. This will allow for a more convenient computation than via the definition directly. In
the last chapter we take on the main goal of this thesis, i.e. proving the existence of infinitely many
symmetric consecutive collision orbits in the restricted three body problem. We start with proving
the claim for the planar case. Here we use the Z2-equivariant Lagrangian RFH as a lower bound for
the number of symmetric c.c. orbits and the calculation of the Tate homology of Z2 then shows that
this number is infinitely large. However, since the homology counts the orbits with multiplicity there
is also the possibility that all these orbits are just iterations of the same periodic c.c. orbit. So to
conclude the planar case we prove that for a generic choice of energy and mass there are no periodic
symmetric c.c. orbits. The strategy of the spatial case is now very similar, but instead of the finite
group Z2 we now have S1 as the symmetry group. The only difficulty is that we don’t know if the
Liouville vector field is transverse to the energy hypersurface at all points, but only for those which
also lie on the hypersurface defined by another conserved quantity. This first requires some technical
discussion before we can use the same strategy as in the planar case.



Chapter 2

The Basics: Hamiltonian Dynamics
and Liouville Domains

The goal of this chapter is to repeat some of the basic principles of Hamiltonian dynamics and
introduce the concept of a Liouville domain and its completion, i.e. the setting in which later on we
want to define our Floer theoretic tools.

2.1 Introduction to Hamiltonian Mechanics

Having a mathematical description of classical mechanical systems is of course very important and can
be used to study a large number of different problems (for example questions in celestial mechanics as
we will see in the later chapters). Hamiltonian mechanics is one of the ways to do so: The behaviour
of every particle (we will only work with point masses for now) in classical mechanics is completely
described by its position and (canonical) momentum. The space of all positions and momenta is
called the phase space and is represented via the cotangent bundle of a given manifold Q, where the
coordinates coming from the underlying manifold Q describe the position and the fibre coordinates
describe the (canonical) momentum. The time evolution of every such particle is determined by
the energy function of the given physical system, which is usually called the Hamiltonian function.
Note that in the literature there are a couple of different sign conventions used when it comes to
the definition of a Hamiltonian system. For us the canonical symplectic form on a 2n-dimensional
cotangent bundle is locally given by

ω0 =
n∑︂

i=1

dpi ∧ dqi, (2.1.1)

where pi are the fibre coordinates and qi are the coordinates of the underlying manifold. In general
we call a symplectic manifold exact if ω = dλ for a one form λ.

Definition 2.1.1 Given a symplectic manifold (M,ω) with smooth function H. We define the Hamil-
tonian vector field XH as the unique vector field that satisfies

dH = −iXH
ω, (2.1.2)

where iXH
inserts the vector field into the first slot.

Assume we are now given a classical mechanical system with possible positions described by a man-
ifold Q and the corresponding momenta at a given point q0 as a vector in T ∗

q0Q. The change of the
position and the momentum of a particle in time is then determined by the Hamiltonian (function)
of the given system H via the flow of the Hamiltonian vector field XH .

11
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Remark 2.1.2 Even though every system in classical mechanics (without friction) can be described
via a Hamiltonian function on a suitable cotangent bundle with the canonical symplectic form, we
will always consider more general symplectic manifold when possible. The reason is that if a given
Hamiltonian system (T ∗Q,ω0, H) has a symmetry, we can reduce the dimension of the problem using
a method called symplectic reduction. This will change the phasespace from T ∗Q into a general
symplectic manifold of smaller dimension and hence it is useful to consider more general symplectic
manifolds.

One very well known fact in classical mechanics is the conservation of energy:

Proposition 2.1.3 In a Hamiltonian system (M,ω,H), where the Hamiltonian function H is not
explicitly time dependent, H is constant along the flow of the system.

Proof: The proof just consists of using the Cartan formula and the fact that a symplectic form is
antisymmetric. ΦXH ,t should denote the flow of XH .

d

dt
Φ∗
XH ,tH = Φ∗

XH ,t(LXH
H) = Φ∗

XH ,t(iXH
dH + 0) = Φ∗

XH ,t(ω(XH , XH)) = 0 □

Now let us look at an example for such a system.

Example 2.1.4 (The Harmonic Oscillator) In this example we want to study the one dimen-
sional harmonic oscillator. The position space is just R, i.e. the suitable phase space is T ∗R together
with the canonical symplectic form dp ∧ dq. The Hamiltonian that describes this system is

H(q, p) =
p2

2m
+
k

2
q2 (2.1.3)

with positive constants m and k. First calculate

dH =
p

m
dp+ kq dq,

from which we get the Hamiltonian vector field

XH(q, p) =
p

m

∂

∂q
− kq ∂

∂p
.

For more convenience we identify ∂
∂q with

(︄
1

0

)︄
and ∂

∂p with

(︄
0

1

)︄
. By slight abuse of notation we

denote the flow by

(︄
q(t)

p(t)

)︄
and so the equation determining the flow becomes

d

dt

(︄
q(t)

p(t)

)︄
=

(︄
1
mp(t)

−kq(t)

)︄
.

This ODE can then be transformed into{︄
q̈(t) = − k

mq(t)

p(t) = mq̇(t)
.

The solutions to these equations then give us the Hamiltonian flow of the system

q(t) = Q0 cos

(︄√︃
k

m
t

)︄
+

P0√
mk

sin

(︄√︃
k

m
t

)︄

p(t) = P0 cos

(︄√︃
k

m
t

)︄
−
√
kmQ0 sin

(︄√︃
k

m
t

)︄
,

where Q0 is the starting position and P0 is the starting momentum.
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2.2 Liouville Domains and Their Completions

In this section we want to take a closer look at Liouville domains and define the completion of them.
But first we start with introducing contact manifolds.

Definition 2.2.1 Given a 2n− 1 dimensional manifold Σ and a one form λ. We call the pair (Σ, λ)
a contact manifold if λ ∧ (dλ)n−1 is a volume form. The Reeb vector field on (Σ, λ) is the unique
vector field fulfilling the conditions

iR dλ = 0, λ(R) = 1. (2.2.1)

Remark 2.2.2 In the literature people sometimes use a weaker definition of a contact manifold,
namely, that the manifold admits a maximally non-integrable field of hyperplanes. In this setting
our definition from above would be considered a cooriented contact manifold, where the hyperplane
field is given by ζ = ker(λ) and carries the coorientation induced by λ.

Now to the definition of a Liouville domain:

Definition 2.2.3 A Liouville domain is a compact exact symplectic manifold (M,λ) with the prop-
erty that the Liouville vector field X, defined by iX dλ = λ, is transverse to the boundary and outward
pointing.

Note that every compact exact symplectic manifold needs to have a nonempty boundary, i.e. the
conditions on the Liouville vector field always make sense. In this context it is also important to
remark that for us the tangent space at the boundary also contains the direction transverse to the
boundary. To see that this gives us a well-defined tangent space one can use the definition of a tangent
vector via derivations of germs of smooth functions, which naturally extends to the boundary points.
The special property of a Liouville domain is the fact that it has an exact symplectic form, that
becomes a contact form when restricted to the boundary:

Proposition 2.2.4 Let (M,λ) be a Liouville domain with Liouville vector field X and boundary Σ,
then

(︁
Σ, λ

⃓⃓
Σ

)︁
is a contact manifold.

Proof: (c.f. Prop. 2.6.1 [FVK18]) To see this we need to show that λ ∧ (dλ)n−1 is a volume form
when restricted to Σ. So given an x ∈ Σ we choose a basis {v1, . . . , v2n−1} of TxΣ. Now compute

λ ∧ (dλ)n−1 =iXω ∧ ωn−1(v1, . . . , v2n−1)

=
1

n
ωn(Xx, v1, . . . , v2n−1),

where we call dλ = ω. Since X is per assumption transverse to Σ, it follows that {Xx, v1, . . . , v2n−1}
is a basis of TxM . Because ω is non-degenerate, we see that

ωn(Xx, v1, . . . , v2n−1) ̸= 0,

which implies that λ
⃓⃓
Σ
is a contact form on Σ. □

But Liouville domains are not just relevant form a purely mathematical standpoint, they also show
up in the study of classical mechanical systems:

Example 2.2.5 Given an n-dimensional compact manifold Q with corresponding phase space T ∗Q
and the canonical one form λ0, s.t. dλ0 = ω0. A mechanical Hamiltonian is a Hamiltonian function
of the form

H(q, p) =
1

2
|p|2g + V (q), (2.2.2)
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where g is a cometric on Q. Now consider an energy value E0 > maxV . This implies that the energy
hypersurface does not intersect the zero section. The canonical one form is locally given by pi dqi,
i.e. the corresponding Liouville vector field is locally given by X =

∑︁n
i=1 pi

∂
∂pi

. The Liouville vector

field is transverse to the boundary H−1(E0) and outward pointing if we have dH(X) > 0 on it. So
let us verify this fact:

dH =
n∑︂

i,j=1

gijpi dpj +
n∑︂

i=1

∂V

∂qi
dqi

and therefore we have on H−1(E0)

dH

(︄
n∑︂

i=1

pi
∂

∂pi

)︄
=

n∑︂
i=1

gijpipj = |p|2g > 0

Note that it is not hard to see that E0 is a regular value and sinceQ is compact the energy hypersurface
has to bound a compact submanifold where the boundary is exactly the hypersurface.

There is now a way to enlarge a Liouville domain to a noncompact exact symplectic manifold:

Proposition 2.2.6 Let (W,λ) be a Liouville domain with Liouville vector field X and boundary(︁
Σ, α := λ

⃓⃓
Σ

)︁
. Then the manifold ˆ︂W :=W ∪Σ Σ× [1,∞) forms together with

ω =

{︄
dλ on W

d(rα) on Σ× [1,∞)
(2.2.3)

an exact symplectic manifold.

Proof: The first part is to show that ω is a smooth two form: Note that for the Liouville vector
field X on W we have

d

dt

(︁
Φt
X

)︁∗
λ =

(︁
Φt
X

)︁∗
LXλ =

(︁
Φt
X

)︁∗
(iX dλ+ d(iXiX dλ)) =

(︁
Φt
X

)︁∗
λ

and therefore
(︁
Φt
X

)︁∗
λ = etλ. Since by assumption X is transverse to Σ, we can define the following

diffeomorphism

Ψ : Σ× (1− δ, 1]→ U (y, r) ↦→ Φ
ln(r)
X (y),

where δ > 0 and U is an open subset of W with Σ ⊂ U . Under this diffeomorphism the one form λ
becomes

(Ψ∗λ)(vy, r) =
(︂
Φ
ln(r)
X

)︂∗
λ (vy) = rλ(vy) = rα(vy).

We can extend this diffeomorphism to U ∪Σ Σ × [1,∞) by setting it to the identity on Σ × [1,∞).
On Σ× [1− δ,∞) the one form rα is obviously smooth and if we push it forward with the extension
of Ψ we get the smooth one form

ˆ︁λ =

{︄
λ on W

rα on Σ× [1,∞)

on U ∪Σ Σ× [1,∞). One can then extend this form to the whole symplectization in the obvious way
and see that dˆ︁λ = ω, which shows that ω is a smooth two form.
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The second part is to show that ω is symplectic, i.e. we have to argue that ωn > 0. On W this
is true by assumption, on Σ× [1,∞) consider

d(rα) ∧ . . . ∧ d(rα) = n · dr ∧ α ∧ dα ∧ . . . ∧ dα.

Since α is a contact structure on Σ we know that α ∧ dα ∧ . . . ∧ dα > 0 and n dr is of course also a
volume form on [1,∞). This proves the proposition. □

Definition 2.2.7 Let (W,λ) be a Liouville domain with Liouville vector field X and boundary(︁
Σ, α := λ

⃓⃓
Σ

)︁
. Then we call the manifold ˆ︂W =W ∪ΣΣ× [1,∞) together with the symplectic structure

ω =

{︄
dλ on W

d(rα) on Σ× [1,∞)
(2.2.4)

the completion of the Liouville domain (W,λ).

The completion of a Liouville domain will be our preferred setting in the later chapters in which we
want to define the Rabinowitz Floer homology.





Chapter 3

The Restricted Three Body Problem

The physical setting we want to work in is the following: Given three massive bodies described
by point masses, the only relevant force is gravity and the whole system can be described using
classical mechanics. In this setting one would like to understand how these three bodies move in the
superposition of their gravitational fields depending on the starting configuration. Even though the
two body problem is rather easy to solve analytically, adding another body to that system will make
it impossible to find an analytic solution in general. So to make the problem a bit more manageable,
assume that two of our bodies are much heavier than the third, such that the gravitational influence of
the third one on the first two is negligible (this is why we call it ”restricted”). We further assume that
the two heavy masses move around their shared centre of gravity in a circle. Viewing the three body
problem under those additional assumptions is called the the circular restricted three body problem.
Since the movement of the two big masses is already part of our assumptions, only the behaviour of
the small body is left to be determined. Let us call the position of one of the big bodies s for sun
and the other position e for earth, but note that the masses µ and 1 − µ of these two bodies don’t
need to be similar to the one of the actual sun and earth. Then the Hamiltonian for this system is
given by

H(q, p, t) =
1

2
∥p∥2 − µ

∥q − s(t)∥
− 1− µ
∥q − e(t)∥

, (3.0.1)

where as usually q ∈ Rn stands for the space coordinates, p ∈ Rn stands for the momentum coordi-
nates and the total mass is normalised to 1.

One problem with this Hamiltonian is that it is time dependent because of the movement of earth
and sun. In order to get a time independent Hamiltonian we consider a rotating coordinate system
where earth and sun stay at fix places. Hence, the Hamiltonian becomes autonomous, but it also
receives additional terms for the centrifugal force and the Coriolis force. Note that at this point the
assumption of circular is crucial. If we declare the plane in which earth and sun are moving in to be
the x-y plane, then the new Hamiltonian is

H(q, p) =
1

2
∥p∥2 + p1q2 − p2q1 −

µ

∥q − s∥
− 1− µ
∥q − e∥

, (3.0.2)

where e and s are now fixed coordinates. Even though the Hamiltonian is now autonomous, there
is still one important issue we have to deal with, namely the collisions. The way to deal with
this problem is to regularize the system for a given energy E0, which means one compactifies the
corresponding energy hypersurface in such a way that we can still recover the original dynamics up
to parametrization. For more convenience we only regularize around the earth for energies below the
first Lagrange point and shift the coordinate system such that the earth is at the origin.

H(q, p) =
1

2
∥p∥2 + p1(q2 + e2)− p2(q1 + e1)−

µ

∥q − s+ e∥
− 1− µ
∥q∥

, (3.0.3)

17
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Then the first step is always to reparametrize the time variable to get a Hamiltonian that is well-
defined on the complete phase space, i.e. we set

tnew =

∫︂
1

∥q∥
dtold.

In terms of the Hamiltonian function this corresponds to redefining it as

Hnew = ∥q∥(Hold − E0),

where E0 is the energy we want to regularize at. Note that the new Hamiltonian is now also defined
at q = 0, but not yet smooth. The second step is then to find a way to compactify the hypersurface
H−1

new(0), or to be more precise the part of the hypersurface that corresponds to the bounded states.
The reason why there is still an issue with the compactness after removing the singularity is that by
multiplying with ∥q∥ we allowed the momentum at q = 0 to grow arbitrary large while still staying on
the hypersurface H−1

new(0). There are now different approaches to compactify the hypersurface. The
first one we want to introduce is the Moser regularization. It will not be the regularization we use later
on, but since it is one of the most used we at least would like to sketch how it works: The idea is to
switching the role of position and momentum coordinates while preserving the symplectic structure,
such that the momentum is now described by the base coordinates of the cotangent bundle, and then
apply the inverse stereographic projection to compactify the momentum that at q = 0 escapes to
infinity (similar to the compactification of the complex plane). To be more precise, we of course take
the cotangent lift of the stereographic projection to also properly transform the position coordinates.
The final step of this regularization is to make Hnew into a smooth function including q = 0 and
without changing the energy hypersurface for energy zero. This is achieved by defining

HM =
1

2
(Hnew + 1)2 (3.0.4)

and considering the energy hypersurface H−1
M

(︁
1
2

)︁
. In the following two sections we discuss the main

regularizations used throughout this thesis.

3.1 Levi-Civita Regularization

The Levi-Civita regularization is originally a technique to regularize two body collisions in the planar
Kepler problem. To be able to also use it in the three body setting, we need to assume that the
starting energy and the initial conditions are chosen in such a way that we are bound to one of the
two massive bodies. Like in the above discussion we will take the earth. The crucial ingredient of
the Levi-Civita regularization is the map

l : C \ {0} → C \ {0} ; z ↦→ z2

and its cotangent lift

L : T ∗(C \ {0})→ T ∗(C \ {0}) ; (z, w) ↦→

(︄
l(z),

w

l′(z)

)︄
.

Remember that we shifted our coordinate system, such that e lies now in the origin. To regularize the
Hamiltonian system (T ∗(︁R2 \ {0}

)︁
, Hnew, ω = dλ) we first identify T ∗(︁R2 \ {0}

)︁
with T ∗(C \ {0})

and then pull it back using the map L to get the new system

(T ∗(C \ {0}),K := L∗Hnew, ˆ︁ω := L∗ω = dL∗λ), (3.1.1)
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where

L∗λ = z1 dw1 − w1 dz1 + z2 dw2 − w2 dz2 (3.1.2)

with the non-standard notation of z = z1 + iz2 and z1, z2 ∈ R. Note that XK = L∗XHnew because

L∗iXHnew
ω = L∗ dHnew

which is equivalent to

iL∗XHnew
ˆ︁ω = dK. (3.1.3)

So if we have a curve γ satisfying d
dtγ(t) = XK(γ(t)), we can recover the Hamiltonian dynamics on

the original space by applying the map L:

d

dt
L(γ(t)) = dL

(︃
d

dt
γ(t)

)︃
= dL(XK(γ(t))) = XHnew(L(γ(t)))

The advantage of the system (T ∗(C \ {0}),K, ˆ︁ω) is now that it extends to T ∗C. If we now choose
our coordinate system in such a way that the two big masses lie on the real axis, the Levi-Civita
regularised Hamiltonian at energy E is given by

K(z, w) = (L∗Hnew)(z, w)

=
1

8
|w|2 − E|z|2 − (1− µ)− µ|z|2

|z2 + e− s|
+
|z|2

2
(w1z2 − w2z1)−

w1z2 + w2z1
2

e1,
(3.1.4)

where e1 is the x component of e. Since we later on want to use Rabinowitz Floer homology in this
setting, we want to show that we can interpret the energy hypersurface as the boundary of a Liouville
domain using a strategy similar to [FVK18, Chapter 4.2].

Proposition 3.1.1 The bounded part of the energy hypersurface for the planar circular restricted
three body problem in Levi-Civita regularization is for all energies below the first critical energy value
star-shaped, i.e. we can view it as the boundary of a Liouville domain.

Proof: Fortunately this was already proven by [AFKP12] in the case of Moser regularisation, so
we only need to transfer the result to the Levi-Civita setting. Since our underlying manifold is T ∗C,
it is clear that the open area bounded by the compact energy hypersurface is an exact symplectic
manifold. Hence, it is left to show that the corresponding Liouville vector field is transverse to the
hypersurface. Let us call the Hamiltonian we get through Moser regularization HM and the bounded
part of the energy hypersurface ΣM . If XM is the Liouville vector field in this setting, then we know
from [AFKP12] that

dHM (XM )
⃓⃓
ΣM

> 0

and since this is a smooth function on a compact manifold, there is a c0 > 0 such that

dHM (XM )
⃓⃓
ΣM

> c0.

Now we want to define a map ψ that transforms the energy hypersurface in Levi-Civita regularization
to the hypersurface in Moser regularization. This map is a concatenation of the map L from above,
the symplectic switch of fibre and base coordinates sw and the inverse stereographic projection at
the north pole P−1

N :

ψ : T ∗(C \ {0})→ T ∗S2 \
(︁
S2 ∪ T ∗

NS
2
)︁
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The inverse stereographic projection and the switch of fibre and base coordinates are now diffeomor-
phisms and L is a local diffeomorphism, hence ψ is also a local diffeomorphism. If we pull back the
symplectic two form and the Liouville one form with this map, we get for the symplectic two form

ψ∗ωMoser = (P−1
N ◦ sw ◦ L)∗ωMoser

= L∗Re(dq ∧ dp)

= Re

(︄
2z dz ∧

(︃
1

2z̄
dw − w

2z̄2
dz̄

)︃)︄
= Re(dz ∧ dw)

= dz1 ∧ dw1 + dz2 ∧ dw2,

and for the Liouville one formˆ︁L∗λMoser = (P−1
N ◦ sw ◦ L)∗λMoser

= L∗Re(qdp)

= Re

(︃
z2d
(︂ w
2z̄

)︂)︃
=

1

2
Re(zdw − w dz)

=
1

2
(z1 dw1 − w1 dz1 + z2 dw2 − w2 dz2).

From this we see that if we pull back the Liouville vector field in Moser regularization XM with ψ
we get the Liouville vector field in the Levi-Civita setting XLC . By construction of ψ it is also easy
to see that (c.f. equation (3.0.4))

ψ∗HM =
1

2
(K + 1)2

and hence

d(ψ∗HM ) = dK,

see [AFKP12, chapter 3] for more details about the construction of the Moser Hamiltonian. With
this we can then conclude that

dK(XLC) = d(ψ∗HM )(ψ∗XM ) = ψ∗(dHM )(ψ∗XM ) = ψ∗(dHM (XM )) > c0

on ΣLC∩T ∗(C\{0}). This is a dense subset of ΣLC and dK(XLC) is a smooth function, i.e. dK(XLC)
needs to be bigger than zero on all of ΣLC . This proves the proposition. □

3.2 The Kustaanheimo-Stiefel Regularization

The Levi-Civita regularization described in the previous section can only be used in the planar setting
since it relies on the complex numbers. But by using a generalization of the complex numbers to
higher dimensions, namely the quaternions, one can also use a very similar approach to regularize
the spatial restricted three body problem. This procedure is then called the Kustaanheimo-Stiefel
regularization.

First let us repeat the basics concerning the quaternions: To construct the quaternions out of the
real numbers one introduces three new elements i, j and k with the property that

i2 = j2 = k2 = ijk = −1. (3.2.1)



3.2. THE KUSTAANHEIMO-STIEFEL REGULARIZATION 21

These elements together with 1 ∈ R generate the set of quaternions H, i.e. every element can be
uniquely expressed in the form x0 + x1i+ x2j+ x3k with x0, . . . , x3 ∈ R. The addition is defined via

x+ y = x0 + y0 + (x1 + y1)i+ (x2 + y2)j + (x3 + y3)k (3.2.2)

and the multiplication arises as the combination of the multiplication in R and the rules (3.2.1) while
we demand that the distributive property with respect to the above defined addition holds. One can
show that these operations turn the quaternions into a skew field. As for the complex numbers we
can also interpret H as a real vector space, this time as R4. With this interpretation the addition is
just the usual vector addition and the multiplication can be expressed as(︄

x0

x⃗

)︄
·

(︄
y0

y⃗

)︄
=

(︄
x0y0 − ⟨x⃗, y⃗⟩

x0 · y⃗ + y0 · x⃗+ x⃗× y⃗

)︄
, (3.2.3)

where x⃗, y⃗ ∈ R3. The conjugation of a quaternion is defined analogously to the complex conjugation
as

x̄ = x0 − x1i− x2j − x3k (3.2.4)

and also analogously to the complex numbers we define the map

Re : H→ R, x0 + x1i+ x2j + x3k ↦→ x0. (3.2.5)

To perform the Kustaanheimo-Stiefel regularization we define the following map:

KS : H \ {0} ×H→ IH×H, (z, w) ↦→
(︃
z̄iz,

z̄iw

2|z|2

)︃
, (3.2.6)

where IH stands for the imaginary part of the quaternions, i.e. the part we identify with {0} ×R3.
Now consider BL(z, w) := Re(z̄iw) as a function on H×H. One can show that BL−1(0) \ {0} is a
smooth manifold and note that BL−1(0) is precisely the condition needed to restrict the image of
KS
⃓⃓
BL−1(0)

to IH×IH ∼= T ∗R3, which is of course needed when we want to pull back the Hamiltonian

of the spatial restricted three body problem. Restricting this set BL−1(0) such that KS is actually
a well-defined smooth function on it we get Σ1 := BL−1(0) ∩ (H \ {0} × H). The corresponding
regularization procedure is now very similar to the one from Levi-Civita: First we pull back the
Hamiltonian of the spatial restricted three body problem HS3BP using the map KS

⃓⃓
Σ1
. Afterwards

we multiply with |z|2 (which again corresponds to a rescaling of the time variable) to remove the
singularity at zero. The regularized Hamiltonian then reads

ˆ︁K(z, w) = |z|2
(︂
KS
⃓⃓∗
Σ1
HR3BP

)︂
(z, w). (3.2.7)

It is not hard to see that this Hamiltonian extends to a smooth function on H×H and forms together

with the symplectic form Re(dw̄ ∧ dz) =
3∑︁

i=0
dwi ∧ dzi the new Hamiltonian system

(H×H,Re(dw̄ ∧ dz), ˆ︁K). (3.2.8)

As in the case of the Levi-Civita regularization we would like the resulting compactified energy
hypersurface to be the boundary of a Liouville domain. Unfortunately it is not clear how to show
this, since we gained an extra dimension through our regularization procedure that has no analogue
in the spatial Moser regularization. So for now we are forced to settle for a weaker result, but with
the advantage that we can still use the same proof strategy as for Levi-Civita regularization. Note
that we still only consider that part of the energy hypersurface, which lies around the earth below
the first critical energy value.
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Lemma 3.2.1 Combining the Kustaanheimo-Stiefel mapping with the symplectic switch of fibre and
base coordinate and the inverse stereographic projection in dimension three we get a smooth map Ψ
that induces a diffeomorphism

ψ : Σ1/S
1 → T ∗S3 \

(︁
S3 ∪ T ∗

NS
3
)︁
. (3.2.9)

Proof: Our first step is to show that Ψ is injective up to the S1 action. So assume that there are
(z1, w1), (z2, w2) ∈ Σ1 with Ψ(z1, w1) = Ψ(z2, w2). Since the switch of coordinates and the inverse
stereographic projection are bijective this implies that z1̄iz1 = z2̄iz2. From this we see that |z1| = |z2|,
which means there is an η ∈ H with z2 = η · z1 and |η| = 1, i.e. we can write z2̄iz2 = z1̄η̄iηz1 and get
i = η̄iη. If we now look at the second component of this equation, we see that

η20 + η21 − η22 − η23 = [η̄iη]i=1 = 1 = |η| = η20 + η21 + η22 + η23. (3.2.10)

This implies that η2 = η3 = 0 and η20 + η21 = 1, i.e. η = eiφ ∈ H. Ψ(z1, w1) = Ψ(z2, w2) further
implies that z̄1iw1

|z1|2 = z2̄iw2
|z2|2 , which leads to |w1| = |w2|. With the same line of argument as above we

get the existence of a ξ ∈ H, such that w2 = ξ · w1 and therefore

i = ηiξ ⇒ 1 = e−iφξ. (3.2.11)

With this we can finally conclude that (z2, w2) = (eiφz1, e
iφw1), i.e. Ψ is injective up to the S1

action. This shows that the induced map ψ is injective. The surjectivity is ensured by restricting
the codomain to T ∗S3 \

(︁
S3 ∪ T ∗

NS
3
)︁
. □

Lemma 3.2.2 The map ψ : Σ1/S
1 → T ∗S3\

(︁
S3 ∪ T ∗

NS
3
)︁
defined above pulls back the canonical one

form on T ∗S3 to a one form on Σ1/S
1 that in our usual local coordinates looks like 1

2 Re(zdw−w dz),
i.e.

ψ∗
3∑︂

i=1

pi dqi =
3∑︂

i=0

1

2
(wi dzi − zi dwi). (3.2.12)

Note that we only need to define the one form on representatives, since 1
2 Re(zdw−w dz) is invariant

under the S1 action. The proof is just a very long but not so complicated computation, hence we
relocated the proof to the Appendix A.1.

Proposition 3.2.3 The Liouville vector field of (H×H, w̄ dz) is transverse to ˆ︁K−1(0) and outward
pointing at all points that lie in ˆ︁K−1(0)∩BL−1(0) for all energies below the first critical energy value.

Proof: Since we know that in the Moser regularization of the three dimensional circular restricted
three body problem the energy hypersurface is fibrewise star-shaped for all energies below the first
critical energy value ( [CJK20, Theorem 1]), we can recover the same result for(︃

Σ1/S
1, ω = d

(︃
1

2
Re(zdw − w dz

)︃
, ˆ︁K = ψ∗HM

)︃
by using the previous two lemmas. Because the Hamiltonian ˆ︁K and 1

2 Re(zdw−w dz) - and therefore
also the corresponding Liouville vector field XL - are invariant under the action of S1, we can just
extend d ˆ︁K(XL) smoothly to Σ1 as an S1 invariant function and hence maintain d ˆ︁K(XL) > c0 on
Σ1 ∩ ˆ︁K−1(0) for a positive constant c0 (we refer to the proof of Proposition 3.1.1 to see why such a
constant exists). By the smoothness of d ˆ︁K(XL) we get that the Liouville vector field is transverse
to ˆ︁K−1(0) and outward pointing at all points that lie in ˆ︁K−1(0) ∩BL−1(0). □

In Chapter 5.2 we will see that the setting described in this proposition is actually strong enough, so
that we can still apply our techniques from symplectic topology.



Chapter 4

Lagrangian Rabinowitz Floer
Homology

In this chapter we now want to construct our main tool, which will allow us to take on questions
concerning consecutive collision orbits in the restricted three body problem. The general setting we
want to work in is that of an exact symplectic Hamiltonian system (M,ω = dλ,H), where the energy
hypersurface Σ := H−1(0) is a contact manifold with respect to λ

⃓⃓
Σ

and the corresponding Reeb

vector field R fulfils R = XH

⃓⃓
Σ
. We further assume the existence of a Lagrangian submanifold L on

which the one form λ becomes exact, i.e. λ
⃓⃓
L
= dl for a l ∈ C∞(L). As for all Floer theories the

starting point is a suitable action functional and its corresponding critical points.

4.1 Rabinowitz Action Functional and Critical Points

The difference between Rabinowitz Floer homology (RFH) and the other homologies in symplectic
topology is that the complex is generated by tupels consisting of both a trajectory x ∈ C∞([0, 1],M)
and a Lagrange multiplier/period τ ∈ R. The action functional one uses for these tuples is called
the Rabinowitz action functional and is given by

AH(x, τ) :=

1∫︂
0

x∗λ− τ
1∫︂

0

H(x(t)) dt. (4.1.1)

The original definition goes back to the work of Rabinowitz [Rab78], the idea to use it to define
a Floer homology originated in the work of Cieliebak and Frauenfelder [CF09]. Note that this
action functional is designed to handle periodic orbits. In this thesis, however, we want to consider
x ∈ C∞([0, 1],M) to be a trajectory starting at and ending inside the given Lagrangian submanifold
L. We define the set containing these paths as P (M,L) := {x ∈ C∞([0, 1],M) | x(0), x(1) ∈ L}. For
this setting one needs to take care of the possible boundary terms and hence the action functional
has to read (c.f. [Mer14, Chapter 1.2])

AH(x, τ) :=

1∫︂
0

x∗λ+ l(x(0))− l(x(1))− τ
1∫︂

0

H(x(t)) dt. (4.1.2)

The critical points of this functional satisfy the equations{︄
∂tx(t) = τXH(x(t)), t ∈ [0, 1]

H(x(t)) = 0
. (4.1.3)

23
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The first equation arises in the same way as in Floer homology, now just with an additional constant
τ . From there we can deduce that x

(︁
1
τ t
)︁
is a solution of the usual Hamilton equation and this is the

reason why we interpret τ as the period of the trajectory x. The second equation is now special to
the Rabinowitz action functional. If one differentiates the functional with respect to τ the resulting
equation is

1∫︂
0

H(x(t)) dt = 0. (4.1.4)

But the first equation tells us that x is just a time reparametrization of a Hamiltonian trajectory, i.e.
H(x(t)) is constant in time. Therefore the second equation reduces to

H(x(t)) = 0 (4.1.5)

and it ensures that only those Hamiltonian trajectories with energy zero contribute to the set of
critical points. Since in the usual Floer homology we don’t have the extra parameter τ , the period
of the critical points is always equal to one, but on the other hand the trajectories are not restricted
to only one energy level.

As we want to define a Floer homology corresponding to this Rabinowitz action functional, it is
important for the functional to be at least Morse-Bott. Since the constant trajectories (x0, 0) with
x0 ∈ H−1(0) ∩ L are always critical points of the action functional, it, in fact, can never be just
Morse. But if we consider the functional on P (M,L), those are the only critical points that prevent
AH from being Morse:

Theorem 4.1.1 For a generic choice of H ∈ C∞
c (M) the Rabinowitz action functional is Morse-Bott

and the critical set consists of H−1(0) ∩ L together with an isolated collection of points.

The proof of this theorem is almost the same as the one for [CF09, Theorem B.1.], except that the
nonconstant trajectories in P (M,L) don’t have the S1-symmetry by time shift and therefore we can
achieve the Morse condition on those.

To be able to properly define the Rabinowitz Floer homology, we need to be able to assign a
grading to the critical points. This is the task we will take on in the next section.

4.2 Maslov Index

Given a critical point (x, τ) of AH . The way we want to assign an index to this point is by first identi-
fying it with the Hamiltonian trajectory x

(︁
1
τ t
)︁
and associate to this trajectory a path of Lagrangian

subspaces. The grading is then given by the Maslov index of the path of Lagrangians.

So first let us start by defining the Maslov index (this part is a condensed version of [FVK18,
Chapter 10.1-10.3]): The space we are working on in this context is a manifold called the Lagrangian
Grassmannian denoted by Λ = Λ(n) and consists of all the Lagrangian subspaces in Cn. This
set indeed is a smooth manifold, since we can identify it with U(n)/O(n), i.e. the Lagrangian
Grassmannian is even a homogeneous space. For a given L0 ∈ Λ we define the submanifolds

Λk
L0

= Λk
L0
(n) := {L ∈ Λ(n) : dim(L ∩ L0) = k} (4.2.1)

for all 0 ≤ k ≤ n. Now choose two Lagrangians L1, L2 ∈ Λ such that L1 ∩ L2 = {0}, i.e. L1 ∈ Λ0
L2
.

Then we define a map from Λ0
L2

to the quadratic forms on L1denoted by S2(L1): Given an L ∈ Λ0
L2
,

then there is for every v ∈ L1 a unique wv ∈ L2 such that v + wv ∈ L, because L1 and L2 are two
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subspaces with half of the full dimension and L1 ∩L2 = {0}. With this we define the quadratic form
as

QL1,L2

L (v) = ω(v, wv) (4.2.2)

for all v ∈ L1 and ω the symplectic structure on Cn. The map from Λ0
L2

to S2(L1) is then simply
given by

L ↦→ QL1,L2

L . (4.2.3)

If we are now given a path of Lagrangians λ : [0, 1]→ Λ and take a L0 ∈ Λ as fixed, then we define
the crossing form

C(λ, L0, t) :=

(︃
d

dt

⃓⃓⃓⃓
t=0

QL0,L2

λ(t)

)︃⃓⃓⃓⃓
λ(t)∩L0

(4.2.4)

for all t ∈ [0, 1], where L2 is an arbitrary element in Λ0
L0
. Note that by [FVK18, Lemma 10.2.3.] this

form is independent of the chosen L2. After a perturbation with fixed endpoints we can assume that

for any path λ : [0, 1]→ Λ the crossing form C(λ, L0, t) is non singular for all t ∈ λ−1
(︂
Λ1
L0

)︂
, where

the completion of Λ1
L0

is simply
n⋃︁

k=1

Λk
L0
. So suppose it is true for λ : [0, 1] → Λ, then we define its

Maslov index with respect to the fixed L0 as

µL0(λ) :=
1

2
signC(λ, L0, 0) +

∑︂
t∈λ−1

(︂
Λ1
L0

)︂ signC(λ, L0, t) +
1

2
signC(λ, L0, 1).

(4.2.5)

Here sign stands for the signature of a quadratic form. This definition is due to Robbin and Salamon
[RS93] and has the following useful properties:

(i) Invariance: Two paths λ1, λ2 : [0, 1] → Λ, that are homotopic with fixed endpoint, also have
the same Maslov index µL0(λ1) = µ(λ2)

(ii) Concatenation: Assume that λ1, λ2 : [0, 1]→ Λ satisfy λ1(1) = λ2(0), then the concatenation
λ1#λ2 fulfils

µL0(λ1#λ2) = µL0(λ1) + µL0(λ2). (4.2.6)

Before continuing with defining the grading for the Hamiltonian trajectories we want to give a more
geometric interpretation of the Maslov index defined above. For this assume that we have a path
λ of Lagrangian subspaces, such that λ(t) /∈ Λk for k ≥ 2. In fact, after a perturbation with fixed
endpoints we can always achieve this for t ∈ (0, 1). The Maslov index of a path λ can then be
interpreted as the intersection number of λ with the submanifold Λ1 ⊂ Λ. Note that the codimension
of the Λk ⊂ Λ is given by

codim(Λk,Λ) =
k · (k + 1)

2
. (4.2.7)

For a proof of this formula see for example [FVK18, Proposition 10.2.1]. Therefore Λ1 ⊂ Λ has
codimension one and hence, the image of a given path of Lagrangian subspaces and the submanifold
Λ1 are of complementary dimension. To be able to properly define an intersection number we need to
know which intersections we have to count positively and which with a negative sign. Unfortunately
Λ1 is in general not orientable, but it is at least always coorientable. To define this coorientation we
first need the following lemma (c.f. [FVK18, Lemma 10.2.4]
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Lemma 4.2.1 Assume that L0 ∈ Λ, k ∈ {0, . . . , n} and L ∈ Λk
L0
, then

TLΛ
k
L0

=
{︂ˆ︁L ∈ TLΛ : Q

ˆ︁L⃓⃓
L∩L0

= 0
}︂
. (4.2.8)

Here we define

Q
ˆ︁L :=

d

dt

⃓⃓⃓⃓
t=0

QL0,L2

L(t) , (4.2.9)

such that d
dt

⃓⃓
t=0

L(t) = ˆ︁L and L2 an arbitrary element in Λ0
L0

on which Q
ˆ︁L does not depend. One

can show that the induced map

TL0Λ→ S2(L0), ˆ︁L ↦→ Q
ˆ︁L (4.2.10)

is a vector space isomorphism (see [FVK18, Chapter 10.2] for more details). If we now have aˆ︁L ∈ TLΛ \ TLΛ1 with L ∈ Λ1, Lemma 4.2.1 implies that Q
ˆ︁L⃓⃓

L∩L0
̸= 0. This enables us to define the

coorientation in the following way: We call a vector [ˆ︁L] ∈ TLΛ/TLΛ1 positively oriented if and only

if for a representative ˆ︁L ∈ [ˆ︁L] the form Q
ˆ︁L⃓⃓

L∩L0
is positive. Since by assumption ˆ︁L ∈ TLΛ \ TLΛ1,

we know that the quadratic form can not be zero and because again by assumption L ∈ Λ1
L0

we only

consider the quadratic form on a one dimensional subspace. Hence, the quadratic form Q
ˆ︁L⃓⃓

L∩L0
is

either always positive or always negative. Having set up the coorientation, we can go ahead and
define

ν(t) :=

{︄
1 [∂tλ(t)] positive

−1 else
. (4.2.11)

The Maslov index in terms of an intersection number with Λ1 is then given by

µL0(λ) =
∑︂

t∈λ−1
(︂
Λ1
L0

)︂ ν(t). (4.2.12)

In a more general setting where the path λ of Lagrangian subspaces does intersect Λk
L0

for k ≥ 2,
counting the intersections is more complicated and therefore the signature of the quadratic form
appears in the formula (4.2.5).

Now we want to understand how to assign a Maslov index to a Hamiltonian trajectory starting
and ending in a given Lagrangian submanifold: First we need to assume that the given Hamiltonian
trajectory γ is contractible with respect to the Lagrangian submanifold L inside of the 2n-dimensional
manifold M , i.e. γ can be contracted to a point in L while the endpoints stay inside of L throughout
the contraction. This implies that we can find a filling

γ̄ : (D+, [−1, 1])→ (M,L) (4.2.13)

such that γ̄(eiπt) = γ(t). Here D+ should denote the unit complex disk intersected with the upper
half plane and [−1, 1] is the part of D+ that is mapped to L. Since D+ is contractible there exists a
trivialisation

T : γ̄∗TM → D
+ ×R2n. (4.2.14)

In fact, we can even assume for T to be symplectic. The second step is to associate to our given
trajectory a path of symplectic matrices. We know that dϕtH(γ(0)) is a symplectic matrix for every
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t ∈ [0, 1] in the vector space Tγ(t)M . To make this into a path in Sp(n) we use the trivialisation from
above, where we denote by a slight abuse of notation the linear part of the trivialization at the point
x by Tx. Hence, we define

Ψ(t) := Tγ(t) dϕ
t
H(γ(0))T−1

γ(t) (4.2.15)

as the path in Sp(n) corresponding to γ. Note that since T is a symplectic trivialisation we can
here even achieve that Tγ̄(s)

(︁
Tγ̄(0)L

)︁
is a constant Lagrangian subspace in R2n for s ∈ [−1, 1] ⊆

D+. With this set-up it is now very straight forward to associate to the trajectory γ a path of
Lagrangian subspaces and therefore ultimately a Maslov index. As path of Lagrangian subspaces we
take Ψ(t)Tγ̄(0)

(︁
Tγ̄(0)L

)︁
and define the Maslov index of γ to be the Maslov index of this very path of

Lagrangians in accordance with (4.2.5). Note that this index depends on the given Lagrangian and
it might in general also depend on the filling and the trivialization. Now let us look at an example

Example 4.2.2 Consider as manifold Cn with the Hamiltonian ˜︁H(z) =

(︃
n∑︁
i
|zi|2

)︃
− 1 and the

Lagrangian submanifold L = Rn ⊂ Cn. We want to assign to the Hamiltonian trajectories that lie
on the energy hypersurface Σ = ˜︁H−1(0) a Maslov index. The Hamiltonian vector field in this case is

X ˜︁H(x, y) = 2

(︃
−y
x

)︃
(4.2.16)

with x, y ∈ Rn. For a given z =
(︁
x
y

)︁
∈ Σ ∩ L the corresponding chord is then simply

ϕ(z, t) =

(︄
cos(2t)1n − sin(2t)1n

sin(2t)1n cos(2t)1n

)︄(︄
x

y

)︄
for t ∈

[︂
0,
m

2

]︂
. (4.2.17)

To compute the Maslov index for those chords we use our Lagrangian L as base point and the
following path of Lagrangian subspaces:

Γ(t) := Ω(t)L with Ω(t) =

(︄
cos(2t)1n sin(2t)1n

− sin(2t)1n cos(2t)1n

)︄
(4.2.18)

For the quadratic form take as Lagrangian subspaces Rn, iRn ⊂ Cn. To calculate this form we first
need to find for every

(︁
x
0

)︁
in Rn a

(︁
0
b

)︁
in iRn such that(︃
x

0

)︃
+

(︃
0

b

)︃
=

(︃
cos(2t)c0
− sin(t)c0

)︃
. (4.2.19)

for an arbitrary constant c0. This is fulfilled by z = − tan(2t). Hence, the quadratic form is given by

QΓ(t)

(︃(︃
x

0

)︃)︃
= ω

(︃(︃
x

0

)︃
,

(︃
0

tan 2t

)︃)︃
= ⟨x,− tan(2t)x⟩.

Therefore the crossing form is

d

dt

⃓⃓⃓⃓
t=m

2
π

QΓ(t)

(︃(︃
x

0

)︃)︃⃓⃓⃓⃓
L

=

⟨︃
x,

−2
cos2(2t)

1nx

⟩︃
. (4.2.20)

Now to the intersection points: One can easily see that Γ(t) only intersects L for t = m
2 π with m ∈ Z,

i.e. in the case where Γ(t) = L. This implies two things: First, only the trajectories with period
(here the time from start to finish) equal to m

2 π with m ∈ Z are the ones starting and ending in the
Lagrangian L. Second, the signature of the crossing form is −n for m ≥ 0 and n for m < 0. If γ is
now a trajectory with endpoints in L and period m

2 π, then its Maslov index is

µL(γ) =
1

2
n+ (m− 1) · n+

1

2
n = nm (4.2.21)
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To be able to use the Maslov index as a well-defined grading for the trajectories in the definition
of the Rabinowitz Floer homology, we need it to be independent of the chosen filling. The setting, in
which we want to apply the RFH later on, is just the Rn where we don’t need a trivialization. But
to maintain a certain generality, we want to give at least the idea of how to deal with this problem in
a more general setting. The additional condition one then needs to require is that the Maslov index
of the Lagrangian submanifold L vanishes, which then gives us the independence of the filling. So
first let us discuss what the Maslov index of a Lagrangian is: If we take an element [A] ∈ π2(M,L)
where A ⊂M with ∂A ⊂ L, we can find a symplectic trivialization

T : TA→ D×R2n. (4.2.22)

Note that here it is in general not possible to set in the trivialization the boundary to the constant
Lagrangian Rn ⊂ R2n. If we pick now an f : ∂D → ∂A, we can construct a loop of Lagrangian
subspaces via

s ↦→ Tf(eis)Tf(eis)LT
−1
f(eis)

. (4.2.23)

For this loop we then calculate the Maslov index according to equation (4.2.5). Assigning this way
a number to every element in π2(M,L) yields a map

µ : π2(M,L)→ Z. (4.2.24)

By a slight abuse of notation we call this map the Maslov index of the Lagrangian L. Now we want
to understand why the vanishing of the Maslov index, i.e. the map µ : π2(M,L)→ Z being the zero
map, implies that we have independence of the filling. So given a trajectory γ in M with two fillings
γ̄ and γ̂.

γfilling γ̄

L

γfilling γ̂

L

The idea is now to calculate the difference of their corresponding Maslov indices using the concate-
nation property of the Maslov index, i.e.

µ(γ̄)− µ(γ̂) = µ(γ̄#γ̂−). (4.2.25)

Here γ̄#γ̂− means that we invert the orientation of γ in the filling γ̂ and concatenate the paths
around the fillings in such a way that we first go along one of the Lagrangian boundaries then back
and forth along γ and finally through the other Lagrangian boundary. Note that also for µ(γ̄) and
µ(γ̂) we can assume that Lagrangian boundary to be a part of the path since under the trivialisation
it will be constant anyway.

L

L

γ
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It is easy to see that the path along γ in γ̄#γ̂− does not contribute to the Maslov index and hence
µ(γ̄#γ̂−) is equal to the Maslov index of the loop we get when just going back and forth on the
boundaries of µ(γ̄) and µ(γ̂). But this path is now a representative in π2(M,L) and by assumption
its Maslov index is zero. Hence, we get that

µ(γ̄)− µ(γ̂) = 0. (4.2.26)

So from here on out we assume in this chapter that the Maslov index of the given Lagrangian
submanifolds vanishes.

Later on we also want to incorporate symmetries of a Hamiltonian system in its Rabinowitz Floer
homology. So assume we have two trajectories γ1 and γ2 and G is a Lie group that is a symmetry of
the underlying Hamiltonian system, such that the Lagrangian L is invariant under the action of G.
Then we have:

Proposition 4.2.3 If in the above setting the Maslov index of L vanishes and there is a g ∈ G such
that g ▷ γ1 = γ2, then the Maslov index of γ1 and γ2 coincides

µ(γ1) = µ(γ2). (4.2.27)

Proof: If γ̄1 is a filling of γ1, then ϕg(γ̄1) is a filling of γ2 and since the Maslov index of L vanishes we
can choose any filling we want. For the corresponding trivialisations T of T γ̄1 and T′ of T γ̄2 = Tϕg(γ̄1)
we get the relation

T′
γ2(t)

= Tγ1(t) dϕ
−1
g

for all t ∈ [0, 1]. Since G is a symmetry of the Hamiltonian system we have that ϕtH(g▷x) = g▷ϕtH(x),
which implies

dϕg ◦ dϕtH ◦ dϕ−1
g = dϕtH(ϕg( · )).

Combining these results we get

µ(γ2) : = µ

(︃
t ↦→ T′

γ2(t)
dϕtH(γ2(0))

(︂
T′
γ2(t)

)︂−1
)︃

= µ

(︃
t ↦→ T′

γ2(t)
dϕtH(g ▷ γ1(0))

(︂
T′
γ2(t)

)︂−1
)︃

= µ

(︃
t ↦→ T′

γ2(t)
dϕg dϕ

t
H(γ1(0)) dϕ

−1
g

(︂
T′
γ2(t)

)︂−1
)︃

= µ
(︂
t ↦→ Tγ1(t) dϕ

−1
g dϕg dϕ

t
H(γ1(0)) dϕ

−1
g dϕg

(︁
Tγ1(t)

)︁−1
)︂

= µ
(︂
t ↦→ Tγ1(t) dϕ

t
H(γ1(0))

(︁
Tγ1(t)

)︁−1
)︂

= µ(γ1). □

4.3 Gradient Flow Lines and Compactness

Another crucial ingredient for the Rabinowitz Floer Homology are the gradient flow lines of AH . To
define them we first need to fix a metric on the space P (M,L)×R. So for (x, τ) ∈ P (M,L)×R and
(ξ1, τ̂1), (ξ2, τ̂2) ∈ T(x,τ)(P (M,L)×R) set

gJ((ξ1, τ̂1), (ξ2, τ̂2)) =

1∫︂
0

ω(ξ1, J(x)ξ2) dt+ τ̂1 · τ̂2, (4.3.1)
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where J is an almost complex structure compatible with ω. The gradient of the Rabinowitz action
functional is with respect to this metric given by

∇AH(x; τ) =

⎛⎜⎝−J(x)(∂tx− τXH(x))

−
1∫︁
0

H(x) dt

⎞⎟⎠. (4.3.2)

The gradient flow lines of ∇AH are therefore solutions (u, τ) : R → P (M,L) × R to the following
equations ⎧⎪⎨⎪⎩

∂su+ J(u)(∂tu− τXH(u)) = 0

∂sτ +
1∫︁
0

H(u) dt = 0.
(4.3.3)

We can assign to every gradient flow line an energy:

E((u, τ)) : =

+∞∫︂
−∞

| ∂su|2J ds

=

+∞∫︂
−∞

| ∂tu− τXH(u)|2J ds

(4.3.4)

Morally this energy measures how far the gradient flow line is on average away from a Hamiltonian
trajectory. With this interpretation the following theorem seams quite natural.

Theorem 4.3.1 Let û = (u, τ) be a gradient flow line. If E(û) < +∞, then there exist γ± ∈ P (M,L)
such that

lim
s→±∞

u(s, · ) = γ± and lim
s→±∞

∂su(s, · ) = 0

in C∞. The energy can then be calculated via

E(û) = AH(γ−)− AH(γ+). (4.3.5)

The proof of this theorem is an adaptation of the arguments found in [ADE14, Chapter 6.5b]. For

−∞ < a < b <∞ we denote by ˜︁M(H,J)ba the set of all parametrized gradient flow lines with respect
to H and J with finite energy such that a ≤ AH(u(s)) ≤ b for all s ∈ R.

Our next step is now to show that the moduli space ˜︁M(H,J)ba is compact, as this is an important
ingredient to show the well-definedness of the Rabinowitz Floer homology later on. First we prove
compactness with respect to the C∞

loc-topology. The usual idea to achieve this is to find an L∞ bound
on the gradient flow lines and their first derivatives, then use Arzelà–Ascoli to get compactness with
respect to the C0

loc-topology and finally employ a bootstrapping argument to get to higher regularity.

To establish the L∞ bound we follow the usual approach of proving (c.f. [CF09, Chapter 3.1.])

• the L∞ boundedness for the chords,

• the L∞ boundedness for the Lagrange multiplier and its derivative,

• the L∞ boundedness for the derivative of the chords.
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Since this procedure is already well understood in the case of periodic orbits, we will mainly focus
on the issues that arise because of the Lagrangian boundary condition.

To be able to find a universal bound for our chords u, we have to make some further assumptions:
Assume that our Hamiltonian system (M,ω = dλ,H) is the completion of a Liouville domain (˜︂M,λ)

(c.f. Definition 2.2.7) and the Hamiltonian is constant outside of a compact set K with ˜︂M ⊂ K.
Further assume that the almost complex structure J is SFT like outside of K:

Definition 4.3.2 Let (M,ω) be the completion of a Liouville domain and ˜︂M ⊂ K a compact set of
M . We call J SFT like outside of K if J is ω-compatible and fulfils

J(x)R(x) = ∂r
⃓⃓
x

(4.3.6)

for all x ∈ M \K, where R is the usual extension of the Reeb vector field to the positive part of the
symplectization and ∂r stands for the unit vector field in R direction.

This definition is of course motivated by the assumptions placed on J in symplectic field theory
(see [EGH00, Chapter 1.4]). Before showing the existence of an L∞ bound for the chords with
Lagrangian boundary condition, let us first repeat some known but useful results.

Proposition 4.3.3 Let (M,ω) be the completion of a Liouville domain (˜︂M,λ) with boundary Σ and

let K be a compact set of M with ˜︂M ⊊ K. Then we can always find an almost complex structure
that is SFT like outside of K.

Proof: Note that M \ ˜︂M◦ is given by the positive part of the symplectization, i.e. [0,∞)× Σ. We
know that (kerλ,dλ

⃓⃓
kerλ

) defines a symplectic vector bundle and so we choose a compatible almost

complex structure J̃ on it. Since for the tangent space of the symplectization

T(r,x)([0,∞)× Σ) = R× TxΣ

holds, we can extend the Reeb vector field to all of [0,∞) × Σ by setting R(r, x) = (r,R(x)). The
symplectic form on [0,∞)× Σ is given by d(rλ), so we get a symplectic splitting of the form:

T(r,x)([0,∞)× Σ) = ⟨∂r⟩ ⊕ ⟨R⟩ ⊕ kerλ

Now we extend J̃ to the whole tangent space of the symplectization by defining this new J as:

JR := ∂r , J ∂r := −R and J
⃓⃓
kerλ

:= J̃

This definition now also extends to the negative part of the symplectization and is still an almost
complex structure on there. To finally get a compatible almost complex structure on all of M , we
first choose a compatible almost complex structure J0 on ˜︂M . From [MS17, Chapter 4] we know
that the set of compatible almost complex structures (w.r.t. a given symplectic structure) is path
connected, i.e. we can then find a homotopy Js from J to J0 on the symplectization. Then we define
on the symplectization the almost complex structure ˆ︁J , which is equal to J for r > 0, equal to J0 for
r < −1 and equal to J−r for r ∈ [−1, 0]. This ˆ︁J fulfils now all the requirements. □

With this notion of an SFT like J we have all the tools to discuss the L∞ bound of the chords. But
before we can prove the main theorem, we first need the following lemma.

Lemma 4.3.4 Let M be again the completion of a Liouville domain with the same assumptions as
above. If the almost complex structure J is SFT like outside of a compact set K, then the solutions
of the J-holomorphic curve equation

∂su+ J ∂tu = 0 (4.3.7)
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fulfil

∆(π ◦ u) ≥ 0 (4.3.8)

on M \K, where π is the projection on the R-component of the symplectization.

Proof: First note that

d ◦ (d(π ◦ u) ◦ i) = d(− ∂t(π ◦ u) ds+ ∂s(π ◦ u) dt) = ∆(π ◦ u) ds ∧ dt.

Next we consider

d(π ◦ u) ◦ i = −dπ(u) · ∂tuds+ dπ(u) · ∂sudt.

Since the symplectic form on the symplectization is given by ω = dr∧λ+ r dλ, the Reeb vector field
R on the boundary of our Liouville domain fulfils iRω = dr. Now note that the projection π on the
R component is the same map as the coordinate chart for the R component r. Hence we get

d(π ◦ u) ◦ i = −ω(R, ∂tu) ds+ ω(R, ∂su) dt

Then we use that u is a J-holomorphic curve and the ω-compatibility of J :

d(π ◦ u) ◦ i = ω(JR, ∂su) ds+ ω(JR, ∂tu) dt

Remember that per definition J maps the Reeb vector field onto the unit vector in R direction, i.e.
JR = ∂r. In combination with the special form of ω discussed above, this leads to

d(π ◦ u) ◦ i = λ(∂su)) ds+ λ(∂tu) dt = u∗λ.

This means now:

∆(π ◦ u) ds ∧ dt = du∗λ = u∗dλ = ω(∂su, ∂tu) = ω(∂su, J ∂su) ≥ 0

Here we again used the ω-compatibility together with the J-holomorphic curve equation. □

The first step is now to prove that there exists a bound for the chords u:

Theorem 4.3.5 So let (M,ω = dλ) be the completion of a Liouville domain with a Hamiltonian H

such that ∂˜︂M = H−1(0), the support of dH is inside of a compact set K and the Hamiltonian vector

field coincides with the Reeb vector field on ∂˜︂M . Let further be L an exact Lagrangian submanifold,
such that l with dl = λ has support in K and let there be an almost complex structure J , which is
ω-compatible and SFT like outside of K. Then every solution of the Floer equation

∂su+ J(u)(∂tu− τXH(u)) = 0 (4.3.9)

with u(s, · ) ∈ P (M,L) ∀s ∈ R and of finite energy can not leave the compact set K and therefore
these solutions are all uniformly bounded.

Proof: By contradiction assume that there exists such a solution u that takes values outside of K.
Per definition H is constant there and hence the Floer equation becomes the J-holomorphic curve
equation:

0 = ∂su+ J(u)(∂tu− τXH(u)) = ∂su+ J(u)(∂tu− 0)
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Since J was chosen to be SFT like outside of K, Lemma 4.3.4 tells us that

∆(π ◦ u) ≥ 0.

Now the usual approach in Floer homology is to use Hopf’s strong maximum principle from the
theory of elliptic partial differential equations (see [GT01] Theorem 3.5 for a modern reference) to
infer that π ◦ u is not allowed to reach its maximum outside of K, since the maximum principle says
that a function with ∆f ≥ 0 can only reach its maximum in the interior if it is constant. But because
u needs to return back to ∂˜︂M as s→∞, π ◦ u can not be constant and needs to reach its maximum.
In the case of loops this yields the desired contradiction, since R×S1 has no boundary. For the case
of chords with Lagrangian boundary this is not enough, because π ◦ u is defined on R× [0, 1], i.e. on
a set with boundary. The idea is now to extend π ◦ u from the strip to the cylinder by reflecting it
at the boundary. As cylinder we take R× [0, 2] where we identify 0 with 2 in the second component.
On the R× [0, 1] part of the cylinder the π ◦ u is defined as usual and on the R× [1, 2] part we set
(π ◦ u)(s, t) = (π ◦ u)(s, 2− t). To show that this extension is still C2, consider:

∂t(π ◦ u)
⃓⃓
t=0,1

= dπ(∂tu
⃓⃓
t=0,1

)

= −ω(R, ∂tu
⃓⃓
t=0,1

)

= −ω(R, J ∂su
⃓⃓
t=0,1

)

= ω(JR, ∂su
⃓⃓
t=0,1

)

= ω(∂r, ∂su
⃓⃓
t=0,1

)

= λ(∂su
⃓⃓
t=0,1

)

The arguments used in the above computation are the same as in Lemma 4.3.4 and note that for our
contradiction we only need to make this considerations outside of K. Per definition u

⃓⃓
t=0,1

is in L

and also per definition is λ = dl = 0 on L outside of K. Hence ∂t(π ◦ u)
⃓⃓
t=0,1

= 0 outside of K and

the extension is C2. Note that for extension by reflection the second derivative is always well-defined
if the original function already was C2, since

∂2t
⃓⃓
t=2

f(2− t) = (−1)2f ′′
(2− t)

⃓⃓
t=2

= f
′′
(t)
⃓⃓
t=0

.

Obviously we have ∆(π ◦ u) ≥ 0 for the extension and since it is now defined on a set without
boundary we finally arrive at our contradiction. □

After having established the bound for the chords u proving the boundedness of the Lagrange
multiplier is not much different then in the case of loops, so we will just refer to the original work on
RFH [CF09, Chapter 3.1] for the proof.

The final step is to show the boundedness of the derivatives of the chords u. The idea is the
same as in the ordinary Floer homology: We show that exploding derivatives of the solution to the
Floer equation give rise to holomorphic bubbles, which can not exist due to our assumptions. The
difference when one studies chords with boundary conditions instead of loops is that in addition to
bubbles we also have to discuss the bubbling of holomorphic disks. Since the case of holomorphic
bubbles is already well known, we will only focus on the holomorphic disks.

The first step is always the rescaling with the help of the following lemma by Helmut Hofer:

Lemma 4.3.6 Assume (X, d) is a complete metric space, f : X → R≥0 is continuous. Then for
every x ∈ X and δ > 0, there exists an z ∈ X and 0 < ϵ ≤ δ s.t.

d(x, z) < 2δ, sup
y∈Bϵ(z)

f(y) ≤ 2f(z), and ϵf(z) ≥ δf(x). (4.3.10)

Note that here Bϵ(z) denotes the closed ball.
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For the proof we refer to [HV92, Lemma 3.3]. The idea is now to assume that there is a sequence
(sk, tk) ∈ C and a sequence of solutions to the Floer equation uk such that lim

k→∞
| ∂suk(sk, tk)| → ∞.

Then we use the above lemma to set up the right rescaling in the following known way:

Lemma 4.3.7 There exists a sequence (Rk) in (0,+∞) with Rk → +∞, a sequence (Jk) of ω-
compatible almost complex structures on (M,ω), a sequence z′k = (s′k, t

′
k) ∈ R× [0, 1] and a sequence

vk ∈ C∞(BRk
(0),M) such that

lim
k→∞

|| ∂σvk + Jk ∂τvk||∞ = 0 and 1 ≤ || ∂σvk||∞ ≤ 2. (4.3.11)

Note that here BRk
(0) ⊆ R× | ∂suk(z′k)| · [−t′k, 1− t′k], so BRk

(0) might only be a part of a circle, cut
of by the boundary.

Proof: Since R× [0, 1] is still a complete metric space, the argument is almost the same as in the
Floer homology case: Set zk = (sk, tk) ∈ R× [0, 1]. Now apply Hofer’s lemma from above with

x = zk, δk :=
1
√
mk

and f := | ∂suk|.

Hence, there exists z′k = (s′k, t
′
k) ∈ [0, 1]×R and 0 < ϵk ≤ δk such that

sup
z∈Bϵk

(z′k)
| ∂suk(z)| ≤ 2| ∂suk(z′k)|,

where Bϵk(z
′
k) ⊆ R× [0, 1] and

ϵk| ∂suk(z′k)| ≥ δk| ∂suk(zk)| =
√
mk.

Rescale m′
k := | ∂suk(z′k)|, set Rk := ϵkm

′
k and

vk(σ, τ) := uk

(︃
σ

m′
k

+ s′k,
τ

m′
k

+ t′k

)︃
,

for all (σ, τ) ∈ BRk
(0) ⊆ R×m′

k[−t′k, 1− t′k]. Since uk is a solution to the Floer equation, vk satisfies
the equation

∂σvk(σ, τ) + J ∂τvk(σ, τ) =
1

m′
k

JτXH(vk(σ, τ)).

As m′
k ≥ mk ∀k and as dH has by assumption compact support, it follows that

|| ∂σvk||∞ = sup
z∈BRk

(0)
| ∂σvk(z)|

=
1

m′
k

sup
z∈Bϵk

(z′k)
| ∂suk(z)|

≤ 2

m′
k

| ∂suk(z′k)|

= 2,

and

m′
k ∂σvk(0, 0) = ∂σuk(z

′
k).

This concludes the proof. □
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The next proposition will give a good candidate for the holomorphic plane we need to construct the
bubble.

Proposition 4.3.8 Let (vk) be the sequence constructed in Lemma 4.3.7. Then there exists v∞ ∈
C∞(Ω,M) such that

vk
C0

loc−→ v∞ (4.3.12)

up to a subsequence, where Ω depends on the asymptotic behaviour of the sequence (m′
k · t′k) from the

above lemma and we define t∞ := lim
k→∞

t′k.

i) If t∞ is not at the boundary, i.e. t∞ /∈ {0, 1}, then we have Ω = C.

ii) If t∞ lies at the boundary and lim
k→∞

m′
k · t′k =∞, then we also have Ω = C.

iii) If t∞ lies at the boundary and lim
k→∞

m′
k · t′k = c0 ∈ R+

0 , then we get Ω = H := {z ∈ C | Im(z) ≥
0}.

Here we assumed for simplicity that if t∞ lies in the boundary then t∞ = 0. For t∞ = 1 consider
instead lim

k→∞
m′

k · (1− t′k).

Proof: In the first case where t∞ /∈ {0, 1}, we can always find a subsequence of (vk) such that the
corresponding BRk

(0)’s never touch the boundary. This is because t∞ lies in the interior and we can
always find an open neighbourhood around it, hence as t′k → t∞ and 0 < ϵk ≤ 1√

mk
→ 0 we can get

this subsequence by starting at a later index (see Lemma 4.3.7). The rest of the proposition is in
this case then exactly the same as in the usual Floer homology approach. But instead of using that
M is compact, one has to use the fact that all uk’s (and therefore all vk’s) have to stay inside of the
compact set K (see Theorem 4.3.5).

In the second case t∞ is a boundary point. The problem with t∞ lying at the boundary is that
the BRk

(0)’s constructed in the previous lemma are disks that have been cute off by the boundary
some where between τ = −1 and τ = 0. Since the point of the cut off depends for every vk on m′

k

and t′k, it is in general not clear if BRk
(0) ⊆ BRk+1

(0). For the case of lim
k→∞

m′
k · t′k =∞ we do know

that BRk
(0) ⊆ BRk+1

(0) after potentially switching to a subsequence, since the cut off for t∞ = 0
happens at −m′

k · t′k. From there on the proof work exactly the same as in the first case, but now
the exhausting sequence for C is given by disks with a cut off.

BRk

BRk+1

BRk+2

In the third case t∞ is also a boundary point, but with lim
k→∞

m′
k · t′k = c0 ∈ R+

0 . This means that the

disks BRk
(0) with a cut off are not an exhausting sequence for C any more, remember that the cut
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off for vk happens at the point τ = m′
k · t′k. Now we want to make another variable transformation,

such that the domains of the transformed vk’s form an exhausting sequence for H. Hence, define:

v̂k(σ, τ) := vk(σ, τ −m′
k · t′k)

Then the cut off for all v̂k’s happens at τ = 0, i.e. the domains are now of the type

{z ∈ (BRk
(0)−m′

k · t′k) ⊂ C | Im(z) ≥ 0}

and since lim
k→∞

Rk =∞ we can find a subsequence of v̂k, such that the domains all lie inside of each

other with respect to the increasing index.

BRk
BRk+1

BRk+2

Therefore we found an exhausting sequence for H and the argument from case one now also holds in

this case, but with H instead of C. So we get the existence of a v̂∞ ∈ C0(H,M) with v̂k
C0

loc−→ v̂∞.□

The next step on our way to prove the uniformly boundedness of the derivatives for the solutions
to the Floer equation is to show that v∞ (with Ω = C) is in fact a non constant holomorphic sphere
and v̂∞ (with Ω = H) is in fact a non constant holomorphic disk:

Proposition 4.3.9 Let v∞ and v̂∞ be the maps constructed in the previous proposition. Then they
are both not just continuous but smooth and their sequences converge also in C∞

loc. They are further
non constant and fulfil the J holomorphic curve equation

∂σw + J ∂τw = 0, (4.3.13)

with either w = v∞ or w = v̂∞.

Proof: For v∞ the argument is the same as in usual Floer homology. For v̂∞ we will need to use
the regularity result from [MS12, Propostion B.4.9] instead of the Calderon-Zygmund inequality. As
before fix sequences (zj) ⊆ H and rj ⊆ (0,+∞) such that v̂∞

⃓⃓
B2rj

(zj)
is contained in a chart Uj of

M and
⋃︁
j∈N

Brj (zj) = H. Note that here Br(z) denotes a ball in H, which doesn’t need to be a ball

in C. Since we already know that v̂k converges to the continuous v̂∞ for every j ∈ N we find a Kj

such that v̂k
⃓⃓
Brj (zj)

⊆ Uj for all k ≥ Kj . Then we consider the restrictions

v̂k
⃓⃓
Brj (zj)

∈W 1,p(Brj (zj),R
2n),

but to keep the formulas readable we will identify the restriction with v̂k in this proof. The fact
that the image of v̄k is for now completely contained in a chart allows us to see it as an element
in C∞

c (H,R2n) instead of in C∞
c (H,M). Now we use [MS12, Propostion B.4.9] with Brj (zj) ⊂
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B2rj (zj) ⊂ H being the open sets and every v̂k is W 1,p(B2rj (zj)). Note that J and XH are smooth
and therefore J(v̂k) and XH(v̂k) are W

1,p(B2rj (zj)). Then the proposition tells us that

||v̂k|W 2(Brj (zj)
≤ c
(︂
|| ∂σv̂k + J ∂τ v̂k||W 1(B2rj

(zj)) + ||v̂k||W 1(B2rj
(zj))

)︂
. (⋆)

Since the vk’s are solutions to the Floer equation we have

|| ∂σv̂k + J ∂τ v̂k||W 1(B2rj
(zj)) = ||

1

m′
k

JτXH(v̂k)||W 1(B2rj
(zj)).

Further, every v̂k can take only values in the compact set K ⊂ M by step one at the beginning of
this chapter and hence the first part of the right hand side of the equation (⋆) only depends on J , τ
and XH , note that we already know that τ is uniformly bounded. The second part is also uniformly
bounded, because we already established a uniform bound on the vk’s and Lemma 4.3.7 gives us
a uniform bound on the derivatives. So we can finally conclude that ||v̂k||W 2(Brj (zj)

is uniformly

bounded and therefore in particular || ∂σv̂k||W 1(Brj (zj)
and || ∂σv̂k||W 1(Brj (zj)

. As usually we use now

Morrey’s inequality to argue that on Brj (zj) ∂σv̂k and ∂τ v̂k belong to the Hölder class C0,α for
all 0 < α < 1. Thus by Arzelá-Ascoli ∂σv̂k and ∂τ v̂k admit subsequences which converge and so
v̂∞ ∈ C1(Brj (zj),R) for all j ∈ N, i.e. v̂∞ ∈ C1(H,M). Now repeat the argument for higher
derivatives and then by induction one gets that v̂∞ ∈ C∞(H,M) and

v̂k
C∞

loc−→ v̂∞

modulo subsequence. With this we can also conclude that

∂σv̂∞ + J ∂τ v̂∞ = 0

and v̂∞ is nonconstant, because

|| ∂σv̂∞||∞ = lim
k→∞

|| ∂σvk||∞ ≥ 1

by Lemma 4.3.7. □

In the case that we now have a J-holomorphic plane the remaining steps are the same as in standard
Floer homology. Remember that even for a non compact manifold the solutions of our Floer equation
have to stay inside of a compact set. If we, however, get a J-holomorphic half plane, then we will
have to deal with some new difficulties.

In the following we want to discuss the removal of singularities in the case where we turn a J-
holomorphic half plane into a J-holomorphic disk: The first step is to remove the origin from H and
map the remaining part conformally to a strip with boundary, i.e. consider

φ : H \ {0} → R× [0, π], φ(z) := log(z) = log
(︂
reiθ

)︂
= log(r) + iθ, (4.3.14)

where we name s = log(r), t = θ and identify s+ it with (s, t). With this map we define then

w : R× [0, π]→M, w := v̂∞ ◦ φ−1. (4.3.15)

The important question is now of course: Does w still satisfy the J holomorphic curve equation?

∂sw(s, t) + J ∂tw = ∂σv∞(es cos(t), es sin(t)) · es cos(t) + J ∂τv∞(es cos(t), es sin(t)) · es cos(t)
+ ∂τv∞(es cos(t), es sin(t)) · es sin(t)− J ∂σv∞(es cos(t), es sin(t)) · es sin(t)

= 0
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Removal of singularities means now to compactify the image of w by adding a constant asymptotic
for s → +∞ and s → −∞. The definition of w was already engineered so that we have a constant
negative asymptotic

lim
s→−∞

w(s, · ) = v∞(0, 0), (4.3.16)

since lim
s→−∞

eseit = 0 ∈ C for (s, t) ∈ R × [0, π]. To prove the existence of the constant positive

asymptotic, first define an energy density

e(s, t) := || ∂sw(s, t)||2. (4.3.17)

Usually the norm is just taken with respect to the metric ω( · , J · ), but in our case we will need to
take a different metric to account for our boundary conditions. The problem with having a boundary
is that the subharmonic type inequalities we want to use later on, are only valid in the interior,
which is the same problem we already had in step one. The solution to this is now again to reflect
the function e(s, t) at the boundary, but of course we need this extension to still be at least C2, i.e.
we need ∂te(s, t) to be zero for t ∈ {0, 1}. Unfortunately there is no reason for e(s, t) to fulfil this
requirement in general, if we use the metric ω( · , J · ). The good news is though that we can always
find an equivalent metric such that e(s, t) does fulfil this condition:

Lemma 4.3.10 (c.f. [Fra00]) Let (M,J) be an almost complex manifold and L ⊂ M be a totally
real submanifold with 2 dimL = dimM . Then there exists a Riemannian metric g on M such that

i) g(J(p)v, J(p)w) = g(v, w) for p ∈M and v, w ∈ TpM ,

ii) J(p)TpL is the orthogonal complement of TpL for every p ∈ L,

iii) L is totally geodesic with respect to g.

If one is interested in the proof, we recommend looking at [RS01, Lemma D.1]. With this new metric
we define now

e(s, t) := g(∂sw(s, t), ∂sw(s, t)). (4.3.18)

Then consider the following computations for t ∈ {0, 1} from [RS01, Proof of Lemma B.1]:

∂te(s, t) = ∂tg(∂sw(s, t), ∂sw(s, t))

= g(∇t ∂sw(s, t), ∂sw(s, t)) + g(∂sw(s, t),∇t ∂sw(s, t))

= 2 · g(∂sw(s, t),∇t ∂sw(s, t)),

where ∇ is the Levi-Civita connection. Define ξ := ∂sw and η := ∂tu and note that we can view
them either as vector field along the path us(t) depending on a parameter s or vice versa, so if we
write ∇tη we differentiate the s-dependent vector field η along the path ws(t) and the analogue for
∇s and the path wt(s). With this it is now easy to see that

∇tξ =
(︂
∂t ∂su(s, t) + ∂tu(s, t) ∂su(s, t)Γ

k
ij

)︂⃓⃓
u(s,t)

= ∇sη, (4.3.19)

since we have a Levi-Civita connection. So we can calculate further

2 · g(∂sw(s, t),∇t ∂sw(s, t)) = 2 · g(∂sw(s, t),∇s ∂tw(s, t))

= 2 · g(∂sw(s, t),∇s(J(w) ∂sw(s, t)))

= 2 · g(∂sw(s, t), (∇ξJ)(w) ∂sw(s, t)) + 2 · g(∂sw(s, t), J(w)∇s ∂sw(s, t)),
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where we used that w satisfies the J-holomorphic curve equation. Remember that for t ∈ 0, 1 we are
in a Lagrangian submanifold, which is always totally real and hence we can apply the above lemma.
The first term is zero because ∇ξJ is skew symmetric with respect to g:

Let x ∈ X(M) be given, since J is bijective we can find a y such that Jy = x. Then we have on
one hand

∇ξg(Jx, Jy) = g(∇ξ(Jx), Jy) + g(Jx,∇ξ(Jy))

= g((∇ξJ)x, Jy) + g(J∇ξx, Jy) + g(Jx, (∇ξJ)y) + g(Jx, J∇ξy)

and on the other hand

∇ξg(Jx, Jy) = ∇ξg(x, y)

= g(∇ξx, y) + g(x,∇ξy),

remember that by Lemma 4.3.10 the metric g was chosen such that g(J(p)v, J(p)w) = g(v, w). From
the above two equations follows

g((∇ξJ)x, Jy) + g(Jx, (∇ξJ)y) = 0.

Then we use Jy = x and

0 = ∇ξ(−1) = ∇ξ(J · J) = (∇ξJ) · J + J∇ξJ

to get

0 = g((∇ξJ)x, Jy) + g(Jx, (∇ξJ)y)

= 2g((∇ξJ)x, x).

Since x was arbitrary, this proves that J is skew symmetric with respect to g. For the second
summand remember that we are in the situation t ∈ {0, 1} and that the Lagrangian submanifold L
is totally geodesic by Lemma 4.3.10. Restricted to L it is obvious that ∇s ∂su(s, t) ∈ Tu(s,t)L, but
since L is totally geodesic this stays true even when considered on M . By Lemma 4.3.10 J(p)TpL
is the orthogonal complement of TpL for every p ∈ L, so in particular is J∇s ∂su(s, t) orthogonal to
∇s ∂su(s, t). So we can finally conclude that

∂te(s, t) = 0 for t ∈ {0, 1}. (4.3.20)

Now one can proceed as usual to prove the necessary inequalities for the extended e and use them to
prove the existence of a constant positive asymptotic. In the proof of the last part one again needs to
use an bootstrapping argument, which works in our case exactly the same way as in Proposition 4.3.9.
To see that this positive asymptotic is unique we use the exponential decay property of the gradient
flow lines in the same way as in Floer homology. Note that the exponential decay is a general property
of the gradient flow lines of the action functional, which doesn’t depend on the specific chords we
restrict the functional to.

Finally, to get our desired contradiction we pull back w with the concatenation of the Cayley
transformation with the map φ−1. So w becomes a nonconstant J-holomorphic disk with boundary
and the boundary will be mapped to L. For the contradiction consider

0 <

∫︂
D

w∗ dλ =

∫︂
∂D

w∗λ =

∫︂
∂D

w∗(︁λ⃓⃓
L

)︁
=

∫︂
S1

w∗ dl =

∫︂
S1

d(w∗l) = 0
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Here we used that w is a J-holomorphic curve, so 0 <
∫︁
D

w∗ dλ, and the fact that λ has a primitive

when restricted to the Lagrangian submanifold. This contradiction tells us now that there needs to
be an L∞ bound on the derivatives ∂su and by the Floer equation also on the ∂tu.

With the L∞ bounds in place we can use Arzelà–Ascoli to prove compactness of ˜︁M(H,J)ba with
respect to C0

loc. To finally achieve compactness in C∞
loc one uses a bootstrapping argument similar

to Proposition 4.3.9. Note that C∞
loc-compactness is the best we can achieve for ˜︁M(H,J)ba and C∞-

compactness is in general simply not true.
In this section we so far only studied parametrized gradient flow lines, but usually if one is inter-

ested in defining a boundary operator via the count of gradient flow lines the unparametrized flow lines
for fixed asymptotics are of more importance. Let û be a parametrized gradient flow line with asymp-
totics γ+ and γ− that are isolated critical points of AH . Then we know that (T ∗û)(s, t) := û(s+T, t)
as a map in s and t is still a gradient flow line with the same asymptotics for all T ∈ R, i.e. we have
a well-defined action of the Lie group R on ˜︁M(H,J)ba(γ

−, γ+). The quotient ˜︁M(H,J)ba(γ
−, γ+)/R is

then the set of unparametrized gradient flow lines with negative asymptotic γ− and positive asymp-
totic γ+ and we denote it by M(H,J)ba(γ

−, γ+) or M(γ−, γ+)ba for short. Before we can talk about
the compactness of this set, we of course need to introduce a topology. We want to do this by stating
what being a convergent sequence means: Given a sequence ([ûn])n∈N in M(γ−, γ+)ba. We say it con-
verges to a [û∗] ∈M(γ−, γ+)ba if there is a sequence (rn)n∈N in R such that for given representatives
we have:

r∗nûn
C∞

loc−→ û∗

This is a well-defined notion since if we are given different representatives we just need to choose a
different sequence (rn)n∈N that compensates the different time shifts. The problem that arises for
these sets of gradient flow lines with fixed asymptotics is that they are not compact any more, since
the above definition of convergence allows the sequences of flow lines to change their asymptotics in
the limit. To compactify them again we need to introduce broken gradient flow lines.

Definition 4.3.11 A (m − 1)-fold broken gradient flow line in M(γ−, γ+)ba is a tuple (v1, . . . , vm)
such that vi ∈ M(γi−1, γi)ba for all i ∈ {1, . . . ,m} where γ0, . . . , γm are pairwise different critical
points with γ0 = γ− and γm = γ+.

M(γ−, γ+)ba denotes the set of gradient flow lines including the broken ones. To complete the defini-
tion of a topology on this set, we have to clarify what it means for a sequence of gradient flow lines
to converge to a broken gradient flow line:

Definition 4.3.12 (Floer-Gromov convergence) Given a sequence (wn)n∈N in M(γ−, γ+)ba. We
say it converges to a broken gradient flow line (v1, . . . , vm) if there are sequences

(︁
rin
)︁
n∈N such that

for all i ∈ {1, . . . ,m} (︁
rin
)︁∗
wn

C∞
loc−→ vi.

Proving that M(γ−, γ+)ba is compact with respect to this topology is now a standard procedure as
we already showed the C∞

loc compactness (c.f. [Sal90, Proof of Lemma 4.2]).

4.4 The Lagrangian Rabinowitz Floer Homology

The idea behind the Lagrangian Rabinowitz Floer complex (c.f. [Mer14]) is the same as for all other
Floer type homologies: One takes the critical points of the action functional AH as a formal basis of
a Z2vector space, that becomes together with the Maslov index a graded vector space. The boundary
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operator is again given by counting gradient flow lines between the critical points of index difference
one. To show that this approach will give us a well-defined complex is the main goal of this section.

Theorem 4.1.1 tells us that for a generic choice of Hamiltonian H the critical points of AH with
periods τ ∈ [a, b] are a finite collection of isolated points combined with H−1(0) ∩ L. Since we can
only use a isolated critical points in the definition of the Rabinowitz Floer complex, we first need to
choose a Morse function f on H−1(0) ∩ L. We then define CRF•(H,L, f)

a
b to be Z2 vector spaces

spanned by the isolated critical points of AH and the critical points of the Morse function f . The
grading of this vector space is given by a combination of the Maslov index with the Morse index:
Let x be a formal basis vector of CRF•(H,L, f)

a
b and since this means it represents a Hamiltonian

trajectory we can assign it a Maslov index according to Section 4.2. Further, x is either an isolated
critical point, then we set its Maslov index to be the grading, or a critical point of the chosen Morse
function f , then we set µ(x) = µMaslov(x)+µMorse(x) to be the grading. In the case when the action
functional is Morse one defines the boundary operator on this vector space simply by counting the
gradient flow lines between critical points. But since the Rabinowitz action functional is never Morse
we need to count gradient flow lines with cascades, c.f. [Fra04]:

Definition 4.4.1 Fix a k ∈ N. Let x+ and x− be critical points of AH and of the Morse function
f , if it lies in H−1(0) ∩ L. A gradient flow line with k cascades between x− and x+ is a tuple
(v1, . . . , vk, T1, . . . , Tk−1) of gradient flow lines vj ∈M(H,J)ba and real numbers Tj ≥ 0 such that

i) lim
s→−∞

v1(s) ∈ Cx− and lim
s→∞

vk(s) ∈ Cx+, where here Cx± is either H−1(0) ∩ L or {x±},

ii) lim
s→−∞

vj+1(s) = φTj

(︂
lim
s→∞

vj(s)
)︂
for j = 1, . . . , k − 1,

where φt is the negative gradient flow of f . Gradient flow lines with 0 cascades are defined to be
unparametrized flow lines of −∇f in which case both x+ and x− need to lie in H−1(0) ∩ L. We
denote by Mcas(x

−, x+)ba the set of cascades from x− to x+.

Note that the asymptotic endpoints of the cascades uniquely determine the flow line of −∇f between
these points and therefore one should think of them as being part of the cascade. In the case where
H−1(0) ∩ L is just the two sphere a cascade might look like:

•

•
x+

φ

• x−

H−1(0) ∩ L

v1

The boundary operator on CRF•(H,L, f)
a
b is now defined via

∂ : CRF•(H,L, f)
a
b → CRF•−1(H,L, f)

a
b , ∂x =

∑︂
y∈Crit(H,f)
µ(y)=µ(x)−1

#2Mcas(x, y) · y (4.4.1)
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So we sum over all formal basis vectors whose index is smaller by exactly one and multiply each
of them by the number of gradient flow lines with cascades modulo two. To prove that ∂ is a
well-defined boundary operator, we need the following theorem about the moduli spaces Mcas(x, y)
(c.f. [Mer14, Theorem 2.23]).

Theorem 4.4.2 For a generic choice of J and a generic Morse–Smale metric on H−1(0) ∩ L the
moduli spaces Mcas(x, y) are smooth manifolds of finite dimension with

dimMcas(x, y) = µ(x)− µ(y)− 1. (4.4.2)

Note that the topology of these moduli spaces is again given through defining what the convergent
sequences are. For gradient flow lines with cascades (v1, . . . , vk, T1, . . . , Tk−1) we define convergence
component wise, where the convergence of the vi is given via the Floer-Gromov convergence and the
convergence of the Ti is just the usual one in R. In the special case of a flow line with zero cascades
we use the notion of Floer-Gromov convergence form Morse homology. As for the gradient flow lines
without the notion of cascades the moduli spaces Mcas(x, y) need to be compactified by introducing
broken flow lines. The definition of broken gradient flow lines with cascades follows the same idea as
before, but now we need to consider tuples of tuples.

φ

• x3

x1
•

•

•
•
• •

x2

Gromov

convergence

• x3

x1
•

•

After this compactification we then see that Mcas(x, y) is a compact manifold with dimMcas(x, y) =
µ(x)−µ(y)−1. So in the case of index difference one the moduli space dimMcas(x, y) = µ(x)−µ(y)−1
is a zero dimensional compact manifold, i.e. a finite set, and since breaking can not occur in this
situation we have Mcas(x, y) = Mcas(x, y). This shows the well-definedness of the boundary operator
∂. The proof that ∂2 = 0 now follows the usual approach of showing that the formula of ∂2 is
equivalent to counting 1-fold broken gradient flow lines, i.e. elements in ∂Mcas(x, z) for µ(z) = µ(x)−2
(by some standard gluing argument). Since one dimensional compact manifolds are diffeomorphic to
lines and circles, the number of boundary points is always even and therefore ∂2 = 0.

Remark 4.4.3 Since for a generic choice of Hamiltonian the action functional AH is Morse except
for the constant trajectories, we considered the only critical manifold to be H−1(0)∩L. But the above
definitions and arguments work the same way if a functional also has different critical manifolds.

Definition 4.4.4 (Lagrangian Rabinowitz Floer homology) Let (M,ω = dλ) be the comple-

tion of a Liouville domain with a Hamiltonian H such that ∂˜︂M = H−1(0), the support of dH is

inside of a compact set K the Hamiltonian vector field coincides with the Reeb vector field on ∂˜︂M
and AH is Morse-Bott. Let further be L an exact Lagrangian submanifold, such that l with dl = λ
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has support in K and let there be an almost complex structure J , which is ω-compatible and SFT like
outside of K. Then define

RFHi(H,L)
a
b :=

ker(∂ : CRFi(H,L, f)
a
b → CRFi−1(H,L, f)

a
b )

im
(︁
∂ : CRFi+1(H,L, f)ab → CRFi(H,L, f)ab

)︁ (4.4.3)

and set

RFH•(H,L)
a
b =

∞⨁︂
i=−∞

RFHi(H,L)
a
b . (4.4.4)

The Lagrangian Rabinowitz Floer homology is then

RFH•(H,L) := lim−→
a→−∞

lim←−
b→∞

RFH•(H,L)
a
b . (4.4.5)

Note that the direct limit is taken with respect to the projection RFH•(H,L)
a
b → RFH•(H,L)

a′
b

with a < a′ and the inverse limit with respect to the inclusions RFH•(H,L)
a
b → RFH•(H,L)

a
b′ with

b > b′.

Remark 4.4.5 A standart argument in Floer theory shows that RFH•(H,L) as defined above is
up to a canonical isomorphism independent of the almost complex structure J , the Morse function
f and the Morse-Smale metric chosen on H−1(0) ∩ L. Therefore it is justified to not include this
information in our notation of the Lagrangian Rabinowitz Floer homology.

One of the key properties of the Lagrangian RFH is the far reaching invariance:

Theorem 4.4.6 (c.f. Theorem 1.1 in [CF09]) Given the setting needed for a well-defined La-
grangian Rabinowitz Floer homology. If there is a family Hs for 0 ≤ s ≤ 1 of smooth functions such
that H−1

s (0) can be interpreted as the boundary of a Liouville domain that completes to our given
manifold M for all s, then RFH•(H0, L) and RFH•(H1, L) are canonically isomorphic.

The proof of this theorem follows by the same arguments as in [CF09, Chapter 3.2.].

Remark 4.4.7 Given two Hamiltonians H0 and H1 homotopic in the way described above, then
their respective energy hypersurfaces Σ0 = H−1

0 (0) and Σ1 = H−1
1 (0) do not need to coincide and we

can not view Σ0, Σ1 as the boundary of the same Liouville domain. But for the above theorem we
assumed that the underlying manifold, i.e. the completion of the Liouville domain, does not change
and hence we want to give an idea why the completion of the Liouville domains corresponding to
Σ0 and Σ1 respectively do, in fact, coincide: Given the contact manifold (Σ0, α0) we define its
symplectization as (Σ0 × R, erα0) ⊂ M . Since Σ1 is by assumption still transverse to the same
Liouville vector field XL, there is a smooth function f : Σ0 → R such that Σ1 = Graph(f).

Σ0

Σ1

XL

R

f(x)
Σ0
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This implies that for all ξ = (f(x), vx) ∈ TΣ1 ⊂ R× TΣ0

α1(ξ) = λ
⃓⃓
Σ1
(ξ) = ef(x)α0(vx) (4.4.6)

If we now take the symplectization with respect to (Σ1, α1), the corresponding one form is er
′
α1 =

er
′+fα0. The function f was defined in such a way that

Σ1 ×R ∈ (p, r′) = (x, r′ − f(x)) = (x, r) ∋ Σ0 ×R, (4.4.7)

where we view Σ1 ×R,Σ0 ×R ⊂ M . Hence the one forms coincide and we can choose a Liouville
domain with boundary Σ1 that still completes to (M,λ).

After having established the basics of Lagrangian RFH let us now introduce a useful tool that
will allow us to further study this homology. The first part of this exposition follows [Ruc23].

Definition 4.4.8 (Leaf-wise Intersection Points) Given the above assumptions we call a point
p ∈ Σ a leaf-wise intersection point with respect to a compactly supported Hamiltonian diffeomorphism
φF (or a Hamiltonian F ) if there is a time τ such that ϕτR(p) lies inside of φ−1

F (L), where ϕtR is the
flow of the Reeb vector field.

Leaf-wise intersections were first considered by Moser in [Mos78] and can actually be defined in a more
general setting. We chose the above set up, because it allows us to interpret the leaf-wise intersection
points in terms of critical points of a perturbed Rabinowitz action functional, which was first done
in [AF10a]. One important difference between the considerations in those papers and the above
definition is that they were interested in intersections of Hamiltonian trajectories with the leaves of
the Reeb vector field in both the starting and end point. In our setting, however, we are interested
in Reeb chords starting in the Lagrangian manifold L and ending in another Lagrangian, which is
defined by displacing L with a Hamiltonian diffeomorphism. These kind of leaf-wise intersection
points were first considered by Will Merry in [Mer14]. There he also explained how to interpret them
in terms of perturbed Lagrangian Rabinowitz Floer homology: Further assume that β : [0, 1]→ R is
a smooth function with support in

(︁
0, 12
)︁
and

1∫︂
0

β(t) dt = 1, (4.4.8)

and let F be a smooth time dependent function such that F ( · , t) = 0 for all t ∈
[︁
0, 12
]︁
. Denote

by P (M,L) all the chords x : [0, 1] → M , which start and end in L. Then define the perturbed
Rabinowitz action functional

AH
F : P (M,L)×R→ R

as

AH
F (x, τ) :=

1∫︂
0

x∗λ+ l(x(0))− l(x(1))− τ
1∫︂

0

β(t)H(x(t)) dt−
1∫︂

0

F (x(t), t) dt. (4.4.9)

A critical point of this functional is now a pair (x, τ) with

∂tx(t) = τβ(t)XH(x(t)) +XF (x(t)),

1∫︂
0

β(t)H(x(t)) dt = 0.
(4.4.10)
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Since β(t)H and F have disjoint support the first in
(︁
0, 12
)︁
and the second in

(︁
1
2 , 1
)︁
, it is not difficult

to show that for every leaf-wise intersection point w.r.t. φF there is a corresponding critical point of
the above action functional (see [AF10a, Propostion 2.4] for an explicit calculation).

Theorem 4.4.9 (c.f. Theorem 2.9. [AF10a]) Let ûn = (un, τn) be a sequence of gradient flow
lines for which there exists a < b such that

a ≤ AH
F (û(s)) ≤ b ∀s ∈ R. (4.4.11)

Then for every reparametrisation sequence σn ∈ R the sequence ûn( · + σn) has a subsequence which
converges in C∞

loc.

The proof of this theorem follows the same procedure as our discussions in Chapter 4.3. This then
enables us to define a perturbed Lagrangian Rabinowitz Floer homology RFH•(H,L, F ) in the same
way as above. Note that we can again extend the definition to the Morse-Bott case if we use gradient
flow lines with cascades. If we choose a smooth homotopy Fs from F to 0, we can use the standard
arguments from Floer homology to show that

RFH•(H,L, F ) ∼= RFH•(H,L, 0) ∼= RFH•(H,L). (4.4.12)

For more details see [Mer12, Section 6]. By using this fact we can now prove the well known vanishing
property of RFH in the Lagrangian case:

Theorem 4.4.10 If there is a compactly supported Hamiltonian diffeomorphism φF such that H−1(0)∩
φF (L) = ∅, then

RFH•(H,L) = 0. (4.4.13)

On one hand this property can be a powerful tool to prove the existence of certain chords since if
the Lagrangian submanifold at question intersects the energy hypersurface, we always have non zero
contributions to the chain complex. If there are no further non constant contributions, then the
Lagrangian RFH is equal to the Morse homology of L ∩ H−1(0) which can not vanish completely.
This contradiction always guarantees the existence of a non constant chord. But on the other hand
this also limits the number of chords the Lagrangian RFH can detect in most of the applications. For
example all physical systems with a compact hypersurface in Rn and a Lagrangian subspace have
RFH•(H,L) = 0 because of this property. In order to overcome this limitation we will introduce the
equivariant Lagrangian Rabinowitz Floer homology in the next section.

4.5 Equivariant Lagrangian Rabinowitz Floer Homology

One of the key features of a homology is that it does not change under certain deformations of the
underlying mathematical structure. In our case this property allows us to compute the Rabinowitz
Floer homology for a complicated Hamiltonian function by finding a homotopic Hamiltonian for
which the calculations are much easier. A too far reaching invariance property on the other hand
can drastically reduce the information that the homology can tell us about a given system, as we
have seen at the end of the last section. So the idea is now to introduce a modified version of the
Lagrangian Rabinowitz Floer homology that takes the symmetry of a given Hamiltonian system into
account and by doing so restricts its invariance property to homotopies that respect this symmetry.
As we will see later on these additional constraints on the allowed homotopies remove the systems
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with zero chords from the homotopy class of physically relevant systems, which enables us to prove
much stronger existence results.

So first let us discuss how one can define the G-equivariant RFH for a general compact Lie group:
The underlying idea is based on [FS16]. Let (M,λ,H,L) fulfil all the necessary requirements for a
well-defined Lagrangian RFH (we allow AH to be Morse-Bott also on non constant chords) and let
G be a compact Lie group that is a symmetry of the Hamiltonian H and acts free on the solutions
of the Hamiltonian equation. Further assume that L is invariant under the action of G and we have
a compatible almost complex structure J that is equivariant w.r.t. G in the following sense:

dϕgJ(x) = J(g ▷ x) dϕg for all g ∈ G (4.5.1)

To construct the complex for the G-equivariant RFH, we first consider the critical manifolds cor-
responding to the Maslov index µ, we shall call them critµ. By assumption G acts free on these
manifolds and because G is also assumed to be compact, the action is even proper. Hence critµ/G
is again a well-defined manifold and we can choose a Morse function on it. To define the complex
CRFG

• (M,H,L, J)ab we take as formal basis the critical points of all the corresponding Morse func-
tions and the index is given by the Maslov index plus the Morse index. Note that since G is a
symmetry of our Hamiltonian, by Proposition 4.2.3 all the critical points of the Rabinowitz action
functional, which are identified by the group action, have the same Maslov index. As differential of
this complex we define:

∂[x] =
∑︂

index([y])=
index([x])−1

#2

{︂
u
⃓⃓
x

u−→ ỹ gradient flow, ỹ ∈ [y]
}︂
[y] (4.5.2)

Here [x] denotes the equivalence class of chords under the G action and because we are in the
Morse-Bott situation gradient flow lines implicitly means with cascades. Again the fact that G is
a symmetry of our Hamiltonian and J is G-equivariant allows us to take any representative of the
class [x] in the definition of the differential. If we take a different x̃ = g ▷ x, then g ▷ · is a bijection

between
{︂
u
⃓⃓
x

u−→ ỹ gradient flow, ỹ ∈ [y]
}︂

and
{︂
u
⃓⃓
x̃

u−→ ỹ gradient flow, ỹ ∈ [y]
}︂
. It is further

known that there are only finitely many gradient flow lines between a given critical point in critµ
and the G-orbit of a critical point with index difference one, as long as we choose a J that ensures
transversality. One can see this by viewing the Morse functions on the critµ/G’s as G-invariant
Morse-Bott functions on critµ. The G-equivariant Lagrangian RFH is then as always defined via

RFHG
i (H,L)ab :=

ker
(︁
∂ : CRFG

i (H,L, f)ab → CRFG
i−1(H,L, f)

a
b

)︁
im
(︁
∂ : CRFG

i+1(H,L, f)
a
b → CRFG

i (H,L, f)ab
)︁ . (4.5.3)

A very integral part of the well-definedness is the assumption that J is G-equivariant, but the
question is: Is it always possible to find such an almost complex structure that still guarantees the
transversality?

Theorem 4.5.1 For a generic G-equivariant J and a generic Morse–Smale metric on H−1(0) ∩ L
the moduli spaces Mcas(x, y) are smooth manifolds of finite dimension with

dimMcas(x, y) = µ(x)− µ(y)− 1. (4.5.4)

The overall strategy of the proof is still the same as in all Floer theories (cf. [FHS95]) with some small
adjustments at the right place. One technical but important definition is that of a regular point in
R2 for a solution u of the perturbed J-holomorphic curve equation. The fact that these points are
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dense allows us usually to construct the contradiction ”0 ̸= 0” in the proof of the transversality. But
in the case of G-equivariant Raboniwitz Floer homology we need to consider G-equivariant almost
complex structures and in order to show transversality with this extra condition one needs a notion
of regular point that also acknowledges the existence of our Lie group action.

Definition 4.5.2 Given the smooth action ϕ of the Lie group G as above and u a solution of the
perturbed J-holomorphic curve equation. A point (s, t) ∈ R2 is called G-regular w.r.t. u if

i) ∂su(s, t) ̸= 0

ii) u(s, t) ̸= ϕg(x
±(t))

iii) u(s, t) /∈ ϕg(u(R \ {s}, t))

for all g ∈ G. We call RG(u) the set of all the G-regular points of u.

For the next proposition we will need the following two lemmas:

Lemma 4.5.3 (cf. Lemma 4.1 in [FHS95]) Let u : Bϵ → Cn be a C l-solution of

∂su+ J(t, u)(∂tu−X(t, u)) = 0 (4.5.5)

and assume that ∂su ̸≡ 0. Then the set of points (s, t) ∈ Bϵ with ∂su(s, t) = 0 is discrete.

Lemma 4.5.4 (cf. Lemma 4.2 in [FHS95]) Let u, v : Bϵ → Cn be C l-solutions of (4.5.5) with
X = 0 such that

u(0) = v(0), du(0) ̸= 0, dv(0) ̸= 0.

Moreover, assume that there exists a constant 0 < δ < ϵ such that for every (s, t) ∈ Bδ there exists
an s′ ∈ R such that (s′, t) ∈ Bϵ and u(s, t) = v(s′, t). Then v(z) = u(z) for |z| < ϵ.

Proposition 4.5.5 (RG(u) is open and dense) Let u : R → M be a C l-solution of the Floer
equation that fulfils

i) lim
s→±∞

u(s, t) = x±(t)

ii) lim
s→±∞

∂su(s, t) = 0

such that ∂su ̸≡ 0. If further the Lie group acts free and is compact, then the set of G-regular points
of u is open and dense in R2.

Proof: 1 We first reduce the proposition to the case XHt = 0: Let ψt : M → M be the time
dependent flow generated by the vector field XHt . Since Ht is constant outside a compact set, ψt is
compactly supported for every t. It’s not hard to see that then v(s, t) := ψ−1

t (u(s, t)) satisfies

∂sv + ψ∗
t Jt(v) ∂tv = 0,

where ψ∗Jt is still G-equivariant since G is a symmetry of Ht. For the same reason we also have
RG(u) = RG(v).

Part one: RG(v) is open. Assume by contradiction that there exists a point (s, t) ∈ RG(v),
which can be approximated by a sequence (sν , tν) /∈ RG(v). Then ∂sv(sν , tν) ̸= 0 and v(sν , tν) ̸=
ϕg(x

±) ∀g ∈ G for ν large enough, since G is compact. Note that lim
s→±∞

= ψ−1
t (x±(t)) = x± is

1The proof is an adaptation of [FHS95, Theorem 4.3] and we follow the original proof very closely.
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constant. Since (sν , tν) /∈ RG(v) it follows that there exists a sequence (gν ∈ G)ν∈N and (s′ν)ν∈N ∈ R
with sν = s′ν such that

v(sν , tν) = ϕgν (v(s
′
ν , tν)).

If the sequence (sν)n∈N is unbounded, then up to passing to a subsequence we may assume that
s′ν → ±∞. Because G is compact we can get by again passing to a subsequence a convergent
subsequence (gν)ν∈N with limit g∗. So we get

ϕgν (v(s
′
ν , tν))→ ϕg∗(x

±),

which implies v(s, t) = ϕg∗(x
±) in contradiction to (s, t) ∈ RG(u). Note that this is true since

ϕ : G× im(v)→M

is uniformly continuous in G × im(v), because G and im(v) are compact. Hence the sequence s′ν is
bounded and we may assume without loss of generality that s′ν → s′ and gν → g∗. Then

u(s, t) = ϕg∗(v(s, t))

and since (s, t) ∈ RG(v) we must have s′ = s. Hence (s′ν)ν∈N and (sν)ν∈N both converge to s and
this contradicts the fact that ∂sv(s, t) ̸= 0, i.e. it follows that RG(v) is open.

Part two: RG(v) is dense. From Lemma 4.5.3 we know that the set C(v) of all points (s, t) ∈ R2

with ∂sv(s, t) = 0 is discrete. Therefore it suffices to prove that one can approximate every point in
R2 \ C(v) by a sequence in RG(v). A point (s, t) /∈ C(v) can now be approximated by a sequence
(sν , t) ∈ R2 \ C(v) with v(sν , t) ̸= ϕg(x

±(t)) for any g ∈ G. Otherwise

∂sv(s, t) = ∂sϕg(x
±(t)) = 0,

which is a contradiction. Hence we reduced the problem to points (s0, t0) ∈ R× [0, 1] with

∂sv(s0, t0) ̸= 0 and v(s0, t0) ̸= ϕg(x
±(t0)) ∀g ∈ G.

Now assume by contradiction that for such a point

Bϵ(s0, t0) ∩R(v) = ∅

for some ϵ > 0. Now take an ϵ so small and a T > 0 so large that the following holds:

i) v(s, t) /∈ ϕg(v(Bϵ(s0, t0)) for all g ∈ G, |s| > T and |t− t0| < ϵ.

ii) If |t− t0| ≤ ϵ the map

ϕ( · )(v( · , t0)) : Bϵ(e)× [s0 − ϵ, s0 + ϵ]→M, (g, s) ↦→ ϕg(v(s, t0))

is an immersion in Bϵ(e) for fixed s ∈ [s0 − ϵ, s0 + ϵ] and in [s0 − ϵ, s+ ϵ] for fixed g ∈ Bϵ(e).

Here Bϵ(e) stand for the preimage of an ϵ ball in Rn under a chart of G around the unit e. The first
part of the choice is possible since v(s0, t0) ̸= ϕg(x

±(t0)) ∀g ∈ G and G is compact. The second part
is possible, because ∂sv(s, t0) ̸= 0 in a neighbourhood around s0 and G acts freely on M . Now by
Lemma 4.5.3 the set C(v)∩ [−T, T ]× [0, 1] is finite. Varying the point (s0, t0) slightly we may assume
that v(s0, t0) ̸= v(s, t) whenever (s, t) ∈ C(v) ∩ [−T, T ]× [0, 1]. By shrinking ϵ > 0 we may obtain

iii) v(Bϵ(s0, t0)) ∩ v(C(v) ∩ [−T, T ]× [0, 1]) = ∅.



4.5. EQUIVARIANT LAGRANGIAN RABINOWITZ FLOER HOMOLOGY 49

Now from ii) it follows that ∂sv(s, t) ̸= 0 and from i) that v(s, t) ̸= ϕg(x
±(t)) for all g ∈ G and

all (s, t) ∈ Bϵ(s0, t0). Therefore the condition v(Bϵ(s0, t0)) ∩ RG(v) = ∅ implies that for all (s, t) ∈
Bϵ(s0, t0) there exists an s′ ∈ R and g ∈ G such that v(s′, t) = ϕg(v(s

′, t)) and s ̸= s′. In view of iii)
we get ∂sv(s

′, t)) ̸= 0 and therefore also

dϕg
(︁
∂sv(s

′, t)
)︁
= ϕg(v(s

′, t)) ̸= 0

for any such point s′ and all g ∈ G. In view of i) we have |s′| ≤ T . Hence there can only exist finitely
many of such points s′ for each pair (s, t), because otherwise we again could find a subsequence such
that both gν → g∗ and sν → s∗ with ∂sϕg∗(v(s∗, t)) = 0. Since dϕg is bijective at every point for all
g ∈ G this implies ∂sv(s∗, t) = 0, which is a contradiction. If there are g1, g2 ∈ G with

v(s, t) = ϕg1(v(s
′, t)) = ϕg2(v(s

′, t)),

then the freeness of the group action implies g1 = g2, i.e. for every (s, t) there is only a finite amount
of pairs (s′, g). Hence let (s1, g1), . . . , (sN , gN ) ∈ [−T, T ]×G be the point with

v(s0, t0) = ϕg1(v(s1, t0)) = . . . = ϕgN (v(sN , t0))

Claim: For every constant r > 0 there exists a δ > 0 s.t.

v(B2δ(s0, t0)) ⊆
N⋃︂
j=1

ϕgj (v(Br(sj , t0))).

Proof of Claim: Assume the contrary, then there exists a sequence (sν , tν)→ (s0, t0) such that

v(sν , tν) ̸∈ ϕgj (v(Br(sj , t0))) but v(sν , tν) ∈ v(B2δ(s0, t0))

for all ν ∈ N and every j ≥ 1. We can of course assume that 2δ < ϵ, i.e. there exists a sequence
(gν , s

′
ν) with s

′
ν ̸= sν such that

v(sν , tν) = ϕgν (v(s
′
ν , tν)).

By i) we know that |s′ν | < T and hence there is an accumulation point (g′, s′). ii) shows that either
|s′ν − sν | ≥ ϵ or gν ̸∈ Bϵ(e), i.e. s

′ ̸= s or g′ ̸= e and since

v(s′ν , tν) ̸∈ ϕgj (v(Br(sj , t0)))

for all j ≥ 1 it also does not coincide with any of the pairs (g1, s1) . . . (gN , sN ). So we found a new
pair (g′, s′) ̸= (e, s) with

v(s, t) = ϕg′(v(s
′, t)).

This contradiction proves our claim.
Now we define

Σj =
{︁
(s, t) ∈ cl(Bδ(s0, t0))

⃓⃓
v(s, t) ∈ cl

(︁
ϕgj (v(Br(sj , t0)))

)︁}︁
for j = 1, . . . , N . These sets are closed with

cl(Bδ(s0, t0)) = Σ1 ∪ . . . ∪ Σk,

hence at least one of the sets Σj has a nonempty interior. We assume without loss of generality that
int(Σ1) ̸= ∅. Now choose ρ > 0 so small that Bρ(s0, t0) ⊆ Σ1 ⊆ Bϵ(s0, t0) and note that

Bρ(s0, t0) ∩Br(s1, t0) = ∅
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if r > 0 was chosen sufficiently small. On the other hand we can deduce from the definition of Σ1

that for every (s, t) ∈ Bρ(s0, t0) there exists an s′ ∈ R such that (s′, t) ∈ Br(s1, t0) and v(s, t) =
ϕg1(v(s

′, t)). To be able to apply Lemma 4.5.4, we consider the equation

v(0 + s0, 0 + t0) = ϕg1(v(0 + s1, 0 + t0)).

Further choose ϵ = r and δ = ρ to fulfil all the conditions from Lemma 4.5.4, i.e. we can conclude
that

v(s+ s0, t+ t0) = ϕg1(v(s+ s1, t+ t0))

in a neighbourhood around zero. By the unique continuation property of J-holomorphic curves we
get that this equation holds on all of R2, which implies

v(s, t) = lim
k→±∞

ϕg1(v(s− k(s0 − s1), t)) = ϕg1(x
±)

for all s and t where for the formula we without loss of generality assumed s0 > s1. Hence, u is
constant, which contradicts our assumption that ∂su ̸≡ 0. □

With all that we discussed above it is now not difficult to see that the same results concerning
well-definedness and invariance under homotopy also hold for the equivariant version of Lagrangian
RFH, since the equivariant complex just arises via taking quotients with respect to a free and proper
Lie group action. We want to summarise this facts in the following theorem:

Theorem 4.5.6 Let (M,ω = dλ) be the completion of a Liouville domain with a Hamiltonian H

such that ∂˜︂M = H−1(0), the support of dH is inside of a compact set K the Hamiltonian vector

field coincides with the Reeb vector field on ∂˜︂M and AH is Morse-Bott. Let further be L an exact
Lagrangian submanifold, such that l with dl = λ

⃓⃓
L

has support in K and let there be an almost
complex structure J , which is ω-compatible and SFT like outside of K. In addition assume that we
have a compact Lie group G that is a symmetry of the Hamiltonian system, acts free on the solutions
of the Hamiltonian equation, leaves the Lagrangian L invariant and the J is G-equivariant. Then the
G-equivariant Lagrangian Rabinowitz Floer homology

RFHG
• (H,L) := lim−→

a→−∞
lim←−
b→∞

RFHG
• (H,L)ab (4.5.6)

is well-defined and if there is a family Hs for 0 ≤ s ≤ 1 of smooth G-invariant functions such that
H−1

s (0) can be interpreted as the boundary of a Liouville domain that completes to our given manifold
M for all s, then RFHG

• (H0, L) and RFH
G
• (H1, L) are canonically isomorphic.

The proof of this theorem just consists of the same proofs as discussed in the previous sections,
where we consider now equivalence classes of critical points with respect to G and count gradient
flow lines between those as described above. Note that in the same spirit we can also define the
perturbed G-equivariant Lagrangian Rabinowitz Floer homology by requiring the perturbation F to
be G-invariant.

4.6 Equivariant RFH and Tate homology

By introducing a variation of the Lagrangian Rabinowitz Floer homology in the previous section that
is more restrictive, when it comes to the homotopies that leave the homology invariant we hope to get
more information than via the usual approach. But this restriction of the available homotopies on
the other hand makes it harder to compute the homology itself. On one hand the vanishing theorem
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did limit the amount of information we can get from the homology, but on the other hand it also
made it very easy to compute it. In this section our goal is now to find a substitution for those tools,
which allowed us to easily compute the Lagrangian RFH with an abstract argument. The way we
want to achieve this is by relating the equivariant RFH to the Tate homology. This section is a more
detailed version of [Ruc23, Chapter 5].

First let us repeat some preliminary definitions:

Definition 4.6.1 Given a ring R and an R-module M , a resolution of M is an exact sequence of
R-modules

· · · −→ F2
∂2−→ F1

∂1−→ F0
ϵ−→M −→ 0. (4.6.1)

We call this a projective resolution if every Fi is a projective module.

Definition 4.6.2 2 A complete resolution (for a finite group G) is an acyclic complex F = (Fi)i∈Z
of projective Z2[G]-modules, together with a map ϵ : F0 → Z2 such that ϵ : F+ → Z2 is a resolution
in the usual sense, where F+ := (Fi)i≥0.

The following property of complete resolutions is crucial for the well-definedness of Tate homology:

Proposition 4.6.3 If ϵ : F → Z2. and ϵ′ : F ′ → Z2 are complete resolutions, then there exists a
unique homotopy class of augmentation-preserving maps from F to F ′. These maps are homotopy
equivalences.

See [Bro82][Proposition 3.3] for the proof.

Definition 4.6.4 3 Let F = (Fi)i∈Z be a complete resolution for the finite group G. The Tate
homology of G with coefficients in a G-module M is defined by

TH∗(G,M) := H∗(F ⊗G M). (4.6.2)

The way one can think of Tate homology is as an extension of the usual group homology to negative
gradings by attaching the group cohomology in a suitable way. From this view point it is clear that
we have to extend the usual projective resolution for the group homology

· · · −→ F2−→F1−→F0
ϵ−→M −→ 0. (4.6.3)

to a complete resolution:

· · · F2 F1 F0 F−1 F−2 · · ·

M

ϵ η (4.6.4)

Note that proposition 4.6.3 tells us that the Tate homology is unique up to isomorphism and therefore
well-defined. This also means that if we want to compute the Tate homology of a group G we can
choose any acyclic complex to do so, as long as the complex is a complete resolution. This fact is
the main idea behind the connection between G-equivariant RFH and Tate homology:

2See [Bro82][§VI.3], note that we use Z2 instead of Z.
3We took the definition from [Bro82][§VI.4], but it goes back to [Tat52].
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Theorem 4.6.5 Let G be a finite group and a symmetry of the Hamiltonian system (M,ω,H) with
Lagrangian L, such that the induced group action on the trajectories is free. Assume that L∩H−1(0)
is at least a one dimensional connected submanifold and that the system (M,ω,H,L) fulfils all the
requirements needed for equivariant Lagrangian Rabinowitz Floer homology. Further, let the system
be displaceable and the Maslov index µ for the non-constant chords of (M,ω,H) fulfil

|µ(x)| > dim
(︁
L ∩H−1(0)

)︁
. (4.6.5)

Then the G-equivariant Lagrangian RFH is equal to the Tate homology (with Z2 coefficients) of G,
i.e.

RFHG
∗ (M,H,L) = TH∗(G,Z2). (4.6.6)

Remark 4.6.6 The statement is also true for equivariant Rabinowitz Floer homology for loops
instead of chords between a Lagrangian, if one changes the condition (4.6.5) to |µ| > dimH−1(0).
The proof works exactly the same.

Proof (Proof of Theorem 4.6.5): The idea of this proof is to show that the Lagrangian Rabi-
nowitz Floer complex for displaceable systems is a complete resolution for G. The displaceability
guarantees that our Floer complex is acyclic and by definition consists of Z2 vector spaces. Since G
acts by assumption on the generators of the complex, we can view each space in the complex as free
Z2[G] module. We know that L ∩H−1(0) is at least one dimensional and by condition (4.6.5) this
means that

CRF1(M,H,L)
∂1−→ CRF0(M,H,L)

is equal to the corresponding part of the Morse complex

CM1(L ∩H−1(0), f)
∂1−→ CM0(L ∩H−1(0), f),

where f is a G-invariant Morse function on L∩H−1(0). Note that here we assume the grading to be
µ = µMaslov + µMorse. If one would like to use the signature index instead of the Morse index, one
would need to include an index shift in the statement of the theorem. Our goal is now to find an
augmentation ϵ : CRF0(M,H,L) = CM0(L∩H−1(0), f)→ Z2, such that ϵ : (CRFi(M,H,L))i≥0 →
Z2 is a resolution of Z2. It is well known that for every connected manifold the zeroth homology
is one dimensional as long as it is not empty. This means that the image of ∂1 is a codimension
one subspace inside CM0(L ∩H−1(0), f) and therefore we can define ϵ as the linear map that maps
all elements in the image of ∂1 to zero and the basis vector in the complement to one. With this
definition it is clear that im(∂1) = ker(ϵ) and that ϵ is surjective, i.e.

. . .
∂2−→ CRF1(M,H,L)

∂1−→ CRF0(M,H,L)
ϵ−→ Z2 −→ 0

is a resolution of Z2 and (CRFi(M,H,L))i∈Z is a complete resolution. The corresponding Tate
homology is then TH∗(G,Z2) := H∗(CRF∗(M,H,L) ⊗G Z2), where we consider Z2 as a trivial G-
module. Tensoring over G to the Z2[G] modules CRFi(M,H,L) the trivial G-module Z2 corresponds
to taking the quotient of the CRFi(M,H,L)’s with respect to the G action. The new boundary
operators between the modules CRFi(M,H,L) ⊗G Z2 are just the old boundary operators applied
to the first part of the tensor product, i.e. ˜︁∂(x⊗G 1) := (∂x)⊗G 1. A quick calculation shows that
these new boundary operators are exactly the same as the ones we defined for the G-equivariant
RF-homology. Hence the two complexes (CRF∗(M,H,L) ⊗G Z2, ˜︁∂) and (CRFG

∗ (M,H,L), ∂G) are
the same and therefore also their respective homologies. This concludes the proof of the theorem.□
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The Tate homology is only really defined for finite groups, so a generalization to general compact
Lie groups does not necessarily make sense. But we can at least always define the group homology
and generalize the theorem for the positive degrees of the Rabinowitz Floer homology. To emphasise
that this phenomenon is a property of the general RFH not just of the Lagrangian one, we phrase
the theorem in the following way:

Theorem 4.6.7 Let (M,ω,H) be a Hamiltonian system with connected energy hypersurface H−1(0)
and G a compact Lie group that is a symmetry of this Hamiltonian system. Assume that this set-up
fulfils all the requirements for a well-defined G-equivariant RFH and that the system is dynamically
convex. If we can displace the energy hypersurface away from itself with a compactly supported
Hamiltonian diffeomorphism, than

RFHG
∗≥0(M,H) = H∗(G,Z2). (4.6.7)

Proof: The proof just consists of repeating the arguments as for Theorem 4.6.5. Note that the
projective resolution we constructed in the proof of Theorem 4.6.5 is now used to define the group
homology. □





Chapter 5

About the Existence of Symmetric
Consecutive Collision Orbits

In this chapter we now take on the main goal of this thesis, proving the existence of infinitely many
symmetric consecutive collision orbits in the setting of the circular restricted three body problem.
A consecutive collision orbit (c.c. orbit) is a Hamiltonian trajectory that starts with a collision and
after some time comes back to a collision. We specifically want to study these orbits in the circular
restricted three body problem for energies below the first critical energy value, i.e. the trajectories
of this system are bound to one of the masses. One usually chooses the coordinates in such a way
that this mass is fixed at the origin. The collision points are then those points in the phase space
R2n with position coordinate equal to zero and arbitrary momentum, i.e. {0} ×Rn is the set of all
collisions. Note that we can only consider these points as part of the phase space after applying one
of the regularization procedures discussed in Chapter 3. As symplectic structure on R2n we take the
one induced by the canonical one form on T ∗R, hence we can view consecutive collision orbits as
chords starting and ending in the Lagrangian subspace {0} × Rn. In [FZ19] the authors then use
Lagrangian Rabinowitz Floer homology in the setting of Moser regularization to prove that there is
either one periodic c.c. orbit or infinitely many. We now want to take it a step further and prove
this result with the additional condition that the c.c. orbits fulfil a certain symmetry condition and
as we will see later it is beneficial to do this in the setting of Levi-Civita or Kustaanheimo-Stiefel
regularization.

5.1 The Planar Case

For the planar restricted three body problem the phase space is R4 which we can identify with C2.
The symmetry we want to consider is given by the anti-symplectic involution

R : T ∗
C→ T ∗

C ; q ↦→ q , p ↦→ −p, (5.1.1)

which leaves the Hamiltonian invariant. When we apply the Levi-Civita regularization this anti-
symplectic involution corresponds then to two involutions

ˆ︁R1 : z ↦→ −z ; w ↦→ w (5.1.2)ˆ︁R2 : z ↦→ z ; w ↦→ −w. (5.1.3)

To see this remember that the Levi-Civita map is given by

(z, w) ↦→
(︃
z2,

wz

2|z|2

)︃
. (5.1.4)

55
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Their corresponding fix point sets are

LS := Fix( ˆ︁R1) = iR×R and LM := Fix( ˆ︁R2) = R× iR. (5.1.5)

A symmetric c.c. orbit is now a chord from the collision Lagrangian Lcol = {0} ×R2 to one of the
above fix point sets. The interpretation of these fix point Lagrangians is the following: The position
coordinates of points in LS lie in iR and to get from the regularized setting to the real physical
system we need to square the position variables. This implies that points in LS represent phase
space points in the physical system with position coordinates lying in the left hand side of the x-axis.
Note that in Chapter 3 we chose the coordinates such that the two masses lie on the x-axis as well,
i.e. points in LS represent the positions that are on the direct line between the two masses. A sketch
of the position space would look like the following picture:

• •

∼= LM
∼= LS

‘Sun’ ‘Earth’

The constraint to lie between the two masses and not further away comes from the fact that we only
consider energies below the first critical energy value. If we would view the mass at the centre as the
earth, the other mass as the sun and the third body as the moon, LS would correspond to points
of a solar eclipse. Following the same line of reasoning LM corresponds to points of a lunar eclipse.
To understand why trajectories starting in Lcol and ending in LS or LM are symmetric consecutive
collision orbits consider the following computation: Let x(t) be a trajectory of the Hamiltonian K
with x(0) ∈ Lcol and x(1) ∈ LS (or equivalently x(1) ∈ LM ). Then ˆ︁R1(x(1− t)) is also a trajectory
of K since

d

dt

⃓⃓⃓⃓
t0

ˆ︁R1(x(1− t)) = d ˆ︁R1
d

dt

⃓⃓⃓⃓
t0

x(1− t)

= −d ˆ︁R1
d

dt

⃓⃓⃓⃓
1−t0

x(t)

= −d ˆ︁R1XK(x(t))
⃓⃓
1−t0

= XK

(︂ ˆ︁R1(x(t))
)︂⃓⃓

1−t0

= XK

(︂ ˆ︁R1(x(1− t))
)︂⃓⃓

t0
.

(5.1.6)

Further, the requirement x(1) ∈ LS guarantees that the concatenation x ◦ ˆ︁R1(x(1 − · )) is still a
smooth solution of K. This means, if we find a chord from Lcol to LS , we also automatically find a
symmetric consecutive collision orbit.

The way we want to prove the existence of these curves is by interpreting them as leaf-wise
intersection points (see Definition 4.4.8). The next part is based on the same considerations made
in [Ruc23]. To do this identification we need Hamiltonians FS or FM such that

φFS
(LS) = Lcol and φFM

(LM ) = Lcol, (5.1.7)

where φFS
or φFM

is the Hamiltonian flow. So define

FS(z, w) = π(z22 + w2
2) and FM (z, w) = π(z21 + w2

1), (5.1.8)
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where (z1, z2) are the space coordinates and (w1, w2) are the momentum coordinates. The Hamilto-
nian vector field of FS is then

XFS
=
π

2
· w2

∂

∂z2
− π

2
· z2

∂

∂w2
(5.1.9)

and the corresponding flow is given by

φFS
(z, w, t) =

⎛⎜⎜⎜⎜⎝
z1

cos
(︁
π
2 t
)︁
z2 + sin

(︁
π
2 t
)︁
w2

w1

cos
(︁
π
2 t
)︁
w2 − sin

(︁
π
2 t
)︁
z2

⎞⎟⎟⎟⎟⎠. (5.1.10)

With this it is not hard to see that φFS
(LS , t = 1) = Lcol, for LM the calculations are almost the

same. Note that both FS and FM are invariant under the Z2 action z ↦→ −z and w ↦→ −w. To be able
to interpret our chords as leaf-wise intersection points, we will have to turn FS or FM respectively
into a compactly supported function. For this choose a compact set ˜︁K such that Σ ⊆ ˜︁K and a
corresponding bump function χ ˜︁K , which is 1 on ˜︁K and compactly supported. Define

ˆ︁FS(z, w) = χ ˜︁K(z2, w2) · FS(z, w) and ˆ︁FM (z, w) = χ ˜︁K(z2, w2) · FM (z, w),

so that we don’t loose the invariance with respect to the Z2 action of our Hamiltonian functions.
By again choosing a suitable bump function ζ : [0, 1] → R we finally get the desired form of the
Hamiltonian functions, i.e.

ˆ︁F t
S(z, w) := ζ(t) ˆ︁FS(z, w) and ˆ︁F t

M (z, w) := ζ(t) ˆ︁FM (z, w)

with ˆ︁F t
S(z, w) = 0 = ˆ︁F t

M (z, w) for all t ∈
[︁
0, 12
]︁
and ζ(t) = 1 in a neighbourhood around 1. As a next

step we want to show via some standard computations that the critical points of A
ˆ︁F t
S

K that start and
end in Lcol are in one to one correspondence with the critical points of AK that start in Lcol and end

in φ−1ˆ︁F t
S

(Lcol). So first let (y, η) be a critical point of A
ˆ︁F t
S

K with y(0), y(1) ∈ Lcol. Then as discussed in

Section 4.4 in
[︁
0, 12
]︁
we have

∂ty = ηβ(t)XK(y(t)). (5.1.11)

By Picard-Lindelöf there is also a unique solution of{︄
∂tx = ηXK(x(t))

x(0) = y(0)
(5.1.12)

in [0, 1]. Then consider ˜︁x(t) := x

(︃
t∫︁
0

β(T ) dT

)︃
and see that

∂t˜︁x = ηβ(t)XK(˜︁x) (5.1.13)

in
[︁
0, 12
]︁
. By uniqueness this means that y(t) = ˜︁x(t) and therefore

x(1) = x

⎛⎜⎝
1
2∫︂

0

β(T ) dT

⎞⎟⎠ = y

(︃
1

2

)︃
∈ φ−1ˆ︁F t

S

(Lcol) (5.1.14)
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On the other hand let (x, τ) be a critical point of AK with x(0) ∈ Lcol, x(1) ∈ φ−1ˆ︁F t
S

(Lcol). Then take

the usual cut off function β(t) and define

y(t) :=

⎧⎪⎨⎪⎩x
(︃

t∫︁
0

β(T ) dT

)︃
t ∈

[︁
0, 12
]︁

φtˆ︁F t
S

(x(1)) t ∈
[︁
1
2 , 1
]︁ , (5.1.15)

which is clearly a critical point of A
ˆ︁F t
S

K . This means for every leaf-wise intersection point there exists
a corresponding symmetric c.c. orbit.

The logical next step is now to calculate the homology RFH(M,Lcol,K, ˆ︁F t
S) via

RFH(M,Lcol,K, ˆ︁F t
S)
∼= RFH(M,Lcol,K) (5.1.16)

(see Equation 4.4.12). But since our underlying manifold is C2 and our energy hypersurface is
compact, we can use Theorem 4.4.10 to see that the resulting homology is zero given the fact that
we can define the Lagrangian RFH in this setting. RFH(M,Lcol,K) = 0 does of course not give us
enough information about the system to prove that there are infinitely many leaf-wise intersection
point. For such a situation we discussed in Section 4.6 the concept of the equivariant Lagrangian
RFH and hence we will use this homology to prove the following result.

Theorem 5.1.1 For the planar circular restricted three body problem in Levi-Civita regularization
there are for all energies below the first critical energy value infinitely many leaf-wise intersection
points with respect to ˆ︁F t

S and infinitely many with respect to ˆ︁F t
M all of them starting and ending in

Lcol and the count is with multiplicity.

Proof: The first step we have to take is to prove that our setting fulfils the necessary requirements
for a well-defined equivariant Lagrangian RFH. Since we want to use equivariant Lagrangian RFH
we need to specify a symmetry and make sure that all the structures in this proof respect this
symmetry. Our choice is the Z2 symmetry (z, w) ↦→ (−z,−w) that was introduced into the system
by applying the Levi-Civita regularization. Proposition 3.1.1 tells us that below the first critical
energy value the energy hypersurface K−1(0) is the boundary of a Liouville domain and because
of continuity there is even a neighbourhood in C∞(C2,R) around K such that for all functions in
it the same statement holds. Note that after performing the Levi-Civita regularization both the
resulting Hamiltonian and the contact form become invariant under the action of Z2, hence, we can
interpret AK as a functional on C∞(︁[0, 1], (︁C2 \ {0}

)︁
/Z2

)︁
. Theorem 4.1.1 then tells us that for a

generic choice of H ∈ C∞
c

(︁(︁
C2 \ {0}

)︁
/Z2

)︁
the functional AK is Morse-Bott. Therefore we can find a

sequence (Hn)n∈N of Z2-invariant functions in C
∞
c

(︁
C2 \ {0}

)︁
that converge to the given Hamiltonian

K such that for every Hn the functional AHn is Morse-Bott. Note that we can cut off K to a constant
function away from the hypersurface we want to consider and view K as an element in C∞

c

(︁
C2 \ {0}

)︁
.

By choosing a suitable rescaling function for every Hn we still have that the Hamiltonian vector field
coincides with the Reeb vector field on every hypersurface H−1

n (0). In the construction of ˆ︁F t
S and ˆ︁F t

M

we already made sure that they are invariant under the action of Z2. We have seen in Chapter 3.1
that the Liouville one form is given by w1 dz1 − z1 dw1 + w2 dz2 − z2 dw2, hence, on the Lagrangian
subspace Lcol = {0}×R2 ⊂ R4 the one form fulfils λ = 0 = d0. Theorem 4.5.1 tells us that a generic
Z2-equivariant almost complex structure will guarantee transversality and by Proposition 4.3.3 we
can always make it into an SFT like almost complex structure outside of a compact set. Since
both the Reeb vector field and the Liouville one form are invariant under the action of Z2 the SFT
like condition does not interfere with the equivariance condition. Finally, it is obvious that Lcol is
invariant under Z2.

The second step is now to calculate the Z2-equivariant Lagrangian RFH for all the Hn. To do so
we first want to find a simpler Hamiltonian function that is homotopic to all Hn. Since the H−1

n (0)
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are still star-shaped hypersurfaces (c.f. Proposition 3.1.1) we can easily find a homotopy from each
H−1

n (0) to S3 that stays star-shaped throughout the deformation, or between Hn and

˜︁H : C2 → R, z ↦→

(︄
2∑︂

i=1

|zi|2
)︄
− 1,

respectively. Again since we can consider ˜︁H and Hn to be in C∞(︁(︁C2 \ {0}
)︁
/Z2

)︁
this homotopy can

be chosen to be Z2 invariant. For the Hamiltonian ˜︁H it is now much easier to prove the conditions
on the Maslov indices required by Theorem 4.6.5, in fact, we already computed the Maslov indices
for the trajectories of the system in Example 4.2.2. There we saw that the non-constant trajectories
γ of ˜︁H have periods m

2 π for m ∈ Z \ {0} with Maslov index µ(γ) = 2m (since we are in C2). On the

other hand ˜︁H−1(0) ∩R2 is S1, i.e. |µ| > dim
(︂
R2 ∩ ˜︁H−1(0)

)︂
. Hence, we can use Theorem 4.6.5 to

calculate RFHZ2

(︂ ˜︁H,R2
)︂
and with the invariance of RFH we get

RFHZ2(Hn, Lcol) ∼= RFHZ2

(︂ ˜︁H,R2
)︂
∼= TH∗(G = Z2,Z2).

The calculation of the Tate homology of Z2 is now straight forward: The classifying space of Z2

is RP∞ and therefore the group homology and cohomology of Z2 is Z2 in every degree. By
[Bro82][§VI.4] we know that the Tate homology of a group is just its group homology in positive
degrees and its group cohomology in the negative degrees. This implies that RFHZ2(Hn, Lcol) is
also Z2 in every degree. Now we can use the equivariant version of Equation 4.4.12 to show that

RFHZ2

(︂
Hn, Lcol, ˆ︁F t

S

)︂
∼= RFHZ2(Hn, Lcol) ∼= TH∗(G = Z2,Z2).

Note that both ˆ︁F t
S and ˆ︁F t

M are Z2 invariant. This proves the claim of the theorem for the Hamiltonian
functions Hn.

The last step of the proof is to transfer the result for the sequence Hn to the Hamiltonian of
the restricted three body problem K. Having proved the claim of the theorem for the Hamiltonian
functions Hn implies that for every Maslov index µ ∈ Z there is a trajectory xµn of Hn with xµn(0) ∈
Lcol and xµn(1) ∈ LS . By definition the Hn converge to K in C∞ and therefore the Hamiltonian
vector fields XHn also converge in C∞ to XK . Note that here the Hamiltonian vector fields are just
smooth maps on R4 consisting of partial derivatives of the Hamiltonian. So if there is a subsequence
of (xµn)n∈N that converges to a x∗, then

d
dtx∗(t) = τ∗XK(x∗(t)) with x∗(0) ∈ Lcol and x∗(1) ∈ LS . To

show that such a convergent subsequence exists we use the theorem of Arzelà–Ascoli: It is obvious
that the |(xµn)| are uniformly bounded since they all lie on compact hypersurfaces that converge to
K−1(0). With

d

dt
∥xµn(t)∥ = |τn|∥XHn(x

µ
n(t))∥

we can then also uniformly bound the derivative, if the periods τn are bounded. We know that if xµn
is a critical point of AHn with period τn then AHn(x

µ
n) = τn. Hence, our goal is now to show that

the actions of the xµn are bounded:

First we prove the claim with a simplifying assumption, such that the underlying idea becomes
clear without getting too technical. So fix a N ∈ N such that max{|Hn −HN |} < ϵ0 for all n ≥ N .
For a given n ≥ N we define a homotopy between HN and Hn via

Hs = s · (Hn −HN ) +HN .
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Now assume that we have a homotopy of Hamiltonian trajectories (xs, τs) with (x0, τ0) = (xµN , τN )
and (x1, τ1) = (xµn, τn). Then consider the function

s ↦→ AHs(xs, τs).

This function satisfies the differential equation

d

ds
AHs(xs, τs) = −τs ·

1∫︂
0

H ′
s(xs(t)) = −AHs(xs, τs) ·

1∫︂
0

H ′
s(xs(t)) dt

with the initial condition AH0(x0, τ0) = AHN
(xµN , τN ). Here H ′

s stand for the derivative of Hs with
respect to s. From usual ODE theory we know that therefore

AHs(xs, τs) = AHN
(xµN , τN ) · e

−
s∫︁
0

1∫︁
0

H′
σ(xσ(t)) dtdσ

.

In fact, this is just a special case of a more general result on the growth of spectral numbers [AF10b].
Now consider:

−
s∫︂

0

1∫︂
0

H ′
σ(xσ(t)) dt dσ = −

s∫︂
0

1∫︂
0

(Hn(xσ(t))−HN (xσ(t))) dt dσ

≤
s∫︂

0

1∫︂
0

⃓⃓
Hn(xσ(t))−HN (xσ(t))

⃓⃓
dt dσ

≤ max
C2
{|Hn −HN |} · s

For s = 1 this implies

|AHn(x
µ
n, τn)| ≤ |AHN

(xµN , τN )| · exp
(︃
max
C2
{|Hn −HN |}

)︃
.

Now we can use the ϵ0 defined above to get a universal bound for all n ≥ N :

|AHn(x
µ
n, τn)| ≤ |AHN

(xµN , τN )| · eϵ0

Hence, we found a universal bound for the periods τn and can therefore use Arzelà–Ascoli to get a
subsequence of (xµn)n∈N that converges to x∗ with period τ∗.

In general the existence of the homotopy (xs, τs) we used above is not given. Therefore one has
to use a much more involved argument via spectral numbers like in [AF10b, chapter 5], especially
consider Theorem 5.5 and it’s corollary.

Note that the Maslov index of x∗ does not need to be precisely µ, but it can only differ by a
maximum of ±1. This is because the Maslov index only changes in the limit, if the end point of
the path associated to xµn converge to a point in the Maslov pseudocycle but is in the complement
for all n ∈ N. Hence, by Equation 4.2.5 the Maslov index in this case changes by 1

2signC(λ, Lcol, 1)
which is at most ±1

2dim(Lcol), i.e. ±1. Note that the construction of (x∗, τ∗) can be done for any
choice of Maslov index µ ∈ Z and since the resulting trajectory x∗ of K has then Maslov index
µ(x∗) ∈ [µ− 1, µ+ 1] this construction will give rise to infinitely many different trajectories of K all
of them of course still starting in Lcol and ending in LS . This now proves the claim also for K.

Finally note that one can repeat the whole proof with LM instead of LS . □
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Combining the result of the theorem with the considerations made before we immediately see that
there need to be infinitely many symmetric consecutive collision orbits. But since we count these
orbits with multiplicity, they could all be part of just one periodic symmetric consecutive collision
orbit. However, the next theorem tells us that periodic symmetric consecutive collision orbits usually
do not exist and can be perturbed away.

Theorem 5.1.2 In the planar circular restricted three body problem for energies below the first crit-
ical energy value there are no periodic symmetric consecutive collision orbits with respect to the
symmetries corresponding to LS and LM for a generic choice of energy and mass.

Proof: In the proof we will work in Levi-Civita regularization and we prove the statement for the
symmetry corresponding to LM , the case of LS works exactly the same. First let us fix some notation:
We know that for a given mass µ there are only two possible periodic symmetric consecutive collision
orbits, one with positive starting momentum and one with negative starting momentum. We denote
by

γ(µ, t) =

⎛⎜⎜⎜⎜⎝
x(µ, t)

y(µ, t)

px(µ, t)

py(µ, t)

⎞⎟⎟⎟⎟⎠
the solution of the Hamiltonian equation at mass µ and time t with initial condition x(µ, 0) =
y(µ, 0) = px(µ, 0) = 0, py(µ, 0) = 2

√
2
√
1− µ. Now let us fix an energy E and assume that there

is a set of masses µ with an accumulation point, such that for all µ in this set we have a periodic
symmetric consecutive collision orbit. In this set we can without loss of generality assume to find
a sequence (µn)n∈N such that py(µn, 0) = +2

√
2
√
1− µn for all n ∈ N (otherwise we just carry an

additional minus sign with us). The corresponding orbits are given by γ(µn, t) with period τn. Since
we are below the first critical energy value, i.e. the energy hypersurface is of restricted contact type,
we can refer to the considerations made in the previous theorem to see that the periods of these
orbits are bounded. With the natural bound of the mass by 1 we get that the sequence (µn, τn)n∈N
converges to the limit (µ∗, τ∗) - up to passing to a subsequence. Note that γ(µ, t) is a continuously
differentiable function, because it’s the solution of an ODE with smooth dependence on the initial
conditions. This means we can conclude that

γ(µ∗, τ∗) =

⎛⎜⎜⎜⎜⎝
0

0

0

2
√
2
√
1− µ∗

⎞⎟⎟⎟⎟⎠ = γ(µ∗, 0).

So at mass µ∗ we have a periodic symmetric c.c. orbit with also positive starting momentum and
period τ∗ and since

∂ty(µ∗, τ∗) =
1

4
py(µ∗, τ∗) ̸= 0

we can use the implicit function theorem to see that on an open neighbourhood of µ∗ there exists a
differentiable function τ(µ) such that y(µ, τ(µ)) = 0 for all µ in the open neighbourhood. Again by
continuity we have that (τ(µn))n∈N converges to τ∗. From this we can conclude that for all ϵ > 0
there exists an N ∈ N such that for every n ≥ N we have

|τ(µn)− τn| < ϵ.
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We know that the orbits continuously depend on the mass and fulfil the Hamiltonian equation for
a given energy. This implies that τ(µn) and τn can not be arbitrarily close while γ(µn, τ(µn)) ̸=
γ(µn, τn). Note that τ(µ) is defined such that y(µn, τ(µn)) = 0 and τn such that γ(µn, τn) ∈ LM∩Lcol.
So there needs to exist a M ∈ N such that for all n ≥ M τ(µn) = τn. Now define the functions
f(µ) := x(µ, τ(µ)) and g(µ) := px(µ, τ(µ)). Since the Hamiltonian equation for the restricted three
body problem is real analytic and

d

dµ
τ(µ) =

∂µy(µ, τ(µ))

∂ty(µ, τ(µ))

is also real analytic for µ ∈ [0, 1], the Cauchy–Kovalevskaya theorem tells us that the two functions
f and g are real analytic, for now at least in the neighbourhood around µ∗ where τ is defined. But
f and g are also zero at an accumulation point, which means that they are constant zero since they
are real analytic. Let’s say the original neighbourhood for τ is (µ∗ − δ0, µ∗ + δ0) for a δ0 > 0. By
continuity we also have at the boundary point

γ(µ∗ − δ, τ(µ∗ − δ)) =

⎛⎜⎜⎜⎜⎝
0

0

0

p0

⎞⎟⎟⎟⎟⎠,
where τ(µ∗− δ) should be understood as the result of a limit and p0 > 0 the appropriate momentum.
Then take y(µ∗−δ, τ(µ∗−δ)) = 0 as a new starting point to get a τ̃ via the implicit function theorem
and again by continuity we get that

∀ϵ>0∃N∈N∀N≤n : |τ(µ∗ − δ0 + ϵn)− τ̃(µ∗ − δ0 + ϵn)| < ϵ,

where (ϵn)n∈N is a sequence for positive numbers converging to zero. With the same argument as
above we can conclude that τ(µ∗− δ0+ ϵn) = τ̃(µ∗− δ0+ ϵn) for all n ∈ N above a certain index and
because of the uniqueness in the implicit function theorem τ = τ̃ of their shared domain. Since the
equation

d

dµ
τ̃(µ) =

∂µy(µ, τ̃(µ))

∂ty(µ, τ̃(µ))

is still real analytic, τ̃ is a well-defined real analytic extension of τ . Repeating this line of argument
enough times we will eventually get that f(µ) and g(µ) are real analytic functions on all of [0, µ∗+δ0)
and like we already mentioned both are zero at an accumulation point, i.e. f ≡ 0 ≡ g on this set.
This implies that γ(µ = 0, t) is a periodic symmetric c.c. orbit, where µ = 0 means that we are in
the rotating Kepler problem. But in the rotating Kepler problem periodic orbits can only have a
period equal to a rational multiple of the rotation period of the system itself and since the period of
an orbit in the Kepler problem can be expressed like

T =

√︃
π

2E3
,

for a generic choice of an energy E there can not be any periodic c.c. orbits. This gives us the desired
contradiction, i.e. for a generic energy we can not have an accumulation of masses for which we have
periodic symmetric consecutive collision orbits. □

If we now combine the Theorem 5.1.1 and Theorem 5.1.2 we get the following corollary.

Corollary 5.1.3 In the setting of the planar circular restricted three body problem there are
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• infinitely many symmetric consecutive collision orbits intersecting their symmetry axis on the
straight line between the second and the main body and

• infinitely many symmetric consecutive collision orbits intersecting their symmetry axis on the
extension of this line to the opposite side of the main body

for a generic choice of mass and energy, where the energy is in addition below the first critical energy
value.

5.2 The Spatial Case

For the spatial restricted three body problem the phase space is R6 and the symmetry we want to
consider is given by the anti-symplectic involution

ϕ : R6 → R
6;

⎛⎜⎝
⎛⎜⎝q1q2
q3

⎞⎟⎠,
⎛⎜⎝p1p2
p3

⎞⎟⎠
⎞⎟⎠ ↦→

⎛⎜⎝
⎛⎜⎝ q1

−q2
−q3

⎞⎟⎠,
⎛⎜⎝−p1p2
p3

⎞⎟⎠
⎞⎟⎠. (5.2.1)

After Kustaanheimo-Stiefel regularization the phase space becomes H×H and this anti-symplectic
involution again splits into two different ones

ϕ̂1 : H×H→ H×H;

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
z0

z1

z2

z3

⎞⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎝
w0

w1

w2

w3

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ↦→

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
−z0
−z1
z2

z3

⎞⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎝
w0

w1

−w2

−w3

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ (5.2.2)

and

ϕ̂2 : H×H→ H×H;

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
z0

z1

z2

z3

⎞⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎝
w0

w1

w2

w3

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ↦→

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
z0

z1

−z2
−z3

⎞⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎝
−w0

−w1

w2

w3

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠. (5.2.3)

We again call their corresponding fixed point Lagrangians

LS := Fix(ϕ̂1) and LM := Fix(ϕ̂2), (5.2.4)

where the collision Lagrangian is now given by Lcol := {0}×H. As in the planar case the symmetric
consecutive collision orbits can be described by the trajectories of ˆ︁K starting in Lcol and ending in
either LS or LM , which we can see with exactly the same argument as in Equation 5.1.6. To identify
them with leaf-wise intersection points we again define corresponding Hamiltonian diffeomorphisms
φFS

and φFM
such that

φFS
(LS) = Lcol and φFM

(LM ) = Lcol. (5.2.5)

More explicitly we define

Fs(z, w) = π(z22 + z23 + w2
2 + w2

3) and FM (z, w) = π(z20 + z21 + w2
0 + w2

1), (5.2.6)

where the Hamiltonian flow is given by

φFS
(z, w, t) =

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

z0

z1

cos(π2 t)z2 + sin(π2 t)w2

cos(π2 t)z3 + sin(π2 t)w3

⎞⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎝

w0

w1

cos(π2 t)w2 + sin(π2 t)z2

cos(π2 t)w3 + sin(π2 t)z3

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ (5.2.7)
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and analogously for FM . With the same line of argument as in the previous section one can now
show that the leaf-wise intersection points of ( ˆ︁K,Lcol) with respect to FS or FM are in one to one
correspondence with the trajectories of ˆ︁K starting in Lcol and ending in LS or LM . To prove the
existence of infinitely many of these leaf-wise intersection points we again want to use an appropriate
version of RFH, but to be able to do so we first need to solve a couple of issues: The first one is that
Proposition 3.2.3 only gives us transversality at the points in ˆ︁K−1(0) ∩ BL−1(0), so the question
arises if that is still enough to secure the well-definedness of RFH.

Theorem 5.2.1 Let (M,ω = dλ) be the completion of a Liouville domain with a Hamiltonian H
and an additional invariant B such that {H,B} = 0 and the support of dH is inside of a compact set
K0. Further assume that the Liouville vector field is transverse to the energy hypersurface H−1(0) at
the points in H−1(0) ∩ B−1(0) and the Hamiltonian vector field satisfies the conditions λ(XH) = 1.
Let further be L an exact Lagrangian subspace with L ⊆ B−1(0), such that l with dl = λ on L has
support in K0. Finally let there be an almost complex structure J , which is ω-compatible and SFT
like outside of K0. Then for every sequence (vn, τn) of gradient flow lines of ∇AH for which there
exists a < b such that

a ≤ AH(vn(s), τn) ≤ b ∀ n ∈ N, s ∈ R, (5.2.8)

there exists a subsequence ni of n and a gradient flow line (v, τ) of ∇AH such that (vni , τni) converges
in the C∞

loc-topology to (v, τ).

This theorem is a generalization of the usual compactness result in Rabinowitz Floer homology
(see [CF09, Theorem 3.1.]), the general proof strategy will therefore also follow the ideas in [CF09,
Chapter 3]. Hence, before talking about the proof of the theorem we first need to establish the
following lemma.

Lemma 5.2.2 If under the above assumptions there exists an ϵ > 0, such that

∥∇AH(x, τ)∥ < ϵ, (5.2.9)

then we have

|τ | ≤ c(|AH(x, τ)|+ 1) (5.2.10)

Proof: First choose δ > 0 such that

λ(XH)

⃓⃓⃓⃓
H−1([−δ,δ])∩B−1([−δ,δ])

≥ 1

2
,

this is possible since by assumption λ(XH)
⃓⃓
H−1(0)∩B−1(0)

= 1 and λ(XH) is a smooth function. Since

H−1([−δ, δ]) ∩B−1([−δ, δ]) is a bounded set there is a constant c1 > 0 such that⃦⃦⃦⃦
⃦λ(XH)

⃓⃓⃓⃓
H−1([−δ,δ])∩B−1([−δ,δ])

⃦⃦⃦⃦
⃦
∞

≤ c1.

Define δ0 := max
{︁
δ, 14
}︁
. The first step is to show that if we have a gradient flow line (u, τ) with

u(t) ∈ H−1
(︁
[−δ, δ]) ∩B−1([−δ, δ]

)︁
for all t ∈ [0, 1], then there exists c2 > 0, such that

|τ | ≤ c2
(︁
|AH(x, τ)|+ ∥∇AH(x, τ)∥

)︁
.
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To see this consider the following computation:

|AH(x, τ)| =

⃓⃓⃓⃓
⃓⃓−

1∫︂
0

x∗λ+ τ

1∫︂
0

H(x(t)) dt

⃓⃓⃓⃓
⃓⃓

≥

⃓⃓⃓⃓
⃓⃓τ

1∫︂
0

λ(x(t))XH(x(t)) dt

⃓⃓⃓⃓
⃓⃓−
⃓⃓⃓⃓
⃓⃓

1∫︂
0

λ(x(t))(∂tx(t)− τXH(x(t))) dt

⃓⃓⃓⃓
⃓⃓−
⃓⃓⃓⃓
⃓⃓τ

1∫︂
0

H(x(t)) dt

⃓⃓⃓⃓
⃓⃓

≥ 1

2
|τ | − c1∥ ∂tx(t)−XH(x(t)∥L1 −

1

4
|τ |

≥ |τ |
4
− c1∥∇AH(x, τ)∥

The second part of the proof now consists of showing that if for a trajectory (x, τ) there exists a
t0 ∈ [0, 1] s.t x(t0) /∈ H−1([−δ, δ]) ∩B−1([−δ, δ]), then there is an ϵ0 > 0 with

∥∇AH(x, τ)∥ ≥ ϵ (5.2.11)

Case 1 x(t0) /∈ H−1([−δ0, δ0]), then the argument works as usually. See the proof of [CF09, Propo-
sition 3.2.] for more details.

Case 2 Assume x(t0) /∈ B−1([−δ0, δ0]). Since every gradient flow line by assumption starts and ends
in L ⊆ B−1(0), we can always find a t1, t2 ∈ [0, 1] such that

|B(x(t1))| = δ0 and |B(x(t2))| =
δ0
2

with

δ0
2
≤ |B(x(t))| ≤ δ0 for all t ∈ [t1, t2]

Now compute

δ0
2

= |B(x(t1))| − |B(x(t2))|

≤ |B(x(t1))−B(x(t2))|

≤

⃓⃓⃓⃓
⃓⃓
t2∫︂

t1

d

dt
B(x(t)) dt

⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓
t2∫︂

t1

dB(x(t)) ∂tx(t) dt

⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓
t2∫︂

t1

dB(x(t))(∂tx(t)−XH(x(t))) dt

⃓⃓⃓⃓
⃓⃓

The last equality holds, because LXH
B = 0. Now set c0 := max

x∈B−1([−δ0,δ0])
∥∇tB(x)∥t, then further

estimate: ⃓⃓⃓⃓
⃓⃓
t2∫︂

t1

dB(x(t))(∂tx(t)−XH(x(t))) dt

⃓⃓⃓⃓
⃓⃓
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=

t2∫︂
t1

⟨∇tB(x(t)), ∂tx(t)−XH(x(t))⟩ dt

≤
t2∫︂

t1

∥∇tB(x(t))∥t∥ ∂tx(t)−XH(x(t))∥t dt

≤ c0

t2∫︂
t1

∥ ∂tx(t)−XH(x(t))∥t dt

≤ c0∥ ∂tx−XH(x)∥L2

≤ c0∥∇AH(x, τ)∥

This means that

∥∇AH(x, τ)∥ ≥ δ0
2c0

.

Now choose ϵ0 to be the minimum of all the bounds for ∥∇AH(x, τ)∥ one finds in case 1 and case 2,
then set ϵ := min{ϵ0, 1}. If we have a trajectory (x, τ) such that ∥∇AH(x, τ)∥ < ϵ, then we know
from the second step that x(t) ∈ H−1([−δ0, δ0]) ∩B−1([−δ0, δ0]). With the first step we finally get

|τ | ≤ c2
(︁
|AH(x, τ)|+ ∥∇AH(x, τ)∥

)︁
≤ c2

(︁
|AH(x, τ)|+ 1

)︁
□

Proof (of Theorem 5.2.1): The proof follows the usual approach of showing the existence of
uniform bounds for

• the chords v,

• the Lagrange multiplier τ ,

• the derivatives of the chords v.

The L∞ bound of the chords is as usually established by combining the fact that the Hamiltonian
is constant outside of a compact subset, which turns the Floer equation into the holomorphic curve
equation, and that we chose our almost complex structure to be SFT like outside of a compact
set. For the bound of the Lagrange multiplier one can take Lemma 5.2.2 and follow the argument
in [CF09, Chapter 3]. After having established the L∞ bounds of the chord and the Lagrange
multiplier the bound of the derivatives works as in the usual case. Arzelà–Ascoli and bootstrapping
gives us the desired result. □

The second issue is again that one can displace the Lagrangian Lcol away from the energy hypersur-
face, which results in RFH(H2, Lcol, ˆ︁K) = 0. The solution is as in the previous section to use the
equivariant RFH instead. The additional symmetry introduced by the regularization is in this case
an action by S1 via

S1 ×H2 → H
2; eiφ × (z, w) ↦→ (eiφ · z, eiφ · w). (5.2.12)

Theorem 5.2.3 For the spatial circular restricted three body problem in Kustaanheimo-Stiefel reg-
ularization there are for all energies below the first critical energy value infinitely many S1 families
of leaf-wise intersection points with respect to FS and infinitely many S1 families with respect to FM

all of them starting and ending in Lcol and the count is with multiplicity.
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Proof: The key idea of this proof is to use the invariance property of the RFH to find a system in
which it is much easier to calculate the homology. But before we can do this we first need to show that
the S1-equivariant RFH is well-defined in the setting of this theorem. Since BL(z, w) = Re(z̄iw) it
is easy to see that Lcol ⊂ BL−1(0) and that Lcol is invariant under the S

1 action. From Lemma 3.2.2
we see that λ

⃓⃓
Lcol

= 0 and Proposition 3.2.3 gives the necessary transversality of the Liouville vector
field. The other conditions for the well-definedness can be achieved with the same arguments as in
the proof of Theorem 5.1.1. Note that from here on we assume that A ˆ︁K is Morse-Bott, if this is not
the case then one can approximate the Hamiltonian by a sequence of smooth functions for which the
action functional is Morse-Bott and use the same techniques as in the proof of Theorem 5.1.1.

Now the first identification we use is

RFHS1
(H2, Lcol, ˆ︁K,FS) ∼= RFHS1

(H2, Lcol, ˆ︁K)

and then we homotope ˆ︁K to ˜︁H with

˜︁H : R8 → R, x ↦→

(︄
8∑︂

i=1

|xi|2
)︄2

− 1

and get

RFHS1
(H2, Lcol, ˆ︁K) ∼= RFHS1

(R8, Lcol, ˜︁H).

To finish the proof we now need to compute this last homology. In Example 4.2.21 we already
computed all the trajectories starting and ending in Lcol = {0} ×R4 and saw that such a trajectory(︁
x, τ = m

2 π
)︁
has Maslov index µ(x) = −4m. Every chord is uniquely defined by its starting point

on ˜︁H−1(0) ∩ Lcol = S3 and its period τ , hence these critical points form infinitely many copies of
S3, where every copy of S3 carries one of the Maslov indices µ = −4m. In the next step we have to
divide out the S1 action, i.e. the resulting manifolds are S3/S1 = S2. If we choose as Morse function
the hight function on S2, we see that the RFH coincides with the Morse Homology of S2 for the
indices 4m + 0 to 4m + 2 with m ∈ Z. Since the index difference between each sphere is four, but
the dimension of them is two, there is simply no critical point with index 4m+ 3. From this we can
then finally conclude that:

RFHS1
(R8, Lcol, ˜︁H) =

{︄
Z2 if i is even

0 if i is odd

This proves the claim of the theorem. □

Remark 5.2.4 Note that we also could have used the Lagrangian version of Theorem 4.6.7. Indeed,
the group homology of S1 is exactly

H∗(S
1,Z2) =

{︄
Z2 if i is even

0 if i is odd
. (5.2.13)

Now let us discuss what this implies for the existence of consecutive collision orbits in the spatial
restricted three body problem: First note that the S1 families of orbits in Kustaanheimo-Stiefel
regularization each correspond to only one distinct orbit in the actual physical system. Applying the
Kustaanheimo-Stiefel mapping to LS and LM reveals that as in the planar case the trajectories with
endpoints in LS correspond to orbits that intersect their symmetry axis in a solar eclipse point and
the trajectories with endpoints in LM to orbits that intersect their symmetry axis in a lunar eclipse
point. However, we do not get more information about the existing orbits than from the planar case
since all these infinitely many orbits we found could just be confined to the plane.





Chapter 6

Outlook: Towards a Mathematical
Theory of Fuel

Fuel consumption is one of the key parameters that determine both the cost and the possible destina-
tions of a space mission and therefore reducing the amount of fuel necessary is an important ingredient
to further improve our capabilities when it comes to space exploration. The classic approach to space
mission design tries to find the most efficient trajectory in a given N -body problem by dividing the
position space into N spheres of influence, solving the Kepler problem for each of the N masses and
then patch the resulting orbits together in such a way that they satisfy the boundary conditions
set by the mission. This approach is known as the patched-conic approximation, see [BMW71] for
more details. Even though this approximation has been very successful in the past, there are a lot of
important multi body systems that are not very well described by this method. An example of such
a system is the 4-body problem consisting of the sun, earth, moon and a space ship. Of course we
have to acknowledge the fact that the Apollo missions have been very successful despite using only a
patch conic approximation, but since then people were able to find much more efficient trajectories
from the earth to the moon by using a patched three body approximation. Another situation where
a patched three body approximation enables a significant increase in fuel efficiency, is a multi-moon
orbiter tour of Jupiter’s moons (see [KMR99]). The goal is to very closely study the moons of Jupiter
like Europa and Ganymede within a single space mission by making multiple transitions from an orbit
around one moon to an orbit around another one and the exploration capacity of such a mission of
course heavily depends on finding fuel efficient transition orbits.

The trajectories we studied in this thesis are mathematically very similar to those transition
orbits. To see this let us consider the easier case of the Kepler problem and take as transition orbit
the Hohmann transfer:

•

•

•

first boost

second boost

The goal is to find a Hamiltonian trajectory that connects the inner orbit to the outer one. To
achieve this the space ship performs a boost at the location of the red dot, then follows its resulting
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Hamiltonian trajectory (dashed line) without using any fuel until it reaches the blue dot where it
again performs a boost to enter the outer orbit. The first boost can also be interpreted as a translation
in the affine Lagrangian subspace L1 := {Q1}×R2, where Q1 stands for the position of the first boost.
In the same way the second boost is a translation in the affine Lagrangian subspace L2 := {Q2}×R2.
With this interpretation the Hohmann transfer is just a Hamiltonian chord between two different
Lagrangian manifolds.

The idea is now to use a version of Lagrangian Rabinowitz Floer homology in the setting of the
restricted three body problem to show the existence of Hamiltonian trajectories between two different
boost coordinates. With this information one can then plan a space mission by patching together
the solutions of the restricted three body problem between the different affine Lagrangian subspaces.
If we have a trajectory that ends in a Lagrangian {Qk} × R2 and is followed up with a trajectory
starting in the Lagrangian {Qk} ×R2, the fuel needed to perform this manoeuvre is proportional to
the translation in {Qk}×R2 to get from the end point of the first trajectory to the starting point of
the second trajectory. To find an fuel efficient route one then has to vary the considered Lagrangians,
such that the sum of the norms of the translations is minimal. In this context it is also important
to note that there is much to be gained from considering the spatial restricted three body problem
and to look for orbits that do not lie in the ecliptic. In the last section of the previous chapter we
discussed the application of Lagrangian RFH in the spatial case, but we were unfortunately not able
to find a way to detect specifically spatial orbits that do not lie in the ecliptic. The reason why these
spatial orbits are important to fuel efficient mission design is, that changing the plane of a stable
orbit around a planet or moon requires a lot of fuel. If for example we want to fly our space ship
in a periodic orbit around Jupiter’s moon Europa that passes over the north and south pole, but to
get to the moon we only considered planar trajectories, we would need to perform a plane change
manoeuvre of 90◦. This would cost 1.4 times the fuel one needs to accelerate the space ship from zero
to the current orbiting velocity (c.f. [BMW71, Chapter 3.4]) , i.e. if one can find spatial trajectories,
such that the initial orbit around Europa is already passing over the poles, it could save a lot of fuel.



Appendix A

An Additional Proof

A.1 Proof of Lemma 3.2.2

First we pull back the canonical one form on T ∗S3 with the usual combination of change of position

and momentum and the stereographic projection. This leaves us with the one form
3∑︁

i=0
−qi dpi on

T ∗R3. Then we pull back this form with the Kustaanheimo-Stiefel map to Σ0 and since this means
sending q to z̄iz and p to z̄iw

2|z|2 the pulled back one form is of the form

3∑︂
i=0

−Fi(z) dwi +

3∑︂
i,j=0

−Gij(z)wi dzj .

Our strategy is now to order the computation by the individual Fi’s and Gij ’s. Note that we start
very detailed, but as we do more and more of the same type of computation it will get less and less
detailed.

F0(z) =
z20 + z21 − z22 − z23

2|z|2
· z0 +

2z1z2 − 2z0z3
2|z|2

· (−z3) +
2z0z2 + z1z3

2|z|2
· z2

=
z30 + z0z

2
1 − z0z22 − z0z23 + 2z0z

2
3 + 2z0z

2
2

2|z|2

= z0 ·
z20 + z21 + z22 + z23

2|z|2

=
z0
2

F1(z) =
z20 + z21 − z22 − z23

2|z|2
· z1 +

2z1z2 − 2z0z3
2|z|2

· (z2) +
2z0z2 + z1z3

2|z|2
· z3

=
z1z

2
0 + z31 − z1z22 − z1z23 + 2z1z

2
3 + 2z1z

2
2

2|z|2

= z1 ·
z20 + z21 + z22 + z23

2|z|2

=
z1
2
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F2(z) =
z20 + z21 − z22 − z23

2|z|2
· (−z2) +

2z1z2 − 2z0z3
2|z|2

· (z1) +
2z0z2 + z1z3

2|z|2
· z0

= z2 ·
z20 + z21 + z22 + z23

2|z|2

=
z2
2

F3(z) =
z20 + z21 − z22 − z23

2|z|2
· (−z3) +

2z1z2 − 2z0z3
2|z|2

· (−z0) +
2z0z2 + z1z3

2|z|2
· z1

= z3 ·
z20 + z21 + z22 + z23

2|z|2

=
z3
2

G00(z) =
z20 + z21 − z22 − z23

2|z|2
− z20 + z21 − z22 − z23

|z|4
· z20 −

2z1z2 − 2z0z3
|z|4

· (−z3z0)

− 2z0z2 + z1z3
|z|4

· z2z0

=
z20 + z21 − z22 − z23

2|z|2
− z20
|z|2

= −1

2
+

z21
|z|2

G10(z) = −
z20 + z21 − z22 − z23

|z|4
· z0z1 −

2z1z2 − 2z0z3
|z|4

· (−z2z0)

− 2z0z2 + z1z3
|z|4

· z3z0

= −z0z1
|z|2

G20(z) =
2z0z2 + z1z3

2|z|2
− z20 + z21 − z22 − z23

|z|4
· (−z0z2)−

2z1z2 − 2z0z3
|z|4

· (z1z0)

− 2z0z2 + z1z3
|z|4

· z20

=
2z0z2 + z1z3

2|z|2
− z0z2
|z|2

=
z1z3
|z|2

G30(z) =
−2z1z2 + 2z0z3

2|z|2
− z0z3
|z|2

= −z1z2
|z|2

G01(z) = −
z1z0
|z|2
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G11(z) =
z20 + z21 − z22 − z23

2|z|2
− z21
|z|2

= −1

2
+

z20
|z|2

G21(z) =
2z1z2 − 2z0z3

2|z|2
− z1z2
|z|2

= −z0z3
|z|2

G31(z) =
2z0z2 + z1z3

2|z|2
− z1z3
|z|2

=
z0z2
|z|2

G02(z) =
2z0z2 + z1z3

2|z|2
− z2z0
|z|2

=
z1z3
|z|2

G12(z) =
2z1z2 − 2z0z3

2|z|2
− z1z2
|z|2

= −z0z3
|z|2

G22(z) = −
z20 + z21 − z22 − z23

2|z|2
− z22
|z|2

= −1

2
+

z23
|z|2

G32(z) = −
z3z2
|z|2

G12(z) = −
2z1z2 − 2z0z3

2|z|2
− z0z3
|z|2

= −z1z2
|z|2

G02(z) =
2z0z2 + z1z3

2|z|2
− z1z3
|z|2

=
z0z0
|z|2

G23(z) = −
z3z2
|z|2

G33(z) = −
z20 + z21 − z22 − z23

2|z|2
− z23
|z|2

= −1

2
+

z22
|z|2

If we now consider
3∑︁

i=0
Gij(z)wi dzj we see that

3∑︂
i=0

Gij(z)wi dzj = −
1

2
wj dzj ±

zj±1

|z|2
(z1w0 − z0w1 + z3w2 − z2w3) dzj .

Since Σ0 is precisely defined by z1w0 − z0w1 + z3w2 − z2w3 = 0, this then finally proves the theorem.
□
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(Diploma thesis)

[Fra04] Frauenfelder, Urs: The Arnold-Givental conjecture and moment Floer homology. In:
International Mathematics Research Notices 2004 (2004), Nr. 42, S. 2179–2269

[FS16] Frauenfelder, Urs ; Schlenk, Felix: S1–equivariant Rabinowitz–Floer homology. In:
Hokkaido Mathematical Journal 45 (2016), Nr. 3, S. 293–323

[FVK18] Frauenfelder, Urs ; Van Koert, Otto: The restricted three-body problem and holo-
morphic curves. Springer, 2018

[FZ19] Frauenfelder, Urs ; Zhao, Lei: Existence of either a periodic collisional orbit or
infinitely many consecutive collision orbits in the planar circular restricted three-body
problem. In: Mathematische Zeitschrift 291 (2019), Nr. 1, S. 215–225

[GT01] Gilbarg, David ; Trudinger, Neil S.: Elliptic partial differential equations of second
order. Bd. 224. springer, 2001



BIBLIOGRAPHY 75

[HV92] Hofer, Helmut ; Viterbo, Claude: The Weinstein Conjecture in the Presence of Holo-
morphic Spheres. In: Communications on pure and applied mathematics 45 (1992), Nr.
5, S. 583–622

[KMR99] Koon, Wang S. ; Marsden, Jerrold E. ; Ross, Shane D.: Constructing a Low Energy
Transfer between Jovian Moons. In: Celestial Mechanics : an international conference
on celestial mechanics, Evanston, Illinois, 1999

[Mer12] Merry, William J.: Rabinowitz Floer homology and Mañé supercritical hypersurfaces,
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