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Functional network dynamics revealed by EEG microstates
reflect cognitive decline in amyotrophic lateral sclerosis
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Abstract

Recent electroencephalography (EEG) studies have shown that patterns of brain

activity can be used to differentiate amyotrophic lateral sclerosis (ALS) and control

groups. These differences can be interrogated by examining EEG microstates, which

are distinct, reoccurring topographies of the scalp's electrical potentials. Quantifying

the temporal properties of the four canonical microstates can elucidate how the

dynamics of functional brain networks are altered in neurological conditions. Here

we have analysed the properties of microstates to detect and quantify signal-based

abnormality in ALS. High-density resting-state EEG data from 129 people with ALS

and 78 HC were recorded longitudinally over a 24-month period. EEG topographies

were extracted at instances of peak global field power to identify four microstate

classes (labelled A-D) using K-means clustering. Each EEG topography was retrospec-

tively associated with a microstate class based on global map dissimilarity. Changes

in microstate properties over the course of the disease were assessed in people with

ALS and compared with changes in clinical scores. The topographies of microstate

classes remained consistent across participants and conditions. Differences were

observed in coverage, occurrence, duration, and transition probabilities between ALS

and control groups. The duration of microstate class B and coverage of microstate

class C correlated with lower limb functional decline. The transition probabilities A

to D, C to B and C to B also correlated with cognitive decline (total ECAS) in those

with cognitive and behavioural impairments. Microstate characteristics also signifi-

cantly changed over the course of the disease. Examining the temporal dependencies

in the sequences of microstates revealed that the symmetry and stationarity of tran-

sition matrices were increased in people with late-stage ALS. These alterations in the

properties of EEG microstates in ALS may reflect abnormalities within the sensory
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network and higher-order networks. Microstate properties could also prospectively

predict symptom progression in those with cognitive impairments.
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1 | INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease

associated with progressive upper and lower motor neuron degenera-

tion. ALS involves motor, cognitive and behavioural decline, and death

typically occurs as a result of ventilatory failure within 3–5 years from

first symptoms (Costello et al., 2021; Evans et al., 2015; Hardiman

et al., 2017; Phukan et al., 2012). Up to 50% of people with ALS

exhibit evidence of cognitive dysfunction and �14% reach the thresh-

old for ALS–frontotemporal dementia (FTD) diagnosis (Phukan

et al., 2012). There is no effective treatment for ALS, and there

remains an urgent need for cost-effective, reliable biomarkers to

quantitatively assess cognitive and motor decline.

Whole-brain resting-state electroencephalographic (EEG) studies

can provide robust evidence of motor and extra-motor degeneration

in ALS. The most recent findings of frequency domain and source

localisation analyses include increased co-modulation in the fronto-

parietal area (θ, γ-band), and decreased synchrony in the fronto-

temporal areas (δ, θ-band) (Dukic et al., 2019; Nasseroleslami

et al., 2019). Although abnormal functional connectivity in both sensor

and source-space has been shown, there is limited understanding of

the temporal dynamics of brain networks in ALS.

Insights into the temporal dynamics of brain networks can be

gained through analysing brain ‘microstates’. Microstates are defined

as transient, quasi-stable electric field configurations that repeat

sequentially over time within an EEG recording. Microstate analysis

involves identifying recurring topographical patterns of spontaneous

neural activity across multiple time points and categorizing the EEG

topography at each time point into one of these distinct microstate

classes. Microstate transitions were originally attributed to changes in

the coordination of synaptic activity (Lehmann et al., 1987). These dis-

tinct re-occurring topographies of the scalp electrical potential (‘scalp
maps’) have a duration spanning from milliseconds to seconds. Four

canonical classes (labelled A–D) of microstates have been repeatedly

described and have been associated with well-established resting-

state networks (RSNs) in fMRI, based on the estimated brain regions

generating each microstate (Michel & Koenig, 2018). Analysing these

microstates allows us to investigate changes in the temporal dynamics

of brain networks instead of changes in functional connectivity

between networks, which is more typically examined in EEG studies

(Gschwind et al., 2016).

Changes in the properties of microstates have been previously

associated with altered states of consciousness (Bai et al., 2021; Bré-

chet & Michel, 2022; Zanesco et al., 2021) and with neurological or

neuropsychiatric conditions (Al Zoubi et al., 2019; Dierks et al., 1997;

Faber et al., 2021; Gschwind et al., 2015; Koenig et al., 1999;

Michel & Koenig, 2018; Nishida et al., 2013). Alterations in microstate

characteristics are thought to represent alterations in the rhythm of

neural processes. However, it is the microstates' temporal dependen-

cies that can perhaps give us the greatest insight into how brain func-

tion is altered in neurodegenerative diseases like ALS. Neurological

conditions seem to alter the brain's functional resting state transitions;

forcing the brain to stay and/or change to specific functional net-

works. By examining the temporal dependencies between microstate

sequences we can investigate how the transitions between functional

brain networks are altered in disease. Temporal dependencies are

modulated in mood or mental disorders, including FTD (Al Zoubi

et al., 2019; Lehmann et al., 2005; Nishida et al., 2013). In Alzheimer

disease, in particular, transition patterns appear random while in

healthy controls transitions between specific classes are preferred

(Nishida et al., 2013).

These findings suggest that EEG microstates have strong poten-

tial as a tool for detecting and measuring neural abnormalities in indi-

viduals with ALS, particularly as a task-free assessment of cognitive

and behavioural function. Microstate computation exploits the activity

that pertains to specific brain regions (by clustering EEG topographies)

and therefore microstate classes are hypothesised to reflect specific

functional networks, as evidenced by studies examining the relation-

ship between resting-state networks and microstates. By quantifying

microstate properties, we gain the ability to investigate neural net-

work activity.

The purpose of this study was to test whether microstate proper-

ties can differentiate ALS and HC groups, in standard characteristics

(e.g., frequency of occurrence, duration) and temporal dependencies

(e.g., transition probabilities and entropy in microstate sequences).

This study also examined whether patients exhibit changes in micro-

state properties over time and whether microstate properties corre-

late with clinical presentation. To preface our results, RS EEG

microstate analysis suggests that ALS affects both sensory and

‘higher-order’ networks, resulting in reduced dynamicity in brain state

transitions. Microstate properties may be a useful ALS prognostic

marker for cognitive decline and disease outcome.
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2 | METHODS

2.1 | Experiment

2.1.1 | Participants

Individuals with ALS and ALS–frontotemporal dementia (ALS-FTD)

diagnoses were recruited from the Irish National ALS Clinic in Beau-

mont Hospital, Dublin, Ireland. ALS diagnoses were based on the

revised El Escorial criteria (Ludolph et al., 2015) and the Strong criteria

(Strong et al., 2017). Individuals diagnosed with primary lateral sclero-

sis, progressive muscular atrophy, flail arm/leg syndromes, other medi-

cal morbidities, neurological or neuropsychiatric symptomatology

were excluded. Age-matched healthy controls (HC), with neither diag-

nosed neurological nor neuropsychiatric conditions, were additionally

recruited from an existing volunteer database (Burke et al., 2017).

EEG data recorded from 129 individuals with ALS (m: 77%; mean age:

60.89 ± 11.4) and 78 age-matched healthy controls (m: 36%; mean

age: 60 ± 12) were analysed. Four follow-up sessions were conducted

for patients, �5.4 ± 2.1 months apart. Patients attended an average

of 2 ± 1.2 recording sessions. Detailed information about the demo-

graphic of the dataset can be found in Note 1 in Data S1.

2.1.2 | Clinical assessments

Individuals with ALS underwent cross-sectional and longitudinal clini-

cal assessments including the revised ALS functional rating scale

(ALSFRS-R) (Cedarbaum et al., 1999) (N = 162), King's stagings

(N = 161, direct assessment; N = 170, with extrapolation from

ALSFRS-R scores; Balendra et al., 2014), and ALS-specific behavioural

and cognitive measurements (N = 153) (Traynor et al., 2003). Func-

tional clinical evaluation data were retrieved from the Irish Motor

Neuron Disease Registry for the ALS cohort (O'Toole et al., 2008;

Rooney et al., 2013; Ryan et al., 2018; Traynor et al., 2003). Edinburgh

cognitive and behavioural ALS Screen (ECAS) (Abrahams et al., 2014)

and Beaumont behavioural inventory (BBI) (Elamin et al., 2017) scores

were collected as part of parallel ongoing research projects in the Aca-

demic Unit of Neurology (Costello et al., 2020, 2021) (please see Note

2 in Data S1).

2.1.3 | EEG acquisition

Resting-state EEG recordings were conducted at the Clinical Research

Facility in St James's Hospital, Dublin. The EEG recordings occurred in

a dedicated recording room, shielded by a Faraday cage to protect

from external electric fields. Electrode offsets were kept between

±25 mV. Participants were asked to rest with their eyes open while

comfortably seated. A letter X (6 � 8 cm2, printed black on white) pro-

vided a gaze target. EEG signals were recorded at 512 Hz on a

128 channels BioSemi ActiveTwo system (Amsterdam, Netherlands)

(Honsbeek et al., 1998), for three blocks of 2 min. The subject's

wakefulness and well-being were monitored between each recording

during a quick visit by the experimenter.

2.1.4 | EEG pre-processing

Pre-processing was performed using MATLAB R2019b software (The

MathWorks, 2019). The EyeBallGUI toolbox (Mohr et al., 2017) was

used for visual screening and quality inspection of recordings. The

Fieldtrip Toolbox was used for the pre-processing steps described

below (version 20190905) (Oostenveld et al., 2011), and the Micro-

state EEGlab toolbox (Poulsen et al., 2018) was used to compute the

microstates. The pre-processing steps were implemented based on

pipelines previously described in publications by our team (Dukic

et al., 2019, 2021; Nasseroleslami et al., 2019). Bad epochs were

rejected based on an evaluation of the amplitude, the mean shift, the

variance and the band-variance of spectral power against a 3.5 Z-

score threshold (Dukic et al., 2017). The EEG signals were down-

sampled from 512 to 256 Hz. After resampling, a band-pass filter

(one-pass zero-phase FIR: 1–97 Hz) and a notch filter (dual-pass third-

order Butterworth: 50 Hz, stopband: 1 Hz) were applied.

After baseline correction, noisy channels were removed using an

algorithm based on both the PREPpipeline (2015) and the work of

Kohe (2010) (Bigdely-Shamlo et al., 2015; Kohe, 2010). Channels that

were removed were interpolated from neighbouring electrodes.

Recording sessions with more than 11 channels removed were

excluded from the study as they were deemed unreliable. The average

number of channels removed was 2.6 ± 6.6 for controls and 3.9 ± 8.6

for patients. A common average reference was applied to the remain-

ing channels.

2.1.5 | Computation of the EEG microstates

To compute microstates, EEG data were low-pass filtered at 30 Hz

(zero-phase, Finite Impulse Response—‘Brickwall’ filter, applied in dual

pass form), as commonly recommended in microstate studies

(Michel & Koenig, 2018). The computation steps following data pre-

processing are represented in Figure 1. The global mean-field power

(GFP; representing the spatial standard deviation) was calculated for

each participant with a Gaussian weighted moving average as a

smoothing method (window of five timepoints or around 10 ms)

(Al Zoubi et al., 2019). Next, EEG topographies were extracted from

the signals at 1000 randomly chosen instances of local maxima of the

GFP curve (12% ∓ 2% of the total number of peaks, calculated using a

peak-finding algorithm). Only 1000, rather than all, peaks of GFP were

used for each participant to facilitate computation with a relatively

large dataset (Poulsen et al., 2018). These EEG topographies at GFP

peaks were used to obtain the optimal signal-to-noise ratio, whereby

peaks higher than 1.5 SDs from the mean were excluded from the

selection. Very high GFP often represents non-neural activity and

therefore needs to be rejected. Peaks with <10 ms delay in between

were also excluded (Poulsen et al., 2018), as this minimum peak
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distance guarantees that all peaks are distinct. The selected EEG

topographies were submitted to a modified K-means clustering algo-

rithm, implemented in the Microstate EEGlab toolbox (Poulsen

et al., 2018). The algorithm initially defines K microstate prototypes

randomly selected from the EEG data. Each EEG sample is assigned to

a cluster by minimising the Euclidean distance between the selected

EEG maps and the associated prototype. New cluster prototypes are

iteratively defined until convergence or a maximal number of repeti-

tions (50 repetitions in our case) is reached. The algorithm models the

signal strength and applies a constraint to only have one microstate

active at a time. This differs from the original K-means algorithm by

being polarity invariant (assigning opposite maps to the same cluster).

The rationale for this approach is that the scalp potentials measured

by EEG are generated by fluctuations in the synchronous firing of

neurons; therefore an inverse polarity of the scalp potential field may

happen while the same neuronal sources generate oscillations in the

brain (Brodbeck et al., 2012; Michel & Koenig, 2018).

The K-means algorithm was chosen over the agglomerative hier-

archical clustering (AAHC) as it has a shorter computational time and

both algorithms have been shown to result in similar microstates

(Murray et al., 2008). The optimal number of clusters (or microstate

classes) was selected using a K = 3 cross-validation approach on a

subset of 3–11 maps. Microstate prototypes were identified from

two-thirds of the concatenated GFP peaks and backfitted to the

remaining data points (the remaining third of the GFP peaks was

the test set), allowing for evaluation of the prototypes' performance

on the test set using measures of fit like global explained variance and

cross-validation criterion (Pascual-Marqui et al., 1995). The cross-

validation method ensures the stability of the results, i.e. not getting

microstate cluster representing noise. To derive sequences of micro-

states, the grand mean across groups prototypes were then back-

fitted to the original EEG recordings for both the HC and the ALS

groups. Each EEG sample was associated with a prototype class using

global map dissimilarity. Microstate time courses underwent temporal

smoothing (using rejection of small segments) to minimize the influ-

ence of fast fluctuations, which may be caused by noise. Short micro-

state of <23 ms (or 6 timepoints) were modified to the next most

probable microstate class (Poulsen et al., 2018). While temporal

smoothing is beneficial for reducing noise-related artefacts, it is not

suitable when investigating temporal dependencies within the micro-

state sequence. For this aspect of the study, temporal smoothing was

intentionally omitted to preserve the inherent temporal structure of

the microstate sequence, following the recommendation by von

Wegner et al. (2017).

2.1.6 | EEG microstates analysis

After the microstate sequences were computed, two types of

analysis were conducted. First, the standard microstate characteristics

were extracted, including the global explained variance, occurrence,

duration and transition probabilities. Three categories of statistical

analyses were conducted on those properties: (1) pairwise compari-

sons between HC and ALS groups, (2) longitudinal analysis in individ-

uals with ALS over the progression of the disease and (3) cross-

sectional and longitudinal characteristics of the microstate sequences

were analysed with respect to the clinical scores.

Second, the temporal dependencies between microstate classes

were examined using Shannon entropy and transition probabilities to

quantify the predictability and randomness of the microstate

sequence (von Wegner et al., 2017). The sequences of microstates

were tested for Markovianity of order 0–2. The time-lagged mutual

F IGURE 1 Microstate analysis pipeline. Description of the
method used to compute microstates from EEG data. First, a low-pass
filter was applied, and the global mean-field amplitude (GFP) was
calculated for each participant. Next, for each individual, EEG maps
were extracted from the signals at 1000 randomly chosen local
maxima of the GFP curve and a modified K-means clustering
algorithm was used to cluster the maps of the combined ALS and HC
group into microstate classes. Finally, the microstate prototypes were
back-fitted to the original EEG recordings to derive sequences of
microstates for each participant.
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information between microstates, as well as the stationarity and sym-

metry of the transition probability matrices were also assessed. These

properties have the advantage of being independent of the method

used to compute the microstates (von Wegner et al., 2018).

Standard properties of microstates

The global explained variance (GEV) measures how well each micro-

state class can explain the variance in the EEG signal. Basic temporal

parameters were determined, including the average duration (ms) of a

microstate class, its frequency of occurrence (s�1), and the fraction of

time it is active during the recording (i.e., coverage). Transition probabil-

ities were also derived from the sequences of microstates to quantify

how often one class precedes another. The probabilities were not

adjusted for class occurrences or durations, as we chose to report them

both independently (Poulsen et al., 2018). Therefore, any observed

effects in transition probabilities result from a combination of system-

atic transition disparities and potential biases explained by occurrences.

Statistical analysis. Cross-sectional pairwise comparisons. Mann–

Whitney U tests were computed for each microstate parameter (cov-

erage, occurrence, duration and transition probability) to compare the

HC and ALS cohorts. A 10% adaptive False Discovery Rate (FDR) cor-

rection was used to account for the four microstate classes

(or 12 transitions between classes), which was based on the Benjamini

and Krieger method (Benjamini et al., 2006) as implemented in the

Empirical Bayesian inference (EBI) toolbox (Nasseroleslami, 2018).

The effect sizes were derived from the U-statistics using the rank-

biserial correlation coefficient (Cureton, 1956): r¼ 2U
n1 �n2, as well as the

area under the receiver operating characteristic curve (AUROC)

(Hajian-Tilaki, 2013): AUROC¼ U
n1 �n2 : A post-hoc EBI-based estimation

of the statistical power was then calculated (Nasseroleslami, 2018).

Longitudinal changes. In the ALS group, mixed-effects models were

used to examine the changes in microstate parameters and clinical

scores (from ALSFRS-R, ECAS and BBI tests) over time as the disease

progressed. Mixed-effects models were implemented with an intercept

and a time-related slope, reflecting the rate of change per month (from

5 to 113 months after onset). Mixed-effects models of the microstate

parameters included microstate classes as a predictor. Subject-specific

random-effects were included in all models: a random intercept was

chosen for the longitudinal model to allow for different baseline values

across subjects and a random slope was chosen to allow for different

rates of change over time. Age, gender and site of onset as random-

effects did not improve the model fit (likelihood ratio test) and were

therefore not included in the final models. Education as a random-effect

was deemed relevant for the ECAS model only. A specific deviation

from intercept and slope, representing the level of education, was added

(as random-effect) to the model of cognitive performance. The longitu-

dinal model of cognition also contained an additional fixed-effect term

to account for the three different versions of the ECAS questionnaire.

The mixed-effects parameters were estimated using restricted maximum

likelihood. The assumptions of normal distributions, independence, and

constant variance of the residuals were checked (using the

Kolmogorov–Smirnov test [q < 0.05]; Ljung-Box Q-test [q < 0.05];

Engle's ARCH test [q < 0.05] or diagnostic plots). A rank-based inverse

normal transformation was applied in cases where the residuals did not

follow a normal distribution (Beasley et al., 2009). To evaluate the linear-

ity of the parameters' progressions over time, quadratic polynomial

regression models were estimated per subject (when data from at least

three recordings were available). The quadratic coefficients did not sig-

nificantly differ from zero (q < 0.05), so only first-order models were

kept for further analyses. All patients were included in the final models,

regardless of the number of recording sessions they attended as mixed-

effects models can adjust for missing data. To assess the repeatability of

the models, the variances of the linear mixed-effects models were ana-

lysed and decomposed to determine the proportion of variance attrib-

uted to various sources, including within-person and between-person

measures (Rights & Sterba, 2021; Schielzeth & Nakagawa, 2022).

Correlations with clinical measures. Spearman rank correlations were

computed between the microstate parameters and

cross-sectional physical and cognitive clinical scores in the ALS group (sur-

vival, ALSFRS-R and ECAS scores at the first timepoint). The correlation

between the variables that describe the microstate properties and clinical

scores over time was also estimated. We evaluated correlations sepa-

rately for those with cognitive impairment (ALSci; based on ECAS score),

behavioural impairment (ALSbi; based on BBI scores) and those without

cognitive or behavioural impairment, as people with ALS that have extra-

motor impairments exhibit different changes in functional connectivity

(Temp et al., 2021; van der Burgh et al., 2020). An adaptive FDR correc-

tion was applied and the statistical power was estimated using EBI

(Nasseroleslami, 2018) to account for the multiple clinical measures.

Information–theoretical properties to assess temporal dependencies

We performed an information–theoretical analysis of the temporal

dependencies between microstate classes using Shannon entropy and

by interrogating the transition probabilities (extracting their Markov

properties, stationarity and symmetry; Figure 2) (von Wegner

et al., 2017, 2018). Studying entropy-related properties is a way to

determine the predictability of the next microstate class. A sequence

with only one microstate class appearing (amongst the four classes

labelled A, B, C and D) would represent maximum predictability and

therefore minimum entropy (e.g., only B). We then derived the auto-

information function (AIF) from the entropy values. AIF measures the

time-lagged mutual information between microstates (it is an approxi-

mation of the auto-correlation function for nonmetric data). The AIF

measures the time-lagged mutual information between microstates

with time lag τ, which can be estimated as the difference between

the marginal and conditional entropies: I τð Þ¼H Mtþτð Þ�H Mtþτð jMtÞ.
The less ‘uncertainty’ about the time-lagged microstate Mtþτ , when

Mt is known, the more information is shared between the states and

the higher the AIF is. The AIF was evaluated for all microstate classes

as well as the contribution to AIF by each microstate class (the time-

lagged mutual-information for each microstate class separately).

Then we examined the features of the transition probabilities.

We first tested for Markovianity order 0–2, to check whether the

transition probabilities rely on the current class, the previous class, or

two previous classes of the sequence of microstates: with the null
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hypothesis of no memory effect. The stationarity of the transition

probability matrix was then evaluated based on the homogeneity of

non-overlapping blocks of varying lengths. Stationarity means that the

frequency of any transition between two classes does not depend on

time and would not be significantly different in different blocks (von

Wegner et al., 2017, 2018). Finally, the symmetry of the transition

matrix was assessed to check whether the probability to

transition from a class Mi to another class Mj was equivalent to the

probability of passing from Mj to Mi. Statistical significance for sym-

metry, stationarity and the Markovianity was estimated using G-tests

(i.e., maximum-likelihood significance tests) and chi-squared distribu-

tions (Al Zoubi et al., 2019; von Wegner et al., 2017, 2018).

3 | RESULTS

3.1 | Four microstate prototypes identified in HC
and ALS cohorts

The topographies of the microstate prototypes and the optimal number

of clusters identified in both HC and ALS groups (Figure 3) were similar

to those conventionally reported in the literature (Michel &

Koenig, 2018).

The portion of recordings explained by the four microstate proto-

types (i.e., explained variance) was 58% for HC and 54% for the ALS

group. The four topographies demonstrated spatial correlation

between the ALS and the HC groups (Pearson's correlation coeffi-

cient: ρ>0:9) and the distributions of the explained variance did not

differ between the two groups (2-sample Kolmogorov–Smirnov test,

p= .7, respectively).

3.2 | Modulation of microstate properties by ALS
disease

3.2.1 | Distinct microstate properties between HC
and ALS cohorts

There were no differences in the GEV distributions of the microstate

classes between ALS (measured at the first timepoint) and control

groups after FDR correction (q < 0.1). Microstate class B, in particular,

seems to be most affected by ALS. The occurrences of both microstate

classes A and B were higher in the ALS group (Figure 4, occurrence A:

p = .03, r = �.2, 1 � β = 0.50, AUC = 0.59; occurrence B: p = .008,

r = �.2, 1 � β = 0.65, AUC = 0.60). The coverages of classes A and B

were also significantly higher in the ALS group (Figure 4, coverage A:

F IGURE 2 Microstates' stages of analysis. (a) ALS and HC cohorts were compared cross-sectionally based on the microstate characteristics
extracted from the sequences of microstates. The longitudinal changes of the extracted microstate characteristics were additionally examined.
Both cross-sectional and longitudinal characteristics of the microstate sequences were analysed in association with clinical measures. (b) The
dynamics hidden inside the sequence of microstates were studied based on information theory.
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p = .02, r = �.2, 1 � β = 0.53, AUC = 0.59, coverage B: p = .03,

r = �.2, 1 � β = 0.48, AUC = 0.59). There was an imbalance between

microstate classes – the duration of microstate A was significantly

higher in the ALS cohort, whereas the duration of class D was signifi-

cantly lower (Figure 4, duration A: p = .04, r = �0.2, 1 � β = 0.41,

AUC = 0.58; duration D: p = .02, r = .2, 1 � β = 0.48, AUC = 0.60).

The transition probabilities were significantly different between

groups for 7 out of 12 transitions (Figure 5). The largest difference

between HC and ALS groups was observed for the transition of micro-

state C to microstate D (p¼ :004,r¼ :3,1�β¼0:74,AUC¼0:63). The

transition C!D was more frequent in healthy controls.

3.2.2 | Longitudinal changes of microstate
properties in ALS

The longitudinal analysis of the microstate properties in the ALS group

revealed a significant decrease in class B duration (5% increase) and

GFP over time (2% increase) (Figure 6). The results emphasized the

importance of taking into account different baseline values (using a

random intercept model) between individuals and different rates of

change over time (using a random slope model). This approach allows

to effectively discern the sources of variability. In the longitudinal

model of class B duration, the random slope variation accounts for

�1% of the total variance. In addition, roughly 60% of the outcome var-

iance is attributable to person-specific differences at baseline. Similarly,

for class B GFP, 4% of the total variance is attributed to random-time

effects, while 70% is attributed to intercept variation. A summary of

the linear mixed-effects models can be found in Table 1.

Gender, age or medication did not have a significant effect on the

observed cross-sectional differences in microstate properties between ALS

and HC groups or longitudinal effects in the ALS group (Note 3 in Data S1).

3.3 | Longitudinal changes of clinical measures
in ALS

The clinical scores were also modelled using a linear mixed-effects

model to investigate individual differences in progression (Note 2 in

Data S1). As expected, significant time effects were observed for each

F IGURE 3 Spatial topographies of the four microstate classes labelled A–D for both the HC and the ALS groups. The polarity is not taken
into account. The microstate maps were reordered, according to their topographies, to fit the literature. The contribution of each class to the
sequence of microstates is indicated below (in percentage).
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ALSFRS-R subscore (p < .001) (bulbar, lower limbs, upper limbs, respi-

ratory), with a 0.1 to 0.2 points decline per month. The ECAS Total

scores also significantly increased over time (p = .02, 0.2 points

increase per month) but no increase was observed in the BBI

scores (p = .05).

3.3.1 | Changes in microstate properties are
associated with cognitive decline and prognosis

We found that microstates episodes are not only affected by the dis-

ease but their characteristics are also associated with the level of

cognitive decline. People with ALS who had shorter durations of

microstate class B tended to have faster lower motor declines. Individ-

uals with a faster decrease in microstate C coverage had a slower

decline in gross motor skills (Figure 7).

Cognitively and behaviourally impaired participants (ALScbi,

n = 69) with lower transition probabilities in microstate A to D and C

to D showed a slower increase in ECAS total scores. ECAS scores gen-

erally increase over time due to non-random dropout or practice effect.

At subject level, if these participants showed less of a practice effect it

can be interpreted as a sign of cognitive decline. A lower transition

probability between microstates C and B was also associated with

shorter survival and faster increase in ECAS total scores (Figure 7).

F IGURE 4 Distributions of specific characteristics for the microstate classes (A–D) for HC and ALS cohorts. Significant differences were
observed for the coverage of classes A and B (coverage A: p = .02; coverage B: p = .03), the occurrence of classes A and B (occurrence A:
p = .03; occurrence B: p = .008), and a significant difference was also observed for the duration of classes A and D microstate (duration A:
p = .04, duration D: p = .02). No significant difference was observed for the GEV of the microstates. All effect sizes were moderate (jrj = 0.2).
Benjamini and Krieger FDR, q < 0.1, was applied. *p ≤ .05; **p ≤ .01.
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3.4 | Influence of ALS on temporal dependencies
in microstate sequences

3.4.1 | Memory effects in the sequences of
microstates

For both HC and ALS groups, there were no long-range memory

effects in the microstate sequences, as typically observed (Al Zoubi

et al., 2019; von Wegner et al., 2017, 2018). This can be seen in the

decay of the periodic peaks of the AIF for time lags larger than 1s

(Note 4 in Data S1). The AIF inspection showed that the temporal pre-

dictive information in previous time points dependence is less than

1‰ of that in the current time point (>1 s lag).

The Markovianity tests were not significant for any order

between zero and two, showing no Markov property (or ‘memoryless’
property, meaning the past is not important as long as the present is

F IGURE 5 Significant differences in the transition probabilities
for the microstates classes (A–D) between HC and ALS cohorts (7 out
of 12 transitions). The blue arrows represent higher transition
probabilities in ALS, while the red arrows represent higher transitions
in controls. Effect size jrj are represented above each arrow and the
thickness of the arrows is equal to 10 � jrj. Benjamini and Krieger FDR,
q < 0.1. Larger effect (r = .3) was observed for the transition from
C to D.

F IGURE 6 Directions of the significant (q < 0.05) longitudinal microstate changes per microstate class. Grey lines represent linear models of
microstate property change per participant (based on random-effects), while red lines represent the overall linear changes (based on fixed-
effects). Crosses represent recording times for each participant. Microstate duration is expressed in ms. Global field power (GFP) is expressed
in μV.

TABLE 1 Model parameter estimates from longitudinal analyses
of the microstates' properties.

Class B

Duration GFP

Log-likelihood �670 �370

Fixed-effects

Intercept 59 (0.6) ms*** 4 (0.2) μV***

Time 0.05 (0.02)
ms/month*

0.02 (0.005)
μV/month***

Random-effects

Intercept variance 3 ms2 2 μV2

Time variance 0.02 (ms/month)2 0.01 (μV/month)2

Residual 2 ms 0.6 μV

Note: Fixed and random-effects of the models describing microstate

occurrence, duration, coverage, global explained variance (GEV) and global

field power (GFP) progressions over the time of the disease were

computed. Only models with significant time effects (FDR correction,

q = 0.05) are shown. Significant time effects are shown in bold and

shading. Standard errors were added in parenthesis for fixed-effects. The

analysis included 129 patients and 1020 observations.

*p < .05; **p < .01; ***p < .001.
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F IGURE 7 Significant Spearman correlations between clinical scores progressions and properties of microstates classes for ALS cohort and
subgroup of patients with distinct cognitive profiles (ALScbi). Solid lines represent monotonically increasing/decreasing spline interpolations used
for fitting monotone curves to the data. FDR correction at 0.05. TP, transition probability.
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known) in the microstate sequences for ALS or HC groups (order 0:

p�0; order 1: p<3:6�10�72; order 2: p<1:6�10�26). Information

from the current microstate is not enough to define the transition

probability to the next microstate (Markov order 0). Information from

the current and previous microstates is not enough to define the tran-

sition probability (Markov order 1). Information from the current and

two previous microstates is still not enough to define the transition

probability (Markov order 2). The rejection of the null hypotheses in

the G-tests for low-order Markov property reveals memory effects

stored at least two microstates in the past.

3.4.2 | Reduced dynamicity of microstate
transitions in late-stage ALS

In controls and individuals with early-stage ALS, the percentage of

people with predominantly non-stationary transition matrices

decreased at a similar rate as the block length was increased (where

block length is the time window over which the transition probabilities

were studied) (Figure 8). Participants in the late stage of ALS (King's

stage 4) were more likely to have stationary transition matrices. The

frequency of a transition between two classes is staying the same in

different blocks, thus becoming independent of time. In �4 s blocks,

significantly more individuals with late-stage ALS (8%) have stationary

transition matrices than individuals from earlier stages (1%) (Mann–

Whitney U test, p = .0032, FDR at 0.05). Higher stability in the transi-

tions between microstate classes has been interpreted as a reduction

in the dynamicity of neuronal connectivity (Al Zoubi et al., 2019; von

Wegner et al., 2017). No significant difference was observed between

the King's stages <4 and the HC group.

For 54% of the HC and 58% of the individuals with ALS, the likeli-

hood of passing from microstate class Mi to class Mj was not statisti-

cally equivalent to the likelihood of transitioning from Mj to Mi. In

most participants, the transition matrices were asymmetric. However,

only 49% of individuals with late-stage ALS had asymmetric transition

matrices.

4 | DISCUSSION

The results of this study demonstrate that the properties of EEG

microstates can provide insight into ALS prognosis, particularly the

degree of cognitive decline over time. The EEG microstates have been

examined in a large cohort of people with ALS (n = 129) and healthy

controls (n = 78), enabling a cross-sectional analysis. This analysis

revealed that the standard properties of microstate classes A, B and D

differ between ALS and control groups (Figure 4), which may indicate

dysfunction in the somatosensory and attention networks. There

were also significant differences in microstate transitions between

ALS and control groups, Figure 5, suggesting that the normal fluctua-

tions in neural activity are altered in ALS. We also demonstrated that

as ALS progresses, the neural dynamics undergo further changes. This

is shown by longitudinal changes we observed in the standard proper-

ties of microstates (Table 1, Figure 6) and their temporal dependencies

(Figure 8). Participants with late-stage disease showed more symme-

try and stationarity in their transition matrices (Figure 8), which could

reflect reduced neuronal flexibility (dynamicity in switching between

brain microstates).

Finally, the correlations between microstate properties and ALS

prognosis revealed that higher duration of class B and faster increase

of class C coverage over time are associated with a slower decline in

gross motor skills in ALS. For cognitively and behaviourally impaired

patients, lower transition probabilities from A to D, C to B and C to D

are specifically associated with cognitive decline. This suggests that

the microstate parameters have particular potential for development

as prognostic biomarkers for ALS.

4.1 | Changes in microstate properties in ALS

We found that four cluster prototypes (Figure 3) explained �60% of

the variance and exhibited similar topographies in healthy controls

and ALS groups (they were also similar to the maps described in the

literature, see review; Michel & Koenig, 2018). In studies including

more topographies, the four maps initially found in 1999 (Koenig

et al., 1999) are usually observed along other topographies, indepen-

dently of ages, mental states or neurological conditions (Al Zoubi

et al., 2019; Custo et al., 2014; Faber et al., 2021; Zanesco

et al., 2020). The original A-D labels were kept based on topographical

similarity to the initial maps. Consistent with previous studies

F IGURE 8 Ratio of subjects (HC, ALS patients in King's stage
4 and lower) with significantly (p < .01) non-stationary microstates
transition matrices for different window lengths. For a �4 s window,
significantly more people with King's stage 4 disease (8%) have
stationary transition matrices than patients from earlier stages (1%)
(Mann–Whitney U test, p = .0047). Benjamini and Krieger FDR,
q < 0.05, was applied. *p ≤ .05; **p ≤ .01.
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(Michel & Koenig, 2018), we observed that four microstate prototypes

explained at best the variance of topographical patterns in unrelated

data. This cross-validation check of the optimal number of microstates

ensured the microstate prototypes were not representing recording

noise (Poulsen et al., 2018).

4.1.1 | Distinct microstate properties between HC
and ALS cohorts

The statistically significant increase in microstate class A duration and

microstate class B coverage in the ALS group, when compared with

healthy controls, is similar to what was observed in Parkinson disease

(Chu et al., 2020), and in multiple sclerosis studies (Gschwind

et al., 2016). The increase in class A and B coverage has also been

demonstrated in Huntington's disease (Faber et al., 2021), and an

increase in class A occurrence has been documented in both schizo-

phrenia (Lehmann et al., 2005) and spastic diplegia (Gao et al., 2017).

The results of previous fMRI-EEG studies suggest that class A

originates from the bilateral temporal gyri (Britz et al., 2010), occipital

and posterior cingulate areas (Pascual-Marqui et al., 2014) or the sen-

sorimotor cortex (Yuan et al., 2012). Diverse interpretations of micro-

state class A's functional role have been reported; initially linked with

the auditory network (Britz et al., 2010; Custo et al., 2017), a broader

involvement including visual processing has been suggested, due to its

increased coverage during visualization-oriented tasks compared with

verbalization tasks (Milz et al., 2017). Both of these interpretations

would situate the sources of class A microstate within the sensory

network, which is known to be affected in ALS. A recent review analy-

sis conducted by Tarailis et al. has further proposed a potential link

between microstate class A and varying levels of brain arousal or

alertness (Tarailis et al., 2023). Class B is thought to originate in the

occipital lobe and is associated with visual function (Britz et al., 2010).

Both microstates A and B appear to reflect the activation of sensory

networks, as indicated by their modulations in multiple sclerosis

(Gschwind et al., 2016) and movement disorders in general (ALS, Hun-

tington, Parkinson and spastic disorder).

Microstate class D occurrence was higher in the ALS cohort than

in HC. A high contribution of fronto-parietal areas and anterior/

posterior cingulate cortices (Britz et al., 2010; Pascual-Marqui

et al., 2014) was observed during microstate class D, which altogether

suggest an association of microstate D with the attention network.

Microstates classes C and D have been associated with ‘high-order
functional networks’ (as opposed to somatosensory or motor net-

works) (Michel & Koenig, 2018). The balance between such microstate

classes was observed to be affected by neuropsychiatric conditions

like schizophrenia or FTD (Nishida et al., 2013). While ALS is not pri-

marily classified as a psychiatric disorder, the condition can often pre-

sent with cognitive and behavioural symptoms.

Taken together the cross-sectional comparisons of microstate

properties between ALS and HC cohorts echo the dual impairment of

sensorimotor and cognitive functions in ALS.

4.1.2 | Longitudinal changes of microstate
properties in ALS

For individuals with ALS, the duration and the GFP of class B signifi-

cantly increased by 0.05 and 0.02 points per month (Table 1). Neither

of those properties was significantly different between the HC group

and ALS group at the first recording session. The microstate proper-

ties showing significant differences between ALS and HC groups did

not reveal any longitudinal change. This finding suggests the presence

of important neuronal changes early in the disease, leading to distinct

microstate properties in the ALS and HC groups. There may be slower

or delayed continuous mechanisms causing changes in other micro-

state properties. Since early degeneration is usually compensated by

remaining neuronal networks in neurodegeneration, such slower

mechanisms may be compensatory. In ALS, symptoms only become

apparent when a resilience threshold is crossed (Benatar et al., 2022;

Keon et al., 2021).

4.2 | Altered microstate dynamics in ALS

Previous literature has shown that there are differences in microstate

transition probabilities in mood or mental disorders (Al Zoubi

et al., 2019; Lehmann et al., 2005) and FTD (Nishida et al., 2013), and

we hypothesised that the transition probabilities would also be altered

in participants with ALS that exhibited cognitive and behavioural

symptoms. As expected, we observed significant differences in micro-

state dynamics between ALS and HC groups in 7 out of 12 of the

transition probabilities (q < 0.1, FDR correction) (Figure 5). More spe-

cifically, we observed that patients switch less frequently from micro-

state C to microstate D Figure 5.

The results of previous studies on stroke, which reported no sig-

nificant difference in transition probabilities compared with controls

(Hao et al., 2022), suggest that the temporal dynamics of neural net-

works are not solely due to structural changes.

In this study, we employed the information–theoretical analysis

proposed by von Wegner et al. to further investigate the dynamics

of EEG microstates (von Wegner et al., 2017). Our findings align

with their results indicating that the microstate sequence does not

adhere to a low-order Markov property, suggesting that microstate

labelling is influenced by not only the current state or the current

and last two states, but also previous states. Furthermore, our anal-

ysis of the auto-information function revealed non-Markovian

behaviour for time lags of up to 2 s, consistent with previous

research (Al Zoubi et al., 2019; von Wegner et al., 2017), indicating

the presence of extended short-range memory effects in the micro-

state sequences.

For the majority of the subjects (HC and ALS cohorts with King's

stages <4), the transition matrices were asymmetric. This has been

previously interpreted as a sign of ‘non-equilibrium’ of the neural net-

works (von Wegner et al., 2017). A lack of symmetry in transition

matrices has been interpreted as a positive property, implying the
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existence of a ‘driving force’ (if there were no ‘driving force’, and
the neural networks were at equilibrium, the transition from one state

to a second state would be equal to the transition from the second

state to the first one). It is not surprising therefore that the late-stage

group (King's stages 4) tended to have more patients with symmetric

and stationary transition matrices, Figure 8. The increased number of

symmetric and stationary transition matrices observed in late-stage

ALS may correspond to the dysfunction of this ‘driving-force’. The
thalamus, in particular, has been described as a key relay of energy,

and could represent a hypothetic ‘driving-force’ (von Wegner

et al., 2017) (thalamic involvement has been demonstrated in motor

neuron diseases [Chipika, Christidi, et al., 2020; Chipika, Finegan,

et al., 2020; Deymeer et al., 1989]).

The observed change in microstate transitions in late-stage dis-

ease could also be explained by the distress individuals with ALS may

experience toward the end of their life. A higher ratio of symmetrical

and stationary matrices in individuals with mood and anxiety disorders

compared with healthy controls has been similarly shown by (Al Zoubi

et al., 2019), which they interpreted as arising from ‘ruminative

thoughts’. Increased equilibrium could additionally arise due to a

reduction in the flexibility of brain dynamics in ALS. A previous study

has shown that the incidence of ‘neuronal avalanches’, a measure of

brain dynamics determined by quantifying aperiodic bursts of neuro-

nal activity diffusing across the brain, was reduced in ALS compared

with healthy controls cohort and was associated with disease stage

(Polverino et al., 2022).

4.3 | Clinical relevance of EEG microstates

The main finding from the analysis of the correlation between micro-

state parameters and clinical measures was that lower duration of

microstate class B and slower change in coverage of class C were sig-

nificantly associated with faster functional decline in the lower limbs

(Figure 7). These measures, therefore, have potential utility in prog-

nostic prediction of motor function.

We evaluated correlations with clinical scores specifically for

subgroups of ALS patients with distinct cognitive profiles as altered

microstates characteristics have been specifically associated with

impaired cognition and mental health (Al Zoubi et al., 2019; Dierks

et al., 1997; Nishida et al., 2013; Tait et al., 2020). In cognitively and

behaviourally impaired patients, the lower transition probabilities A

to D, and C to D are additionally associated with cognitive decline.

This decline is suggested by the gradual improvement in cognitive

performance (measured by ECAS Total scores), which is slower when

compared with the average practice effect. Additionally, a lower

transition rate from C to B was associated with shorter survival

(Figure 7).

The transition probability C ! B appear to be a key potential bio-

marker of ALS prognosis. Higher transition probabilities from C to B

seem to represent signs of slower decline in ALS. This supports our

hypothesis that changes in microstates dynamics could predict the

progression of ALS, including cognitive decline.

4.4 | Limitations and future directions

The EEG microstate analysis is based on a repeatedly observed phe-

nomenon representing ongoing thought processes. However, there

remains a lack of understanding of the neural mechanisms leading to

the presence of microstates and their transitions. It remains unclear

how microstates actually reflect conscious thoughts, despite new

insights on microstates in various states of consciousness (e.g., sleep,

anaesthesia, wakefulness) (Bréchet & Michel, 2022) and rough estima-

tions of the brain sources each microstate class originate from

(Bréchet et al., 2020; Britz et al., 2010; Custo et al., 2017; Milz

et al., 2017; Musso et al., 2010; Pascual-Marqui et al., 2014). The

interpretation of microstates' characteristics often relies heavily on

estimated brain sources. Previous studies of the brain sources under-

lying different microstates have reported diverse findings, possibly as

a result of differences in methodology and/or lack of temporal inde-

pendence (difficulty of dissociating microstate sources as microstates

are a continuous process). This complicates the interpretation of

microstate changes (Britz et al., 2010; Mishra et al., 2020; Yuan

et al., 2012). Microstates are fundamentally defined based on sensor

space analysis. Therefore, for a precise association with brain sources,

other methods can provide more information, such as examining pat-

terns of activation directly in brain networks' functional connectivity.

In this study, over-interpretation was carefully avoided by cross-

examining microstates' hypothetic generators with paradigm-based

studies.

One important consideration is the possible non-random dropout

within the ALS cohort over time, wherein individuals with greater

impairments are more likely to be lost to attrition. In the case of longi-

tudinal ECAS scores, the observed increase may not solely be attrib-

uted to the practice effect but could also be influenced by artificial

inflation of cognitive scores due to the dropout of more impaired par-

ticipants. However, this potential bias is mitigated when examining

correlations between EEG and clinical measures progressions at the

subject level, as both are expected to be similarly affected by non-

random dropout.

A limitation of the present study is the heterogeneity of onsets

and cognitive/behavioural ALS profiles. In future studies, a more con-

tinuous collection of data should help to account for a greater number

of clinical profiles and we envisage that a comparison of microstates

in different ALS subphenotypes will be possible.

5 | CONCLUSION

These RS EEG microstate results indicate that ALS impacts both sen-

sory and higher-order networks. These findings are consistent with

the range of motor, respiratory, and cognitive impairments observed

in ALS clinical presentations. Temporal dynamics of resting state EEG

enable us to further quantify the multidimensional impairments.

Importantly, we found reduced dynamicity in brain state transitions,

which may occur as a result of declining cognition, repetitive

thoughts, anxiety, or neuronal loss. We have shown that changes in
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microstate properties are associated with cognitive decline and prog-

nosis, making them a promising prognostic marker for ALS.

AUTHOR CONTRIBUTIONS

Marjorie Metzger, Bahman Nasseroleslami, Orla Hardiman, Niall Pen-

der, Muthuraman Muthuraman, Peter Bede: Conceptualisation. Marj-

orie Metzger, Stefan Dukic, Roisin McMackin, Eileen Giglia, Matthew

Mitchell, Saroj Bista, Emmet Costello, Colm Peelo, Yasmine Tadjine,

Vladyslav Sirenko, Serena Plaitano, Amina Coffey, Prabhav Mehra:

Investigation (Data acquisition). Marjorie Metzger, Bahman Nasserole-

slami: Methodology. Marjorie Metzger: Formal Analysis. Roisin

McMackin, Lara McManus, Mark Heverin, Bahman Nasseroleslami,

Orla Hardiman: Project Administration. Bahman Nasseroleslami, Orla

Hardiman: Resources. Bahman Nasseroleslami, Orla Hardiman, Niall

Pender, Muthuraman Muthuraman, Peter Bede: Funding Acquisition.

Marjorie Metzger, Stefan Dukic, Bahman Nasseroleslami: Software.

Bahman Nasseroleslami, Orla Hardiman: Supervision. Marjorie Metz-

ger: Validation. Marjorie Metzger: Visualisation. Marjorie Metzger:

Writing-original draft. Marjorie Metzger, Lara McManus, Bahman

Nasseroleslami, Orla Hardiman: Writing-review and editing.

ACKNOWLEDGEMENTS

We would like to thank the Wellcome HRB Clinical Research Facility

at St James's Hospital, as well as all the participants, their families and

the staff involved in the study.

FUNDING INFORMATION

Funding for this study was provided by the Thierry Latran Foundation

(Project award to Orla Hardiman), the Health Research Board of

Ireland (HRA-POR-2013-246; MRCG-2018-02), the Irish/UK Motor

Neurone Disease Research Foundation (IceBucket Award;

MRCG2018-02 and McManus/Apr22/888-791 to Lara McManus and

McMackin/Oct20/972-799 to Roisin McMackin), Irish Research

Council (Government of Ireland Postdoctoral Research Fellowship

GOIPD/2015/213 to Bahman Nasseroleslami and Government of

Ireland Postdoctoral Postgraduate Scholarship GOIPG/2017/1014 to

Roisin McMackin) and Science Foundation Ireland (16/ERCD/3854

and Royal Society/SFI URF\R1\221917 to Lara McManus). Peter

Bede and the Computational Neuroimaging Group are supported by

the Health Research Board of Ireland (Emerging Investigator Award

HRB-EIA-2017-019), the Irish Institute of Clinical Neuroscience (IICN)

– Novartis Ireland research grant, The Iris O'Brien Foundation and

The Perrigo clinician–scientist research fellowship. Muthuraman

Muthuraman is supported by the German Collaborative Research

(DFG-CRC-1193 and CRC-TR-128).

CONFLICT OF INTEREST STATEMENT

No conflict of interest to disclose.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author on reasonable request from qualified investiga-

tors. Data sharing is subject to the participant's consent and approvals

by the Data Protection Officer and the Office of Corporate Partner-

ship and Knowledge Exchange in Trinity College Dublin. The code

used to compute the microstates for the analyses described in this

article can be found at: https://github.com/atpoulsen/Microstate-

EEGlab-toolbox. We additionally adapted the Python code freely

available at https://github.com/Frederic-vW/eeg_microstates to

MATLAB.

ORCID

Marjorie Metzger https://orcid.org/0009-0007-5463-1931

Bahman Nasseroleslami https://orcid.org/0000-0002-2227-2176

REFERENCES

Abrahams, S., Newton, J., Niven, E., Foley, J., & Bak, T. H. (2014). Screen-

ing for cognition and behaviour changes in ALS. Amyotrophic Lateral

Sclerosis and Frontotemporal Degeneration, 15(1-2), 9–14. https://doi.
org/10.3109/21678421.2013.805784

Al Zoubi, O., Mayeli, A., Tsuchiyagaito, A., Misaki, M., Zotev, V., Refai, H.,

Paulus, M., Bodurka, J., Tulsa 1000 Investigators, Aupperle, R. L.,

Khalsa, S. S., Feinstein, J. S., Savitz, J., Cha, Y.-H., Kuplicki, R., &

Victor, T. A. (2019). EEG microstates temporal dynamics differentiate

individuals with mood and anxiety disorders from healthy subjects.

Frontiers in Human Neuroscience, 13, 56. https://doi.org/10.3389/

fnhum.2019.00056

Bai, Y., He, J., Xia, X., Wang, Y., Yang, Y., Di, H., Li, X., & Ziemann, U.

(2021). Spontaneous transient brain states in EEG source space in dis-

orders of consciousness. NeuroImage, 240, 118407. https://doi.org/

10.1016/j.neuroimage.2021.118407

Balendra, R., Jones, A., Jivraj, N., Knights, C., Ellis, C. M., Burman, R.,

Turner, M. R., Leigh, P. N., Shaw, C. E., & Al-Chalabi, A. (2014). Esti-

mating clinical stage of amyotrophic lateral sclerosis from the ALS

functional rating scale. Amyotrophic Lateral Sclerosis and Frontotem-

poral Degeneration, 15(3/4), 279–284. https://doi.org/10.3109/

21678421.2014.897357

Beasley, T. M., Erickson, S., & Allison, D. B. (2009). Rank-based inverse

normal transformations are increasingly used, but are they merited?

Behavior Genetics, 39(5), 580–595. https://doi.org/10.1007/s10519-
009-9281-0

Benatar, M., Wuu, J., McHutchison, C., Postuma, R. B., Boeve, B. F.,

Petersen, R., Ross, C. A., Rosen, H., Arias, J. J., Fradette, S.,

McDermott, M. P., Shefner, J., Stanislaw, C., Abrahams, S.,

Cosentino, S., Andersen, P. M., Finkel, R. S., Granit, V., Grignon, A.-L.,

… First International Pre-Symptomatic ALS Workshop. (2022). Pre-

venting amyotrophic lateral sclerosis: Insights from pre-symptomatic

neurodegenerative diseases. Brain, 145(1), 27–44. https://doi.org/10.
1093/brain/awab404

Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-

up procedures that control the false discovery rate. Biometrika, 93(3),

491–507. https://doi.org/10.1093/biomet/93.3.491

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A.

(2015). The PREP pipeline: Standardized preprocessing for large-scale

EEG analysis. Frontiers in Neuroinformatics, 9, 16. https://doi.org/10.

3389/fninf.2015.00016

Bréchet, L., Brunet, D., Perogamvros, L., Tononi, G., & Michel, C. M.

(2020). EEG microstates of dreams. Scientific Reports, 10, 17069.

https://doi.org/10.1038/s41598-020-74075-z

Bréchet, L., & Michel, C. M. (2022). EEG microstates in altered states of

consciousness. Frontiers in Psychology, 13, 856697.

Britz, J., van de Ville, D., & Michel, C. M. (2010). BOLD correlates of EEG

topography reveal rapid resting-state network dynamics. NeuroImage,

52(4), 1162–1170. https://doi.org/10.1016/j.neuroimage.2010.

02.052

14 of 17 METZGER ET AL.

 10970193, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26536 by U
niversitaetsbibl A

ugsburg, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/atpoulsen/Microstate-EEGlab-toolbox
https://github.com/atpoulsen/Microstate-EEGlab-toolbox
https://github.com/Frederic-vW/eeg_microstates
https://orcid.org/0009-0007-5463-1931
https://orcid.org/0009-0007-5463-1931
https://orcid.org/0000-0002-2227-2176
https://orcid.org/0000-0002-2227-2176
https://doi.org/10.3109/21678421.2013.805784
https://doi.org/10.3109/21678421.2013.805784
https://doi.org/10.3389/fnhum.2019.00056
https://doi.org/10.3389/fnhum.2019.00056
https://doi.org/10.1016/j.neuroimage.2021.118407
https://doi.org/10.1016/j.neuroimage.2021.118407
https://doi.org/10.3109/21678421.2014.897357
https://doi.org/10.3109/21678421.2014.897357
https://doi.org/10.1007/s10519-009-9281-0
https://doi.org/10.1007/s10519-009-9281-0
https://doi.org/10.1093/brain/awab404
https://doi.org/10.1093/brain/awab404
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.3389/fninf.2015.00016
https://doi.org/10.3389/fninf.2015.00016
https://doi.org/10.1038/s41598-020-74075-z
https://doi.org/10.1016/j.neuroimage.2010.02.052
https://doi.org/10.1016/j.neuroimage.2010.02.052


Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A., Tagliazucchi, E.,

Borisov, S., Michel, C. M., & Laufs, H. (2012). EEG microstates of

wakefulness and NREM sleep. NeuroImage, 62(3), 2129–2139. https://
doi.org/10.1016/j.neuroimage.2012.05.060

Burke, T., Pinto-Grau, M., Lonergan, K., Bede, P., O'Sullivan, M.,

Heverin, M., Vajda, A., McLaughlin, R. L., Pender, N., & Hardiman, O.

(2017). A cross-sectional population-based investigation into behav-

ioral change in amyotrophic lateral sclerosis: Subphenotypes, staging,

cognitive predictors, and survival. Annals of Clinical and Translational

Neurology, 4(5), 305–317. https://doi.org/10.1002/acn3.407
Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., &

Nakanishi, A. (1999). The ALSFRS-R: A revised ALS functional rating

scale that incorporates assessments of respiratory function. BDNF ALS

Study Group (Phase III). Journal of the Neurological Sciences, 169(1-2),

13–21. https://doi.org/10.1016/s0022-510x(99)00210-5
Chipika, R. H., Christidi, F., Finegan, E., Shing, L. H., McKenna, M. C.,

Chang, K. M., Karavasilis, E., Doherty, M. A., Hengeveld, J. C.,

Vajda, A., Pender, N., Hutchinson, S., Donaghy, C., McLaughlin, R. L.,

Hardiman, O., & Bede, P. (2020). Amygdala pathology in amyotrophic

lateral sclerosis and primary lateral sclerosis. Journal of the Neurological

Sciences, 417, 117039. https://doi.org/10.1016/j.jns.2020.117039

Chipika, R. H., Finegan, E., Shing, L. H., McKenna, M. C., Christidi, F.,

Chang, K. M., Doherty, M. A., Hengeveld, J. C., Vajda, A., Pender, N.,

Hutchinson, S., Donaghy, C., McLaughlin, R. L., Hardiman, O., &

Bede, P. (2020). “Switchboard” malfunction in motor neuron diseases:

Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis

and primary lateral sclerosis. NeuroImage: Clinical, 27, 102300. https://

doi.org/10.1016/j.nicl.2020.102300

Chu, C., Wang, X., Cai, L., Zhang, L., Wang, J., Liu, C., & Zhu, X. (2020). Spa-

tiotemporal EEG microstate analysis in drug-free patients with Parkin-

son's disease. NeuroImage: Clinical, 25, 102132. https://doi.org/10.

1016/j.nicl.2019.102132

Costello, E., Lonergan, K., Madden, C., O'Sullivan, M., Mays, I., Heverin, M.,

Pinto-Grau, M., Hardiman, O., & Pender, N. (2020). Equivalency and

practice effects of alternative versions of the Edinburgh cognitive

and behavioral ALS screen (ECAS). Amyotrophic Lateral Sclerosis and

Frontotemporal Degeneration, 21(1–2), 86–91. https://doi.org/10.

1080/21678421.2019.1701681

Costello, E., Rooney, J., Pinto-Grau, M., Burke, T., Elamin, M., Bede, P.,

McMackin, R., Dukic, S., Vajda, A., Heverin, M., Hardiman, O., &

Pender, N. (2021). Cognitive reserve in amyotrophic lateral sclerosis

(ALS): A population-based longitudinal study. Journal of Neurology,

Neurosurgery & Psychiatry, 92(5), 460–465. https://doi.org/10.1136/
jnnp-2020-324992

Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287–
290. https://doi.org/10.1007/BF02289138

Custo, A., van de Ville, D., Wells, W. M., Tomescu, M. I., Brunet, D., &

Michel, C. M. (2017). Electroencephalographic resting-state networks:

Source localization of microstates. Brain Connectivity, 7(10), 671–682.
Custo, A., Vulliemoz, S., Grouiller, F., van de Ville, D., & Michel, C. (2014).

EEG source imaging of brain states using spatiotemporal regression.

NeuroImage, 96, 106–116. https://doi.org/10.1016/j.neuroimage.

2014.04.002

Deymeer, F., Smith, T. W., DeGirolami, U., & Drachman, D. A. (1989). Tha-

lamic dementia and motor neuron disease. Neurology, 39(1), 58.

https://doi.org/10.1212/WNL.39.1.58

Dierks, T., Jelic, V., Julin, P., Maurer, K., Wahlund, L. O., Almkvist, O.,

Strik, W. K., & Winblad, B. (1997). EEG-microstates in mild memory

impairment and Alzheimer's disease: Possible association with dis-

turbed information processing. Journal of Neural Transmission, 104(4),

483–495. https://doi.org/10.1007/BF01277666
Dukic, S., Iyer, P. M., Mohr, K., Hardiman, O., Lalor, E. C., &

Nasseroleslami, B. (2017). Estimation of coherence using the median is

robust against EEG artefacts. 2017 39th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), 2017, 3949–3952. https://doi.org/10.1109/EMBC.2017.

8037720

Dukic, S., McMackin, R., Buxo, T., Fasano, A., Chipika, R., Pinto-Grau, M.,

Costello, E., Schuster, C., Hammond, M., Heverin, M., Coffey, A.,

Broderick, M., Iyer, P. M., Mohr, K., Gavin, B., Pender, N., Bede, P.,

Muthuraman, M., Lalor, E. C., … Nasseroleslami, B. (2019). Patterned

functional network disruption in amyotrophic lateral sclerosis. Human

Brain Mapping, 40(16), 4827–4842. https://doi.org/10.1002/hbm.

24740

Dukic, S., McMackin, R., Costello, E., Metzger, M., Buxo, T., Fasano, A.,

Chipika, R., Pinto-Grau, M., Schuster, C., Hammond, M., Heverin, M.,

Coffey, A., Broderick, M., Iyer, P. M., Mohr, K., Gavin, B.,

McLaughlin, R., Pender, N., Bede, P., … Nasseroleslami, B. (2021). Rest-

ing-state EEG reveals four subphenotypes of amyotrophic lateral scle-

rosis. Brain, 145, awab322. https://doi.org/10.1093/brain/awab322

Elamin, M., Pinto-Grau, M., Burke, T., Bede, P., Rooney, J., O'Sullivan, M.,

Lonergan, K., Kirby, E., Quinlan, E., Breen, N., Vajda, A., Heverin, M.,

Pender, N., & Hardiman, O. (2017). Identifying behavioural changes in

ALS: Validation of the Beaumont Behavioural Inventory (BBI). Amyo-

trophic Lateral Sclerosis and Frontotemporal Degeneration, 18(1-2), 68–
73. https://doi.org/10.1080/21678421.2016.1248976

Evans, J., Olm, C., McCluskey, L., Elman, L., Boller, A., Moran, E.,

Rascovsky, K., Bisbing, T., McMillan, C. T., & Grossman, M. (2015).

Impaired cognitive flexibility in amyotrophic lateral sclerosis. Cognitive

and Behavioral Neurology, 28(1), 17–26. https://doi.org/10.1097/

WNN.0000000000000049

Faber, P. L., Milz, P., Reininghaus, E. Z., Mörkl, S., Holl, A. K.,

Kapfhammer, H.-P., Pascual-Marqui, R. D., Kochi, K., Achermann, P., &

Painold, A. (2021). Fundamentally altered global- and microstate EEG

characteristics in Huntington's disease. Clinical Neurophysiology,

132(1), 13–22. https://doi.org/10.1016/j.clinph.2020.10.006
Gao, F., Jia, H., Wu, X., Yu, D., & Feng, Y. (2017). Altered resting-state EEG

microstate parameters and enhanced spatial complexity in male ado-

lescent patients with mild spastic diplegia. Brain Topography, 30(2),

233–244. https://doi.org/10.1007/s10548-016-0520-4
Gschwind, M., Hardmeier, M., van de Ville, D., Tomescu, M. I.,

Penner, I.-K., Naegelin, Y., Fuhr, P., Michel, C. M., & Seeck, M. (2016).

Fluctuations of spontaneous EEG topographies predict disease state in

relapsing-remitting multiple sclerosis. NeuroImage: Clinical, 12, 466–
477. https://doi.org/10.1016/j.nicl.2016.08.008

Gschwind, M., Michel, C. M., & van de Ville, D. (2015). Long-range depen-

dencies make the difference—Comment on “A stochastic model for

EEG microstate sequence analysis”. NeuroImage, 117, 449–455.
https://doi.org/10.1016/j.neuroimage.2015.05.062

Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve

analysis for medical diagnostic test evaluation. Caspian Journal of Inter-

nal Medicine, 4(2), 627–635.
Hao, Z., Zhai, X., Cheng, D., Pan, Y., & Dou, W. (2022). EEG microstate-

specific functional connectivity and stroke-related alterations in brain

dynamics. Frontiers in Neuroscience, 16, 848737.

Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G.,

Robberecht, W., Shaw, P. J., Simmons, Z., & van den Berg, L. H. (2017).

Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 3(1),

17071. https://doi.org/10.1038/nrdp.2017.71

Honsbeek, R., Kuiper, T., & Metting Van Ruij, C. (1998). ActiveTwo system

[computer software]. Biosemi.

Keon, M., Musrie, B., Dinger, M., Brennan, S. E., Santos, J., &

Saksena, N. K. (2021). Destination amyotrophic lateral sclerosis. Fron-

tiers in Neurology, 12, 596006.

Koenig, T., Lehmann, D., Merlo, M. C. G., Kochi, K., Hell, D., & Koukkou, M.

(1999). A deviant EEG brain microstate in acute, neuroleptic-naive

schizophrenics at rest. European Archives of Psychiatry and Clinical Neu-

roscience, 249(4), 205–211. https://doi.org/10.1007/s004060050088

METZGER ET AL. 15 of 17

 10970193, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26536 by U
niversitaetsbibl A

ugsburg, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.neuroimage.2012.05.060
https://doi.org/10.1016/j.neuroimage.2012.05.060
https://doi.org/10.1002/acn3.407
https://doi.org/10.1016/s0022-510x(99)00210-5
https://doi.org/10.1016/j.jns.2020.117039
https://doi.org/10.1016/j.nicl.2020.102300
https://doi.org/10.1016/j.nicl.2020.102300
https://doi.org/10.1016/j.nicl.2019.102132
https://doi.org/10.1016/j.nicl.2019.102132
https://doi.org/10.1080/21678421.2019.1701681
https://doi.org/10.1080/21678421.2019.1701681
https://doi.org/10.1136/jnnp-2020-324992
https://doi.org/10.1136/jnnp-2020-324992
https://doi.org/10.1007/BF02289138
https://doi.org/10.1016/j.neuroimage.2014.04.002
https://doi.org/10.1016/j.neuroimage.2014.04.002
https://doi.org/10.1212/WNL.39.1.58
https://doi.org/10.1007/BF01277666
https://doi.org/10.1109/EMBC.2017.8037720
https://doi.org/10.1109/EMBC.2017.8037720
https://doi.org/10.1002/hbm.24740
https://doi.org/10.1002/hbm.24740
https://doi.org/10.1093/brain/awab322
https://doi.org/10.1080/21678421.2016.1248976
https://doi.org/10.1097/WNN.0000000000000049
https://doi.org/10.1097/WNN.0000000000000049
https://doi.org/10.1016/j.clinph.2020.10.006
https://doi.org/10.1007/s10548-016-0520-4
https://doi.org/10.1016/j.nicl.2016.08.008
https://doi.org/10.1016/j.neuroimage.2015.05.062
https://doi.org/10.1038/nrdp.2017.71
https://doi.org/10.1007/s004060050088


Kohe, C. (2010). Flt clean channels—SCCN. https://sccn.ucsd.edu/wiki/

Flt_clean_channels

Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T.,

Koukkou, M., Mucci, A., Pascual-Marqui, R. D., Saito, N.,

Wackermann, J., Winterer, G., & Koenig, T. (2005). EEG microstate

duration and syntax in acute, medication-naïve, first-episode schizo-

phrenia: A multi-center study. Psychiatry Research: Neuroimaging,

138(2), 141–156. https://doi.org/10.1016/j.pscychresns.2004.05.007
Lehmann, D., Ozaki, H., & Pal, I. (1987). EEG alpha map series: Brain micro-

states by space-oriented adaptive segmentation. Electroencephalogra-

phy and Clinical Neurophysiology, 67(3), 271–288. https://doi.org/10.
1016/0013-4694(87)90025-3

Ludolph, A., Drory, V., Hardiman, O., Nakano, I., Ravits, J.,

Robberecht, W., & Shefner, J. (2015). A revision of the El Escorial cri-

teria. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration,

16(5–6), 291–292. https://doi.org/10.3109/21678421.2015.1049183
Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying

the temporal dynamics of whole-brain neuronal networks: A review.

NeuroImage, 180, 577–593. https://doi.org/10.1016/j.neuroimage.

2017.11.062

Milz, P., Pascual-Marqui, R. D., Achermann, P., Kochi, K., & Faber, P. L.

(2017). The EEG microstate topography is predominantly determined

by intracortical sources in the alpha band. NeuroImage, 162, 353–361.
https://doi.org/10.1016/j.neuroimage.2017.08.058

Mishra, A., Englitz, B., & Cohen, M. X. (2020). EEG microstates as a contin-

uous phenomenon. NeuroImage, 208, 116454. https://doi.org/10.

1016/j.neuroimage.2019.116454

Mohr, K. S., Nasseroleslami, B., Iyer, P. M., Hardiman, O., & Lalor, E. C.

(2017). EyeBallGUI: A tool for visual inspection and binary marking of

multi-channel bio-signals [preprint]. Neuroscience. https://doi.org/10.

1101/129437

Murray, M. M., Brunet, D., & Michel, C. M. (2008). Topographic ERP ana-

lyses: A step-by-step tutorial review. Brain Topography, 20(4), 249–
264. https://doi.org/10.1007/s10548-008-0054-5

Musso, F., Brinkmeyer, J., Mobascher, A., Warbrick, T., & Winterer, G.

(2010). Spontaneous brain activity and EEG microstates. A novel

EEG/fMRI analysis approach to explore resting-state networks. Neuro-

Image, 52(4), 1149–1161. https://doi.org/10.1016/j.neuroimage.

2010.01.093

Nasseroleslami, B. (2018). An implementation of empirical Bayesian infer-

ence and non-null bootstrapping for threshold selection and power

estimation in multiple and single statistical testing. BioRxiv Preprints,

342964. https://doi.org/10.1101/342964

Nasseroleslami, B., Dukic, S., Broderick, M., Mohr, K., Schuster, C.,

Gavin, B., McLaughlin, R., Heverin, M., Vajda, A., Iyer, P. M.,

Pender, N., Bede, P., Lalor, E. C., & Hardiman, O. (2019). Characteristic

increases in EEG connectivity correlate with changes of structural MRI

in amyotrophic lateral sclerosis. Cerebral Cortex, 29(1), 27–41. https://
doi.org/10.1093/cercor/bhx301

Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K.,

Dierks, T., Strik, W., Kinoshita, T., & Koenig, T. (2013). EEG microstates

associated with salience and frontoparietal networks in frontotem-

poral dementia, schizophrenia and Alzheimer's disease. Clinical Neuro-

physiology, 124(6), 1106–1114. https://doi.org/10.1016/j.clinph.2013.
01.005

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip:

Open source software for advanced analysis of MEG, EEG, and inva-

sive electrophysiological data [research article]. Computational Intelli-

gence and Neuroscience, 2011, 1–9. https://doi.org/10.1155/2011/

156869

O'Toole, O., Traynor, B. J., Brennan, P., Sheehan, C., Frost, E., Corr, B., &

Hardiman, O. (2008). Epidemiology and clinical features of amyo-

trophic lateral sclerosis in Ireland between 1995 and 2004. Journal of

Neurology, Neurosurgery & Psychiatry, 79(1), 30–32. https://doi.org/10.
1136/jnnp.2007.117788

Pascual-Marqui, R. D., Lehmann, D., Faber, P., Milz, P., Kochi, K.,

Yoshimura, M., Nishida, K., Isotani, T., & Kinoshita, T. (2014). The rest-

ing microstate networks (RMN): Cortical distributions, dynamics, and

frequency specific information flow. arXiv Preprints.

Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation

of brain electrical activity into microstates: Model estimation and vali-

dation. IEEE Transactions on Biomedical Engineering, 42(7), 658–665.
https://doi.org/10.1109/10.391164

Phukan, J., Elamin, M., Bede, P., Jordan, N., Gallagher, L., Byrne, S.,

Lynch, C., Pender, N., & Hardiman, O. (2012). The syndrome of cogni-

tive impairment in amyotrophic lateral sclerosis: A population-based

study. Journal of Neurology, Neurosurgery & Psychiatry, 83(1), 102–108.
https://doi.org/10.1136/jnnp-2011-300188

Polverino, A., Lopez, E. T., Minino, R., Liparoti, M., Romano, A., Trojsi, F.,

Lucidi, F., Gollo, L. L., Jirsa, V., Sorrentino, G., & Sorrentino, P. (2022).

Flexibility of brain dynamics predicts clinical impairment in amyo-

trophic lateral sclerosis [preprint]. Neurology, 99, e2395–e2405.
https://doi.org/10.1101/2022.02.07.22270581

Poulsen, A. T., Pedroni, A., Langer, N., & Hansen, L. K. (2018). Microstate

EEGlab toolbox: An introductory guide. BioRxiv Preprints, 289850.

https://doi.org/10.1101/289850

Rights, J. D., & Sterba, S. K. (2021). Effect size measures for longitudinal

growth analyses: Extending a framework of multilevel model

R-squareds to accommodate heteroscedasticity, autocorrelation, non-

linearity, and alternative centering strategies. New Directions for Child

and Adolescent Development, 2021(175), 65–110. https://doi.org/10.
1002/cad.20387

Rooney, J., Byrne, S., Heverin, M., Corr, B., Elamin, M., Staines, A.,

Goldacre, B., & Hardiman, O. (2013). Survival analysis of Irish amyo-

trophic lateral sclerosis patients diagnosed from 1995-2010. PLoS One,

8(9), e74733. https://doi.org/10.1371/journal.pone.0074733

Ryan, M., Heverin, M., Doherty, M. A., Davis, N., Corr, E. M., Vajda, A.,

Pender, N., McLaughlin, R., & Hardiman, O. (2018). Determining the

incidence of familiality in ALS: A study of temporal trends in Ireland

from 1994 to 2016. Neurology: Genetics, 4(3), e239. https://doi.org/

10.1212/NXG.0000000000000239

Schielzeth, H., & Nakagawa, S. (2022). Conditional repeatability and the

variance explained by reaction norm variation in random slope models.

Methods in Ecology and Evolution, 13(6), 1214–1223. https://doi.org/
10.1111/2041-210X.13856

Strong, M. J., Abrahams, S., Goldstein, L. H., Woolley, S., Mclaughlin, P.,

Snowden, J., Mioshi, E., Roberts-South, A., Benatar, M.,

HortobáGyi, T., Rosenfeld, J., Silani, V., Ince, P. G., & Turner, M. R.

(2017). Amyotrophic lateral sclerosis – frontotemporal spectrum disor-

der (ALS-FTSD): Revised diagnostic criteria. Amyotrophic Lateral Sclero-

sis and Frontotemporal Degeneration, 18(3-4), 153–174. https://doi.

org/10.1080/21678421.2016.1267768

Tait, L., Tamagnini, F., Stothart, G., Barvas, E., Monaldini, C., Frusciante, R.,

Volpini, M., Guttmann, S., Coulthard, E., Brown, J. T., Kazanina, N., &

Goodfellow, M. (2020). EEG microstate complexity for aiding early

diagnosis of Alzheimer's disease. Scientific Reports, 10(1), 17627.

https://doi.org/10.1038/s41598-020-74790-7

Tarailis, P., Koenig, T., Michel, C. M., & Griškova-Bulanova, I. (2023). The
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