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Abstract

We present a novel method for precise 3D object local-
ization in single images from a single calibrated camera
using only 2D labels. No expensive 3D labels are needed.
Thus, instead of using 3D labels, our model is trained
with easy-to-annotate 2D labels along with the physical
knowledge of the object’s motion. Given this informa-
tion, the model can infer the latent third dimension, even
though it has never seen this information during training.
Our method is evaluated on both synthetic and real-world
datasets, and we are able to achieve a mean distance error
of just 6 cm in our experiments on real data. The results
indicate the method’s potential as a step towards learning
3D object location estimation, where collecting 3D data for
training is not feasible.

1. Introduction

The 3D location of objects is crucial in many application
domains, such as in robotics or in the performance analysis
of athletes in sports tournaments. Especially sports broad-
casting companies are greatly interested in obtaining 3D
information about an object’s location in a fixed environ-
ment [22], for example the position of the ball in soccer,
basketball, tennis, or squash. Traditional technologies like
Hawk-Eye [13] and View 4D [32] often rely on triangula-
tion techniques [21, 23, 26] for the calculation of the ball’s
position. A major limitation of these methods is the need for
expensive hardware (e.g. multiple synchronized cameras),
consequently preventing their application in low budget and
amateur sports where only a single camera is used to record
the game. In contrast to these methods, a neural network
can be trained to predict the 3D position of the ball even if
the game is recorded with just a single camera. However,
training such a network typically requires 3D ground truth
data. Although ground truth data may be readily available
for some disciplines such as soccer, it is often lacking in
lower-budget sports like squash. Consequently, there is a

Figure 1. Predictions of the Position Estimation Network. The
left image is the input to the network, the middle image shows
the predicted heatmap, and the right image shows the predicted
depthmap. By combining the heatmap and depthmap, the 3D po-
sition of the ball can be calculated.

need for a method that can perform ball localization with-
out relying on 3D ground truth data as supervision.

In this paper, we present a novel method for training a neu-
ral network to perform 3D localization that does not need
3D ground truth labels as supervision at all. Instead, only
2D image labels of the position of a desired object are
needed, which can be easily obtained through methods such
as object detection or manual annotation by clicking on the
object’s center in an image. Our model is trained using
video clips, leveraging the physical laws of motion to en-
able the network to infer the latent third dimension.

A key advantage of our method is its flexibility in inference.
While videos are needed during training, our trained model
can also be applied to single images during inference. This
ensures that our network can even be applied in situations
where the object’s motion cannot be precisely described by
physics (e.g. due to human interaction) or where the phys-
ical parameters are not known completely (e.g. if a sudden
wind is affecting the ball). While methods processing mul-
tiple frame will likely fail in those situations, our method is
robust to such changes.

The primary focus of this paper is on training our neural net-
work on video sequences of the ball’s movement between
contacts with players. During this period, the ball remains
unaffected by non-deterministic forces, enabling us to ef-
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Figure 2. Training and inference pipeline. The Position Estimation Network (PEN) estimates the heatmap (HM) and depthmap (DM) for
each input image, from which the 2D image coordinates and camera depth are extracted. Using the intrinsic camera matrix, we compute
the 3D camera coordinates from the image coordinates and camera depth. With the extrinsic camera matrix, the world coordinates r⃗ are
calculated. During training, we apply the PEN to multiple coherent frames for the estimation of the velocity v⃗. The Physics Aware Forecast
Module (PAF) utilizes these initial conditions to calculate the world coordinates at a later time tn+∆n by solving the differential equations
of motion. These coordinates are then projected back to image coordinates and the future loss is calculated. The heatmap loss is calculated
by comparing the predicted and ground truth heatmaps at all time steps. During inference, the PEN is applied to single images. Thus, it is
robust to incalculable situations like sudden wind or human interventions. Blue arrows indicate the use of camera matrices, and dotted red
lines indicate detached gradients.

fectively utilize the physical laws of motion to describe its
trajectory in the training videos. Importantly, we are able to
describe the ball bouncing off walls and the floor, which is
e.g. important in various disciplines like tennis or squash.

Since our method is not only limited to sport’s applications,
we study videos of a moving ball in a more general context.
The main contributions of this paper are:

• We propose a general method to train a neural network
for 3D object localization in single images without the
need of 3D labels.

• We create a synthetic and a real-world dataset with 3D
ground truths for the evaluation of our method. The
datasets will be published in order to ensure repro-
ducibility and to encourage further research in this field.

• We prove experimentally that our model is able to accu-
rately predict the 3D position of the ball and discuss the
experimental results thoroughly.

2. Related Work
Pose estimation is widely used in many sport disciplines,
and it is of great importance in athletics [20], table tennis
[16], swimming [9], and soccer [2]. In this paper we esti-
mate the position of an object instead of a human pose. Nev-
ertheless, our architecture is inspired by methods commonly
used in human pose estimation, since we use 2D heatmaps

to encode the object’s position.
In addition to human pose estimation, accurate ball local-
ization is crucial in the analysis of many sport disciplines.
Several methods have been developed to calculate physical
reasonable 3D positions of the ball from the sequence of re-
lated 2D positions. For instance, [18] localize a badminton
ball using videos, [5] reconstruct the 3D trajectory of a bas-
ketball from a sequence of 2D positions and [6] calculate
the trajectory of a volleyball. However, these methods rely
on fitting the ball’s trajectory to physically calculated paths
and, thus, are only applicable to video sequences exhibiting
perfect ballistic trajectories. They cannot handle situations
where the ball is subject to non-deterministic forces (e.g.,
human actions) or when the physical parameters change
(e.g., the introduction of strong winds or changes in drag
coefficients due to wear and tear). Moreover, these meth-
ods do not account for ball bouncing. In contrast to these
methods, we are also able to describe more intricate physi-
cal situations like a ball bouncing off the floor. Furthermore,
since our method can be applied to single images during in-
ference, it remains effective even when the ball’s behavior
is non-deterministic or when precise knowledge of physical
parameters is lacking. Thus, our method overcomes many
limitations of previous approaches.
Other studies like [30, 31] estimate the 3D position of a bas-



ketball in single images by measuring the diameter of the
ball in the images. Similarly, [4] utilizes the ball diameter
to predict the 3D position of a table tennis ball. Neverthe-
less, for these methods additional relatively costly segmen-
tation labels of the ball are needed. In contrast, our method
only needs less expensive 2D image-coordinate annotations
of the ball either from manual or automatic annotations.
To the best of our knowledge, we are the first to develop
a method for localizing the ball’s 3D center coordinates in
single images using only 2D labels together with knowledge
of the physical motion. Even though we focus on the 3D lo-
calization of a ball, it is worth noting that our method can
be applied to other objects as well.

As we utilize the physical knowledge of the moving ball
for training our neural network, its physical motion has to
be described in a differentiable manner. While the mo-
tion can be described by an analytic function for many
toy problems, the physical equations of motion have to be
solved numerically for most real life applications. We im-
plement the differential equations using the framework of
Neural Ordinary Differential Equations (NDEs) [7] in or-
der to be able to calculate the gradient of the numerical
solution. Our method furthermore resembles Hamiltonian
Neural Networks (HNNs) and Lagrangian Neural Networks
(LNNs) [11]. However, in contrast to HNNs and LNNs, we
learn the ball’s 3D coordinates given a fixed Hamilton func-
tion instead of learning the Hamilton or Lagrange function
given fixed data.

3. Method

3.1. Overview

Our method consists of two main modules: A Position
Estimation Network (PEN) and a Physics Aware Forecast
Module (PAF). The PEN is a neural network that takes a
single image as input and generates a heatmap as well as
a depthmap as output. By extracting the 2D image co-
ordinates from the heatmap and using the depth informa-
tion from the depthmap along with the intrinsic and extrin-
sic camera calibration matrix, we calculate the camera and
world coordinates of the ball. The PEN is applied to three
successive images at time tn−1, tn, tn+1 to obtain the ball’s
world-coordinates for each image. Using the coordinates at
time tn−1 and tn+1, we estimate the ball’s velocity at time
tn. Given the ball’s world coordinates and velocity at time
tn, the PAF calculates the world coordinates at a later time
tn+∆n by solving the differential equations of motion.
We implement two losses for the training of the PEN: The
heatmap loss and the future loss. The heatmap loss com-
pares the predicted and ground-truth heatmaps to teach the
network the ball’s 2D image coordinates. The future loss
ensures that the PEN learns the correct camera depth by
projecting the PAF’s predicted coordinates at time tn+∆n

to the 2D image coordinates for the frame at tn+∆n.
An overview of our method is depicted in Figure 2. We note
that only the PEN is used during inference.

3.2. Position Estimation Network (PEN)

The PEN takes an image I ∈ RC×H×W as input with C,
H and W being the number of channels, height and width
of the image. Using a backbone architecture like ResNet
[14] or ConvNeXt [19, 34], the features after each stage
are bilinearly upsampled to the shape of the first stage and,
afterwards, they are concatenated. A heatmap head con-
sisting of one 1 × 1 convolution, two 7 × 7 convolutions
and a final 1× 1 convolution is applied to obtain a heatmap
H̃ ∈ RH×W from the concatenated features. Additionally,
a separate depthmap head with the same architecture is ap-
plied to the concatenated features to calculate the depthmap
D ∈ RH×W . We intentionally choose a simple architecture
for the heads to demonstrate the effectiveness of our method
without requiring extensive architecture modifications. The
architecture of the PEN is depicted in Figure 3.

The 2D image coordinates r⃗(I) =
(
x(I) y(I)

)T
are ex-

tracted from the heatmap with a 2D soft-argmax by weight-
ing each pixel-position with its corresponding heatmap
value. Furthermore, the camera depth z(C) is calculated
as the sum over all values of the depthmap weighted
with the corresponding values of the 2D softmax of the
heatmap. Consequently, the coordinates are calculated from
the heatmap H̃ and the depthmap D̃ as

x(I) =

H−1∑
h=0

W−1∑
w=0

w ·
(

softmax
(
β · H̃

))
h,w

y(I) =

H−1∑
h=0

W−1∑
w=0

h ·
(

softmax
(
β · H̃

))
h,w

z(C) =

H−1∑
h=0

W−1∑
w=0

D̃h,w ·
(

softmax
(
β · H̃

))
h,w

(1)

with the constant factor β = 10 to obtain sharp softmax
probabilities and the pixel indices h and w.

3.3. Coordinate Transformations

We assume that the intrinsic camera matrix Mint and the ex-
trinsic camera matrix Mext are known, and we discuss in the
supplementary material in more detail how the camera ma-
trices can be obtained.
We use homogeneous coordinates and transform world co-
ordinates into camera coordinates with the extrinsic matrix
Mext ∈ R4×4 and camera coordinates into image coordi-
nates with the intrinsic matrix Mint ∈ R3×3. Since these
transformations are invertible we calculate the camera-
coordinates r⃗(C) =

(
x(C) y(C) z(C)

)T
and the world-

coordinates r⃗(W) =
(
x(W) y(W) z(W)

)T
given the im-
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Figure 3. Position Estimation Network (PEN) architecture for generating both heatmap (HM) and depthmap (DM) from an input image.
Features from the backbone network are concatenated and passed through the two heads. One generates a heatmap and the other produces
a depthmap.

age coordinates r⃗(I) as well as the camera depth z(C) using
the following formulas:

x(C)

y(C)

z(C)

 = M−1
int ·

x(I)z(C)

y(I)z(C)

z(C)

 ,


x(W)

y(W)

z(W)

1

 = M−1
ext ·


x(C)

y(C)

z(C)

1

 . (2)

Furthermore, the velocity v⃗(tn) at time tn is calculated
from the ball’s world coordinates at time tn−1 and tn+1 us-
ing the symmetric finite difference quotient as

v⃗(tn) =
r⃗(W)(tn+1)− r⃗(W)(tn−1)

tn+1 − tn−1
. (3)

3.4. Physics Aware Forecasting Module (PAF)

Given the ball’s world coordinates r⃗(W)(tn) and velocity
v⃗(W)(tn) at time tn as initial conditions, the PAF calculates
the ball’s coordinates at a later time tn+∆n by solving the
differential equations of motion. While the ball’s motion
can be expressed as an analytical function for many simple
toy problems, it is not always possible to find an analytical
solution for more intricate situations. Since we want to de-
scribe a bouncing ball in an arbitrary environment, we solve
the differential equations of motion numerically. By using
the framework of Neural Differential Equations [7] we are
able to calculate the gradient of the numerical solution that
is needed for the backpropagation algorithm.

We adopt the Hamilton formalism to describe the motion of
the ball. A physical system can be described according to
[12] using the Hamilton function

H =
|p⃗|2

2m
+ V (⃗r(W)) (4)

with the ball’s mass m, the momentum p⃗ = mv⃗ (for eu-
clidean coordinates) and the potential V (⃗r(W)), which de-
scribes the physical behavior of the ball. According to the
Hamilton formalism [12], the equations of motion are de-
rived from the Hamilton function as

d

dt
r⃗(W) =

1

m

d

dv⃗
H , m

d

dt
v⃗ = − d

d⃗r(W)
H (5)

and by solving these differential equations given the initial
ball position and velocity we get the ball’s position r⃗(W)(t)
at time t. Consequently, the equations 5 are solved in the
PAF to obtain the ball’s position at a later time.

The potential V ( ⃗r(W)) defines the physical behavior of the
ball and, thus, we have to model it accordingly to ensure the
correct prediction of the ball’s movement. The potential of
a ball in free fall above the floor at z(W) = 0 is described as

VG(⃗r
(W)) = m · g · ReLU(z(W)) (6)

with g being the gravitational constant. Additionally, we
also want to describe the bouncing off the floor. Ideally,
the potential at the floor position is described as an infinite
potential barrier. However, it is sufficient to approximate
the infinite barrier as a fast increasing potential. Therefore,
we model the potential at the floor position as

VF(⃗r
(W)) = m · c · ReLU(−z(W)) (7)

with c = 1000 J
m·kg being a large constant. We note that the

exact value of c is not important as long as it is significantly
larger than g.

In some environments, we also have to include the bouncing
off the walls or various obstacles. These can be defined sim-
ilarly and are explained in the supplementary material for
our specific datasets in more detail. As a result, the overall
potential of a moving ball is described as

V (⃗r(W)) = VG(⃗r
(W)) + VF(⃗r

(W)) + VW (⃗r(W)) + VO(⃗r
(W)) (8)

with VW (⃗r(W)) describing the bouncing off the walls and
VO(⃗r

(W)) describing the bouncing off obstacles.

After defining the potential for a specific physical situation,
we implement the differential equation 5 in the PAF. In our
experiments, we use the 5th order Dormand-Prince method
[8] to solve the differential equations numerically, but we
note that other solvers can be used as well.

3.5. Loss

Since we do not use 3D ground truth labels, we utilize the
heatmap loss and the future loss to train the PEN. As it is



(a) SD: images captured from differ-
ent camera locations in the 1st envi-
ronment.

(b) SD: images captured in different environments.

(c) RD: images captured from different camera locations.

Figure 4. Example images from the synthetic dataset (SD) and real dataset (RD).

common in human pose estimation (e.g. [17]), we also use
heatmaps to teach the model to predict the 2D image co-
ordinates. We calculate the L2 loss between the heatmap
output H̃(tn) of the PEN for the frame at time tn and the
ground truth heatmap H̃gt(tn). This ground truth heatmap
is a two-dimensional Gaussian centered at the ground truth
image coordinates at time tn.
The future loss utilizes the prediction of the PAF to teach the
model the correct prediction of the camera depth. First, we
transform the prediction of the PAF at time tn+∆n to image
coordinates using the camera matrices and obtain the image
coordinates r⃗

(I)
PAF. Then, we calculate the L1 loss between

these coordinates and the image coordinates calculated by
the PEN for the frame at time tn+∆n.

Consequently, the total loss is calculated as

L = ∥⃗r(I)PEN(tn+∆n)− r⃗
(I)
PAF(tn+∆n)∥L1

+
1

|T |
∑
ti∈T

∥H̃(ti)− H̃gt(ti)∥L2
(9)

with T = {tn−1, tn, tn+1, tn+∆n}.

3.6. Evaluation Metrics

In order to test the quality of the PEN’s 3D predictions we
introduce the distance to groundtruth (DtG) metric. It mea-
sures the euclidian distance between the prediction and the
ground truth 3D position. Accordingly, the metric is calcu-
lated as

DtG =
1

|V|
∑
ti∈V

∥∥∥⃗r(C)
gt (ti)− r⃗

(C)
PEN(ti)

∥∥∥
L2

(10)

over all images in the test set V . We note that the metric
remains the same regardless of whether world coordinates
or camera coordinates are used.
Since we expect the estimation of the ball’s 3D position to
be less accurate if the ball is further away from the camera,
we define the binned distance to groundtruth (DtGb) metric.

Depending on the ball’s groundtruth camera depth z
(C)
gt , the

predictions are grouped into b bins and the DtG is calculated
for each bin separately. Thus, it is calculated as

DtGb =


1

|V0|
∑

ti∈V0

∥∥∥⃗r(C)
gt (ti)− r⃗

(C)
PEN(ti)

∥∥∥
L2...

1
|Vb−1|

∑
ti∈Vb−1

∥∥∥⃗r(C)
gt (ti)− r⃗

(C)
PEN(ti)

∥∥∥
L2

 (11)

with Vj = {ti ∈ V | z(C)
gt (ti) ∈ [j · zmax−zmin

b +zmin, (j+1) ·
zmax−zmin

b + zmin]} and j ∈ {0, ..., b− 1}. We select suitable
values for the number of bins b, the minimal distance zmin
and the maximal distance zmax depending on each dataset.

4. Dataset
To test our method we create two datasets consisting of
monocular videos of a moving ball: the synthetic dataset
(SD) and the real dataset (RD). For the training we provide
the ball’s 2D positions for every frame and for the evalua-
tion we also provide the ball’s 3D position. Some example
images are depicted in Figure 4 and more images are visu-
alized in the supplementary material.

4.1. Synthetic Dataset

We create the SD using the general purpose physics engine
MuJoCo [29] and, thus, we are able to create synthetic data
with realistic physical behavior. We simulate a moving ball
under the influence of gravity. The ball bounces off an in-
finite floor and additional finite obstacles placed in the en-
vironment. We generate 3 different environments and for
each environment we capture the scenes from 9 different
camera location. However, each distinct scene is only cap-
tured from a single camera in contrast to traditional triangu-
lation and binocular vision settings. The cameras are placed
such that the distance to the origin of the scene is between
8m and 10m, and the exact camera locations are given in
the supplementary material. The videos are recorded with
30FPS. We create 3 versions of the dataset:



Table 1. DtG scores for the synthetic dataset.

(a) DtG scores per camera location evaluated on the 1st envi-
ronment.

DtG ±∆DtG (cm) ↓

training set camera 1 camera 7 camera 8 camera 9

SD-S 22± 19 - - -
SD-M 19± 10 27± 23 23± 9 21± 10
SD-L 11± 6 28± 25 15± 8 16± 7

(b) DtG scores per environment.

DtG ±∆DtG (cm) ↓

training set env 1 env 2 env 3

SD-S - - -
SD-M 22± 16 - -
SD-L 18± 16 17± 16 18± 13

• SD-S: We use a single environment and capture the
scene from a single fixed camera location. We create
100 videos for the training set, 100 for the validation set
and 100 for the test set.

• SD-M: We use a single environment and capture the
scene from 9 different camera locations. The training
set consists of 100 videos per camera location recorded
from camera locations 1-6, while the validation and
test set each contain 100 videos per camera location
recorded from all 9 camera locations.

• SD-L: We include videos recorded in 3 different envi-
ronments and for each environment the scene can be
captured from 9 different camera locations. For each en-
vironment, the training set contains 100 videos per cam-
era location recorded from camera locations 1-6, while
the validation and test set contain 100 videos per camera
location recorded from all 9 camera locations.

The versions are designed such that SD-M is a subset of SD-
L and SD-S is a subset of SD-M. Each image has a resolution
of 224× 224 pixel and each clip consists of 30 consecutive
frames during training. Example frames for different cam-
era locations in the 1st environment are shown in Figure 4a,
and for the three different environments in Figure 4b. Ran-
dom initial positions and velocities of the ball are selected
for each video to ensure diversity among the samples.
By applying our method to SD-S we are able to show that
our model is capable of learning the ball’s 3D position in
general. However, real use cases like sport broadcasting
might not use a fixed camera, instead the camera sometimes
moves and changes its location between the scenes. There-
fore, we use the SD-M to show that our model is also able
to learn the ball’s 3D position if the camera changes its lo-
cation. Finally, it is beneficial for practical applications to
train a model that is working on different environments like
different known courts in sport broadcasting. Using the SD-
L, we show that our model is also able to learn the ball’s
3D position even if the environment changes. By applying
our method to these three synthetic datasets we test some
characteristics needed for practical application.

4.2. Real Dataset

Since the synthetic images are generated by a physics en-
gine, they are visually not perfectly realistic. Therefore,
we create the RD to prove that our method is also able to

cope with noisy input data. We use a ZED 2i stereo cam-
era [28] to record a rubber ball bouncing off the floor, the
walls and an additional obstacle. We record each video from
one of two distinct camera locations and use a frame rate
of 60FPS. The distance of the camera to the origin of the
scene is between 1.3m and 1.4m. Only the data of the left
camera is used as input to the PEN, and we manually la-
belled the 2D image coordinates for each frame. We depict
example frames from the two different camera locations in
Figure 4c. Each frame is resized to 224 × 384 pixel. We
split the videos into clips consisting of 16 frames each, with
251 clips in the train set, 34 clips in the validation set, and
81 clips in the test set. In order to evaluate our method we
use the data of the stereo camera to calculate a ground truth
depthmap of the scene. The ground truth camera depth is
obtained from the depthmap value at the 2D image coordi-
nates of the ball. By applying our method to this dataset we
are able to show that it also works with simple yet realistic
input data.

5. Experiments
In this section we perform multiple experiments and apply
our method to the datasets described in section 4. We use
the first 4 stages of a ResNet34 [14] pretrained on ImageNet
[27] as the backbone of the PEN and provide additional ex-
periments with different backbones in the supplementary
material. To ensure performance stability, we maintain a
second copy of our model whose weights are an exponential
moving average (EMA) of the trained model weights, and
we update the EMA model after each iteration. At the end
of each epoch the EMA model is evaluated on the validation
set, and we only keep the model with the best DtG score.
We calculate the future loss at multiple time steps. For the
synthetic data we use ∆n = 4, ∆n = 8 and ∆n = 15 and
for the real data we use ∆n = 2, ∆n = 4 and ∆n = 6,
because the average speed of the real ball is larger than the
speed of the synthetic ball. Our code and datasets will be
published at www.example.com where we will also provide
additional visual evaluations of our experiments.

5.1. Synthetic Experiments

In this section we evaluate our method on the synthetic
datasets described in section 4. We train three models, one
for each subset of the synthetic datasets:
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Figure 5. Predictions of the SD-L model on a sample video from the 1st camera location in the 1st

environment. The first row shows the input images, the second row shows the predicted heatmaps,
and the third row shows the predicted depthmaps. On the right, a 3D plot of the predicted ball
trajectory r⃗(W) and a 2D plot of the camera depth z(C) is shown.

Figure 6. Saliency Map for a
prediction of the SD-L model.

• SD-S: The first model is trained solely on the SD-S train-
ing set. Therefore, the model is only exposed to images
from a single camera location and a single environment
during both training and testing.

• SD-M: The second model is trained on the SD-M train-
ing set, which includes images from the first 6 camera
locations of the 1st environment. However, during eval-
uation, it is tested on videos recorded from all camera
locations of the 1st environment. By comparing its re-
sults on camera 1 to the results of the first model, we test
if training on multiple camera locations improves the
model’s performance. By looking at the results on the
last three camera locations we test if the model is able
to generalize to previously unseen camera locations.

• SD-L: The third model is trained on the SD-L training
set, which includes images from the first 6 camera lo-
cations of each environment. During evaluation, it is
tested on all camera locations of each environment in
the test set. With this model we are able to test whether
the model is able to learn the ball’s position for differ-
ent known environments. Moreover, we test if the model
benefits from being trained on multiple environments by
comparing the results of this model to the results of the
second model on the 1st environment.

The results on the test set are given in Table 1. For the three
models, we evaluate the average DtG sores on the videos
from exemplary camera locations in the 1st environment in
Table 1a. Since the performance of the SD-M model is sig-
nificantly better than the performance of the SD-S model,
we conclude that the PEN is not just able to deal with in-
put from multiple camera perspectives, but it even bene-
fits from being trained with additional data from multiple
camera location. Moreover, we see that the model is able
to generalize to previously unseen camera locations since
the scores for camera 7 to 9 are also good. By compar-
ing the SD-L model to the SD-M model, we see that the
SD-L model achieves even slightly better scores and, con-
sequently, we conclude that it is possible to apply the PEN

to multiple known environments. In Table 1b we see the
average DtG scores on the three environments. The SD-L
model performs again better than the SD-M model, thus, re-
inforcing the impression that training the model on multiple
environments is beneficial. The results of the SD-L model
are visualized in Figure 5, and it is visible that the predic-
tions match the 3D ground truth very accurately.

To conclude, we see that it is not only possible to train our
model with distinct videos from multiple camera locations,
but even recognize the fact that using distinct videos from
multiple camera locations is beneficial. This is important
for the application to realistic data (e.g. sports broadcast-
ing) as in many cases the camera is changing its position
instead of being stationary. Moreover, we also show that
our method is capable of dealing with multiple known en-
vironments, which is also an important property for practi-
cal applications (e.g. different stadiums or courts in sport
broadcasting).

5.2. Real Experiments

Even though we were able to experimentally prove some
properties needed for practical applications on the synthetic
dataset, we still need to show that our model is able to
work with real data. Important difficulties in working with
real videos are that the model has to be able to filter out
pixel noise in the image data and that it needs to be capa-
ble of working with noisy labels. Because the 2D image
labels are manually annotated and do not always perfectly
match the center of the ball, additional noise is also added
to the calculation of the future loss. Furthermore, the phys-
ical description of the ball might not perfectly match the
ball’s real behavior (e.g. due to deformations of the ball or
spin), resulting in reduced precision of the forecasting. To
experimentally demonstrate that our model is able to cope
with these difficulties, we evaluate our method on the real
dataset. The results on the test set of the real dataset are
shown in Table 2. We achieve a DtG score of 7 cm for the
images recorded from the 1st camera location and a DtG
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Figure 7. PEN’s predictions on a sequence from the real dataset. The first row shows the input images,
the second row shows the predicted heatmaps, and the third row shows the predicted depth map. On the
right, a 3D plot of the predicted ball trajectory r⃗(W) and the camera depth z(C) is shown.

Figure 8. Saliency map for a
prediction of the RD model.

Table 2. Scores per camera location on the real dataset.

DtG ±∆DtG (cm) ↓ DtG3 ±∆DtG3 (cm) ↓

training set camera 1 camera 2 camera 1 camera 2

RD 7± 4 6± 4

 8± 4
6± 2
11± 4

  4± 2
6± 3
11± 4



score of 6 cm for the images from the 2nd camera location,
thus achieving very precise predictions. Consequently, our
method is able to deal with the difficulties of real data.
Furthermore, we calculate the DtG3 scores by dividing the
data into 3 bins according to equation 11 with zmin = 5 cm
and zmax = 2m. By analyzing the individual bins, we see
that the scores in the 3rd bin are noticeably worse. This can
be explained by the fact that it is harder for the model to
predict the ball’s location when it is farther away from the
camera. However, the predictions are still very accurate in
the third bin. Nevertheless, further research on this scaling
behavior is needed for the next step towards future applica-
tions. In figure 7 we show the predictions of the model for
an example video sequence. Looking at the 3D plot, it is
also clear that the predicted trajectory of the ball matches
the ground truth trajectory very closely.

5.3. Emergence of Depthmaps

Figure 5 and 7 clearly reveal the emergence of the scene’s
geometric structure in the depthmaps, despite the fact that
precise depth prediction is only necessary in the vicinity of
the ball to produce accurate outputs. Thus, it appears that
the model is able to learn a full depthmap of the environ-
ment. This observation highlights an intriguing characteris-
tic of our method that raises the possibility of indirect train-
ing for monocular depth estimation. However, a compre-
hensive analysis of this phenomenon is beyond the scope of
this paper, and future research is necessary to evaluate this
aspect in more detail.

5.4. Interpretation of the learning process

In this section, we delve into the question of what informa-
tion the PEN utilizes in the images to calculate the depth. It

is possible that the network simply measures the diameter of
the ball in the image for the calculation of the depth (similar
to [30]). Another possibility is that the network compares
the ball to its surrounding environment.
To gain a rough understanding of the regions in the image
that are important for the calculation of the depth, we cal-
culate a saliency map S for the input images as

Si,j =
3∑

c=0

∂z(C)

∂Ic,i,j
(12)

where I is the input image, z(C) is the predicted depth of
the ball, i and j index the pixels of the image, and c denotes
the channel index. In Figure 6 and 8 we depict the saliency
map for a real as well as a synthetic image. We observe
the highest values around the ball, indicating that the PEN
focuses mainly on the size of the ball for the estimation of
the depth. However, we also see that the PEN considers
the local surroundings of the ball, suggesting that this addi-
tional information enhances the depth estimation beyond a
simple diameter measurement. Furthermore, we conjecture
that the learned depthmap of the scene is a result of the PEN
attending to the local context around the ball.

6. Conclusion
This paper has introduced a novel approach for monocular
3D object localization and demonstrated its effectiveness
through experiments on both synthetic and real datasets.
Our proposed method eliminates the need for 3D labels as
supervision by leveraging the physical equations of motion,
allowing the model to infer the latent third dimension. We
discussed various properties relevant to real-world scenar-
ios and demonstrated the robustness of our method in han-
dling them. Consequently, our method is a promising step
towards 3D object localization applications, although fur-
ther research is needed to enhance its practical usability.
Therefore, we intend to conduct further research to refine
and expand upon our method, focusing on areas like scala-
bility, interpretability, and generalization ability.
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Towards Learning Monocular 3D Object Localization From 2D Labels Using the
Physical Laws of Motion

Supplementary Material

Abstract

In this supplementary material, we provide additional
details on the methodology, offer further descriptions and
visualizations of the datasets, and present additional re-
sults. The code and dataset is published at https://
kiedani.github.io/3DV2024/.

7. Methods

7.1. Derivation of the Differential Equations of Mo-
tion

In order to define the differential equations of motion 5, we
first need to model the full potential 8. While the gravi-
tational potential is already defined in equation 6 and the
bouncing off the floor is modeled through equation 7, we
still need to define VW and VO. The potential VW models
the interaction of the ball with infinite walls of the room
and, thus, it is very similar to Vf . Since there are no walls
in the synthetic dataset, we set VW = 0. In the real dataset
are two walls, one in the y-z plane at x = 0m and one in
the x-z plane at y = 0.6m. Thus, the ball is constrained by
the walls and the floor to the area x ≥ 0m, y ≤ 0.6m and
z ≥ 0m. Therefore, we model the potential VW as

VW (⃗r(W)) = mc · ReLU(−x(W)) +mc · ReLU(y(W) − 0.6m)

(13)

with c = 1000 being a large constant.

The collisions with finite obstacles are described by
the potential VO, and there are multiple obstacles in
the three different environments of the synthetic dataset
and one obstacle in the real dataset. To model the po-
tential, we consider a cubic object lying on the floor
at the origin of the so-called object coordinate system
with the length 2l, width 2w and height h such that the
object coordinates r⃗(o) =

(
x(o) y(o) z(o)

)T
with

x(o) ∈ [−l, l] ∧ y(o) ∈ [−w, w] ∧ z(o) ∈ [0, h] describe
points inside the cube. To accurately model collisions
with this object, the potential has to be large around the
boundaries of the cube and zero everywhere outside the
cube. In this situation, the potential Vo describing collisions

with this single obstacle at the origin can be described as

Vo(⃗r
(o)) = m

c

βo
·
(
σ
(
βo(x

(o) + l)
)
− σ

(
βo(x

(o) − l)
))

·
(
σ
(
βo(y

(o) + w)
)
− σ

(
βo · (y(o) − w)

))
·
(
σ
(
βo · (z(o))

)
− σ

(
βo · (z(o) − h)

))
(14)

using the sigmoid function σ(·) and the large constant βo =
66 to sharpen the softmax function.
In order to describe multiple obstacles at different known
positions, we have to transform the ball’s world coordinates
r⃗(W) into the object coordinates r⃗(o) for each obstacle sep-
arately such that the obstacle is centered at the origin of the
object coordinate system. This transformation can be real-
ized using rotation and translation and is described by the
transformation r⃗(o) = To(⃗r(W)) for each obstacle o. As a
result, the potential VO describing collisions with all obsta-
cles in the specific environment is described as

VO(⃗r
(W)) =

∑
o∈O

Vo

(
To(⃗r(W))

)
(15)

with O being the set of all obstacles placed in the environ-
ment.

With the potentials VG, VF, VW and VO defined, the differ-
ential equations of motion 5 can now be derived. This can
be achieved using automatic differentiation, but we decided
to calculate the derivatives of the Hamilton function analyt-
ically for the sake of a small speed up. We approximate the
derivative of the ReLU function with a sigmoid function as
∂
∂xReLU(x) ≈ σ(βg/w/f · x) with βg/w/f = 200 being a large
constant. There are no walls in the synthetic dataset and,
thus, we obtain the differential equations of motion as

d

dt
r⃗(W) = v⃗ ,

d

dt
v⃗ = −

0
0
g

σ
(
βg/w/f r⃗

(W)
)
+

0
0
c

σ
(
−βg/w/f r⃗

(W)
)

+
∑
o∈O

βoVo(⃗r
(o))To

·

1− σ

βo

r⃗(o) +

 l
w
0

− σ

βo

r⃗(o) −

 l
w
h

 .

(16)
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For the real dataset we additionally consider the two walls
and obtain the equations of motion as

d

dt
r⃗(W) = v⃗ ,

d

dt
v⃗ = −

0
0
g

σ
(
βg/w/f r⃗

(W)
)
+

0
0
c

σ
(
−βg/w/f r⃗

(W)
)

+

c
0
0

σ
(
−βg/w/f r⃗

(W)
)
+

0
c
0

σ
(
βg/w/f

(⃗
r(W) − 0.6m

))
+

∑
o∈O

βoVo(⃗r
(o))To

·

1− σ

βo

r⃗(o) +

 l
w
0

− σ

βo

r⃗(o) −

 l
w
h

 .

(17)

In this paper we model the equations of motion directly.
However, it is also possible to use a differential physics en-
gine like BRAX [10] in the PAF. This would also allow to
describe some physical phenomenons like spin even more
easily.

7.2. Obtaining the Camera Matrices

We need the intrinsic as well as extrinsic camera matrix for
our method. The intrinsic camera matrix is defined as

Mint =

fx 0 cx
0 fy cy
0 0 1

 (18)

with fx/y being the focal length and cx/y being the principal
point. With this matrix the euclidean camera coordinates
can be converted into homogeneous image coordinates. The
extrinsic camera matrix is defined as

Mext =

(
R t

01×3 1

)
(19)

with R ∈ R3×3 describing the rotation and t ∈ R3×1

describing the translation of the world coordinate system.
With this matrix the homogeneous world coordinates are
converted into homogeneous camera coordinates.

While the camera matrices are commonly available in mod-
ern broadcasting cameras [31], they can also be calculated,
for example, by using a Direct Linear Transform [1]. This
is done particularly straightforward in the context of sports,
because characteristic points on the court can be easily an-
notated automatically.

In the synthetic dataset the camera matrices are provided by
the physics engine MuJoCo, thus, the exact matrices are al-
ready available. In the real dataset the camera is calibrated
such that intrinsic camera matrix is already known. There-
fore, we only have to calculate the extrinsic camera ma-
trix. We label 11 characteristic points of the scene for each

camera location and calculate an initial guess of the extrin-
sic camera matrix using the Direct Linear Transform. We
then further optimize the extrinsic camera matrix using the
BFGS optimization algorithm [3]. This way we obtain an
accurate estimation of the extrinsic camera matrix. As this
estimation is accurate but not exact, we conclude that our
model is able to cope with approximate camera locations
which is an important property for practical applications.

8. Dataset

In this section, we present additional details on the datasets
introduced in the main paper. In Figure 9, we visualize
some exemplary videos from different camera positions and
in different environments to provide a better overview of
the datasets. In the synthetic dataset, we record the videos
from 9 possible camera locations that are shown in Table
3. All camera locations are chosen such that the origin of
the world coordinate system corresponds to the center of
the image. We set the gravitational constant to g = 1 m

s2 .
This reduces the speed of the ball, making it easier to auto-
matically generate the synthetic dataset, because we have to
ensure that the ball does not leave the field of view.

Since we record all videos in the real dataset with a ZED
2i Stereo Camera, we are able to calculate a ground truth
depthmap for each image. For this purpose, we select the
Neural Depth Mode of the camera to obtain the best possi-
ble results. Nevertheless, the results are still noisy and, thus,
we extract the ground truth depth at the annotated ball’s po-
sition as average over the neighboring values of the depth
map D as

z(C) =
1

9
·

1∑
i=−1

1∑
j=−1

Dx(I)+i, y(I)+j (20)

with
(
x(I) y(I)

)T
being the ground truth ball’s position in

image coordinates. Based on this ground truth depth and
the intrinsic camera matrix we calculate the ground truth
camera coordinates. We define a fixed origin of the world
coordinate system such that the physical potentials can be
described easily, and we visualize the origin in Figure 10.
The 2D image coordinates are annotated manually by sim-
ply clicking on the ball’s position in the image. To expedite
this process, we use a simple automatic ball detection algo-
rithm based on the Hough Transformation and only correct
the ball position manually if the automatic detection fails.

9. Experiments

In this section we give further details on the training pro-
cess, provide additional results from the main paper and
discuss new experiments.
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Figure 9. Frames from example sequences of multiple camera locations and environments are shown.

Discussion of training process

Our code is implemented in PyTorch [24], and we utilize
models and architectures from the timm library [33]. We
optimize our model with the ADAM [15] optimizer and use
a batch size of 8 together with a learning rate of 2·10−5. The
Dormand-Prince method [8] is applied for the numerical so-
lution of the differential equations 5 and its implementation
utilizes the torchdyn [25] library.
We train the RD and SD-S models for 400 epochs, the SD-M
model for 200 epochs and the SD-L model for 100 epochs.
Although the models show slight improvements with longer
training, the performance gains are small. We evaluate the
model after each epoch on the validation set and select the
model with the best performance for the final evaluation on

the test set. We multiply the future loss (first term in equa-
tion 9) with a factor, which linearly increases from 0 to 1
during the first 300 epochs of the training. This way we en-
sure that the model focuses on learning to recognize the ball
in the images first, and thus, prevents a model collapse.
Our experiments were conducted on a combination of
Nvidia RTX 3090, V100, A100, and H100 GPUs. There-
fore, we do not provide the actual runtime of our experi-
ments as a comparison is not meaningful. However, to pro-
vide a general idea of the runtime, training our model for
400 epochs on the real dataset in Table 2 takes approxi-
mately 12 hours on a single V100 GPU. We note that a con-
siderable good performance is already reached after only
100 epochs (3 hours on a single V100 GPU). Furthermore,



Table 3. Camera locations in the synthetic dataset. Each
camera looks at the origin of the world-coordinate sys-
tem and is positioned at a radial distance d, polar angle
θ and azimuthal angle ϕ with respect to the origin.

camera d (m) θ (°) ϕ (°)

1 8 −60 40
2 10 −65 0
3 10 −55 60
4 9 −60 20
5 7 −70 50
6 9 −50 10
7 10 −60 30
8 8 −70 0
9 8 −50 60

Figure 10. Origin of the real dataset. Blue represents the z-
axis, green the y-axis and red the x-axis.

Table 4. DtG scores per camera location evaluated on the 1st environment of the synthetic dataset. An extension of Table 1a from the main
paper.

DtG ±∆DtG (cm) ↓

training set camera 1 camera 2 camera 3 camera 4 camera 5 camera 6 camera 7 camera 8 camera 9

SD-S 22± 19 - - - - - - - -
SD-M 19± 10 19± 18 28± 24 13± 9 26± 12 19± 14 27± 23 23± 9 21± 10
SD-L 11± 6 20± 19 28± 25 11± 8 10± 6 19± 13 28± 25 15± 8 16± 7

we anticipate that further code optimizations, such as im-
proved data loading techniques or model compilation, could
lead to significant increases in training speed. For all re-
sults in this paper we report the mean and standard devia-
tion (represented by the symbol ∆) of the metric calculated
across all images in the test set.
While we provide only results for camera locations 1, 7, 8,
and 9 in Table 1a, the results for all camera locations are
given in Table 4. We see that the SD-M and SD-L models
are able to estimate the ball’s 3D position for all camera lo-
cations very precisely. Since the SD-L model achieves bet-
ter scores for most camera locations, this reinforces our as-
sumption that training with additional data recorded in mul-
tiple environments is actually beneficial.

Comparison of different backbones

We perform an additional experiment to compare the perfor-
mance of different backbones in the PEN. For each back-
bone, we use the implementation provided in the timm li-
brary. In the other experiments, we always use the first 4 out
of 5 stages of a ResNet34. We now compare this backbone
with 4 out of 4 stages of the ConvNeXt-nano architecture
and 4 out of 4 stages of the ConvNeXtv2-nano architecture.
All models are pretrained on ImageNet-1K, and we train
and test them on the SD-M dataset. The results are shown
in table 5.

Interestingly, the ConvNeXtv2 backbone performs notably
worse than the other two architectures, despite its seem-
ingly advanced design. In summary, the ResNet performs
slightly better than the ConvNeXt, despite the ConvNeXt
having twice as many parameters. One reason for this be-
havior might be that our input image resolution is small, and
we do not benefit from a very large receptive field. Since the
ConvNeXt architecture uses 7 × 7 convolutions, the recep-
tive field grows faster than in the ResNet. Once the recep-
tive field size becomes as large as the image resolution, the
additional stages may not provide significant benefits and
could potentially hinder the model’s ability to learn an ef-
fective representation. Since the ResNet only uses 3×3 con-
volutions and the features are extracted at an earlier stage
compared to the other architectures, the receptive field is
smaller and the model might be able to learn a better repre-
sentation. However, additional experiments using different
backbones and higher input image resolutions are required
to validate this hypothesis. We note that our code can be
readily extended with other backbones, provided that they
support the extraction of 4 feature stages, which is a re-
quirement in our implementation. If a different number of
features is used, the implementation of the depthmap head
and heatmap head needs to be adjusted. In conclusion, even
though the ResNet is a relatively old architecture, it remains
a highly suitable choice for our task.



Table 5. Results for different backbones. Each model is trained on the SD-M dataset. DtG scores per camera location evaluated on the 1st

environment of the synthetic dataset.

DtG ±∆DtG (cm) ↓

backbone # params camera 1 camera 2 camera 3 camera 4 camera 5 camera 6 camera 7 camera 8 camera 9

resnet 0.8 · 107 19± 10 19± 18 28± 24 13± 9 26± 12 19± 14 27± 23 23± 9 21± 10
convnext 1.5 · 107 14± 12 26± 21 32± 27 15± 13 15± 11 24± 21 37± 31 22± 11 20± 12

convnextv2 1.5 · 107 23± 14 33± 28 45± 32 25± 20 18± 11 31± 27 49± 36 53± 22 35± 20

Analysis of future loss

In this section, we delve deeper into the concept of the fu-
ture loss. As can be seen in figure 2, we compare the im-
age coordinates r⃗

(I)
PEN(tn+∆n) predicted by the PEN with

the coordinates r⃗
(I)
PAF(tn+∆n) forecasted by the PAF. This

way of computing the future loss is explicitly written in
the first term of equation 9, and we refer to this method
as 2D-predict in this section. Because the ground truth im-
age coordinates are available for every frame, we can also
compute the future loss by comparing the PEN’s predic-
tions with the ground truth coordinates r⃗

(I)
GT(tn+∆n). Con-

sequently, we simply replace the coordinates r⃗
(I)
PAF(tn+∆n)

with r⃗
(I)
GT(tn+∆n) in equation 9. This way of computing

the loss is denoted as 2D-gt. Moreover, we also add a
third method of computing the future loss by comparing the
PEN’s predictions with the ground truth camera coordinates
r⃗
(C)
GT (tn+∆n), which are usually not used for the training.

Consequently, the future loss is computed in this case as

future loss =
∥∥∥⃗r(C)

PEN(tn+∆n)− r⃗
(C)
GT (tn+∆n)

∥∥∥
L1
. (21)

We refer to this way of computing the loss as 3D-gt in this
section, and we use this method as baseline. We note that
for this way of computing the loss, we utilize the 3D ground
truth, which is usually not available in real world scenarios.
Nonetheless, we believe that examining this baseline can
provide valuable insights into our analysis.

We train three models with the different future losses and
report the results in table 6. By comparing the 2D-predict
model with the 2D-gt model, we can see that the 2D-predict
model performs better than the 2D-gt model. This is due to
the ground truth image coordinates being noisy, since they
are annotated manually. Obviously, the PEN learns to pre-
dict more accurate image coordinates and, consequently, the
calculation of the future loss is more accurate.
As expected, the 3D-gt model performs best, since it is
trained with 3D ground truth information. However, de-
spite the 2D-predict model being worse, it is still able to
predict the 3D position of the ball surprisingly well, since
the metric is in the same order of magnitude as with the
3D-gt model. Consequently, we conclude that the method
presented in this paper provides a viable alternative to fully

Table 6. DtG scores and DtG3 scores per camera location for the
real dataset. Models trained with different future losses are com-
pared.

DtG ±∆DtG (cm) ↓ DtG3 ±∆DtG3 (cm) ↓

future loss camera 1 camera 2 camera 1 camera 2

2D-predict 7± 4 6± 4

 8± 4
6± 2
11± 4

  4± 2
6± 3
11± 4


2D-gt 18± 10 17± 10

 6± 5
14± 7
33± 7

  5± 3
15± 6
32± 7


3D-gt 3± 3 3± 4

3± 2
2± 2
6± 5

 3± 2
2± 3
6± 5



supervised training. Additionally, we highlight the potential
for combining our method with supervised training, partic-
ularly in scenarios where 3D ground truth data is only ac-
cessible for a subset of the data. Such integration could lead
to further enhancements in existing applications.

Learning arbitrary physics

An important advantage of our method is its ability to de-
scribe arbitrary physical systems by utilizing numerical so-
lutions for the equations of motion, rather than relying on
analytical solutions. In this section we show two things:

• We demonstrate that our method can also be used for
physical systems that behave differently from the previ-
ous described bouncing balls.

• We calculate an analytic solution of the equations of mo-
tion and compare the numerical forecasting in the PAF
with the analytic forecasting.

Therefore, we introduce a new synthetic dataset denoted as
spring dataset. It consists of video of a moving ball con-
nected with a spring to a fixed ball in the center. The mov-
ing ball of mass m = 1kg is attracted to the fixed center
ball by the spring with spring constant k = 3 N

m . We record
100 videos from a single fixed camera location for training,
100 videos for validation and 100 videos for testing. The
resolution of the frames is 224 × 224 and the videos are
recorded with 30FPS. We visualize frames from an exam-
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Figure 11. Frames from an example video of the spring dataset.

ple video depicting the motion of the ball connected to the
spring in Figure 11.

According to Hooke’s law, the potential of the moving ball
is given by V (⃗r(W)) = 1

2k
∣∣⃗r(W)

∣∣2 and by applying the
Hamilton formalism (see equation 5), we obtain the equa-
tions of motion as

d

dt
r⃗(W) = v⃗ ,

d

dt
v⃗ = − k

m
· r⃗(W) . (22)

The analytic solution to these differential equations can be
experessed as

r⃗(W)(t) =
1

k
· v⃗0 · sin (k · t) + r⃗

(W)
0 (23)

where r⃗
(W)
0 and v⃗0 are the initial position and velocity of

the moving ball.

We implement the numeric solver of equation 22 similar
to the previous experiments, and compare its performance
with the utilization of the analytic function 23 in the PAF.
The results are given in Table 7. The model trained with the

Table 7. DtG and DtG3 scores on the spring dataset. The ana-
lytic solution of the equations of motion is compared to a numeric
solution.

PAF mode DtG ±∆DtG (cm) ↓ DtG3 ±∆DtG3 (cm) ↓

numeric 9± 15

 6± 6
5± 6

16± 22


analytic 10± 16

 8± 8
4± 5

21± 21


numeric PAF and the model trained with the analytical PAF
perform very similarly, with the numeric version achieving
slightly better scores. This shows that using numeric solvers
in the PAF is a valid approach that is able to describe arbi-
trary physical systems.
In general, the numeric model achieves a DtG of just 9 cm,

demonstrating the applicability of our method to physical
systems beyond bouncing balls.

While the physics of all datasets presented in this paper is
determined by the laws of classical mechanics, it is worth
considering the potential extension of our method to other
domains such as quantum mechanics or electrodynamics,
where analytic solutions are not available in most cases.
However, exploring these possibilities lies beyond the scope
of this work.

Discussion of stability

To ensure that our results are not just random fluctuations,
we test our model with different random seeds and compare
the results. For this experiment we choose the SD-S sce-
nario from the main paper and set 8 different random seeds
at the beginning of the training. This results in a different
initialization of the heatmap head and depthmap head, as
well as in a different ordering of the training data in each
epoch. We present the results of the models in Table 8.

The results obtained for all seed values show a high de-
gree of similarity. The mean value across multiple runs
is EDtG = 24.4 cm, with a small standard deviation of
σDtG = 1.6 cm. The low standard deviation among indi-
vidual runs suggests that the outcomes are not mere ran-
dom fluctuations. This observation is further supported by

Table 8. DtG scores for the 1st camera location in the 1st environment.
The results of the SD-S model are compared for different initial seeds.

seed DtG ±∆DtG (cm) ↓

1 24± 20
2 27± 21
3 26± 21
4 23± 19
5 23± 21
6 25± 21
7 25± 19
8 22± 21



the fact that the standard deviation over the multiple runs is
an order of magnitude smaller than the standard deviations
among the individual images ∆DtG. Hence, the effect of
the random seed is negligible.

While the results are relatively stable over different seeds,
we observe that other factors have a much larger impact on
the results. One such factor is the selection of the number of
forecast steps. As described in equation 9, we compare the
coordinates at time tn+∆n with the forecasted coordinates
at this time. Depending on the speed of the ball, a good
value for ∆n has to be chosen carefully. If ∆n is too small,
the ball may not have moved a significant distance, resulting
in a very low loss. Consequently, the PEN may converge to
a trivial solution. Conversely, if ∆n is too large, the dis-
tance might be too large, and the PEN may struggle to learn
the correct solution. Therefore, for each scenario an appro-
priate value for ∆n has to be chosen.
In this paper, we do not use a single value for ∆n, instead
we calculate the future loss for multiple values of ∆n and
then compute the average. This way, the small ∆n values
help to stabilize the training, while larger ones ensure that
the PEN does not collapse to a trivial solution. Although
this approach aids in training, it is still necessary to choose
appropriate values for ∆n.

One way to significantly improve the stability of the train-
ing is to use a better pretraining of the PEN. For example a
segmentation or even a depth estimation task could be cho-
sen for pretraining the model. Since this teaches the model
3D knowledge, a model collapse is less likely to happen.
However, in this paper we want to show that our method
is able to learn 3D dynamics without any 3D supervision.
Thus, we do not further explore more advanced pretraining
strategies, and instead only initialize the backbone of the
PEN with ImageNet weights in our experiments.

Limitations and improvements

We view this paper as a step towards 3D object location
estimation without requiring 3D supervision. Our find-
ings demonstrate the feasibility of training a model without
depth information and provide a comprehensive analysis of
our approach. However, there are still several limitations to
address. Specifically, we only use low resolution images to
ensure an efficient training of our models. It is possible to
use such low resolution images in our experiments, because
the ball’s relative size in the images is large enough to be
clearly identified. In contrast, sports videos typically in-
volve high-resolution frames where the ball appears much
smaller. Consequently, simply downscaling the entire im-
age would not suffice to maintain clear ball identification.
Hence, the development of more sophisticated methods is
necessary to optimize computation time. One approach is
to leverage an object detection pipeline to extract the rele-
vant region around the ball, which can then be utilized for

3D location estimation. We anticipate that the insights pre-
sented in this paper will inspire the advancement of more
sophisticated techniques in this field.
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