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Abstract. The electron relaxation in Ag nanoparticles supported on graphite
is investigated by time-resolved multiphoton photoemission spectroscopy. The
photoemission spectra map the transient electron energy distribution in the
nanoparticles and reveal the internal thermalization and cooling of the electron
gas. The excess energy stored in the electron gas is calculated using the free-
electron model. In contrast to the behaviour of isolated nanoparticles the energy
loss rate from the electron gas increases with the pump fluence. This indicates
that the electron gas equilibration in Ag nanoparticles on graphite is modified by
excited electron transport.

1. Introduction

The properties of nanostructured interfaces differ from homogeneous films or bulk material.
This makes them interesting for many applications, as e.g. catalysis. Nanoparticles supported
on a substrate are used as model catalysts and it was found that the particle size influences
their chemical reactivity [1]–[3]. However, the underlying mechanisms for this size-dependent
catalytic activity are not yet fully understood. In addition, it is known that a hot electron gas,
that is not in equilibrium with the lattice, can induce chemical surface reactions that are inhibited
under equilibrium conditions [4]. Accordingly, the relaxation behaviour of excited electrons can
strongly influence the reactivity of an interface and it is therefore important to gain insight into
how nanostructuring influences electronic relaxation at interfaces. However, the investigation
of electron relaxation is up to now limited to homogeneous bulk material or thin films. Here we
demonstrate that time-resolved two-photon photoemission spectroscopy provides a probe for the
transient non-equilibrium electron energy distribution in supported nanoparticles and, therefore,
allows an investigation of the influence of three-dimensional electron confinement and coupling
to the substrate on the electron relaxation.
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Electron–electron, electron–surface and electron–phonon scattering events determine the
relaxation of non-equilibrium electrons in metals. Time-resolved reflection or absorption
measurements [5, 6] and two-photon photoemission spectroscopy [7]–[10] have been used to
investigate the response of the electron gas in metals directly in the time domain. All these
techniques are based on the pump–probe scheme, i.e. a first ultrashort laser pulse excites the
system and a second time-delayed laser pulse monitors the effect of the first one. The optical
excitation with a laser pulse leads to a transient perturbation of the electron distribution. The
pure optical methods, e.g. reflection and transmission measurements, indirectly monitor this
transient electron distribution via the change of the dielectric function ε(ω) [11]. Therefore,
their interpretation is based on relating the non-equilibrium electron distribution to ε(ω). In
contrast, time-resolved two-photon photoemission spectroscopy reveals directly the occupation
of intermediate states and therefore provides energy-resolved information on the evolving
electron distribution [7, 12].

Most time-resolved experiments are performed either with bulk material [10, 13]–[15], thin
films [5, 7, 16]–[18] or isolated nanoparticles [19]–[22]. The geometry has a strong impact on the
relaxation behaviour of the excited electrons. For bulk material the finite penetration of the pump
excitation, the ballistic transport of excited electrons and, on a longer timescale, the heat transport
influence the electron relaxation. In thin films these influences are modified and the cooling rate
of the electron gas is slower than in bulk material or in films of a thickness exceeding the mean
free path of excited electrons [23]. In small isolated nanoparticles, i.e. either free particles in
the gas phase or embedded in a dielectric matrix, the transport of ballistic electrons becomes
unimportant, since the excitation is homogeneous over the nanoparticle. The relaxation dynamics
in metal nanoparticles embedded in a dielectric has been investigated thoroughly by transient
optical absorption (for recent reviews see [24]–[27]). Depending on the wavelength the transient
absorption measurement probes different regions in the metal band structure, either monitoring
the energy loss from the electron gas by interband transitions or the initial thermalization by
using a probe photon energy at the onset of the intraband absorption [28].

In contrast to isolated nanoparticles, the electron relaxation in supported nanoparticles is also
influenced by electron transfer processes between substrate and nanoparticle (figure 1). A metal
nanoparticle on a conductive substrate or a thin oxide layer couples electronically and the coupling
strength determines the transmission probability for electrons. Under equilibrium conditions the
transfer in both directions will cancel. However, a net flow of electrons can arise if a non-
equilibrium condition is generated by the absorption of a laser pulse. Note that the transmission
probability for excited electrons increases strongly with the electron energy, since the effective
barrier height for electron tunnelling is reduced. Accordingly, the interface between nanoparticle
and substrate can influence the electron energy distribution in the nanoparticles in a complex
manner. In particular, the impact of this electron transfer depends strongly on the electron
energy. Beside the tunnel probability the charge transfer is also influenced by the capacitance
and transient charge of the supported nanoparticle. For sufficiently small electron energies
transfer might be impossible due to the Coulomb blockade [29]. Time-resolved two-photon
photoemission provides energy-resolved information about the transient electron distribution
and is therefore a valuable tool to investigate the electron relaxation and transient energetic
shifts in a heterogeneous system.

Time-resolved two-photon photoemission can be extended to the investigation of
nanostructured surfaces by tuning the laser excitation to a specific resonance, e.g. the surface
plasmon excitation in Ag nanoparticles on graphite [30]–[32]. For resonant excitation the total
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Figure 1. Schematic representation of the mechanisms that control the relaxation
of excited electrons in supported nanoparticles.

photoemission yield is dominated by the emission from the nanoparticles and it has been recently
demonstrated that the electron gas temperature Tel and the cooling of the electron gas can be
monitored in time-resolved experiments [33]. The basic pump–probe scheme is depicted in
figure 2. The irradiation of the sample with an ultrashort laser pulse at 780 nm is not resonant
with the surface plasmon and therefore leads to the formation of a non-equilibrium electron
distribution in the graphite substrate and in the Ag nanoparticles. The partitioning of the
absorbed pump fluence on nanoparticles and substrate is difficult to assess, since reflectivity
measurements provide only an upper limit for the absorption in the nanoparticles of about 0.3%
(compare section 2). The transient behaviour of the electron distribution in the nanoparticles after
the absorption of the pump pulse is monitored by a two-photon excitation of the nanoparticles at
3.2 eV photon energy (390 nm). This photon energy is close to the surface plasmon resonance
of the supported nanoparticles at about 3.4 eV [32] and it has been recently demonstrated
that under these conditions the photoemission yield is dominated by the emission from the
nanoparticles [31].

The pump pulses at 1.6 eV photon energy (780 nm) excite electrons in a one-photon process
from occupied states to unoccupied states above EF . The initial states are located between the
Fermi energy EF and EF − 1.6 eV. The resulting non-equilibrium electron energy distribution
is shown in figure 2 schematically as a stepped electron energy distribution fAg(E) for the Ag
nanoparticles. As mentioned above, transport and scattering events lead to rapid relaxation of
this nonequilibrium state. In about 1 ps the initial distribution evolves into a smooth distribution,
that is well described by a Fermi distribution function with an elevated temperature. After this
initial thermalization, it is therefore possible to characterize the electronic excitation by a single
parameter, i.e. Tel. However, the electron gas is not yet in equilibrium with the lattice and
on a longer timescale of several ps the electron gas in the nanoparticles loses energy due to
electron–phonon scattering and transport of excited electrons.
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780 nm

390 nm
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Figure 2. Pump–probe scheme for time-resolved photoemission spectroscopy
of the electron relaxation in supported nanoparticles.

2. Experimental method

The nanoparticles were prepared following the procedure given in [34]. Cleaved highly oriented
pyrolytic graphite (HOPG) is sputtered with Ar ions (1 keV, 1011 cm−2) and oxidized in air
(T = 520 ◦C, 20 min) thereby forming pits in the topmost layer of the graphite. Silver is
evaporated onto the sample (0.1 Å s−1, 10 s, 350 ◦C), condenses into the pits and forms particles
of several nanometres in size. An in situ scanning tunnelling microscope allows the determination
of the height distribution of the nanoparticles that exhibits typically a relative width of about
25%. Time-resolved two-photon photoemission spectroscopy is performed using the output of
an amplified Ti:sapphire laser system (1.6 eV, 60 fs pulse duration, repetition rate 100 kHz) and
its second harmonic (3.2 eV, 50 fs pulse duration) as pump and probe pulses, respectively.

The pump photon energy is far detuned from the surface plasmon resonance of the supported
Ag nanoparticles and hence the pump pulse absorption in the substrate and the nanoparticles has
to be considered. Reflectivity measurements show that the reduction of reflectivity at the pump
photon energy due to the presence of nanoparticles is smaller than our experimental resolution

New Journal of Physics 4 (2002) 95.1–95.15 (http://www.njp.org/)

http://www.njp.org/


95.5

of about 0.3%. Together with the surface coverage with nanoparticles of about 2% this allows us
to estimate an upper limit for the fraction of the fluence absorbed in the nanoparticles. Less than
15% of the incident fluence that hits a nanoparticle is absorbed in the nanoparticle. Accordingly,
the dominant part of the pump pulse is absorbed in the graphite substrate. This energy, however,
is deposited over the penetration depth of the incident light of about 35 nm. The probe pulses are
attenuated so that the shape of the obtained two-photon photoemission spectrum does not depend
on laser intensity and heating by the probe pulse is prevented (probe fluence <0.1 mJ cm−2).

For time-resolved studies, pump and probe pulses are delayed with respect to each other.
The focus of the pump pulse (30 µm diameter) has been chosen larger than the focus of the
probe pulse (20 µm diameter) in order to minimize temperature gradient effects. The samples
are mounted on an UHV manipulator with good thermal contact to a large thermal reservoir. The
experiments are all performed at 300 K. The average temperature rise of the sample is smaller
than the uncertainty of the experimentally determined electron gas temperature of about 50 K.
The kinetic energy of the emitted photoelectrons is analysed using a time-of-flight spectrometer.
Electrons for all kinetic energies are recorded simultaneously. To minimize the influence of small
variations of the laser power in the pump–probe signal the delay is scanned repeatedly. During
this averaging over typically 10 h the laser pulse duration and laser power are continuously
monitored. The total variation of both is smaller than 5%. Incremental pump–probe scans and
photoelectron spectra recorded before and after the scan ensure that the surface properties are
not altered during the scan.

3. Experimental results

In time-resolved two-colour pump–probe experiments different excitation pathways contribute
to the photoemission yield. Figure 3 displays the photoemission spectrum obtained for negative
delay (reference) and for simultaneous pump and probe pulses. The reference spectrum reflects
the electron energy distribution undisturbed by the pump pulse, since the probe pulse precedes
the pump pulse and the pump pulse alone does not lead to photoelectron emission. As pointed out
in the introduction, under probe excitation the photoemission is dominated by the nanoparticles
and therefore the shape of the photoemission spectrum reflects the electron energy distribution
in the nanoparticles. No single-photon photoemission is observed, since the work function of
the surface is 4.4 eV. The shape of the photoemission spectra allows us to identify four different
multiphoton excitation processes. For kinetic electron energies up to about 2 eV the reference
spectrum is dominated by two-photon photoemission (process (1) in figure 3(b)). The kink in
the spectrum at about 2 eV kinetic energy corresponds to the two-photon photoemission from
initial states close to EF . For higher kinetic energy the photoelectron yield decreases further and
reaches the noise limit at about 3.5 eV. These electrons originate from a three-photon excitation
process (process (2) in figure 3(b)) since the photoemission yield in the energy range between 2
and 4 eV varies with the third power of the laser fluence dependence. The spectrum obtained for
simultaneous pump and probe pulses exhibits two distinct differences to the reference spectrum:
the photoemission yield for kinetic energies below 0.5 and above 2 eV is increased. The sum of
pump and probe photon energy is 0.4 eV larger than the work function and therefore the higher
photoemission yield at low kinetic energy is attributed to the absorption of one pump and one
probe photon (process (3) in figure 3(b)). Similarly, the increase of the photoemission yield at
energies above 2 eV reflects the absorption of one pump and two probe photons (process (4) in
figure 3(b)). It is important to note that the absorption of two pump photons (1.6 eV) does not
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Figure 3. (a) Photoemission spectra for the excitation of Ag nanoparticles on
graphite with pump and probe pulses at 780 and 390 nm, respectively. The average
height of the nanoparticles is 2.2 nm. Reference spectrum with no influence of
pump pulse for negative delay between pump and probe pulse (black curve) and
spectrum for zero delay (red curve). The shaded area indicates the photoemission
contribution due to three-photon excitation at 390 nm. Four different excitation
pathways are schematically represented in part (b) and the corresponding features
in the spectra are indicated in part (a). The different excitation mechanisms are
further explained in the text.

influence the photoemission spectrum. This process would increase the photoemission yield in
the energy range between 1 eV to 1.8 eV, with respect to the reference spectrum. This is not
observed in the experiment and we therefore conclude that the pump process is dominated by
single-photon absorption.

The spectral shape of the photoemission spectra shown in figure 3 is related to the electron
energy distribution fAg(E) in the Ag nanoparticles. In the following we present a normalization
of the spectra that allows fAg(E) to be extracted from the spectra. The three-photon contribution
is present in all spectra as a time-independent background. It is therefore determined in the
reference spectrum and then subtracted from all spectra of the pump–probe scan. Note that
the three-photon contribution is about two orders of magnitude smaller than the two-photon
photoemission yield. The shape of the photoemission spectrum after subtracting the three-
photon contribution is determined by

(a) the initial electron energy distribution,

(b) the joint density of states for the two-photon excitation probe process,

(c) the lifetime of intermediate and final states,

(d) the photoelectron escape probability and

(e) the spectrometer acceptance and transmission.
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The photoemission spectrum for kinetic energy range between 1 and 1.8 eV is independent of
the delay between pump and probe pulse. It is well represented by a single exponential (grey
dotted curve in figure 3(a)). Assuming that the quantities (b)–(e) vary smoothly with energy,
one can extrapolate their behaviour also to initial-state energies above EF . Normalization of the
resulting two-photon photoemission spectrum to the extrapolated exponential (dotted grey curve
in figure 3) eliminates the influence of the joined density of states, the variation of the escape
probability and spectrometer transmission and yields a quantity that is closely related to the
electron energy distribution in the Ag nanoparticles. In the following we show that the described
spectrum normalization yields results that are consistent with an independent calibration of the
spectral shape [33] and allow a quantitative assessment of the excess energy stored in the electron
gas. Therefore, the spectrum normalization which is based on the extrapolation of the spectral
shape for states above EF indeed yields the transient electron energy distribution fAg(E).

Normalized photoemission spectra are shown in figure 4 for the reference and for
simultaneous pump and probe pulses obtained at two different pump fluences. The normalized
reference spectrum is constant for initial states below EF and then drops rapidly to the noise
level with increasing initial-state energy. For zero delay between pump and probe pulse the
decrease of the spectrum is less abrupt and a tail of the distribution extends far above EF . The
photoemission yield in this tail increases linearly with incident pump fluence, i.e. about a fourfold
increase of the incident pump fluence leads to the same increase of the photoemission yield.

The normalized spectra for initial states close to EF can be well described by a
phenomenological fitting function fAg(E, Tel, w) that is obtained as a convolution of the Fermi
distribution function fF (E, Tel) and a normal distribution g(E, w) that accounts for the finite
spectral resolution w in the experiment:

fAg(E, Tel, w) = fF (E, Tel) ∗ g(E, w) =
(
e

E−EF
kBTel + 1

)−1
∗

(
Ne− E2

2w2
)
, (1)

with the electron gas temperature Tel, the Boltzmann constant kB, and a normalization factor N .
Both the spectral resolution w and the electron gas temperature Tel determine the width of the
Fermi edge in the photoemission spectrum. The spectral resolution w is independent of the
pump–probe delay and, therefore, w is determined once for the reference spectrum recorded at
300 K sample temperature for large negative pump–probe delay (τ = −5 ps). For the other
spectra of one pump–probe scan w is then held fixed at this value and Tel is determined as a
function of pump–probe delay by fitting the spectra. The spectral broadening parameter w shows
some variation between different experiments but is not influenced systematically by the pump
fluence. For spectra at zero pump–probe delay the shape of the spectrum up to EF +0.3 eV is well
described by fAg(E, Tel, w) (equation (1)), however now for an increased Tel. For higher initial-
state energy the photoemission yield is substantially higher than is expected for a thermalized
electron distribution. This difference between the spectrum and fAg(E, Tel, w) reflects electrons
that have been excited by the pump pulse, but are not yet in equilibrium with the rest of the
electrons. According to this, a fit of the spectrum for initial-state energies up to EF + 0.3 eV
using equation (1) allows to determine both the elevated electron gas temperature Tel and the
non-thermal electron distribution (shaded areas in figure 4).

In recent experiments it has been demonstrated by recording the two-photon photoemission
spectra for varying sample temperature that Tel determined by fitting the photoemission spectra
using equation (1) does indeed reflect the actual temperature of the electron gas [33]. The
variation of the shape of the spectrum as a function of the sample temperature provides a
calibration for the determination of the electron gas temperature [33]. According to this, the
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Figure 4. Normalized photoemission spectra for negative delay between pump
and probe (reference) and simultaneous pump and probe for two different incident
pump fluences. The fit of a spectrally broadened Fermi distribution function to
the data is shown as dashed curves. The shaded areas represent the non-thermal
electron energy distribution.

normalized photoemission spectrum directly reflects the electron energy distribution for initial
states close to EF . For an initial-state energy higher than about EF + 0.3 eV this is difficult to
prove. However, the observation that the three-photon photoemission contribution exhibits no
distinct spectral features indicates that the normalization yields a good estimate for the electron
distribution over a much broader energy range.

In the following we assume that the normalized photoemission spectrum does indeed
reflect the electron energy distribution. The time-resolved pump–probe experiment then
provides direct information about the internal thermalization of the electron gas and its cooling.
Figure 5(a) shows a contour plot of the transient differential electron energy distribution,
i.e. the difference between the transient normalized photoemission spectrum and the normalized
reference spectrum. At zero delay the spectra shift to about 0.05 eV higher energy. For the
spectra shown in figure 5 this small shift has been corrected in order to yield a contour plot that
directly reflects the differential distribution. At negative delay τ the spectral shape is constant.
At τ = 0 ps the pump pulse decreases the population in states below EF and increases the
population in states above EF . The contour line for ∆fAg(E) = 0.01 shows the rapid relaxation
of the electrons excited far above EF , reflecting the internal thermalization of the electron gas.
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Figure 5. Two-colour pump–probe experiment on Ag nanoparticles (average
height 2.2 nm) supported on HOPG using an incident pump fluence of 6.4 mJ cm−2

(780 nm centre wavelength, 60 fs pulse duration) and 0.02 mJ cm−2 probe fluence
(390 nm centre wavelength). (a) Contour plot of the difference between the
transient normalized spectra and the reference spectrum recorded at −2 ps delay.
The contour lines cover the range from f(E) = −0.04 to 0.04 and are spaced by
∆f = 0.01. Contours for negative values are dotted. (b) Transient non-thermal
electron distribution represented as a contour plot of the difference between the
transient normalized spectra and the thermalized distribution calculated using Tel

and equation (1). (c) Excess energy density in the electron distribution ∆utotal and
in the thermalized electron distribution ∆uthermal calculated using equations (2)
and (3).
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The differential distribution decreases with increasing pump–probe delay and saturates for a
delay of about 3 ps at a differential distribution that reflects equilibration of the electron gas with
the slightly increased lattice temperature Tl.

As mentioned above, for simultaneous pump and probe pulse, i.e. τ = 0 ps, a non-thermal
electron distribution should be visible. However, it is difficult to visualize on a linear scale.
Therefore, the transient non-equilibrium distribution is shown in figure 5(b) as a contour plot
of the difference between the normalized photoemission spectra and the thermal distribution,
i.e. the transient behaviour of the signal represented by the shaded area in figure 4. The transient
non-equilibrium distribution extends to about 1 ps. For larger pump–probe delay the non-
equilibrium distribution reaches the noise level (≈0.02) and can no longer be distinguished from
the thermalized distribution. The non-equilibrium distribution should be also present for energies
below EF . However, for these energies the contribution of this non-equilibrium distribution is
smaller than the typical shot noise of the large two-photon photoemission signal. Therefore we
show the non-equilibrium distribution only for energies above EF .

The transient electron distribution contains energy-resolved information about the electron
relaxation in the nanoparticles. Based on the free-electron model for a metal, the total excess
energy density ∆utotal of the electron energy distribution is calculated using [35]

∆utotal =
1

2π2

(2mel

h̄2

)3/2 ∫ ∞

0
(E − EFermi)

√
E∆f(E, Tel) dE, (2)

with the free-electron mass mel, and the Fermi energy EF = 5.48 eV [35]. The result is shown
in figure 5(c). The total excess energy density rises during the absorption of the pump pulse, and
then decreases continuously until it reaches its saturation value. The height distribution of the
Ag nanoparticles used for this experiment is centred at 2.2 nm. Assuming spherical particles, the
total excess energy corresponds to the absorption of about two pump photons. The total excess
energy determined using equation (2) is influenced by the assumption of a free-electron gas. In
a real metal the density of states is influenced by the band structure of the metal. However, in the
case of silver the quasi-free-electron gas model successfully predicts the optical properties for
photon energies up to 4 eV [36]. This and the fact that we observe no distinct spectral features
in the multiphoton photoemission spectra from supported nanoparticles supports the assumption
of a free-electron gas.

As shown in figure 4, the electron distribution may be separated in a thermalized and a
non-thermal distribution. For each spectrum of the pump–probe scan shown in figure 5(a) the
thermalized contribution can be characterized by Tel as it is determined by fitting the spectra
using equation (1). Using the free-electron model the excess energy density of the thermal
electron distribution ∆uthermal is given by [37]

∆uthermal(Tel(t)) =
γelTel(t)2

2
− uthermal(Tel(t = −∞) = 300 K), (3)

with γel = 3.915 × 10−7 eV K−2 nm−3. The product γel Tel is the heat capacity of the electron
gas. Within the free-electron model the numerical value of γel is determined by the density of
valence electrons nel = 58.5 nm−3 and the Fermi energy EF = 5.48 eV [35]. The excess energy
density stored in the thermal distribution is also shown in figure 5(c). Compared to the total
excess energy density it exhibits a slower rise, reaching its maximum after about 400 fs. Only
about half of the absorbed energy density appears in the thermalized electron distribution. The
total excess energy density exceeds the energy density in the thermalized distribution up to about
1 ps. After this delay a non-equilibrium electron distribution can no longer be identified and
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Figure 6. Comparison of transient total excess energy density ∆utotal in the
electron gas (open symbols) and model calculations based on the two-temperature
model using optimized parameters for g and the absorbed energy density (red
curve). (a) and (b) show the results for incident pump fluence of 6.4 and
1.3 mJ cm−2, respectively. The inset in (b) shows the variation of g with the
absorbed energy density.

the excess energy densities determined by the two methods coincide. This is in good agreement
with the non-thermal electron distribution shown in figure 5(b) which also extends to about 1 ps.

A decrease of the electron gas cooling rate with increasing electron gas temperature has
been observed in time-resolved absorption measurements using isolated metal nanoparticles
embedded in a dielectric matrix [27, 38]–[41] and metal films [5, 16, 28]. It is attributed to
the increase of the heat capacity of the electron gas with temperature. This mechanism also
decreases the excess energy loss rate with increasing total excess energy (see figure 5 in [27]).
It is therefore interesting to investigate the fluence dependence of the energy loss rate from
supported nanoparticles. In figure 6 the transient excess energy density is compared for different
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pump fluences. In contrast to the behaviour of isolated nanoparticles embedded in a dielectric
matrix, the experimentally determined energy loss rate increases with the pump fluence. Half of
the excess energy is gone after 1 ps for the higher pump fluence, whereas only about one-third is
gone for the low pump fluence. In section 4, this unexpected increase of the energy loss rate from
supported nanoparticles with increasing absorbed fluence is compared with the prediction of the
widely used two-temperature model, providing evidence that the transport of excited electrons
via the nanoparticle–substrate interface is crucial for the understanding of electron relaxation in
nanoparticles that are electronically coupled to the surrounding, i.e. the substrate.

The results shown up to now demonstrate that two-colour time-resolved two-photon
photoemission spectroscopy allows one to distinguish between the non-equilibrium electron
distribution and the thermal distribution and directly yields the transient electron energy
distribution in supported metal nanoparticles fAg(E, τ ). Monitoring the total excess energy
density ∆utotal and the excess energy density stored in the thermalized distribution ∆uthermal

allows both the initial thermalization and the energy loss of the electron gas in the nanoparticles
to be followed. The excess energy loss rate increases with absorbed energy. This behaviour is
in contrast to the behaviour of isolated nanoparticles, i.e. those that are not in contact with a
substrate, and indicates the importance of excited electron transport.

4. Comparison with two-temperature model and discussion

In this section we compare the electron gas cooling in supported nanoparticles with predictions of
the two-temperature model for a homogeneously excited bulk material. This model is based on
assumptions, e.g. the nonexistence of electron and heat transport, that are not valid for supported
nanoparticles. Nevertheless, the comparison allows us to clarify the differences between electron
relaxation in supported and isolated nanoparticles embedded in a dielectric matrix.

The two-temperature model is often used to treat the equilibration of an electron gas with the
lattice after excitation by a short laser pulse [42]–[44]. Assuming instantaneous thermalization
of the initial non-equilibrium electron distribution and based on an energy transfer rate between
electron gas and lattice that is proportional to the temperature difference between both reservoirs,
one obtains for a homogeneous system two coupled rate equations for Tel(t) and the lattice
temperature Tl(t)

dTel (t)
dt

= − g

γelTel

(Tel(t) − Tl(t)) + S(t), (4a)

dTl (t)
dt

=
g

cl

(Tel(t) − Tl(t)), (4b)

where the source term S(t) reflects the absorption of the pump pulse, g is the electron phonon
coupling constant, and cl is the silver lattice heat capacity (0.0155 eV K−1 nm−3). Figure 6
shows the total excess energy density from model calculations using equations (3) and (4) and
optimized parameters for g and the absorbed energy density. The fluence dependence of the
energy loss rate as discussed in the previous section is also reflected in the optimized values
for the electron phonon coupling g, which increase with the absorbed pump fluence (see inset
of figure 6(b)). This increase of g cannot be attributed to the initial non-equilibrium electron
distribution or to artifacts due to the normalization of the photoemission spectra, since the same
behaviour is obtained if the two-temperature model is optimized for τ > 1 ps, i.e. after internal
equilibration of the electron gas.
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The increase of the energy loss rate from the electron gas or, in terms of the two-temperature
model, the increase of the electron phonon coupling g is a surprise. The variation of g is in contrast
to the reduction of the cooling time constant with increasing pump fluence that has been observed
in metallic nanoparticles embedded in a dielectric matrix [27, 38]–[41] and metal films [5, 28].
This fluence dependence of the cooling rate is attributed to the temperature dependence of the heat
capacity of the electron gas and can be explained in the framework of the two-temperature model.
However, an increase of g with the pump fluence is in contrast to the behaviour of metal nanopar-
ticles embedded in a dielectric matrix, since for those systems the transient absorption spectra for
similar absorbed pump energy densities are well described using a constant g [27]. The electron
phonon coupling g for supported nanoparticles should also be independent of the pump fluence,
since the absorbed energy density and the size of the nanoparticles in the transient absorption ex-
periments are comparable. Accordingly, the observed fluence dependence of the energy loss rate
cannot be explained in the framework of the two-temperature model for an homogeneous system.

Both the two-temperature model for an homogeneous system and the experiments
using isolated nanoparticles exclude electron transport phenomena. This might explain the
discrepancies between our data on the one hand and two-temperature model predictions and
results from isolated particles on the other hand. As mentioned in the introduction, transport of
excited electrons might substantially influence the development of the electron distribution in
supported nanoparticles. A non-vanishing coupling between nanoparticle and substrate means
that electrons are exchanged. As indicated in figure 1, the coupling strength is determined by
a tunnel barrier at the interface. The coupling strength and therefore also the transmission
probability through the barrier varies with the energy of the electrons, i.e. electrons with
high energy couple more strongly and vice versa. According to this, it is expected that
the impact of transport on the transient electron energy distribution becomes more important
with increasing electron energy. Transport phenomena have been addressed in time-resolved
experiments [10, 17, 18, 23, 45] and theoretically [46]. However, a scenario as described above
is not covered by these considerations. Knowledge of the transient electron distribution as
provided by time-resolved photoemission spectroscopy is crucial for the investigation of the
electron transfer between substrate and nanoparticle. In addition, an improved theoretical model
for electron relaxation in a nanostructured system, that includes energy dependent transfer rates,
is required to gain further insight.

At a closer look, a further discrepancy between the two-temperature model and the
experiment is obvious (compare figure 6). For large pump–probe delay the two-temperature
model underestimates the excess energy density. Either an about ten times smaller lattice
heat capacity compared to bulk Ag or the existence of another source for the heating of
the lattice of the nanoparticle besides the electron gas fixes this discrepancy. A significant
reduction of the lattice heat capacity in comparison to the bulk value is in contrast to heat
capacity measurements for isolated particles [47] and, therefore, rather unlikely for supported
nanoparticles. However, in a heterogeneous system like supported nanoparticles the substrate
might act as an additional heat source for the nanoparticle, since the pump pulse excites both
substrate and nanoparticle. Accordingly, not only does the transfer of electrons influence the
electron relaxation in supported nanoparticles, but the phonon coupling between nanoparticle
and substrate might also be important. The comparison between the predictions of the two-
temperature model and our experiments shows that both the excited electron exchange between
substrate and nanoparticle and the transient temperature of the substrate influence the electron
gas cooling in supported nanoparticles after non-resonant pulsed laser excitation.
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5. Summary

The results shown here demonstrate that two-colour time-resolved two-photon photoemission
spectroscopy allows us to investigate the electron relaxation in Ag nanoparticles supported
on graphite. The photoemission spectra map the transient electron energy distribution in the
nanoparticles, providing information about the internal thermalization of the electron gas and its
cooling. It is possible to distinguish between the non-equilibrium electron distribution and the
thermal distribution. Based on the free-electron model, the electron distribution yields the excess
energy stored in the electron gas. Monitoring the total excess energy and the excess energy stored
in the thermalized distribution allows us to follow the initial thermalization and the cooling of the
electron gas in the nanoparticles. The excess energy loss rate increases with absorbed energy.
This behaviour is in contrast to the behaviour of isolated nanoparticles, i.e. particles that are
not in electric contact to the surrounding medium, and cannot be explained in the framework
of the two-temperature model for an homogeneous system. This indicates that the electron
gas equilibration in Ag nanoparticles on graphite is substantially modified by excited electron
transport. In addition, the pump pulse deposits energy in the substrate which then can act as a
source for excited electrons and heat. Thus, a model is developed that yields the full transient
electron energy distribution and accounts for the absorption of the pump pulse in the substrate
and the electron transfer between substrate and nanoparticle.
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