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Abstract
Background: Tremor is one of the most common neurological symptoms. Its clinical and neurobiological
complexity necessitates novel approaches for deep and granular phenotyping. Instrumented
neurophysiological analyses have proven useful for clinical management, but are highly resource-
intensive and lack broad accessibility. Simpli�ed bedside scores, on the other hand, lack the granularity to
capture subtle but relevant tremor features. Addressing this gap, we develop a deep learning framework
for the quantitative assessment of limb tremor utilizing only standard clinical videos. Methods: We
engineer a visual perceptive limb tremor analysis tool based on Mediapipe, a convolutional neural
network architecture for marker-less hand tracking: VIPER-Tremor. We validate it against gold standard
methods, including marker-based motion capture, wrist-worn accelerometery, and clinical scoring across
two independent clinical cohorts encompassing a total of 66 patients diagnosed with essential tremor
and recorded in different therapeutic states of deep brain stimulation. Results: Computer vision-derived
tremor metrics exhibit high convergent clinical validity to scores (Spearman’s rho= 0.55 – 0.86, p≤ .01) as
well as an accuracy of up to 2.60mm and ≤0.21Hz for tremor amplitude and frequency measurements,
matching gold-standard equipment. VIPER-Tremor is capable of extracting advanced tremor features
relevant for differential diagnosis and enables therapeutic outcome prediction, a dimension which
conventional tremor scores were unable to provide. Conclusion: VIPER-Tremor is an accurate, unbiased
and highly accessible solution for smartphone video-based tremor analysis and yields comparable
results to gold standard recordings. VIPER-Tremor presents a signi�cant advancement in tremor analysis,
combining accuracy and accessibility, and promises to be a pivotal tool in the emerging �eld of precision
neurology, enhancing diagnostic and therapeutic approaches.

Introduction
Tremor syndromes are among the most common neurological disorders. Of these, essential tremor
affects up to 4.6% of the global population ≥65 years old1. This disorder is characterized by a mixture of
postural and kinetic tremors, which likely represent diverse facets of pathological oscillations in brain
motor networks2–5. Tremor is often accompanied by additional neurological signs such as dystonia or
ataxia; as such, tremor is also a common symptom in a range of acquired and genetic neurological
disorders, posing a signi�cant diagnostic challenge in clinical neurology. This translates into high rates of
misdiagnosed tremor disorders6, which has profound therapeutic implications for deep brain stimulation
(DBS), a potent neural circuit intervention for tremor disorders. DBS outcomes largely hinge on accurate
patient selection, which itself is in�uenced by accurate tremor assessment7. The considerable clinical
and neurobiological heterogeneity of tremor syndromes has been a roadblock to pathogenetic and
diagnostic research, which culminated in a call to partly rede�ne tremor classi�cation by means of
multidimensional, deep phenotyping5.

To this end, instrumented tremor analysis offers an unbiased and detailed assessment of key tremor
features, such as frequency and amplitude, which are crucial for phenotyping8,9, therapeutic



Page 4/27

monitoring10,11, differential diagnosis12–15 and closed-loop neuromodulation16. However, the reliance on
complex and resource-intensive methods like multi-camera 3D motion capture and combined
accelerometery restricts its practical use, especially in routine clinical settings.

In contemporary practice, the complex phenomenology of tremor syndromes is therefore condensed into
low dimensional, ordinal rating scales33. These scales represent tremor items in a non-linear, logarithmic
manner17,18 and, despite their simplicity, suffer from considerable clinimetric limitations. One of these
limitations is interrater reliability, reported to be as low as 0.1 (Cohen’s kappa)17,19–22. 

While mobile technologies, such as smartphone accelerometers, have emerged as promising tools for
tremor frequency assessment3,8,23–25, they have critical limitations, such as their reliance on calibration,
sensor weight, and placement9. Additionally, they cannot measure associated neurological signs such as
dystonia and allow only indirect approximations of tremor amplitude, which, in contrast to frequency, is
the key kinematic determinant of patient life quality26. 

Novel visual perceptive methods based on convolutional neural networks (CNNs) for marker-less pose
tracking hold a transformative potential for neurological phenomenology and especially, movement
disorders27–31. These methods are compatible with consumer-grade hardware, like smartphones or web
cameras, and can unlock valuable data from legacy medical videography27,32. Yet, the  clinical
applicability of video pose tracking remains to be explored, particularly in medical settings where visual
confounders can adversely affect performance27,28,33,34. While small-scale pilot studies have shown the
feasibility of computer vision-based (CV) analysis of neurological symptoms22,27,35,36, rigorous validation
and clinical application in larger patient populations and clinical settings are scarce37,38.

This study introduces a pioneering visual perceptive deep learning framework, designed to address these
challenges by enabling comprehensive tremor analysis using through advanced computer vision
techniques using only clinical standard videos. To this end, we systematically evaluate the capability of a
visual perceptive deep learning framework to track hands and extract established tremor features from
clinical video data showcasing postural and kinetic tremor assessments. Our �rst objective is to
benchmark this framework against gold standard instrumented methods in a cohort of patients
diagnosed with essential tremor. Subsequently, we apply the framework to a retrospective dataset of
unstandardized, real-world videos sourced from two clinical sites, examining its convergent clinical
validity and capability to characterize therapeutic effects of deep brain stimulation on tremor. Finally, we
assess the framework’s utility to inform differential diagnostic and prognostic challenges in two use case
scenarios inspired by clinical tremor management. 

Methods

Ethics approval
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This study was conducted in accordance with the Declaration of Helsinki. Ethics approval was obtained
from the Julius-Maximilians University Wuerzburg’s ethics committee (#283/14 and 163/14_MP). 

Study design and cohorts
The study consists of two independent phases with independent cohorts. This design was chosen to
re�ect best practices in machine learning, aiming to ensure validity, generalizability and reproducibility
(Figure 1). The prospective cohort consisted of n= 8 patients (age 54-83, mean, 4 males) and the
retrospective cohort of n= 58 patients (age at surgery 29 – 83 years, 31 males) with essential tremor
diagnosed according to the Movement Disorder Society's consensus criteria5 (detailed cohort
characterization in supplementary methods).

Prospective experimental design 
Experiments were conducted at the department of Neurology, University Hospital Wuerzburg. Participants
underwent standardized assessment of postural (>30 seconds holding arms in front of chest, “wing-
beating position”, �ngertips facing each other but not touching) and kinetic tremor (�ve repetitions of
�nger-to-nose pointing per side, each starting from a resting position of the laterally outstretched arm).
 Tremor assessments were recorded in a 2x2 block design with DBS (on/off) and method (video/motion
capture & accelerometery) as intraindividual factors. Minimal DBS washout period after impulse
generator deactivation was conservatively set to 45 minutes to exclude stimulation carry over effects39,40.
DBS ON trials were conducted using the individual’s best clinical stimulation settings. Experimental
blocks were pseudorandomized to reduce systematic biases. Based on the video material, the
corresponding items of the Fahn-Tolosa-Marin tremor rating scale (postural and kinetic tremor
amplitudes) were annotated by a clinician expert in movement disorders blinded to the experimental
condition (MMR). 

Tremor recording

Hand tracking setup

Participants were seated on a chair in front of a neutral background. Tremor assessment was videotaped
using a standard smartphone camera (Samsung Galaxy S20, Samsung, Seoul, South Korea), operating at
a spatiotemporal resolution of 1920x1080 px and 60 Hz. The camera was mounted on a standard tripod
in landscape mode at a viewing distance of 3 meters to cover the full body of the participants centrally in
the video frame throughout the recording time. To avoid obscuring anatomical landmarks, participants
were asked to wear sleeveless tops exposing the shoulders and arms. Watches or other jewellery were
removed or covered with tape to prevent any interference with the limb tracking, e.g., through aberrant
re�ections. For videos, pixel-to-metric conversion was derived using a “ChArUco” board (a checkerboard
with additional geometric shapes of known metric dimensions for calibration), which was presented
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before each new video run, as previously described27. Motion capture markers and accelerometers
signi�cantly change the visual appearance of hands, which impacts computer vision tracking
performance and reduces external validity in non-instrumented settings. Hence, motion capture combined
with accelerometery and computer vision recordings were taken separately. Details of motion capture and
accelerometery setup are outlined in supplementary methods.

Computer vision tremor analysis work�ow

Mediapipe hands
For video-based hand tracking, we utilized a powerful and widely used computer vision and pose tracking
framework, Mediapipe30,41 (MP). To this end, the Mediapipe PyPI package was executed in Python
Version 3.9 and the respective hand landmark detection model applied to the video dataset which loaded
using OpenCV42. Based on Mediapipe’s internal computation of “world referenced landmarks”, no further
calibration step was needed and the coordinate time series of the 21 landmarks per hand were exported
for subsequent calculation of tremor characteristics.

Tuning a tremor-speci�c convolutional neural network

Additionally, a residual convolutional neural network was �ne-tuned using DeepLabCut43,44   to track 29
upper body landmarks from diverse clinical videos (henceforth DLC-RCNN). 1489 frames were extracted
from 202 retrospective clinical videos and labelled, with a subset reserved for out-of-sample validation.
Model performance was evaluated in a multi-faceted approach as previously described27,29

(Supplementary Figure 1). 

Calculation of tremor characteristics
Coordinate time series outputs from computer vision frameworks, marker tracks and accelerations were
extracted and analyzed using a harmonized analytical pipeline set up in Python 3.9. Brie�y, preprocessing
involved applying bandpass �lters to isolate tremor frequencies, with the middle and index �ngers serving
as focal tracking points for postural and kinetic tremor, respectively. Individual scaling factors for pixel-to-
metric conversion were derived from facial ground truth dimensions derived from individual cranial MR-
images or ChArUco boards. Tremor characteristics were quanti�ed through spectrogram analysis and
power spectral density calculations, with results aggregated into mean and peak values for various
experimental conditions (see supplementary materials for further details). 

Statistical methods
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Normality of datasets was examined using the Shapiro Wilk test and additional inspection of quartile (“Q-
Q”) plots to inform the appropriate display of data distributions and the selection of subsequent contrast
tests. In case of a signi�cant deviation of the (log-)normality assumption, non-parametric tests, i.e.,
Wilcoxon rank-sum test and matched rank biserial correlation were used. Linear relationships were
examined using and Pearson or Spearman's rank correlations. When appropriate, outliers were removed
using the robust regression and outlier removal (ROUT) method with balanced coe�cient of Q = 1%45.
Leave-one-out cross-validation (LOOCV) was performed using Python and scikit-learn's
LogisticRegression class. Matplotlib and seaborn were utilized for visualization of performance and
feature importance evaluation, as outlined in supplementary materials.

Equivalence testing
To systematically compare the accuracy and precision of different computer vision approaches for
tremor amplitude quanti�cation, relative deviations to technical gold standard measurements were
computed and compared using the “two one-sided t-test” (TOST) method46,47, as previously described27.
The derivation of equivalence boundaries is further detailed in the supplementary materials.  

Statistical computations were conducted using Python 3, JAMOVI Version 2.2.548, R Studio49 and
GraphPad Prism Version 950.

Results

Validation of the visual perceptive framework
To assess the visual perceptive framework’s technical and clinical validity, we �rst applied it to video data
from a prospectively recruited cohort of patients with a diagnosis of essential tremor and treated with
thalamic DBS. For reference, we recorded Fahn-Tolosa Marin tremor scores as well as ground truth tremor
amplitudes and frequencies using laboratory gold standard technologies: marker-based motion capture
and simultaneous wrist-mounted accelerometery.

Amplitude analyses – postural tremor
Computer vision-derived peak postural tremor amplitudes showed strong correlation with clinical scores,
similarly to gold standard motion capture (MP: rho> 0.86, MC: rho= 0.90, p< .001, Figure 1a-b). Excellent
agreement of computer vision was found with motion capture (rho= 0.89, p< .001, Figure 1c). In
comparison to motion capture, computer vision had a mean absolute error of 10 mm (95% CI [5.65, 14.4])
and no systematic relationship between measurement and error magnitudes was observed (Figure 1d).
Computer vision-derived tremor amplitudes fell within equivalence boundaries of motion capture tracking
(±10mm, Supplementary Figure 2a) and were comparably responsive to DBS effect (d > 0.94, all p < .001,
Figure 1e), overall suggestive of equivalent accuracy. Median precision, measured by the standard
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deviation of each amplitude measurement, was 1.29 mm for motion capture and 0.54 mm for Mediapipe;
precision values reached equivalence to motion capture within gold-standard derived boundaries of ±3.63
mm (Supplementary Figure 2b). Reducing the 90% CI margins to ±1.5 and ±1.0 mm did not substantially
change these results, indicating robustness beyond the de�ned boundaries.

Amplitude analyses – kinetic tremor
Mediapipe’s peak kinetic tremor amplitude estimates were strongly correlated to the clinical scores, again
comparable to motion capture derived values (rho= 0.55, p< .01, Figure 1f-g). Mediapipe reached
substantial agreement with motion capture (rho= 0.72, p< .001, Figure 1h). Mean absolute error was -2.60
mm (95% CI [-3.13, 8.23], Figure 1i). Mediapipe’s accuracy in kinetic tremor amplitude measurement was
equivalent to motion capture (Supplementary Figure 2a). Mediapipe and motion capture were again
comparably responsive to DBS effects on kinetic tremor amplitude (d= 0.69 and 0.60, �gure 1j). Median
precision of kinetic tremor amplitude measurement was calculated to be 0.31 mm for motion capture and
0.49 mm for Mediapipe. Mediapipe’s precision fell within the equivalence boundaries of ±2.1 mm
(Supplementary Figure 2c). Repeating the equivalence tests with empirically reduced 90% CI margins of
±1.5 and ±1.0 mm did not substantially change these results. 

Notably, the aforementioned results were similar when using mean instead of peak amplitude
measurements (Supplementary Figures 3 & 4).

Frequency measurements – postural tremor
Computer vision-derived tremor frequency measurements were validated against wrist-worn
accelerometery, a clinical and laboratory gold standard for tremor analysis. The correspondence of tremor
frequencies from computer vision and motion capture to accelerometery was found to be similarly strong
(r> 0.40, Figure 3a). The mean dominant frequency of postural tremor was measured to be 5.7 ± 0.72 Hz
with accelerometery, 6.04 ± 0.65 Hz with motion capture, and 5.9 ± 0.58 Hz with Mediapipe, resulting in
mean absolute errors of -0.34 Hz [95% CI -0.08, 0.60] for motion capture and -0.21 Hz [95% CI -0.05, 0.46]
for Mediapipe (Figure 3b).

Within the prede�ned margins of ±0.5 Hz, Mediapipe-derived frequency measurements achieved
equivalent accuracy to accelerometery, while motion capture exceeded the equivalence bounds (Figure 3c
and supplementary �gure 2d). Median precision of tremor frequency measurements was 0.58 Hz for
accelerometery, 1.15 Hz for motion capture and 1.12 Hz for Mediapipe. Precision values from motion
capture and Mediapipe were equivalent to accelerometer within gold standard derived margins of ±2 Hz
(Supplementary Figure 2e). Again, reducing the 90% CI margins to ±1.5 and ±1.0 Hz did not substantially
alter these results.

Frequency measurements – kinetic tremor



Page 9/27

Both motion capture and Mediapipe-derived kinetic tremor frequencies demonstrated moderate
agreement with accelerometric measurements (motion capture: rho= 0.38, p= .034; Mediapipe: rho= 0.37,
p= 0.033, Figure 3c). The mean dominant frequency of kinetic tremor was 5.25 ± 1.06 Hz using
accelerometery, 5.48 ± 0.41 Hz using motion capture, and 5.31 ± 0.34 Hz using Mediapipe, with mean
absolute errors of 0.22 Hz (95% CI [-0.15, 0.59]) for motion capture and 0.06 Hz (95% CI [-0.30, 0.41]) for
Mediapipe. Bland-Altman plots for motion capture and Mediapipe suggested a systematic relationship
between error and measurement magnitudes (Figure 3d).

Within the prede�ned boundaries of ±0.5 Hz, Mediapipe's accuracy in frequency measurements was
equivalent to accelerometery (Figure 3e and supplementary �gure 2d). In contrast, motion capture's
accuracy was signi�cantly lower than Mediapipe (T(31)= 2.98, 95% CI of difference [0.05, 0.28], p= .006,
not shown). Median precision was 0.58 Hz for accelerometry, 0.14 Hz for motion capture, and 0.1 Hz for
Mediapipe. Both motion capture and Mediapipe precision values fell within equivalence boundaries
derived from the minimal precision achieved by accelerometery, ±2 Hz (Supplementary Figure 2f).
Reducing the margins to ±1.5 and ±1.25 Hz in equivalence tests did not substantially alter these results.

Retrospective application

Postural tremor
In order to clinically validate the visual perceptive framework in an independent sample, we applied it to
clinical videos of 43 individuals undergoing clinical tremor assessment before and after thalamic DBS
implantation. The peak postural tremor amplitudes derived from Mediapipe were strongly correlated with
the corresponding tremor scores (Figure 4a). Wilcoxon testing further revealed that the computer vision
framework’s peak amplitude measurements were highly responsive to the effect of DBS (Figure 3b-c).
Repeating the analyses using mean instead of peak tremor amplitudes yielded similar results with
respect to score correlation (Supplementary Figure 5b-c). Mean dominant frequency of postural tremor
was calculated to be 5.96 ± 0.76 Hz (Supplementary Figure 5d). 

Kinetic tremor
In the 25 available individuals, a moderate correlation was found between the measured peak amplitudes
and the corresponding tremor scores (Figure 4d). Wilcoxon testing revealed that peak kinetic tremor
amplitude measurements were highly sensitive to the effect of VIM-DBS (Figure 3e-f). Repeating the
analyses using mean instead of peak amplitudes yielded similar results (Supplementary Figure 5e-f). The
mean dominant frequency of kinetic tremor was calculated to be 5.75 ± 0.58 Hz.

VIPER-Tremor in clinical use cases
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Advanced diagnostic tremor features

Instrumented tremor analysis can provide valuable differential diagnostic clues for tremor syndromes.
Beyond the basic tremor characteristics like amplitude and frequency, advanced features such as
harmonics or inter-limb tremor coherence have previously been established to support differential
diagnosis of tremor syndromes11. To this end, we investigated whether the visual perceptive framework is
capable of extracting advanced diagnostic tremor features, which usually require electromyography or
other sensors. 

Indeed, the Mediapipe-derived tremor signal displayed a harmonic peak which was located at twice the
mean dominant frequency (Figure 5a-b), a feature previously reported to differentiate essential from
parkinsonian tremor51. Moreover, no signi�cant inter-limb tremor coherence was detected, a feature
reported to discern essential tremor from orthostatic tremor11,52 (Figure 5b-c). 

Predictive modelling 

Albeit e�cacious in the majority of cases, thalamic DBS outcomes vary10. Lack of tremor improvement or
even paradoxical increases in kinetic tremor amplitude signify a poor DBS outcome7. Patient-speci�c
factors such as baseline clinical tremor scores have been shown to aid DBS outcome prognostication
across tremor disorders53, which facilitate patient counselling. 

Therefore, we aimed to assess the utility of computer vision-derived metrics in predicting DBS outcomes
from preoperative kinematics and clinical score information. Since persisting kinetic tremor is a key driver
of functional disability in essential tremor and among the main reasons for failed DBS interventions54,55,
we binarized our patient cohort into good and poor responders based on post-operative kinetic tremor. We
chose a threshold of ≥2 cm residual kinetic tremor amplitude and ≤30% relative kinetic tremor reduction
in DBS ON, so as to identify cases with clinically relevant disability7,54,55. Applying this threshold, we
found that baseline kinetic tremor was more frequently associated with a poor outcome (55% vs. 21%
fraction of poor responders, p< .001, Figure 5b-c).

To identify determinants of suboptimal DBS outcomes, which might assist in preoperative patient
counselling, we conducted a logistic regression analysis. Using binarized response group as the outcome
variable and preoperative limb kinematic features as covariates, we detected a strong and signi�cant
association of preoperative tremor measurements to DBS outcomes (χ2= 58.4, p< .001, McFadden R2=
0.65). Among all covariates, baseline kinetic tremor amplitude emerged as a signi�cant and independent
predictor of DBS response (p= .002, OR 0.89, 95% CI [0.82, 0.96]). Implementing a rigorous leave-one-out
cross-validation to evaluate the model’s performance yielded an area under the receiver operator curve of
0.88 and a F1-score of 0.89 (Figure 5d). Moreover, baseline kinetic tremor amplitude emerged as an
independent predictor of DBS-associated improvement of kinetic tremor amplitude in a linear regression
model (R2 = 0.18, p< .001; baseline kinetic tremor: p= .021, Figure 5e). Of note, preoperative tremor scores
were neither a signi�cant predictor of binary outcome nor tremor amplitude change.
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Assessment of a disease-speci�c convolutional network:
DLC-RCNN
In real-world clinical contexts, generally trained pose tracking algorithms such as Mediapipe have been
found to suffer from performance issues. This is ascribed to the large out-of-domain variance introduced
in clinical settings, such as dressings, obscuration or clutter27,34,56. To gauge this effect’s relevance in the
context of tremor, we additionally developed a tremor-speci�c residual convolutional neural network using
DeepLabCut43: DLC-RCNN33,57. Brie�y, the RCNN was trained with >120,000 frames of clinical video
material. Final performance evaluation showed a median Euclidean distance of 3.56 mm and 10.74 mm
between user-annotated and predicted keypoints, demonstrating acceptable generalization and tracking
accuracy related to �ngertip size (occupying 10-20 pixels, corresponding to 10-20 mm on average27,44,
Supplementary Figure 1). The model's generalization to an out-of-sample validation dataset (>15,000
frames) showed high con�dence in predicting postural tremor keypoints (median likelihood of 0.99, 4,884
predictions) but unacceptably low con�dence for kinetic tremor keypoints (median likelihood of 0.22,
10,532 predictions, Supplementary Figure 1b). Therefore, DLC-RCNN could only be used for postural
tremor analysis.

In the prospective cohort, DLC-RCNN-derived tremor amplitudes were strongly correlated to clinical scores
(rho= 0.92, p< .001) and gold standard motion capture (rho= 0.88, p< .001). The mean absolute error was
2.55 mm. DLC-RCNN-derived mean dominant tremor frequencies were moderately correlated to
accelerometer (rho= 0.44, p< .05), with a mean absolute error of -0.69 Hz. In the retrospective cohort, DLC-
RCNN-derived postural tremor amplitudes were moderately to strongly correlated with assigned clinical
scores (rho= 0.72, p= .001). DLC-RCNN’s accuracy and precision (0.66 mm) for amplitudes was
equivalent to motion capture. Mean dominant frequency was calculated to be 6.38 ± 0.54 Hz, but the
DLC-RCNN’s frequency accuracy was signi�cantly lower than Mediapipe and motion capture, hence not
equivalent (Supplementary Figure 2).

Discussion
Tremor disorders, owing to their intricate clinical and neurobiological nature, underscore the critical need
for deep phenotyping in effective clinical management. While traditional instrumented methods provide
valuable insights, their high resource demands signi�cantly limit their widespread application in clinical
settings. As a result, clinicians often rely on a more reductionist approach, employing semi-quantitative
rating scales. Although quick and practical, this method offers only a rudimentary representation of the
complex spectrum of tremor phenomenology. Such oversimpli�cation translates to considerable
clinimetric limitations, impacting the accuracy and reliability of tremor assessment and, consequently,
patient care17,19,20. In response to these challenges, we have developed VIPER-Tremor, a visual perceptive
framework leveraging robust pose tracking algorithms. This framework is speci�cally designed for the
comprehensive evaluation of postural and kinetic limb tremor in clinical video recordings. VIPER-Tremor
underwent extensive validation against state-of-the-art instrumented methods and clinical scoring
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systems, showcasing its accuracy and robustness. VIPER-Tremor demonstrated its practical utility not
only in characterizing the effects of deep brain stimulation but also in providing valuable insights into
diagnostic and prognostic challenges – aspects that conventional scores failed to capture. Finally, our
study elucidated the impact of different algorithmic architectures on clinical pose tracking, thereby
providing a roadmap for future technical scalability.

A deep learning framework for hand tracking and tremor
analysis
The results of our prospective validation underline the framework's accuracy, precision, and clinical
validity, which largely match gold standard equipment. While prior studies have tapped into the potential
of computer vision for tremor detection58,59 and frequency extraction23, amplitude quanti�cation
remained largely unexplored. Yet, tremor amplitude is pivotal in assessing patient disability and
therapeutic outcomes7,10. Our �ndings indicate that smartphone videos, coupled with computer vision
tracking tools, can gauge tremor amplitude with an accuracy of up to 2.6mm, a value that falls on the low
end of reported pose tracking accuracies31,33 and that is almost an order of magnitude smaller than the
lowest anchor value provided in the tremor rating scale (20mm). Compared to gold standard
accelerometery, computer vision-derived tremor frequency measurements demonstrated a mean absolute
error between -0.06 and -0.21Hz, values falling well within, if not below modern vision-based
frameworks23. More generally, large scale studies investigating clinical pose tracking in other movement
disorders37,38 report moderate to high score correlation strengths in the range of 0.6 - 0.8, which
corresponds closely to our reported values of 0.55 - 0.86. Overall, this is strongly indicative that the visual
perceptive framework effectively captured the clinically relevant target information. Notably, some
correlation plots exhibit increasing residuals with higher scores, which is well in line with the notion of a
logarithmic rather than linear relationship of tremor severity and ordinal scores17. Continuous digital
biomarkers are not subject to such non-linearity, which often complicates both intra- and interindividual
comparisons which are relevant for clinical studies and management.

Therefore, our framework dramatically simpli�es tremor analysis by eliminating the need for multiple
devices and sensors and even enabling the analysis of unstandardized legacy videos, underscoring its
generalizability and versatility. The fully vision-based approach can be further scaled to additionally
quantify tremor-associated neurological signs such as ataxia60 or dystonia37. This capability aligns with
the central goals of future deep phenotyping efforts in tremor disorders5.

Clinical usability 
Next, we applied the computer-vision framework in exemplary use cases that are directly inspired by
clinical tremor management. First, VIPER-Tremor was capable of extracting advanced diagnostic tremor
features, which offer additional insights relevant for the differential diagnosis of tremor
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disorders11,51,52,61. For example, a harmonic peak at twice the dominant tremor frequency or a lack of
inter-limb tremor coherence can be diagnostic clues differentiating essential tremor from other tremor
syndromes11,51,52. While the scope of this study was not designed to facilitate comparisons across
different tremor disorders, our results nonetheless demonstrate the feasibility of using our framework to
derive diagnostically relevant tremor features, linking computer vision-derived biomarkers with sensor- or
EMG-based �ndings reported in the neurophysiological literature11,51,52. 

Second, computer vision-derived features could aid in characterizing thalamic neurostimulation
outcomes. Our predictive model, focusing on kinetic tremor reduction as the key determinant of disability
and life quality after DBS implantation4,7,10,54,62, identi�ed baseline kinetic tremor amplitude as a
predictor of DBS outcome. Interestingly, conventional tremor scores lacked this predictive power,
emphasizing the advantages of sensitive and continuously encoded digital biomarkers in capturing such
nuanced clinical relationships. This �nding aligns with similar results for DBS outcome prediction based
on scores in Parkinson’s disease53 as well as emerging evidence for the added value of digital
phenotyping in neurological disorders which reaches far beyond conventional scores27,37,38,63,64.  

Deep learning models 
Lastly, we found that algorithm selection is paramount for clinical pose tracking. While the tremor-speci�c
model showed excellent performance in postural tremor tracking, it entirely failed to track kinetic tremor,
drastically reducing its versatility. We hypothesize that Mediapipe outperformed the disease-speci�c
model due to its 3D pose tracking capability, which is essential for tracking of complex con�gurational
changes, such as hand rotations along the �nger-to-nose trajectory33,65,66. These �ndings differ from
those in the context of eye movement analysis27, thereby highlighting the importance of future studies
speci�cally investigating the customization of neural network architectures to meet the complex
demands of clinical pose tracking. 

Limitations
Several limitations should be acknowledged. First, the visual perceptive algorithm showed diminished
performance in kinetic tremor assessments, likely due to hand con�gurational complexities leading to
partial occlusions. Especially in presence of hands re-entering the video frame or excessive zooming and
camera movement, signi�cant prediction errors have been observed, which led to a substantial number of
excluded videos. We therefore recommend the implementation of basic video quality criteria for
prospective clinical pose tracking studies, as used here.  Second, our sequential recording strategy,
adopted to minimize marker interference which could lead to overly optimistic tracking results, might
introduce biological variance in tremor amplitude measurements67. This however biases us against
overestimation of the framework’s accuracy and suggests that the technical agreement between VIPER-
Tremor and gold standard might, in fact, be even higher. Lastly, the prospective validation cohort was
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relatively small and recruited from a single center. However, application in a large and independent
retrospective cohort yielded similarly robust results. Larger, multi-centric studies are needed to further
establish the framework's applicability in diverse clinical settings.

In conclusion, we argue that computer vision-derived biomarkers are poised to transform neurological
practice, boosting statistical power in clinical studies and heralding a new era of precision
neurology8,9,38,63. The resulting granular biomarkers offer a powerful, yet highly accessible means to
address contemporary challenges in tremor classi�cation towards novel, neurobiologically grounded
disease models5. With its compatibility for on-device operation, VIPER-Tremor meets the demands for
accuracy and e�ciency in neurological practice. We envision that digital neurophenotyping will be
seamlessly integrated with emerging technological advancements in neuroimaging and
neurotechnology7,68,69, potentially guiding adaptive neurostimulation approaches16,70 and ultimately,
improving patient care in neurology. 
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Figure 1

Work�ow. The study was conducted into two independent cohorts/phases. In the prospective validation
phase, upper limb tremor was recorded with a state-of-the-art motion capture (MC) and wrist-worn
accelerometer (ACCEL) setup, as well as with a smartphone videocamera for subsequent computer
vision-based analysis (CV). Additionally, tremor was scored using the Fahn-Tolosa-Marin clinical tremor
rating scale. Time series data extracted from motion capture, accelerometer, and computer vision
analysis was passed into a common analytical pipeline to compute canonical tremor features38 for
clinical and inter-methodological correlation. Finally, the computer vision-based tremor analysis was
applied to a retrospective video dataset of ET patients before and under chronic DBS treatment for
additional clinical validation in an independent dataset. Given the largely unstandardized video
recordings, video selection criteria were applied in order to ensure su�cient data quality, in accordance
with best practice considerations in computer vision movement analysis26,32. Subjects were included for
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tremor analysis if: (i) at least one preoperative as well as one postoperative follow-up video under active
DBS was available, (ii) video material was free of excessive camera movements, (iii) video material did
not contain visual distortion such as different zoom depths, (iv) tracked limbs were fully visible in the
video frame throughout the recording, (v) video material contained at least 5 seconds of continuous arm
holding for postural and 3 repetitions of �nger-to-nose pointing per side for kinetic tremor assessment.

Figure 2
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Tremor amplitude analysis. Postural: a-c Both the computer vision and motion capture outcomes show
strong and signi�cant agreement with clinical postural tremor scores (MP: rho= 0.86, MC: rho= 0.90, both
p< .001) as well as excellent inter-methodological agreement (rho= 0.89, p<.001). d Mean deviation of
computer vision-derived amplitude measurements from motion capture is 10mm and Bland-Altman
plotting shows no systematic relationship of measurement and error magnitudes. Of note, computer
vision and motion capture recordings were not identical (see methods) but re�ect sequential recordings. e
Computer vision and motion capture-derived amplitudes are sensitive to DBS effect, similar to clinical
scores (effect size 0.94 for motion capture, 1.00 for Mediapipe and clinical scores, all p<.001, Durbin-
Conover corrected). Kinetic: f-h Mediapipe and motion capture-derived amplitudes show strong and
signi�cant correlations with clinical scores (MP: rho= 0.55, p= .01, MC: rho= 0.62, p< .001,) while being
strongly intercorrelated (MP vs. MC: rho= 0.72, p< .001). iMediapipe exhibits an accuracy for kinetic
tremor tracking of -2.6 mm, as measured by the mean absolute deviation from motion capture. Bland-
Altman plotting reveals no systematic relationships of error and measurement magnitudes. j Mediapipe
and motion capture-derived amplitudes are responsive to DBS effect, with similar effect sizes (MP: 0.69,
p= .003, MC: 0.60, p= .022).

Figure 3

Tremor frequency analysis. a In the postural tremor condition, Mediapipe (MP) demonstrates strong
correlations with accelerometer measurements (AM), similar to motion capture (MC), when estimating
tremor frequencies (MP: r= 0.40, p< .05, MC: r= 0.46, p< .01). b Accuracies of postural tremor frequency
measurements were calculated to be -0.34 Hz for motion capture and -0.21 Hz for Mediapipe. Bland-
Altman plots revealed no systematic relationship of error and measurement magnitudes. c Absolute
errors of postural tremor frequency measurements are equivalent to motion capture. d In the kinetic
tremor condition, Mediapipe and motion capture-derived frequencies showed similar correlation strengths
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to accelerometric frequency measurements (rho= 0.38, p< .05). e Accuracies of kinetic tremor frequency
measurements were calculated to be -0.22 Hz for motion capture and -0.06 Hz for Mediapipe, however
both with systematic relationships of error and measurement magnitudes. f Absolute errors of kinetic
tremor frequency measurements are equivalent to motion capture.

Figure 4

Application of computer vision tremor analysis in an independent, retrospective cohort. a-b Computer
vision-derived postural tremor amplitude measurements are strongly correlated to clinical scores (MP:
rho= 0.65, p< .001) as well as responsive to DBS effects (MP: r= 0.49 (95% CI [0.34, 0.61]), p< .001; score:
r= 0.61 (95% CI [0.49, 0.71], p< .001, b-c). d For kinetic tremor, Mediapipe-derived amplitude
measurements are substantially correlated to respective clinical scores (rho = 0.42, p< .001) and
responsive to the effect of DBS (MP: r= 0.37, 95% CI [0.03, 0.61], p= 0.025;score: r = 0.64, 95% CI [0.48,
0.75], p< .001,  e-f).
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Figure 5

Using VIPER-Tremor to augment diagnostic insight. a Example power spectrum derived with VIPER-
Tremor. In addition to the primary, dominant frequency peak, there is a clear cut second peak, i .e. a
harmonic. b In line with previous electromyographic work51 demonstrating the diagnostic value of the
presence of a harmonic at twice the dominant tremor frequency, we divided the frequencies of the second
and �rst frequency peak and performed a one-sample t-test against 2.0, which was not signi�cant (p= .99,
SD of discrepancy 0.03). c Mediapipe-derived tremor signals from both hands are not coherent. d On a
group level, interlimb coherence values fall below the time series length-dependent signi�cance value of
0.15 (median MP: median 0.097, maximum 0.13), in line with electromyographic literature51.
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Figure 6

Using VIPER-Tremor for DBS effect quanti�cation and prognostication. a DBS exerts stronger effects on
postural than kinetic tremor as measured by relative amplitude reduction (p< .001, effect size= 0.72). b
Binarizing the sample into good (GR) and poor responders (PR) using a combined criterion of ≥2 cm
tremor amplitude and ≤30% amplitude decrease in DBS ON yields a signi�cant greater fraction of poor
responders in the context of kinetic tremor, which is an important driver of functional disability (55% vs.
21% of cases, p< .001). c Preoperative hand kinematic features are strong and signi�cant predictors of
DBS outcome (χ2= 58.4, p< .001, McFadden R2= 0.65). Baseline kinetic tremor amplitude is found to be a
signi�cant and independent predictor of DBS outcome for kinetic tremor. Leave-one-out-cross-validation
evaluation yields an AUROC of 0.88, a balanced accuracy of 0.88, F1-score 0.89. d Moreover, baseline
kinetic tremor amplitude is a signi�cant predictor of the relative DBS response in a linear model (p= .012),
as measured by the percentual reduction of kinetic tremor amplitude (R2= 0.18, Pearson’s r= 0.35, p=
.005).
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Figure 7

Application of a disease-speci�c convolutional neural network for postural tremor analysis across
cohorts. a-c In the prospective cohort, DLC-RCNN-derived amplitude measurements are strongly correlated
to clinical scores (rho= 0.72, p< .001) and motion capture (rho= 0.88, p< .001). Mean absolute error is 2.55
mm (95% CI [-2.11, 7.29]) with no systematic relationship to measurement magnitudes. d-e DLC-RCNN
frequency measurements are moderately correlated to accelerometer (r= 0.44, p< .05) with a mean
absolute error of -0.69 Hz [95% CI -0.93, 0.44]. fIn the retrospective cohort, DLC-RCNN-derived postural
tremor amplitudes show a moderate correlation to clinical scores (rho= 0.72, p< .001). DLC-RCNN
however failed to capture and measure kinetic tremor in both cohorts.
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