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Abstract 

Purpose 

Following surgical resection of brain metastases (BMs), intraoperative radiation therapy (IORT) 

provides a promising alternative to adjuvant external beam radiation therapy (EBRT) by enabling 

superior organ at risk preservation, reduction of in-hospital times and timely admission to subsequent 
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systemic treatments, which increasingly comprise novel targeted immunotherapeutic approaches. We 

sought to assess safety and efficacy of IORT in combination with immune checkpoint inhibitors 

(ICIs) and other targeted therapies (TTs).  

Methods 

In a multicentric approach incorporating individual patient data from six international IORT centers, 

all patients with BMs undergoing IORT were retrospectively assessed for combinatorial treatment 

with ICIs/TTs and evaluated for toxicity and cumulative rates, including wound dehiscence, radiation 

necrosis (RN), leptomeningeal spread (LMS), local control (LC), distant brain progression (DBP) and 

estimated overall survival (OS).  

Results 

A total of 103 lesions with a median diameter of 34 mm receiving IORT combined with 

immunomodulatory systemic treatment or other TTs were included. The median follow up was 13.2 

(1.2-102.4) months and the median IORT dose was 25 (18-30) Gy prescribed to the applicator 

surface. There was one grade 3 adverse event related to IORT recorded (2.2%). A 4.9% cumulative 

RN rate was observed. The 1-year LCR was 98.0% and the 1-year DBP-free rate 60.0%. Median time 

to DBP was 5.5 (1.0-18.5) months in the subgroup of patients experiencing DBP and the cumulative 

LMS rate was 4.9%. The median estimated OS was 26 (1.2-not reached) months with a 1-year 

survival rate of 74.0%. Early initiation of IT/TT was associated with a non-significant trend towards 

improved DBP rate and OS.  

Conclusion 

The combination of ICIs/TT with IORT for resected BMs does not seem to increase toxicity, while 

yielding encouraging local control outcomes in the difficult-to-treat subgroup of larger BMs. Time 

gaps between surgery and systemic treatment could be shortened or avoided. The definitive role of 

IORT in local control after BM resection will be defined in a prospective trial.    

Introduction 

                  



5 

The rise of novel immunotherapeutic agents has redrawn the treatment patterns for many tumor 

entities in recent years (1, 2). As a consequence of improved local control and prolonged survival, the 

diagnostic incidence of brain metastases (BMs) has increased significantly (3, 4) with nearly every 

second patient developing BM over the course of the disease (5, 6). This is also attributed to the fact 

that many of the novel immunotherapeutic drugs cannot penetrate the blood-brain-barrier (BBB) 

sufficiently to induce stable tumor control within the brain (7, 8). While overall survival (OS) is 

largely dictated by extracranial disease progression (9), BMs usually require medical intervention to 

prevent or stabilize neurological deterioration and impairment of quality of life (QOL) (10, 11). Local 

treatment options include surgery, radiosurgery, fractionated stereotactic radiotherapy and surgery 

followed by adjuvant radiotherapy of the resection cavity. Surgery and adjuvant radiotherapy are 

usually indicated for larger BMs to improve local control rates, as smaller volume BM do not need 

surgery (12–14). While the most common form of RT application is stereotactic external-beam RT 

(EBRT) with one to seven fractions (12–15), intraoperative RT (IORT) provides an excellent 

alternative yielding equal clinical outcome (16–19) at superior organ at risk (OAR) preservation (20) 

and a favorable toxicity profile (21, 22). However, data are very limited regarding potential desirable 

and undesirable effects (23, 24) of concomitant or sequential treatment with increasingly available 

immunostimulating systemic therapy (25). We thus sought to assess safety and efficacy of 

combination treatment with IORT to BM and immunotherapy (IT) in this multicentric retrospective 

series.  

 

Methods 

Patients 

In a multicentric approach, patient databases of four XXXX, one XXXX and one XXXX university 

hospitals were retrospectively screened for patients with BMs receiving IORT with concomitant or 

sequential IT or targeted therapy (TT) between 2014 and 2023. IT was defined as authority-approved 

administration of an ICI, i.e., anti-PD-L1, anti-PD-1, anti-CTLA4 antibodies. TT was defined as 

authority-approved administration of a drug using a tumor-specific, either non-immunogenic or 
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immunogenic target other than immune checkpoint blockade, i.e., BRAF/MEK inhibition, (multi-) 

tyrosine kinase inhibition or antibodies against essential tumor signaling pathways. For inclusion, at 

least one available imaging follow-up and information on received systemic treatment was mandatory. 

All patients underwent surgical resection and IORT following interdisciplinary evaluation in a neuro-

oncological tumor board. BMs were pathologically confirmed in all cases. The criteria for surgical 

resection were presence or severe risk of acute neurological impairment, clinically significant mass 

effects as abnormal intracranial pressure or hemispheric shift and histopathological confirmation of 

diagnosis in case of cancer of unknown primary. Only the clinically relevant lesion receiving IORT 

was considered for surgical removal in case of multiple BMs. Requirements for IORT were gross total 

resection, intraoperative confirmation of BM on frozen tumor sections and fulfillment of dose 

constraints. The data collected from eligible patients included sociodemographic characteristics, 

functional status with Karnofsky performance score (KPS), tumor location, histology, baseline and 

follow-up (FU) radiological features of the lesion and systemic therapy status. Diagnostic-Specific 

Graded Prognostic Assessment (DS-GPA) (26) scores were calculated by standard procedures.  

 

Intraoperative radiotherapy 

3D image guidance for both surgery and IORT was provided by preoperative contrast-enhanced T1-

weighted magnetic resonance imaging (MRI). Optic nerves, chiasm and brain stem were identified 

preoperatively and intraoperatively as OARs for IORT and delivered doses were defined based on 

dose-depth template profiles corresponding to each applicator diameter. Following macroscopic 

complete resection of the lesion, a frozen section was assessed intraoperatively by a board-certified 

neuropathologist confirming the presence of malignant cells with an extracranial solid tumor origin. 

Neurosurgical MRI-navigation was used to intraoperatively assess the minimum distance of the 

resection cavity to organs at risk and cavity extends, followed by selection of the optimal fitting for 

spherical applicators ranging from 1.5 to 5.0 cm diameter. The selected applicator was placed in the 

resection cavity without applying pressure to the adjacent healthy brain tissue, but with the aim of 

ubiquitous direct tissue contact avoiding air entrapment for optimal dose distribution. The IORT was 

only performed when a safe and orderly execution was ensured. The INTRABEAM
®
 600 (Carl Zeiss 
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Meditec AG, Germany) was used to deliver IORT by application of nominal 50-kV photons at a 

standard dose of 20 to 30 Gy prescribed to the applicator surface. The dose profile in depth was 

obtained prior to each procedure according to pre-performed Monte Carlo calculations with Radiance 

(GMV, Spain). Decreasing the prescribed dose down to 16 Gy was acceptable in case of OAR doses 

exceeding the constraints of 8 Gy to the optical system or the brain stem following QUANTEC 

(Quantitative Analyses of Normal Tissue Effects in the Clinic) recommendations (27) with 

consideration of the specific (1.3-1.5 times higher) RBE of low energy photons. In individual cases, 

anatomical positioning of the applicator required consideration of further, not regularly assessed 

OAR, e.g., cochlea or thalamus, with equal consideration of the QUANTEC recommendations. The 

irradiation time ranged from seven to 49 minutes, depending on the applicator size and the prescribed 

dose. Following removal of the applicator, the surgery was continued as per standard procedures with 

wound sealing.  

 

Follow-up 

All patients had regular FU visits including physical examination and MRI as per guideline 

recommendations. Adverse events (AEs) were assessed and graded by clinicians according to the 

National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0. 

Acute toxicities were considered AEs occurring within the first eight weeks of FU, whereas late 

toxicities were defined as all AEs recorded at a later time point. MRI assessments were performed 

according to the RANO criteria (28) by board-certified radiologists. In case of uncertain 

clinical/radiographic response, the interdisciplinary neuro-oncological tumor board was consulted for 

shared decision-making. The following conditions qualified for diagnosis of RN: (1) after initial 

suspected progressive disease (PD), a minimum of two FU MRIs showed no sign of ongoing PD; (2) 

advanced MRI incorporating dynamic susceptibility contrast (DSC) perfusion imaging or diffusion-

weighted imaging (DWI) was concordantly suggestive of RN; (3) positron emission tomography 

(PET) imaging such as 
18

F-fluoroethyl-tyrosine PET with findings consistent with RN; (4) RN was 

confirmed histopathologically following resection. 
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Study endpoints 

The primary endpoints were toxicity, namely cumulative RN rates, and 1-year LCR. The secondary 

endpoints were cumulative distant brain progression (DBP) rates, leptomeningeal spread (LMS) rates, 

1-year OS rates and estimated OS. For toxicity assessment, simultaneous IORT and IT/TT was 

defined as an initiation of treatment within the first 2 months after date of surgery. Local control was 

defined as the absence of MRI-radiographic PD as per RANO-BM criteria (28) within 1 cm 

surrounding the previously irradiated BM resection cavity and absence of clinical deterioration 

attributable to the treated lesion. Local control was calculated from the day of surgery until the local 

PD date. Patients lost to FU or deceased prior to radiographic progression were censored at the last 

FU time point. DBP was defined as an MRI-radiographic emergence/progression of intracranial 

lesions as per RANO-BM criteria in at least 1 cm distance to the resection cavity receiving IORT or 

clinical deterioration not attributed to the IORT, but a distant brain lesion. DBP rates were calculated 

from the day of surgery until the PD date. Patients lost to FU or deceased prior to the event were 

censored at the last FU time point. Leptomeningeal spread was defined as either MRI-radiographic 

suspicion or cytologic confirmation of pachymeningeal or leptomeningeal tumor cell spread. OS was 

defined as time interval between the date of surgery and the date of either last FU (censored) or death.  

 

Ethics 

The study was conducted in accordance with the principles of the Declaration of Helsinki and 

approved by the Ethics Committee XXXX (XXXX). 

 

Statistics 

The software package used for the data analyses was GraphPad Prism (version 9, GraphPad Software, 

USA). Figures and Graphs were created using GraphPad Prism and Adobe Illustrator 2023 (Adobe 

Inc., USA). Descriptive statistics incorporated calculation of percentages and median values with 

minimum to maximum range. For survival analysis, the Kaplan-Meier method was employed and 

curves with 95% confidence intervals were generated. Hazard ratios and their 95% confidence 

intervals were calculated using the Mantel-Haenszel method. Fisher’s exact test was used to analyze 
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categorical variables. The Mann-Whitney test was used to compare continuous variables, as the data 

were not normally distributed. Statistical significance was defined as a p-value < 0.05. The particular 

statistical methods applied are specified in the corresponding figures.  

 

Results 

Patient and tumor characteristics  

A total sample size (n) of 114 consecutive patients with BMs receiving IORT to the resection cavity 

combined with immune checkpoint inhibitors (ICIs) or other TTs were screened. Of these, sufficient 

FU information (at least one imaging follow-up and systemic therapy information) was available for 

99 patients with 105 treated lesions. Two cases were removed from the outcome analyses since the 

IORT lesion received additional immediate SBRT leaving a total of 103 lesions analyzed. The median 

patient age was 63 (range 35-85; n=99) years and the median KPS was 80 (40-100). The median DS-

GPA score was 2 (0-4; n=99). The most frequent BM localization was the frontal lobe (35.0%), while 

most histopathology results corresponded to lung cancer (54.4%). With a range of 1 to 16 intracranial 

lesions, 48 cases (46.6%) suffered from multiple BMs at the time of surgery. Further details on patient 

characteristics are provided in Table 1.  

 

Treatment  

The median FU was 13.2 (1.2-102.4; n=99) months. The brainstem and the optic tracts (optic nerves 

and chiasma) were regularly assessed as OARs and no dose constraints were exceeded. All patients 

completed treatment. The median IORT prescription dose was 25 (16-30; n=103) Gy to the surface, 

which corresponds to a dose delivery of approximately 60% in 3 mm, 45% in 5 mm and 22% in 10 

mm tissue depth, slightly varying depending on applicator diameter. The median applicator size was 2 

(1.5-4.0; n=103) cm. While 90 patients (87.4%) received IORT plus ICIs, another 25 patients (24.3%) 

received other TTs. Of note, some patients received both ICI and TT in parallel or combinations of 

either substance group. The median time to ICI initiation after IORT was 1.1 (-22.3-34; n=90) 
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months. TT was initiated after a median time of 1.2 (-38.9-22.9; n=25) months. Table 2 depicts further 

treatment characteristics and lists the specific administered substances.   

 

Toxicity 

Under combinatory treatment, mild and anticipated toxicity was reported. A summary of the observed 

AEs is provided in Table 3. No grade 4 or 5 events were deemed related to IORT. Fig. 1a and 1b 

show the maximum toxicity observed for individual patients. A cumulative RN rate of 4.9% (n=5) 

was observed with a median time to RN of 12.8 (7.8-18.9) months (Fig. 1c). Of these RN events, four 

were grade 1 and one a grade 3 event. The latter occurred in a patient with RCC receiving IORT with 

30 Gy to a frontal 34 mm BM after 7.8 months. This patient had received systemic treatment with 

cabozantinib initiated 5 weeks after surgery for a total of 7 months, before it was terminated due to an 

unfavorable overall toxicity profile. The RN was treated successfully with bevacizumab after previous 

failure of dexamethasone treatment. No wound dehiscences of any grade were noted. There were 

significantly more severe AEs (p=0.049; Fig. 1d) in total, but also treatment-related (p=0.025; Fig. 1e; 

RN, autoimmune infection) recorded for patients that commenced systemic treatment in parallel to 

resection and IORT, defined as initiation of treatment within the first 2 months following surgery. The 

full list of acute and long-term AEs is provided in Suppl. Table 1.  

 

Outcome 

The overall 1-year and 2-year LCRs were 98.0% (Fig. 2a) and 93.7%, respectively. With an overall 

DBP rate of 36.9%, the median DBP-free rate (DBPR) was not reached, while the 1-year DBPR was 

60.0% (Fig. 2b). The median time to DBP was 5.5 (range 1.0-18.5; n=38) months in the subgroup of 

patients experiencing distant intracranial progression. The cumulative LMS rate was 4.9% with a 

median time to LMS of 6.2 (4.2-18.2) months (Fig. 2c). The median OS after IORT was 26 (1.2-not 

reached) months and the 1-year OS rate 74.0% (Fig. 2d). The initiation of IT/TT within two months 

following IORT was associated with a non-significant trend towards prolongation of both distant 

brain control and overall survival (Fig. 2e). There were no variables significantly associated with local 

recurrence or RN in uni- or multivariate analysis, while DS-GPA provided the best prognostic 
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separation (HR 0.05, p=0.173) for local recurrence. However, median-based classification of the dose 

prescription (≤24 Gy vs. ≥25 Gy) showed a trend for increased RN risk (p=0.158; Suppl. Fig. 1), but 

not local recurrence (p>0.999), BDP-FS (p=0.782) or OS (p=0.318). Age (p=0.022) and DS-GPA 

(p=0.049) were significantly associated with OS in multivariate analysis.  

Discussion  

In contrast to the preceding era of uniform chemotherapy, ITs have reshaped the landscape of 

oncology dramatically within very few years towards precision-tailored treatments. This success is 

due to promising efficacy in a growing number of tumor entities and good patient tolerability with a 

relatively favorable toxicity profile, also in combination with other local or systemic therapies. We 

here provide first proof that IORT is an overall well-tolerated combination partner for ICI and other 

novel TTs.  

 

Particularly in highly immunogenic entities such as melanoma there are several reports of synergistic 

systemic effects of combined focal RT and systemic IT, often referred to as ―abscopal effect‖ (29, 30). 

However, the brain was long considered a privileged organ where the underlying mechanisms do not 

apply due to the filtering properties of the BBB, thus preventing sufficient penetration of the tumor 

tissue and limiting bioavailability of the drugs (8) in an a priori immune-cold, secluded 

microenvironment (31). Nevertheless, there are numerous clinical case reports of abscopal systemic 

tumor response following high-dose RT of BMs, particularly with concomitant IT (32, 33). Recent 

advances in research have shed more light on the characteristics of the immunologic tumor 

microenvironment of BMs claiming a very distinct, yet non-negligible role of the immune system for 

the brain compartments (34–36). RT generates neo-antigens (37), activates non-redundant immune 

pathways in the tumor (38) and increases permeability of the BBB, thus improving brain penetration 

of Its/TTs (39). These mechanisms make RT a specifically interesting combination partner for 

targeted approaches in entities and individual patients considered non-responsive to treatment (40).  
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Independent of prognostic factors, BM resection necessitates additional RT to improve local tumor 

control. Nonetheless, depending on individual tumor features and clinical context, it remains 

controversial which RT sequencing and technique achieves best long-term outcomes at lowest toxicity 

levels. Our observed 1-year LCR of 97.1% is in line with previous reports on IORT (16, 19) and 

furthermore strengthens the notion that this RT technique might be superior to both definitive and 

adjuvant EBRT regimens where LCRs of 85 to 90% can be expected at most (12, 14, 15, 41–43). Yet, 

prospective trials are required to confirm this hypothesis. A large pooled analysis with 179 patients 

assessed very recently outcomes for the combination of SBRT and IT (44) reporting a LCR of 94.2% 

and a cumulative ≥grade 2 RN rate of 6.9% after a median FU of 14.8 months. Notably, the median 

diameter of the investigated lesions was only 7 mm. With a median lesion diameter of 34 mm, we 

provide with IORT plus IT/TT a treatment rationale with particularly good outcome and tolerability 

for large lesions. Of note, the tumor lesions reported here are measured presurgically for obvious 

technical reasons, but adjuvant EBRT faces the dilemma of about 30% target volume increase (45). 

This additionally strengthens the data provided here for these already presurgically large lesions with 

a median volume of 22.9 cm
3
. Furthermore, larger lesion size was not associated with inferior 

outcome in this collective. Besides good local tumor control, we also demonstrated convincing 

intracranial control with a 1-year DBPS of 61.1% and a cumulative LMS rate of only 4.8%. Even 

though the exact underlying mechanisms remain unknown and require further scientific attention, a 

positive effect of the instant dose application thus preventing intracranial or leptomeningeal spread of 

tumor cells from around the resection cavity appears reasonable. Besides this timely eradication of 

remaining tumor cells, IORT may synergistically prevent the re-establishment of a protumorigenic 

tumor microenvironment. IT and TT may benefit from the high-dose local RT effects facilitating 

antigen presentation and subsequent immune-stimulatory properties, thereby enabling more effective 

killing of distantly circulating tumor cells (24). Proteomic profiles of wound fluids from breast cancer 

patients exhibited an abrogation of pathways promoting migration and invasiveness following IORT, 

which may particularly explain the LCRs and DB-PFS observed (46). The kV photon energy of IORT 

furthermore encompasses a compared to MV energy 1.3 to 1.5 times higher relative biologic 

effectiveness (RBE) (47), possibly overcoming typical limitations of common RT dosing like tumor 

                  



13 

hypoxia, repair and reduced radiosensitivity of surviving tumor cells (48). On the contrary, the 

particularly local dose distribution of IORT (20) prevents tumoricidal effects of in principal undesired 

distant dose exposure which may occur in EBRT and which represent the primary rationale for whole 

brain RT (15) where not visible tumor burden but the complete potentially tumor cell-baring 

compartment is targeted to prevent intracranial spread. Yet, the healthy brain-sparing properties of 

IORT both prevent neurological and cognitive impairment of the patients and allow for targeted 

reirradiation in case of distant recurrence.  

 

The ―one-stop-shop‖ characteristic of IORT enables timely admission to subsequent systemic 

treatments while reducing in-hospital times (49) and might furthermore allow for earlier reduction of 

often necessary systemic corticosteroids compared to EBRT, which is a known risk factor for TT 

efficacy predominantly in the early initiation phase (50). Although the OS reported in this series needs 

to be interpreted cautiously due to its retrospective nature and potential selection bias, we additionally 

provide first evidence of encouraging survival outcomes following combinatorial treatment, at least 

non-inferior to previous reports on IORT (18) but also a matched retrospective comparison of IORT 

and EBRT cases (19). As mentioned, this is hypothesis-generating and should be evaluated within a 

prospective clinical trial. 

 

Overall, our data indicate good tolerability and a favorable safety profile of this combinatorial 

approach. While predominantly confirming a lack of sufficient data for most drugs, a systematic 

meta-analysis previously reported generally acceptable toxicity of cranial stereotactic EBRT with IT 

(51). Yet, TTs and particularly BRAF inhibitors were associated with a high risk of severe toxicity 

(51) which we cannot confirm for our IORT cohort. The toxicity reported here is rather mild and in 

line with previous reports on IORT, that did not specifically address IT/TT cases (21, 22). Of note, 

only a minority of IORT patients of previous series received concomitant systemic therapy at all. 

Patel et al. observed a non-significant trend towards higher RN incidence for RT and ipilimumab 

versus RT only (52). Regardless of this, the reported RN rate of 30% exceeds significantly the 

cumulative RN rate of 5.7% presented here, despite the numerous patients in this collective receiving 
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duplet immune checkpoint blockade, which is associated with increased toxicity (2), let alone a less 

favorable toxicity profile in combination with SRT (53). Similar to previous retrospective single-

center reports (16–19), IORT patients seem to have a very low RN risk which is not altered by 

concomitant IT/TT.  

 

Timing of IT matters, but the optimal sequence of and time intervals between RT and IT remain 

controversial. Patient- and tumor-centered factors cannot be excluded to additionally influence this 

question. The PACIFIC trial showed strong evidence for sequential durvalumab treatment in locally 

advanced lung cancer with a time gap of at least one day, but up to six weeks (1). In the RTOG 3505 

trial, IT with nivolumab was initiated four to twelve weeks after RT (54). However, a large 

retrospective analysis noted improved clinical outcome when ICI were started at least one month prior 

to RT (55). This divergence prompted us to assess the IORT+IT effects in a wide time range of 

treatment initiation and to investigate possible timing effects. Within the low toxicity collective 

reported here, we notably observed increased toxicity for the subgroup of patients commencing their 

systemic treatment not before, but in the first two months following resection and IORT. Additionally, 

we noted a trend towards improved clinical outcome in both of these groups compared to even later 

initiation of IT. While requiring confirmation in prospective data, this would contradict the common 

concept of preventing increased perioperative risks by decidedly long post-surgery treatment gaps but 

suggest a benefit both in regard to outcome and tolerability for even earlier, pre-interventional 

initiation of the systemic treatment.   

 

Wound dehiscence is a common complication following BM resection (56, 57) with reported 

increased incidence for synchronous IT in head and neck cancer (58). In this series, we observed not a 

single case of wound dehiscence rendering IORT safe for patients with BMs receiving IT/TT. 

Notably, there is a well-known risk for wound infections with concomitant bevacizumab (59), which 

was underrepresented in our collective with just two patients receiving this VEGF pathway-TT. Our 

data are thus in accordance with previous reports that claim fewer toxicity for cranial RT with 

bevacizumab than for extracranial RT (51). It is worth highlighting, that two patients were a priori 
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removed from the analyses due to receiving an additional sequential SRT boost after IORT. One of 

these patients with a RCC receiving the VEGF-targeting multikinase inhibitor axitinib and avelumab 

later suffered from both a wound dehiscence requiring surgical intervention and a RN grade 3. Our 

observations raise suspicion over the safety of this treatment combination, while also the RT 

prescription requires reconsideration, as IORT with a sequential SRT boost was previously reported to 

be related to higher toxicity (18). Although IORT to BMs without sequential SRT boosting appears 

safe independent of the dose prescription, the results of the multivariate analyses suggest to limit the 

dose to 25 Gy to the surface. This limits the IORT duration and thus the window of risk for anesthesia 

side effects, but may also be protective for RN while non-inferior in regard to clinical outcome. 

Again, this will have to be confirmed in larger prospective trials.  

 

Our study carries several limitations. The retrospective nature of the assessment may cause an 

incomplete portrait of toxicity in comparison to controlled prospective clinical trials, as well as patient 

selection bias. This is particularly important since the multicenter aspect additionally attributes to 

heterogeneity in this regard. Notably, most of our patients presented with lung primary histology. 

Other histologies, such as breast cancer, were underrepresented. Furthermore, the IORT dose 

prescription and FU protocols of the contributing centers were not derived from a single trial and not 

homogenized, which may impact the generalizability of the findings. Given the current small number 

of IORT patients in this setting, randomized prospective data are yet required. Our efforts thus mark a 

first step towards a multicentric, prospective study of IORT cases in the world-wide centers to ease 

the interpretation of its therapeutic value. This is the largest investigation on an IORT patient cohort 

thus far, incorporating patient data from over a hundred BM treatments in six international, tertiary-

referral centers and it is the first assessment of IORT as a potential combination partner for IT and TT 

approaches, paving the way to a more patient-centered, fast and safe individual care for patients with 

BMs.   

  

Conclusions 
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The combination of IT/TT with IORT for resected BMs does not seem to increase toxicity, while 

yielding encouraging local control and leptomeningeal spread rates, particularly for large brain 

metastases. Times between surgery and systemic treatment should be shortened with this approach, as 

timely admission to systemic therapy was associated with a trend towards improved clinical outcome. 

A prospective clinical trial will elucidate the actual role of IORT in this setting. 
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Table captions 

Table 1: Patient characteristics for the evaluated BMs (n=103).  

BM: brain metastasis; DS-GPA: Diagnostic-Specific Graded Prognostic Assessment; KPS: Karnofsky 

performance score; NSCLC: non-small cell lung cancer; RCC: renal cell carcinoma; RT: 

radiotherapy; SCLC: small cell lung cancer. 

Variable n (%) Median (range) 

Gender     

Male 56 (54.4)   

Female 47 (45.6)   

Age (years)   63 (35-85) 

Tumor entity     
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NSCLC 53 (51.5)   

Melanoma 25 (24.3)   

RCC 13 (12.6)   

Breast 4 (3.9)   

SCLC 3 (2.9)   

Others 5 (4.9)   

Localization     

Frontal lobe 36 (35.0)   

Parietal lobe 28 (27.2)   

Occipital lobe 18 (17.5)   

Temporal lobe 13 (12.6)   

Cerebellum 8 (7.8)   

Max. pre-surgical diameter (mm)   34 (8-70) 

Pre-surgical tumor volume (ccm)  22.9 (1.2-701.7) 

Multiple BMs 48 (46.6)   

Number of BMs    1 (1-16) 

RT to other BMs 50 (48.5)  

Relevant overlap (≥10% isodose) 14 (13.6)  

Extracranial metastases 66 (64.1)   

KPS   80 (40-100) 

DS-GPA   2 (0-4) 

 

 

Table 2: Treatment characteristics (n=103).  

* Some patients received both IT and TT in parallel or combinations of either substance group. 

IT: immunotherapy; IORT: intraoperative radiotherapy; MKI: multikinase inhibitor; SRT: stereotactic 

radiotherapy; TKI: tyrosine kinase inhibitor; TT: targeted therapy. 
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Variable n (%) Median (range) 

IORT dose (Gy)   25 (16-30) 

18 5 (4.9)  

20 40 (38.8)  

24 4 (3.9)  

25 3 (2.9)  

26 1 (1.0)  

30 50 (48.5)  

Applicator diameter (mm)   20 (15-40) 

Time from first diagnosis to IORT (months)   1 (0-297) 

      

Immune checkpoint inhibitor 90 (87.4)*   

Pembrolizumab 36 (40.0)   

Ipilimumab + nivolumab 20 (22.2)   

Atezolizumab 16 (15.5)   

Nivolumab 13 (14.4)   

Durvalumab 4 (4.4)   

Ipilimumab 1 (1.1)   

Time from IORT to IT (months)   1.1 (-22.3-34) 

Number of IT cycles   6 (1-93) 

   

TT drug 25 (24.3)*   

BRAF/MEK inhibitor 6 (24.0)   

TKI 5 (20.0)   

MKI 6 (24.0)   

VEGF targeting* 6 (24.0)   
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Androgen deprivation 3 (12.0)   

Anti-Her2neu 3 (12.0)   

Anti-TNFa 1 (4.0)   

Time from IORT to TT (months)   1.2 (-38.9-22.9) 

Duration of TT treatment (months)   7 (2-68) 

   

   

 

Table 3: Summary of adverse events (n=147).  

* Fulminant auto-immune hepatitis unrelated to IORT but likely related to pembrolizumab. 

** One patient suffered from an ICI-related auto-immune vasculitis of grade 4 under pembrolizumab 

and another patient experienced an unrelated cardiac infarction causing pulmonary vein congestion 

and ultimately an atypical pneumonia. 

*** An 81-year-old patient with lung cancer experienced reactivation of a pre-existing chronic 

lymphocytic leukemia ultimately causing his demise following septicemia. Another patient deceased 

due to a distant brain progression-related intracranial bleeding four months after IORT. 

 Acute events Late events All events 

Grade n (%) n (%) n (%) 

Grade 1 22 (44.9) 43 (43.9) 65 (44.2) 

Grade 2 20 (40.8) 18 (18.4) 38 (25.9) 

Grade 3 6 (12.2) 33 (33.7) 39 (26.5) 

Grade 4 1 (2.0)* 2 (2.0)** 3 (2.0) 

Grade 5 0 (0.0) 2 (2.0)*** 2 (1.4) 

Any grade 49 (33.3) 98 (66.7) 147 (100.0) 

 

* Fulminant auto-immune hepatitis unrelated to IORT but likely related to pembrolizumab. 

** One patient suffered from an ICI-related auto-immune vasculitis of grade 4 under pembrolizumab 

and another patient experienced an unrelated cardiac infarction causing pulmonary vein congestion 

and ultimately an atypical pneumonia. 
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*** An 81-year-old patient with lung cancer experienced reactivation of a pre-existing chronic 

lymphocytic leukemia ultimately causing his demise following septicemia. Another patient deceased 

due to a distant brain progression-related intracranial bleeding four months after IORT. 

 

Supp. Table 1: Full list of adverse events. 

 

Figure captions 
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Fig. 1: Toxicity profile of IORT with immune checkpoint inhibition or other targeted therapies. a, b 

Waterfall plot illustrating time from IORT to initiation of ICI therapy (a) and TT (b) for each 

individual patient with treatment initiation between 6 months prior to and after IORT. Color labeling 

represents the maximum overall toxicity observed as per CTCAE grading (independent of relation to 

treatment) and icons symbolize occurrence of therapy-associated AEs (IORT/ IT/TT-related AEs). c 

Cumulative radiation necrosis rate (%) over time in months since IORT. d Violin plots demonstrating 

the distribution of the maximum reported toxicity as per CTCAE grading for patients receiving IT/TT 

prior or sequential (later than 2 months following surgery) to IORT compared to treatment initiation 

in parallel with IORT (within 2 months following surgery). Dashed lines indicate the median. * 

p<0.05, Mann-Whitney test. e Donut chart depicting maximum grade IORT/IT/TT-related toxicity (≤ 

grade 1 vs. ≥ grade 2) depending on time point of IT/TT initiation as defined in (d). * p>0.05, Fisher’s 

exact test. AE: adverse event; CTCAE: Common Terminology Criteria for Adverse Events; ICI: 

immune checkpoint inhibitor: IORT: intraoperative radiotherapy; IT: immunotherapy; TT: targeted 

therapy.  
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Fig. 2: Outcome parameters of IORT with immune checkpoint inhibition and other targeted therapies. 

a,b,c,d Kaplan-Meier plots depicting percentual local control rate (a), distant brain progression rate 

(b), leptomeningeal spread rate (c) and overall survival (d) over time in months since IORT. Dashed 

lines indicate 95% confidence intervals. e,f Kaplan-Meier plots for distant brain progression (e) and 

overall survival (f) dependent on timepoint of IT/TT initiation (within vs. later than 2 months after 

IORT); HR with CI and p indicated in the lower left corner and calculated for initiation of IT/TT 
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within 2 months vs. later than 2 months. Log-rank test. CI: confidence interval; HR: Hazard ratio; IT: 

immunotherapy; LMS: leptomeningeal spread; OS: overall survival; TT: targeted therapy.  

 

Suppl. Fig. 1: Dose dependency of radiation necrosis rate. Kaplan-Meier plot for cumulative 

radiation necrosis rate dependent on IORT prescription dose (≤24 Gy vs. ≥25 Gy). ); HR with CI and 

p indicated in the upper left corner and calculated for dose prescription of 24 Gy or less vs. 25 Gy or 

more. Log-rank test. CI: confidence interval; HR: Hazard ratio. 

                  


