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ABSTRACT

This thesis explores the use of deep learning technology in the fields of audio processing and
digital health from the perspectives of problem modelling, data fitting, data augmentation,
neural network design and model architecture selection, training objectives and optimisa-
tion strategies, etc. To this end, we based our research on a few representative tasks in
these two fields, specifically audio enhancement and tasks associated with Coronavirus dis-
ease 2019 (COVID-19), such as the disease diagnosis. First, the two scientific topics are
researched independently. The two scientific subjects are first individually explored. Then,
with relation to employing such diagnostic models in actual noisy scenarios, we investigate
the idea of merging the two themes, namely applying audio enhancement at the front-end
to boost a speech-based COVID-19 diagnostic model’s noise robustness.

In particular, for audio enhancement, we first concentrate on achieving a variety of front-
end processing goals, such as noise reduction and source separation, through a unified deep
learning architecture. The neural network solutions are implemented in our open-source
tool of Neural Holistic Audio Enhancement System (N-HANS). Additionally, we offer a
joint training method to alleviate the problem of mismatch when coupling the models for
audio enhancement and the target application. By doing this, we can eliminate the obtrusive
distractions that the enhancement process introduces which degrade the audio quality and
show detrimental effect on the target application. The target applications used to assess
the effectiveness of our proposed training method include Automatic Speech Recognition
(ASR), Speech Commands Recognition (SCR), Speech Emotion Recognition (SER) and
Acoustic Scene Classification (ASC). These representative applications span classification
and regression problems, English and non-English languages, and speech and non-speech
tasks.

In regards to the tasks for COVID-19, we first seek for the potential methods of diag-
nosing the illness using signals from smart or wearable devices. For this purpose, we extend
the spectrum of signal types studied beyond speech, to incorporate, for example, respiratory
sounds like coughing and breathing, as well as other bio-signals like heartbeats. Besides, we
explore deep learning based solutions to mask-wearing detection from speech, or whether a
speaker is wearing or not wearing a mask while speaking to create an automated, real-time,
effective, affordable solution to assist in curbing the spread of the COVID-19 virus. Speech
is an alternative useful source for COVID-19 detection, however, it is frequently affected
by ambient noises like those found in everyday life. We can utilise our audio enhancement
methods to improve the audio used as the COVID-19 detection model’s input, facilitating
its wider use in practical situations. This is accomplished by using vast amounts of data
for the training of our audio enhancement model, which manages to outperform most prior
methods while increasing the dependability and robustness of the back-end application.

There are certain connections, similarities and commonalities in the research methodol-
ogy, specifically the use of deep learning techniques in both research topics presented in this
thesis, despite the seeming lack of a direct connection between them. In other words, similar
or identical deep learning algorithms are applied to these two research themes. One such
example is the deep fusion method implemented in the N-HANS toolkit, which employs an
auxiliary network to acquire contextual information, can also be exploited as a data fusion
solution used in this work for merging the information from two audio types for COVID-19
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diagnosis. Overall, the methodologies suggested in this thesis should not be restricted by
the problems under consideration, but rather should be viewed more macroscopically as
broad answers to a larger range of applications.
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CHAPTER 1

Introduction

The rapid development of Artificial Intelligence (AI) technology has led to viable and ef-
fective solutions to a broad range of scientific and industrial problems, including those in
the fields of computer vision (CV) and audition (CA), natural language processing (NLP),
robotics, recommendation systems, among others. The success of these solutions can be
attributed to the exploitation of deep learning (DL) techniques which are adept at informa-
tion extraction, encoding, conveyance, and inference on big data sets. wFor this purpose,
data scientists and DL researchers focus primarily on 1) ensuring reliable data, including
the quality of recorded data and the accuracy of labelling, and 2) exploring appropriate
neural networks that can better extract information from data, encode it into neural rep-
resentations with sufficient expressiveness, and make accurate inferences regarding specific
tasks or data types.

The modelling approach to a deep learning problem, in particular the construction of the
network architecture, should take into consideration the type and structure of the model’s
input data and the anticipated output in relation to different tasks. Specifically, the ap-
propriate modules aimed at feature extraction and data modelling should be designed in
line with the inherent characteristic of the data. For instance, Convolutional Neural Net-
work (CNN) is proficient in aggregating spatial features from image data, while Recurrent
Neural Network (RNN) excels at processing sequential input such as audio and texts. The
majority of neural network designs, particularly those CNN extensions, have been effectively
validated in the CV domain before being applied to other domains. Several deep learning
frameworks are advocated to accommodate the irregular structure of sequential data, such
as the variation in signal lengths. Several deep learning frameworks are advocated to ac-
commodate the irregular structure of sequential data, such as the variation in signal lengths.
For example, sequence-to-one architecture is applied to classification tasks like document
classification and keyword spotting, while sequence-to-sequence architecture is a prototyp-
ical framework for neural machine translation, voice synthesis, etc. Rather than searching
for suitable neural networks for a particular data structure, it is now common practise to
convert the data to a specific format to meet the requirements of a model. In this regard,
a number of general feature-extraction modules have been studied and used to transform
the data. A number of other factors can have a significant impact on the performance deep
learning models, including the training objectives, optimisation methods as well as the type
of normalisation, model dimensionality, and the selection of hyper-parameters.

Although AI technology has made numerous advances in the fields of CV and NLP, and
some of these deep learning methods have also been successfully adapted for audio applica-
tions, the uncertainties appear in speech and audio recordings under real-world conditions
can hinder the practical applications of these techniques. Taking speech as an example,
such uncertainties can stem from the within- and cross-speaker variations, differences in
language, backgrounds, and recording equipment and settings, etc. One of the most promi-
nent uncertainty is caused by innumerable environmental noise or interference sources in
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1. INTRODUCTION

recording environments, which can be detrimental to the performance of the audio models
trained using clean signal. Numerous potential sources of ambient noise or interference in
recording conditions are a substantial cause of uncertainty, which can be detrimental to the
performance of audio models trained with clean input. These unwanted and uncontrollable
sound sources may be continuous or instantaneous, stationary or non-stationary, constant
or variable in intensity, of varying duration and amplitude, and of the same or a different
class than the target signal. In practice, the disturbance can be ambient noise such as traffic
and industrial noise, the voice of interference speakers, refracted noises from obstructions,
or echos, to mention a few examples. Moreover, these various kinds of noises or interfer-
ences frequently occur concurrently, and the desired audio is susceptible to being obscured
by the overlapping surrounding noises, therefore further limiting the comprehension of the
audio component of interest. The aggregation of these uncertainties make it more difficult
to apply deep learning to speech and audio processing than to other modalities. For NLP
tasks, AI models analyse texts composed of a fixed number of possible words and characters,
whereas there exist infinite possibilities of audio indicating the same information. Thus, we
anticipate AI models will be more tolerant of a multitude of variables in audio processing.

The first primary focus of this work is circling around the uncertainty that can arise in
audio recordings, i. e., the extraction of the audio of interest from noisy surroundings us-
ing audio enhancement approaches. Conventionally, separating the signal of interest from
interference signals of the same class is referred to as a source separation problem, while
extracting it from sounds of different classes is known as a noise reduction or denoising prob-
lem. We first unify the two definitions based on their shared objective, which is to extract
a target audio from its surrounding contexts, and then provide a solution for combining the
two audio enhancement applications into a single framework. Moreover, the improvement
of the audio quality through enhancement techniques should not only focus on the human
hearing experience, but also on machine comprehension for the following audio applications.
To accomplish this, we present a multi-task learning approach that optimises the modules
for audio enhancement and its subsequent computer audition tasks concurrently, with the
purpose of reaching the global optimal performance for both front-end and back-end mod-
els. Unlike previous research, we develop all of our AE models using large-scale data to
assure their best possible generalisability and precision. Moreover, we extend the presented
algorithms to address speech robustness for the task of acoustic scene classification (ASC),
where the presence of human voice in acoustic scene recordings is considered as noise. The
difficulty of extracting clean environmental sounds from audio recordings while simultane-
ously compressing the speech components has not received significant attention. We refer
to the challenge of voice suppression as the inverse problem of speech enhancement, with
the goal of preserving ambient sound while minimising the speech-related distractions. We
categorise it as an audio enhancement task in which we investigate the gains in speech
robustness to ASC classifiers.

Four representative audio applications, namely Automatic Speech Recognition (ASR),
Speech Command Recognition (SCR), Speech Emotion Recognition (SER), as well as
Acoustic Scene Classification (ASC), are cascaded to the audio enhancement systems we
developed to assess the enhancement performance. However, the same methods, including
the algorithms and neural network frameworks, can be broadly applied to more audio tasks,
and one urgent task that could benefit from these methods is the detection of coronavirus
disease 2019 (COVID-19) through speech, as these real-world audio recordings frequently
contain life noises, such as television sounds and infant crying, etc.

Note that our exploration of the approaches for automated COVID-19 detection is not
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1. INTRODUCTION

restricted to the use of speech signals, but also includes other human sounds such as cough-
ing and breathing, as well as cardiac data from wearable devices. Since these kinds of data
can be collected while the participants are engaged in their regular activities, it is possible
for them to contain a variety of disturbances. In this study, we use speech as an example
and examine our speech enhancement methods to see if the COVID-19 detection accuracy
improves while using recordings of speech captured in the wild. In an effort to contribute
further to the study of COVID-19, we expand our exploration into the use of deep learning
methods for the automatic recognition of face masks from audio, with the hope that these
approaches will assist in the containment of the virus’ spread.

To summarise the above aspects, our study aims to resolve the following research ques-
tions:

• Q1: Can multiple audio enhancement problems be modelled inside a single framework
using deep learning techniques?

• Q2: To what extent can audio enhancement systems improve the performance of
audio applications that follow? How to optimise the audio enhancement models in
order to maximise the benefits?

• Q3: Using deep learning, is it feasible to diagnose COVID-19 illness based on audio
signals, such as speech, coughing, and breathing, as well as other biological data, such
as heart rates? Can the use of speech enhancement improve COVID-19 detection from
speech captured in real-world scenarios?

• Q4: How can deep learning methods be used to monitor the public’s mask usage?
How far away are practical applications of the mask detection solutions?

The outline of the thesis is structured as follows to answer these questions:

• Chapter 2 provides a brief overview of deep learning methodologies, including an
introduction to several fundamental neural network architectures and a discussion of
some advanced deep learning techniques used throughout the research.

• Chapter 3 proposes neural holistic audio enhancement solutions, with a particular
emphasis on 1) the introduction of N-HANS, an open source toolkit that unifies mul-
tiple audio enhancement tasks, including two novel tasks: selective noise cancellation
and voice suppression. 2) the optimisation of audio application performance by the
deployment of audio enhancement.

• Chapter 4 highlights our study on addressing COVID-19-related problems using deep
learning techniques, including the automated illness diagnosis and mask detection
tasks.

• Chapter 5 presents a summary of the dissertation and proposes additional research
questions for further study.
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CHAPTER 2

Background Theory

2.1 Classic Deep Learning Models

Since the invention of the perceptron algorithm by Frank Rosenblatt in 1958, the machine
learning technology has undergone numerous stages of evolution, from the extension of the
approach to multilayer perceptrons (MLPs) that can approximate more complex non-linear
functions to the construction of more versatile neural networks [1], such as CNN and RNN,
specific to the structure of data used in the fields of CV, CA and NLP, etc. Moreover,
a multitude of variants of these neural networks, such as Residual Network (ResNet) [2],
a CNN with additional skip-connections, and Long Short-Term Memory model (LSTM)
[3], a RNN employing memory mechanism, are found to be more successful in extracting
information from data. Within these network structures, additional mechanisms, such as
an attention module [4], may be included to discern the importance of different data por-
tions. In particular, attention mechanism is victoriously utilised in Transformer model [4]
and its several sophisticated variants, demonstrating superior performance in the most con-
temporary large-scale NLP tasks and audio applications. Vision Transformer (ViT) [5] has
adopted the architecture of Transformer and attained the current state-of-the-art for CV
problems. .

Despite the fact that some recent studies have prompted a trend of reconsidering the
use of basic MLP models as their performance have been shown to be comparable to that
of the neural networks tailored for specific applications, these elaborate neural networks
have their own advantages such as computational complexity, memory consumption, and
explainability, amongst others. Herein, we provide a summary of some widely-used deep
learning models, which constitute the foundation for building the neural network solutions
to our research problems.

Convolutional Neural Network (CNN)
CNN [1] is intended to extract spatial information from inputs with a grid-like structure,
such as images. A CNN stacks multiple convolutional layers, allowing a hierarchical decom-
position of its input, and hence a deeper CNN is able to learn more complex representations
of the feature maps [6, 7, 8]. Subsequently, dense layers are typically used to map the learnt
representations to predicted classes. Successful applications of such CNNs have surpassed
classic signal processing solutions in many research and industrial domains, such as im-
age and video recognition [9, 10], sequential data processing [11], and medical applications
[12, 13, 14, 15] including those recent works for COVID-19 diagnosis [16, 17, 18].

A standard CNN model, such as LeNet-5 [19], AlexNet [20] and VGG [21], stacks several
convolutional blocks in a sequence, with each block processing its input through one or more
convolution, pooling, and activation operations. The convolution operation multiplies the
input with kernel filters to aggregate the spatial information, and its output is constrained
by an activation function like Sigmoid or Rectified Linear Unit (ReLU). Max-pooling is
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2. BACKGROUND THEORY

responsible for shrinking size of the resulting feature maps by only sampling the relatively
more salient spatial activations. Typically, the final activations are flattened as a vector
representation, and fully-connected layers can be used at the end of the CNN model to
project the representation to predictions. To overcome the issue of Internal Covariate Shift
(ICS), an effect caused by the slightly different distributions of different batches of training
data [22], it is advisable to employ batch normalisation in the convolutional blocks.

CNN is also adopted to handle with other data types, such as audio signals in in a one-
dimensional format. For this, the standard CNN should be reduced into a one-dimensional
CNN. Alternately, the waveform may be converted into its time-frequency representation
such that the 2D CNN can still be applied. Similarly, to analyse a text sentence using a
2D CNN, each word need to be turned into a vector representation using techniques like
word-embedding.

Increasing the number of CNN layers can improve its capability to represent data, but
may result in the well-known problem of gradient explosion or vanishing. To mitigate
this problem and enable a substantially deeper architecture, ResNet [2] incorporates skip-
connections, i. e., extra signal paths across convolutional layers. The smoothing effect of
skip-connections on the loss landscape provides a more favourable environment for CNN
model convergence [23], as shown by tasks in both the CV and CA domains [2, 24, 25]. The
same concept is advanced further in DenseNet by applying skip-connections between all of
the different convolutional layers that are conceivable. Other CNN designs, including In-
ception Net, SqueezeNet, EfficientNet, MobileNet, and Capsule network [26] were proposed
to in relation to the needs of actual applications, such as memory space, inference efficiency,
etc.

Recurrent Neural Network (RNN)
RNN [1] captures information from sequential data while accounting for underlying temporal
dependencies. Each unit in a sequence is encoded by the RNN cell, and the information is
carried forward when processing the subsequent unit. The conventional RNN cell, however,
is susceptible to short-term memory. To facilitate the learning of lengthy sequences, two
variants of RNN, namely LSTM and Gated Recurrent Unit (GRU) , integrate two respective
memory mechanisms into the RNN cell to assist the model in choosing which information
that learnt from earlier time-steps it should retain and forget for future processing.

The cell of an LSTM network consists of an input gate, a forget gate, and an output
gate, with each gate calculating a threshold value depending on the input at time step t,
xt ∈ Rd:

ft = σ(Wfxt + Ufht−1 + bf ),

it = σ(Wixt + Uiht−1 + bi),

ot = σ(Woxt + Uoht−1 + bo),

where ht−1 ∈ Rh represents the layer’s hidden state at time t− 1 or the initial hidden state
at time 0. W ∈ Rh×d, U ∈ Rh×h, b ∈ Rh are the parameters, i. e., weights and biases, to
be learnt. The symbol for Sigmoid function is denoted as σ. To aggregate the new input
information, the input at the current time step and the hidden state at the previous time
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step are similarly processed, with the only difference being the activation function tanh:

gt = tanh(Wgxt + Ught−1 + bg).

The output of the LSTM layer relies on the input gate and forget gate, which controls
the amount of information learnt from the current time step and prior states that needs to
be stored in memory

ct = ft ◦ ct−1 + it ◦ gt,
ht = ot ◦ tanh(ct),

where ct is the cell state at time t, and ◦ denotes the Hadamard product. With the embedded
memory mechanism, an LSTM is anticipated to be better capable of maintaining long-term
dependencies in comparison to the conventional RNN.

The GRU model simplifies the cell unit to update and reset gates. The first gate defines
the quantity of prior information that will be conveyed to the next hidden state, while the
second gate specifies which information will be ignored. The gate thresholds are determined
by

ut = σ(Wuxt + Uuht−1 + bu),

rt = σ(Wrxt + Urht−1 + br),

thereafter applied successively to the current input and the last hidden state to produce the
output of the cell at time step t:

õ = tanh(Woxt + rt ∗ Uoht−1 + bu),

ot = ut ∗ ht−1 + (1− ut) ∗ õ.

The standard RNN model and its advanced variants, such as LSTM and GRU, can
process sequential input from both directions by utilising a forward RNN and a backward
RNN to construct a bidirectional RNN, while maintaining information from both the past
and the future time steps.

Convolutional Recurrent Neural Network (CRNN)
To extract spatial and sequential information simultaneously from certain data types, such
as a video comprising a succession of images, it is feasible to model the data end-to-end by
stacking CNN and RNN modules within a CRNN framework. In such a model, the CNN is
responsible for learning a representation that conveys the spatial information of each frame,
while the subsequent RNN aggregates the representations of the frame sequence and models
the underlying temporal dynamics. In this instance, the RNN is tasked with summarising
global sequence by accumulating each piece of local information acquired by the CNN. Al-
ternately, the CNN may also be utilised in part to process global sequence. For example,
the CNN can process the time-frequency representation of an audio signal and encode the
global spatial information into embeddings as input of the RNN which further strengthen
the temporal dependencies between frames. Due to the discrepancy of data dimensionality
when connecting the CNN and RNN, additional effort is required at the interface between
these two modules. Specifically, to create the RNN input, the CNN output is usually flat-
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tened along channel and feature directions in order to retain the information for each time
step.

Attention Mechanisms
Attention mechanism has made great progress since its resounding success in sequence-to-
sequence learning, such as for the problem of neural machine translation (NMT) [27, 28, 29].
Instead of assuming that all data input to a neural network is of equal relevance, attention
mechanisms allow deep learning models to prioritise more informative data portions. Several
types of attention mechanisms, including context attention, local attention, and component
attention, can learn to assign attention weights to each time step in a sequence, with
promising outcomes demonstrated for audio processing [30]. Higher attention values are
placed on the more informative time steps.

Attention weights are computed, given an input sequence value (V ), by the compatibility
between its corresponding key (K) and a query (Q). The query can be generated based
on the previous hidden state of the decoder. To aggregate the information of the whole
sequence, the alignment scores can be multiplied with the input sequential value:

Attention(Q,K, V ) = softmax(
QKT

√
dk

V ), (1)

where dk is the dimensionality of the input and
√
dk is a scaling factor that prevents the

softmax function from being pushed into regions with extremely tiny gradients. Self atten-
tion aims to relate the different time steps of a sequence input, assuming that the input
serves as the query, key and value.

Multi-head attention suggests to split the representation vector of one time step into
shorter representation of equal length, which are then processed concurrently through the
same attention mechanism in parallel. To this end, the query, key and value parameters are
first divided into H-ways and each split individually passes through a separate attention
head. Specifically, given the i-th attention head, a dense layer performs affine projection on
Qi, Ki, and Vi respectively, and the results flow through the attention:

headi = Attention(QiW
Q
i ,KiW

K
i , ViW

V
i ), (2)

where WQ, WK and W V are matrices to be learnt. The outputs from each head are then
concatenated, and linearly transformed to the desired dimension through a dense layer:

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headH)WO, (3)

where WO is a matrix to be learnt.

Transformer
A Transformer [4] neural network is capable of performing sequence-to-sequence learning by
adopting an encoder-decoder structure to attribute attention weights to the source sequence,
signalling the importance of each time-step of the source sequence for each time-step of the
target sequence. The model is adept at preserving long-term time-dependencies and allows
parallel computing in training; hence, it is considered as a potent and effective alternative
to RNN. Positional encoding annotates the relative position of input sequence and adds
this information directly to the input, so that the subsequent processing in Transformer
consistently carries the position information. Transformer-based algorithms have attained
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state-of-the-art performance for numerous sequential data processing applications in the
NLP and CA fields.

The encoder and decoder of a Transformer are comprised of multiple layers. Each layer
consists of a multi-head attention module, feed-forward layers and normalisation modules.
Similar to ResNet, skip-connections are applied for more efficient model convergence. The
multi-head attention in Transformer serves two primary purposes. The goal of the attention
implemented inside within either the encoder or the decoder is to enrich the representation
by learning the relative compatibility between the data of different time-steps; The at-
tention bridging the encoder and the decoder assigns the attention weights indicating the
importance of each frame of the source sequence to each frame of the target sequence.

A basic Transformer encoder can be used independently for sequence-to-one learning,
essentially reducing the model to multi-head attention and feed-forward modules, two pro-
cessing steps that are performed repeatedly. Surprisingly, this straightforward application
succeeds in achieving highly promising outcomes for a variety of NLP and CA tasks. An-
other example is Visual Transformer (ViT), which has broadened the use of Transformer to
the CV domain and inspired a number of works that have led to the current state-of-the-art.

Auto-encoder
An auto-encoder [31] is comprised of an encoder that encodes input data into latent at-
tributes, and a decoder that reconstructs the original input from the learnt latent attributes.
The model is optimised to minimise the reconstruction error in an unsupervised way, and
the size of latent attributes must be selected with care to ensure the representation capa-
bility. MLPs, CNNs, RNNs, and even Transformers, etc., can be utilised as the backbone
model for constructing an auto-encoder encoder’s and decoder. To obtain more represen-
tative attributes and prevent the auto-encoder from falling into identity function, several
techniques for enhancing the effectiveness of the model have been presented. A popular
method is to introduce particular types of noise to the encoder’s input, and the decoding
objective is to recover the original clean input from the learnt latent attributes from the
noisy input, so constructing a denoising auto-encoder [32]. An alternate solution is to use
sparse auto-encoder [32], which encourages sparsity in learning latent attributes, and so
enables the length of latent attributes to be increased. Variational Auto-Encoder (VAE)
[33] can enforce an expected distribution in the latent space, and hence such model provides
generative solutions to statistical inference problem. All of these auto-encoder types are
usually trained in an unsupervised learning manner, but their effectiveness has also been
shown for semi-supervised and supervised learning, when incorporating some or all of the
data labels in the model optimisation.

2.2 Advanced Deep Learning Approaches

This section describes some sophisticated neural frameworks and learning systems used in
this thesis. These generalised frameworks can be constructed utilising, but are not limited
to, the typical neural networks outlined in Section 2.1. We present a neural network model
with auxiliary networks aimed to learn additional reference information from extrinsic sig-
nal, as it is used in N-HANS [34]. The paradigm can also be used to fuse data of different
modalities or types. Another model combines an encoder and a decoder in symmetry,
with additional short-connections between the encoder and decoder layers, resulting in a
U-shaped network [35]. Its success in the precise segmentation of high-resolution medical
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images has been applied to the separation of audio sources. We apply the same method to
a similar problem, i. e., audio denoising, in an effort to extract the audio of interest from
recordings made in the wild. Besides, the performance of a neural network architecture may
benefit from an appropriate training approach, which should be applied in accordance with
the formulation of loss functions derived from particular learning objectives. These learn-
ing objectives should thus reflect the intended direction for model optimisation. Herein, we
additionally describe the learning principles with a focus on the model architectures and
training loss formulations used to optimise these models.

Auxiliary Network
The auxiliary network [36] enables a model to extract additional information from supple-
mental input. Given supplementary data, the need for human-annotated labels is reduced
when optimising the model. For this, the information gleaned from the auxiliary network
should be incorporated into the model using fusion methods, such as early fusion, late
fusion, or the deep fusion methods proposed in N-HANS [34]. The auxiliary network in
N-HANS is used to learn context and speaker information, allowing the model to integrate
different audio enhancement tasks.

The approach of deploying an auxiliary network is versatile and may be used for diverse
purposes, such as a method of feature fusion that combines information from data of different
types or modalities. Unlike previous fusion methods, the method using auxiliary network
treats one data type as primary and the others as supplementary. The performance of the
model may vary depending on the selection of the primary data, as seen in Section 4.3 ,
which compares two distinct audio types, breathing and cough sounds, as the primary data
for diagnosing COVID-19.

Furthermore, the deployment of an auxiliary network can provide a scaling effect for
personalised models. An example can be seen in the work of personalised SER [37], which
seeks to train a model that can identify a speaker’s emotional state given a neural speech
of the same person as a reference sample. It is worth to highlight that an auxiliary network
may be trained independently or in conjunction with the primary network during model
optimisation.

U-Net
An U-shaped neural network [35] introduces skip-connections, inspired by ResNet, to an
auto-encoder architecture, to feed the information learnt from each encoder layer to their
corresponding decoder layer. The architecture was initially designed to conduct rapid and
precise image segmentation. To accomplish this, two symmetric CNNs are used, one as the
encoder, which builds a contracting path to encode its input into context information; and
the other as the decoder, which constructs an expansive path to propagate the context infor-
mation to reconstruct the high-resolution output at the decoder side through up-sampling
operators.

Similar network designs have been investigated for audio processing applications [38],
in which one-dimensional CNN and complex-valued CNN, in addition to traditional real-
valued CNN, are considered as the encoder and the decoder. Similar to its efficacy in image
segmentation, the numerous feature channels of U-Net are conductive to audio enhance-
ment, enabling the encoder to more completely decompose the input noisy audio and the
decoder to produce high-resolution output which is required for outstanding output speech
quality.
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Contrastive Learning
Constrastive learning [39] trains a model to encode similar data samples into closer embed-
dings in the representation space, while pushing the dissimilar data samples far apart. To
satisfy this training objective, several forms of contrastive losses, such as triplet loss [40],
margin loss [41], multi-class N-pair loss [42], noise contrastive estimation (NCE) [43] and its
extended InfoNCE [44], soft-nearest neighbors loss [45], and others, have been presented.

The conventional max-margin contrastive loss formulation pairs an anchor data x in
a batch X with a sample from the same class and a sample from another class, denoted
as the positive sample x+ and the negative sample x−, respectively. A neural network is
optimised to minimise the embedding distance between the input pairs from the same class
and maximise the distance otherwise according to

L(x, x+) = ||f(x)− f(x+)||22
L(x, x−) = max(0, ϵ− ||f(x)− f(x−)||2)2,

(4)

where ϵ specifies the minimum margin expected between the embeddings of the samples
from two distinct classes. Triplet loss combines the individual optimisations for positive
and negative samples:

L(x, x+, x−) =
∑
x∈X

max(0, ||f(x)− f(x+)||22 − ||f(x)− f(x−)||22 + ϵ). (5)

Furthermore, including more positive and negative samples in a training batch can be
useful to contrastive learning. This can be accomplished, for example, by using multi-class
N-pair loss [42]

L(x, x+, x−n∈[1,2N−1]) = log(1 +

2N−1∑
n=1

ef(x)
T f(x−

n )−f(x)T f(x+))

= −log ef(x)
T f(x+)

ef(x)T f(x+) +
∑2N−1

n=1 ef(x)T f(x−
n )

,

(6)

which generalises triplet loss by enabling joint comparisons between the anchor and its
multiple negative samples. Normalised temperature-scaled cross-entropy loss (NT-Xent) or
InfoNCE [44], inspired by Noise Contrastive Estimation (NCE) [43], incorporates a temper-
ature parameter to punish the impact of negative samples, analogous to the effect of ϵ in
Equation (4) and Equation (5):

L(x, x+, x−n∈[1,N−1]) = −log
ef(x)

T f(x+)/τ∑N−1
n=1 ef(x)T f(x−

n )/τ
. (7)

The task of optimising a model using InfoNCE loss function is often turned into the
minimisation of a cross-entropy loss of N classes, with the goal of identifying a positive
sample from the remaining N − 1 negative samples.

Self-supervised Learning (SSL)
Self-supervised learning [46] is a method of representation learning that requires no human
annotations on the training data. To do this, a model is trained to solve a designed pretext
problem, allowing it to encode the data directly into its general representations. Using
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simple extra modules, such as MLPs, the model can be fine-tuned to accommodate multiple
downstream tasks.

SSL frameworks are divided into several categories based to the method used to generate
pseudo-labels that are associated with the training objectives. A typical such framework
employs the means of auto-encoding, which embeds the information of a signal’s distorted
version within latent attributes and compel the decoder to reconstruct the signal into its
original form. The input deformation is advantageous to the generalisation of the learnt
latent attributes. A SSL model can be trained in the framework of Siamese or triplet
networks. The former optimises the model by minimising the distance between the two
representations of the same data without incorporating any negative samples. To do this,
two sub-networks should be placed in parallel, and when they are identical, asynchronous
training must be considered to prevent mode collapse. The latter makes use of a single
network and contrasts the data representation to that of negative samples. Clustering tech-
niques are also used to create pseudo-labels for training a SSL model. The learning of data
representation aims to approach the cluster centroids; nevertheless, the region surrounding
each cluster centroid is left to ensure the representation diversity.

SSL has been explored for the CV [47], CA [48] and NLP [49] domains, as well as cross-
modality tasks.
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CHAPTER 3

Neural Holistic Audio Enhancement

3.1 Introduction

High audio quality, including attributes such as clarity, fidelity, and intelligibility, is crucial
not only for auditory perception, but also for applications in the field of computer audition.
Nonetheless, while audio recording in the real world, the signal may be deteriorated by
a variety of noise sources, such as ambient noise, the voices of unwanted speakers and
reflections from surrounding obstacles, etc. These disruptions may severely impair the
performance of audio models that are trained on clean data, especially those that process
speech data [50, 51, 52].

To eliminate this detrimental effect and ensure the signal quality, audio enhancement
methods aimed at extracting the audio of interest from a noisy recording are usually ex-
ploited as a front-end module of the following audio application. In the context of hearing
aids, for instance, a noise reduction module implemented in advance of other functional
modules, such as that for volume amplification, can assist the hearing impaired in lessening
the difficulty of auditory understanding. Similarly, applying audio enhancement to other
applications such as Automatic Speech Recognition (ASR) [52] and Speech Emotion Recog-
nition (SER) [50], can reduce the uncertainty in audio caused by, for example, the difference
in recording conditions and devices, thereby enabling the robust running of these models in
practise.

In the era of deep learning, neural network-based solutions for the two most prominent
audio enhancement problems, i. e., speech denoising [53, 54, 55, 56, 57, 58, 59, 60, 61, 62]
and source separation [63, 64, 65, 66, 67], have shown more effective than traditional signal
processing algorithms [68]. The former task aims to suppress the background noise in
a speech recording, while the latter separates a mixture of sounds into their respective
origins. However, for processing audio recorded in the wild, a number of challenges remain:

• First of all, the generalisability of an audio enhancement model is constrained by the
quantity and diversity of training data, which cannot exhaustively cover all kinds of
real-world audio environments.

• An audio recording can contain numerous types of noise simultaneously, including
non-stationary noise [69], which poses a difficulty for audio enhancement techniques
that process only a single type of noise [70, 56, 58].

• The uncertainty in audio recording can substantially increase when the audio has vary-
ing Signal-to-Noise Ratios (SNRs) over time due to near-field and far-field effects, or
differing room impulse responses. Without awareness of the surrounding environment,
an audio enhancement system cannot cope with circumstances of such complexity.

• The protection of the target audio signal is also a factor in determining the effective-
ness of an audio enhancement model. This is associated with the accurate estimation
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of the noise and interference components of the noisy audio. If the interfering com-
ponents and the target signal share the similar acoustic properties, noise estimation
becomes exceedingly challenging and aggressive estimating can compromise the audio
naturalness.

• The solutions developed in accordance with the conventional formulation of audio
enhancement fall short of the freedom to select the audio content to be removed and
preserved. This limitation can restrict their application scenarios, and an additional
adaptation might be required for each circumstance . For instance, a speech enhance-
ment model meant to eliminate all background sounds can result in perilous conditions
if the background contains vital signals such as an aerial defence alarm.

• For the purpose of applying audio enhancement at the front-end of a target audio
application, the enhancement model should be optimised towards the target model.
In contrast, an independently trained audio enhancement model that disregards its
subsequent processing may yield sub-optimal results. In fact, the distortions and
artefacts unintentionally introduced by the enhancement model may contaminate the
audio of interest and hinder the system’s overall performance.

To address these issues, we first concentrate on deep learning solutions for the unifi-
cation of diverse audio enhancement capabilities, with three objectives: 1) relaxing the
requirements and assumptions on training data, 2) reducing the confusion between audio
of interest and interference, and 3) permitting the preservation and removal of a selection
of audio components. Then, we investigate the training paradigm that optimises the audio
enhancement model towards its following computer audition tasks. Based on these factors,
the training methods given in this chapter for the audio enhancement systems offer the
following traits and merits :

• In contrast to prior efforts on audio enhancement, which treat audio denoising and
source separation as two distinct tasks, we realise both functionalities in a single model
architecture and integrate the neural network into N-HANS, an open-source toolkit.
The model employs auxiliary networks to learn reference information from extra audio
examples, allowing it to instantly adapt to any contextual background or speaker.

• In case when a particular noise needs to be suppressed from a noisy audio, the re-
maining background noise can be maintained to pertain a natural audio surrounding.
To this end, we add a third functionality called selective noise suppression (SNS) in
N-HANS, which allows the selection of desired noise, referred to as “positive noise”,
and the suppression of unwanted noise, referred to as “negative noise”.

• The presence of speech in surrounding environments is considered as interference or
noise for Acoustic Scene Classification (ASC), a task that classifies an audio sample
to the type of environment in which it was recorded. [71, 72, 73, 74]. To overcome
this issue, we design a task, voice suppression, which inverts the roles of speech and
environmental background. A voice suppression model should eliminate human speech
from audio recordings while maintaining only clean environmental sounds of adequate
audio quality for ASC models. Voice suppression is seen as a significant byproduct of
N-HANS.
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• To advance the effect of audio enhancement for audio models operating in noisy situa-
tions, we explore several joint optimisation techniques. Based on the experimental re-
sults from four representative audio applications, i. e., Automatic Speech Recognition
(ASR), Speech Emotion Recognition(SER), Speech Command Recognition (SCR),
and Acoustic Scene Classification (ASC), our two presented solutions, i. e., multi-
task learning and iterative training, manage to outperform the methods that do not
account for joint optimisation.

The remainder of this chapter introduces N-HANS along with its key features and the
realisation approaches for its four primary functionalities, namely speech denoising, source
separation, selective noise cancellation, and voice suppression. The ensuing section discusses
the joint optimisation of an audio enhancement system and its subsequent audio model,
with an emphasis on our iterative training approach and multi-task learning framework. In
addition to describing model architectures and evaluating their performance, we illustrate
the effect of the audio enhancement methods in each section.

3.2 Related Work

Speech Enhancement
The task of speech enhancement is typically formulated as a supervised learning problem,
and its solutions can be broadly categorised as frequency- and time-domain techniques
[63, 58, 75]. The frequency-domain solutions either learn a spectral mapping from the time-
frequency (TF) representation of the noisy audio to that of the clean audio, or they estimate
a mask that approximates the proposition of the clean component on each TF-bin of the
noisy spectrogram. In these methods, the phase information of the noisy spectrogram can
be used to reconstruct the enhanced audio without alteration. However, recent research
has highlighted the significance of phase information to the audio quality of reconstructed
speech. Two effective methods for enhancing phase information in this process are complex-
valued neural networks [38] and iterative phase estimation [76, 77, 78]. The time-domain SE
models, including Fully Convolution Network (FCN) [79], waveNet [80], and Wave-U-Net
[81, 82], operate directly on the raw audio waveform while naturally preserving the phase
information in the signal during processing. Both the time-domain and frequency-domain
SE models may benefit from a global view of the audio input. For this purpose, an addi-
tional discriminator network is used to evaluate the quality of enhanced audio, resulting
in a Generative Adversarial Network (GAN) [83] for SE, named as SEGAN, that compro-
mises the denoising fineness and global performance. Within the SEGAN framework [56],
a generator network and a discriminator network are optimised iteratively. The generator
is trained to recover clean speech from a given noisy audio, and its output attempts to
deceive the discriminator network that is used to assess the recovered speech in compari-
son to the ground-truth clean signal. The discriminator network is proficient at acquiring
global audio information when it is trained to be capable of differentiate between the recov-
ered speech and its associated ground-truth. Numerous strategies have been presented to
improve the GAN-based SE models in order to produce enhanced audio of higher quality
[84, 85, 86, 87, 88, 89]

Source Separation
Constructing an automatic source separation system capable of extracting a target speech
signal from two overlapping speech sources remains challenging. In case that the speakers
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share similar acoustic features, the process becomes substantially more difficult. Traditional
signal processing algorithms, including Principle Component Analysis (PCA) [90], Indepen-
dent Component Analysis (ICA) [91] and Non-negative Matrix Factorisation (NMF) [92],
have been found to be effective for multi-channel source separation. However, these methods
necessitate additional assumptions such as source independence, space sparsity and non-
negative constraints. Statistical techniques for single-channel source separation, such as
Bayesian models [93], sparse non-negative matrix factorisation [94, 95] and Empirical Mode
Decomposition (EMD) [96], utilise the underlying statistics of speech signal and transform
the input data to conform to the model assumptions. However, these assumptions restrict
their applicability to real-world data [97].

Neural network based approaches for source separation [98, 99, 100] reduce the require-
ments on input data, profit greatly from data diversity and outperform the conventional
signal processing algorithms [101]. A popular source separation method, inspired by image-
to-image segmentation [102], employs a U-Net to decompose a music spectrogram into vocal
and instrumental components [103]. In another work for the same task [104], multi-band
DenseNets were utilised to retrieve lengthy contextual information in order to improve the
separation performance. However, when applying these separation approaches to speech
signals, the well-known permutation problem can arise [105]. Recent research that circum-
vent the permutation issue present the deep clustering approach [65] and the deep attractor
network (DaNet) [106]. In these two methods, a deep recurrent neural network is trained
to generate similar embeddings for time-frequency bins (TF-bins) from the same speaker.
Using a clustering approach, the TF-bins are then clustered into distinct speakers based on
the learnt embeddings. Tasnet [107] and Conv-Tasnet [67] analyse and reconstruct audio in
time-domain using an encoder-decoder framework, hence avoiding the problem that occurs
during time-frequency decomposition.

Target Speaker Extraction
As a specialised form of audio source separation, the speech of a target speaker can be ex-
tracted from overlapping speech by conditioning a source separation model on the enrolment
sample of the speaker [108, 109, 110, 111]. Typically, an additional neural network is used
to encode a given audio signalling the target speaker into an embedding representing the
acoustic attributes. The source separation model is trained to extract speech components
matching the acoustic attributes from the mixture audio . This generalises the model so
that it can adapt to target speakers it has never seen during training. The auxiliary network
and source separation model can be independently trained [109] or jointly trained [110, 111].
X-Tasnet [112] and SpEx [113] expand the architecture of two successful source separation
models, Tasnet and Conv-Tasnet, for speaker extraction, and are capable of working on the
time-domain audio waveform. L-SpEx [114] reports improved performance of target speaker
extraction using spatial cues provided by their own proposed speaker localiser.

Voice Suppression
Voice suppression is defined as the process of removing all speech from an audio recording
while retaining ambient sounds. A similar definition for the separation of musical sources has
been established in [115]. The method, however, seeks to disassemble the singing voice and
its accompaniments in a musical segment while allowing certain vocal components remaining
in the estimated accompaniments. In contrast, we explore a denoising-style model that uses
a spectral-mapping approach to estimate the surrounding environments in an audio while
discarding the human voice to the greatest possible extent.
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Unlike the processing of relatively stable and slowly time-varying environmental sounds,
learning the representation of non-stationary and fast time-varying speech signals demands
a higher temporal resolution. In addition to RNN, various specialised network modules,
particularly those based on predictive coding techniques, such as aggressive predictive cod-
ing (APC) [116], masked predictive coding (MPC), and contrastive predictive coding (CPC)
[44] have been proposed for capturing transient information in speech signals more effec-
tively.

Multi-task Learning with Audio Enhancement
Using independently designed audio enhancement modules can increase the input quality for
subsequent audio models, such as those for ASR [117, 118, 119, 120]. These audio models are
sometimes further empowered with data augmentation techniques, such as SpecAugment
[121] or additive noise [50], to boost their robustness against disturbances. In practise,
the enhancement effect on the cascaded ASR models might degrade due to the unwanted
distortions and artefacts introduced in the enhanced audio [122]. To increase the tolerance
for these distortions, we can fine-tune the ASR model based on the output audio of the
enhancement module [123, 124]. Furthermore, the frontend SE model’s parameters can be
frozen or trained during the optimisation of the ASR model. In the latter case, the ASR loss
is responsible for updating the parameters of the entire combined model, including those of
the SE model [123]. However, since the constraint on training the SE model is relaxed, the
SE effect may be diminished.

Recent research [125, 126] incorporates the training objectives of SE and ASR into a
multi-task learning problem, where the losses of these two modules are compounded for joint
optimisation. A dynamic factor is applied to the loss combination to regulate the training
focus between the AE and ASR models [127]. This method can be improved by using more
advanced deep learning techniques, such as generative adversarial networks (GANs) for SE
[128, 129], and self-supervised learning (SSL) for ASR [130]. Also, Joint training has been
implemented for speech command recognition or keyword spotting [131, 132]. However,
for other audio applications such as SER [50, 133] and ASC [134], an audio enhancement
module is often trained separately and then cascaded to the target audio models for noise
reduction. Joint training for these audio tasks merits further research.

3.3 N-HANS: Neural Holistic Audio Enhancement System

Using a single neural network architecture, N-HANS integrates audio denoising and source
separation functionalities into a publicly available tool. This tool also introduces a novel
application, selective noise suppression, which aims to suppress only unwanted sounds while
retaining others in order to maintain a natural audio environment and protect particularly
vital signals, such as alarms and other auditory warnings. Table 3.3.1 provides an overview
of the open-source audio improvement toolkits that are currently available to the general
public. The vast majority of these works concentrate solely on a single job, either speech
denoising or source separation. Moreover, some of them are developed conditioned on
certain acoustic assumptions, resulting in limitations such as processing only stationary
noises.

VoiceBox1 and CtuCopy2 are two speech processing toolkits that employ traditional sig-
nal processing algorithms. The first tool assembles algorithms for a broad variety of audio
tasks including denoising, while the second was established for audio feature extraction and
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Table 3.3.1: List of the most popular open-source toolkits for audio enhancement. Process-
ing methods: classic signal processing (SP), machine learning (ML) except deep learning,
deep learning (DL); Functionalities: denoising (DE), speech separation (SS), selective noise
suppression (SNS); and Adaptation ability to speaker (Spk) and speech surrounding envi-
ronments (Env), are indicated. (Source: [34])

Methods Functionalities Adaptation

Toolkit SP ML DL DE SS SNS Spk Env

VoiceBox1 ✓ ✓

CtuCopy2 ✓ ✓

SETK3 ✓ ✓ ✓ ✓

SE Toolkit [135] ✓ ✓

SEDNN [136] ✓ ✓

SEGAN [56] ✓ ✓

openBlissart [140] ✓ ✓

FASST [141] ✓ ✓

GCC-NMF4 ✓ ✓ ✓

Asteroid [138] ✓ ✓

UNTWIST [137] ✓ ✓ ✓

N-HANS1 ✓ ✓ ✓ ✓ ✓ ✓

speech denoising by combining Wiener filtering theory with spectrum subtraction methods.
Both toolkits are dependent on the accurate estimation of noise power, which cannot be
assured under non-stationary noise conditions. With the rapid development and increasing
use of deep learning technology, neural networks-based denoising toolkits, such as SETK3,
SE Toolkit [135], SEDNN [136], SEGAN [56], and U-Net[58, 57], have been introduced and
shown superior effectiveness. However, these methods were primarily intended for speech
denoising and must be adapted for source separation. Untwist [137] and Asteroid [138]
are two prominent source separation toolkits. Asteroid incorporates numerous neural net-
works, such as ConvTasnet [67], Deep clustering [65], and Chimera++ [139], with improved
source separation capabilities. Speech denoising and source separation methods based on
Non-negative Matrix Factorisation (NMF) have also been presented in OpenBlissart [140]
and Flexible Audio Source Separation Toolbox (FASST) [141]. FASST considers Gaussian
Mixture Model (GMM) and Hidden Markov Model (HMM) for NMF training. GCC-NMF 4

applies the Generalised Cross Correlation (GCC) spatial localisation method to a denoising
problem.

Due to the reliance on the diversity of speakers and noise types in the training data, these
audio enhancement tools have limited applicability to unseen speakers and environments in
real-world circumstances. To overcome this issue, N-HANS exploits auxiliary networks to
adapt the audio processing to unseen speakers and speech surroundings.

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
2http://noel.feld.cvut.cz/speechlab/share/download/ctucopy/ctucopy3.html
3https://github.com/funcwj/setk
4https://github.com/seanwood/gcc-nmf
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Enhanced Network

+A Network

-A Network

+ rec
Log Spectrum 

Extraction
- rec

+ emb

- emb

Fig. 3.3.1: System framework of N-HANS [34]. The system process three inputs: a noisy au-
dio signal and two additional recordings: positive (+rec), negative (−rec); The +A Network
processes the +rec to produce a positive embedding vector (+emb) that specifies the audio
components to be preserved. The −A Network analyses the −rec to acquire the negative
embedding vector (−emb) which indicates the components to be suppressed. The enhanced
network processes the noisy audio as well as the positive and negative embeddings in order
to generate the desired output.

Table 3.3.2: N-HANS overview of inputs and outputs. The input, i. e., the raw input and
the positive (+) and negative (−) recordings; as well as the output, are indicated for the
three involved tasks: denoising (DE), speech separation (SS), selective noise suppression
(SNS). (Source: [34]).

Task DE SS SNS

raw input noisy audio overlapping sources noisy audio

+rec - target source noise to preserve

−rec noise to suppress interference source noise to suppress

output denoised audio separated source denoised audio

3.3.1 System Overview & Functionalities

N-HANS, which is integrated with two trained models sharing the same architecture, can
handle unseen speakers and noises by supplying its auxiliary sub-networks with extra audio
examples that specify the audio components to be preserved and removed. Within these
systems, deep fusion mechanism was introduced to inject the context information into the
conditional residual network, therefore endowing the system with the capability for speaker-
and environment-adaptation (for further information, see Section 3.3.2). This allows it to
recover an audio of interest while reducing interference sources with two systems, audio
source separation and selective noise suppression, both of which are built on an ±Auxiliary
(A) Network (cf. Figure 3.3.1).

For different N-HANS tasks, an overview of input and output information is given in
Table 3.3.2. As the inputs, the log magnitude spectra are extracted from the contaminated
audio as well as the positive and negative recordings by taking thee logarithmic absolute
values of the Short-Time Fourier Transformation (STFT). The +A Network processes the
spectrum of the positive recording to generate a positive embedding vector, while the −A
Network analyses the spectrum of the negative recording to produce a negative embedding
vector. The Enhanced Network emits the denoised or separated audio by processing the
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Fig. 3.3.2: (a) Architecture of the ±Auxiliary (A) Networks. The +A and −A Networks
process the positive and negative contexts (C+ and C−) via a sequence of 4 residual blocks
to produce positive and negative embeddings (e+ and e−). To estimate the contamination
frame (CF), the Enhanced Network processes the contaminated segment M (noisy or over-
lapping segment) through a sequence of 8 residual blocks, each additionally conditioned by
the e+ and e−. (b) Conditional residual block: the learnt positive and negative embed-
dings (e+ and e−) are injected in the two convolutional layers of the enhanced network.
Block’s input (Min), output of skip connection path (Msc), first convolutional layer output
(M1), second convolutional layer output (M2), and block’s output (Mout) are also indicated.
(Source: [34])

noisy audio conditioned on the two embedding vectors carrying, respectively, the features
of the target and interference audio components. By identifying the positive and negative
context, N-HANS makes the system adaptable to unseen audio sources, speakers, and speech
backgrounds.

3.3.2 Network Architectures & Training Objectives

The architecture of ±Auxiliary (A) Networks comprises a succession of residual blocks (cf.
Figure 3.3.2). Residual network (ResNet) augments CNN with skip-connections across
convolutional layers, producing a smoother loss landscape during training, and enabling a
substantially deeper architecture [23]. Its effectiveness has been observed in computer vision
and audio processing studies [2, 24, 25]. A residual block possesses two signal flow routes,
i. e., a primary path and a skip-connection path. The primary path processes the input
of the block with two successive convolutional layers, whereas the short-connection path
converts the channels of the input using a 1×1 convolution. The block output incorporates
the outcomes of both paths. Batch normalisation [142, 143] is applied to each convolutional
layer to alleviate the popular ICS problem. In addition, a Rectified Linear Unit (ReLU)
[144] is typically used as activation function to limit the output’s scale. Both modules are
shown to contribute to the convergence of CNN models.

The N-HANS architecture makes use of three subnetworks, each of which is comprised
of multiple residual blocks with the specifications given in Table 3.3.3. The +A embedding
network learns a positive embedding from the positive context. Likewise, a second embed-
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Table 3.3.3: N-HANS Model Specifications. Each residual block has its own kernel size,
stride, and number (#) of channels. (Source: [34])

Auxiliary Networks

Block Kernel Stride #Channels

1 (8, 4) (3, 2) 64
2 (8, 4) (3, 2) 128
3 (4, 4) (1, 1) 256
4 (4, 4) (1, 2) 512

Enhanced Network

Block Kernel Stride #Channels

1 (4, 4) (1, 1) 64
2 (4, 4) (1, 1) 64
3 (4, 4) (2, 2) 128
4 (4, 4) (1, 1) 128
5 (3, 3) (2, 2) 256
6 (3, 3) (1, 1) 256
7 (3, 3) (2, 2) 512
8 (3, 3) (1, 1) 512

ding network with the same architecture (−A Network) generates negative embedding from
the negative context. Conditioned on the positive and negative embeddings, the enhanced
network analyses a contaminated audio segment to estimate the contamination frame (CF)
approximating the audio components that need to be eliminated in the centre frame of the
contaminated segment. To determine the enhanced frame (EF)5, the contamination frame
is subtracted from the centre frame of the contaminated segment. The enhanced frame is
trained to converge to the target clean frame, i. e., the centre frame of the target segment.

3.3.2.1 Generation of Positive and Negative Embeddings

Due to their distinct functions, the positive and negative embedding networks share an
identical structure but have different training parameters. The embedding networks cre-
ate the embedding vectors representing the positive and negative contexts (C+ and C− in
Figure 3.3.2(a)) through a sequence of four residual blocks. Inside this processing, the con-
volution output, i.e., feature maps, are averaged over all locations (time steps and frequency
bins) to form a positive and negative embedding vector with a fixed length of 512:

e+ = avg(f+A(C+)), (1)

e− = avg(f−A(C−)), (2)

where f+A and f−A denote the sequential processing by the residual blocks in +A and −A
Networks. The two embeddings are subsequently injected into the enhanced network to
assist with audio denoising, source separation, and selective noise suppression tasks.

5EF refers to the estimated denoised frame for the tasks of audio denoising and selective noise suppression;
For source separation, it refers to the estimated separated frame.
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3.3.2.2 Enhanced Network with Deep Fusion Mechanism

The enhanced network sequences eight conditional residual blocks, each of which is con-
ditioned on the learnt positive and negative embeddings, to enhance the contaminated
segment. As illustrated in Figure 3.3.2(b), in addition to the standard processing of resid-
ual block, the learnt positive and negative embeddings are projected, for each convolu-
tional layer, to the length equal to the channel numbers using a trainable dense layer, and
subsequently added to every location on the feature maps. Specifically, given the input
Min ∈ RT×F×Cin , the first convolutional layer outputs

M1 = conv(Min) + e+1 + e−1 , (3)

which has the dimension of T × F × C1, and

e+1 = e+W+
1 + b+1 , (4)

e−1 = e−W−
1 + b−1 , (5)

denote the projected embedding vectors with the length of C1. W+
1 , b+1 , and W−

1 , b−1 are
trainable parameters. Note that the projected embedding vectors are extended to the size
of the convolution output by using array broadcasting.

Subsequently, the second convolutional layer further processes M1, resulting in

M2 = conv(M1) + e+2 + e−2 , (6)

with the dimension of T × F × C2, where

e+2 = e+W+
2 + b+2 , (7)

e−2 = e−W−
2 + b−2 (8)

are the projected embedding vectors of the length of C2. By feeding the positive and
negative context information to all the convolutional layers of the enhanced network, the
model is able to identify the audio components that are anticipated to be preserved and
suppressed from the contaminated segment.

On the skip-connection path, the channels of block input Min are adjusted by means of
1× 1 convolution, resulting in

Msc = conv1×1(Min), (9)

which has the shape of T × F × C2. Finally, the block output is computed by adding the
outcomes of the primary path and the skip-connection path.

Mout = M2 +Msc. (10)

The output of the last layer is additionally convolved along the time axis to aggregate the
temporal information, flattened to a vector, and then projected to the length of F (F = 201
in experiments) through a fully-connected layer, representing the enhanced frame:

Ŝc = convT(f
enh(M, e+, e−))Wo + bo, (11)

where fenh denotes the processing of the enhanced network, and convT stands for the
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convolution along time direction. Wo, bo are the learnable parameters of a fully connected
layer. Considering the practical application, the learning of unseen speakers may have a
negligible effect on the task of voice suppression, we did not consider the use of auxiliary
networks in its model.

Training Loss & Optimisation Strategy
For our four audio enhancement tasks, i. e., speech denoising, source separation, selective
noise suppression, and voice suppression, the enhanced frame is computed by subtracting
the contamination frame (Eq. 11) from the central frame of the contaminated spectrum,
resulting in

T̂ c = M c − Ŝc. (12)

To minimise the weighted mean squared error (MSE) between the enhanced frame and
the actual centre frame of the target spectrum, the network is optimised using stochastic
gradient descent (SGD) with a learning rate of 0.1,

L = ||(T̂ c(f)− T c(f))× w(f)||2, (13)

where f ∈ [1, F ] stands for the frequency bin in the target frame and

w(f) = 2− f

F
. (14)

In this way, bigger weights are allocated to the lower frequencies in order to protect the
audio components that have the greatest impact on speech intelligence.

The traditional training objective for audio enhancement, such as MSE, is to minimise
the difference between the enhanced and clean spectrograms. It is successful when the en-
hancement performance is assessed using evaluation metrics that measure frequency-domain
audio distortions. However, the importance of phase information is neglected while recon-
structing the enhanced audio, which has recently been highlighted as a concern for low SNR
circumstances, such as when audio are recorded in a far-field condition. A few recent efforts
have created time-domain loss functions, obviating this concern. A noteworthy example is
the weighted signal-to-distortion ratio (wSDR) [58], which directly minimises the difference
between the clean and enhanced waveform, so encouraging the model to circumvent the
magnitude and phase decomposition. The primary focus throughout the development and
implementation of N-HANS was not the hunt for a more effective loss function, but rather
the search for a neural network architecture to unify numerous enhancement objectives.
Applying time-domain losses to N-HANS has the potential to further refine its enhanc-
ing performance, and is projected to improve the hearing experience in relation to phase
perturbations.

3.3.3 Experiments & Evaluation

This section begins with the introduction of the data sets utilised for training our N-HANS
models, as well as the general data processing procedure to create model inputs. Then,
for each audio enhancement functionality, we detail our experiments and compare their
performance to that of other current approaches. These approaches may be developed
with other datasets and assessed using alternative performance measures, which will be
introduced individually in Sections 3.3.3.3 to 3.3.3.6.
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Table 3.3.4: Overview of data sets for N-HANS training. Denoising (DE), speech separation
(SS), selective noise suppression (SNS), and voice suppression (VS).

Task Audio of Interest Noise or Interference

DE Librispeech [145] Audioset [146]

SNS Librispeech [145], Audioset [146] Audioset [146]

SS VoxCeleb 1/2 [147, 148] VoxCeleb 1/2 [147, 148]

VS DCASE 2019 challenge Librispeech[145]

3.3.3.1 Data Description

We perform our study mainly using the standard data sets listed in Table 3.3.4 to train our
N-HANS models and assess their effectiveness.

Selective Noise Suppression
To train the model for selective noise suppression and denoising, we synthesised a large
and diverse in-the-wild speech data set by mixing up each clean utterance from the Lib-
riSpeech corpus [145] with positive and negative noises, two distinct recordings randomly
picked from the AudioSet database [146]. LibriSpeech [145] consists of approximately 1 000
hours of read, clean speech derived from over 8 000 public domain audiobooks, with its
own train, development, and test splits. The AudioSet corpus [146] comprises more than
two million human-labeled 10-second environmental sound clips extracted from YoutTube
videos. After excluding all noise recordings labelled as ’human sounds’ according to the
provided AudioSet’s ontology, we obtained 16 198 samples for the training set, 636 samples
for the development set, and 714 samples for the test set. The random selection of the pos-
itive and negative noise recordings are from two different categories in AudioSet, in order
to maximally create more diverse environmental conditions6.

By removing the excess signal tails, a positive noise, negative noise, and clean utterance
are trimmed to the same length. To create contaminated audio for training, the positive
and negative noises are then added to the utterance with two SNRs, i. e., SNR(+) for the
positive noise and SNR(−) for the negative noise, randomly selected from −3, 0, 1, 3, 5, 8dB.
The validation and test sets were generated by combining a clean utterance with environ-
mental sounds using all possible permutations of the SNR+ and SNR− mentioned above.
During model training, a broader range of SNRs was considered to ensure its robustness to
test data. The test and validation sets were created a single time, and were uniform across
all experiments.

Source Separation
For source separation, the model is developed based on the merging of the two versions
of VoxCeleb [147, 148]. It contains over one million utterances collected from Youtube in-
terviews with more than 7 000 speakers of various nationalities. Each utterance lasts 4 to
12 seconds, resulting in a total of more than 2 000 hours of single-channel audio recordings.
Since the training and test partitions of VoxCeleb1 and VoxCeleb2 are from distinct speak-
ers, the training and test sets were created by combining the two corresponding sets from

6The data partitioning of AudioSet to reproduce our experimental results can be found in the Github
repository of N-HANS: https://github.com/N-HANS/N-HANS.
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both versions.
For each training iteration, two speakers, a target speaker and an interference speaker,

are selected at random from the data set, and one utterance is taken from each speaker.
The two utterances are thus labelled as the target utterance and the interference utterance,
respectively. To make a contaminated audio, the two utterances are cut to the same length,
and subsequently, the interference utterance is added to the target utterance with a random
SNR within the range −5, 0, 5, 10, 15, 20, 25dB. For creating the test set, a more constricted
SNR in the range between −5dB and 5dB), i. e., either −5,−3,−1, 0, 1, 3 or 5dB, were
used to mix up the target and interference utterances. The SNR range considered during
the creation of the test set is restricted to −5,−3,−1, 0, 1, 3, 5dB for two reasons. On the
one hand, this can ensue a fair comparison between our method and the past work such
as [65]; and on the other hand, it can promote the model’s capacity to deal with more
challenging real-world scenarios. Again, the validation and test sets for source separation
were generated once and used uniformly across all trials.

Unlike the Wall Street Journal (WSJ0) corpus [149] and the TIMIT corpus [150] used
in prior work [65, 67, 151], our created dataset encompasses a significantly broader and
diversified collection of real-world situations. Therefore, it promotes a more accurate un-
derstanding of the model performance in actual use.

Voice Suppression
The objective of voice suppression is to eliminate speech from the background, reversing the
roles of speech and its background. We train our voice suppression model using data from
the DCASE 2019 SubTask 1A challenge and Edinburgh speech database [152]. The DCASE
database comprised 40-hours of stereo environment samples captured with the same device
in 10 acoustic scene classes in ten cities. The data was divided into 9 185 segments for
training and 4 185 for evaluation, with each segment lasting 10 seconds. Speech recordings
from the Edinburgh speech database [152] are used to simulate the presence of human voice
in scene recordings. The data collection contains clean spoken utterances of 56 speakers
(28 female and 28 male) from Scottish and American accent areas. Approximately 400
utterances are accessible for each speaker.

To account for varying levels of human voice interference, during training, we combined
the scene recordings with the spoken utterances using a random SNR within the range [-20,
-10 -5 ,0, 5, 10, 15] dB. For testing purpose, we measure the performance at each of these
SNRs.

3.3.3.2 Data Processing

As mentioned in Section 3.3.1, the Enhanced Network processes the raw input i. e., original
audio file to be enhanced, conditioned on the positive and negative recordings. The addi-
tional positive and negative contexts are not required to be included in the contaminated
audio.

The general approach of data processing is illustrated in Figure 3.3.3 taking selective
noise suppression as an example. To generate the data for training, recordings of speech
utterance, positive noise and negative noise are trimmed to the same length by removing
signal excess. The creation of the noisy audio is accomplished by mixing up signals of
clean speech with noise. Using STFT with a window size of 25ms and a hop size of 10ms,
the log magnitude spectra are respectively extracted from the noisy audio, positive and
negative recordings. Since the sampling frequency of all audio files within the used data

24



3. NEURAL HOLISTIC AUDIO ENHANCEMENT

SNR+
SNR−

N+

N−

M

d

C+

C−

log( |STFT( . ) | + eps)

SNR+

S
speech

pos. noise

neg. noise

noisy speech

target

(a)

SNR+
SNR−

log( |STFT( . ) | + eps)

SNR+

C+

C−

N+

N−

M

d

S

…

speech

pos. noise

neg. noise

noisy speech

target

(b)

Fig. 3.3.3: Data processing (a) for training, (b) for evaluation. The noisy speech is generated
by synthesising clean speech, positive and negative noise with SNR+, SNR−. The target
is the composition of the clean speech and the positive noise. M,S,N+, N− ∈ R35×201

indicate the noisy segment, speech segment, positive and negative segment, respectively.
C+, C− ∈ R100×201 stand for the positive and negative context. d represent the target
frame, which we attempt to estimate from a noisy segment.

sets is 16 kHz, each segment of 400 sample points is converted into a frame vector of 201
frequencies. We denote the number of frequencies of a frame as F , considering that the
N-HANS model may process audio files with a different sampling rate.

The contaminated segment M ∈ RN×F consists of N frames from the log magnitude
spectrum of the contaminated audio, whilst the positive and negative contexts, C+, C− ∈
RL×F , are of L frames retrieved from the log magnitude spectrum of the positive and
negative recordings, respectively. In our experiments, we set L = 200 greater than N = 35
on the assumption that more informative positive and negative contexts can result in better
enhancement performance. Therefore, in order to better imply audio content of interest
and that to be removed, adequate acoustic information should be supplied to the system.
The target segment T ∈ RN×F , which has the same length of the contaminated segment,
represents the ideal output segment for enhanced audio. For selective noise suppression,
the target segment comprises both the speech component and desired positive noise. The
centre frames of the contaminated segment and target segment are denoted by M c and
T c ∈ R1×F , respectively.

For inference, the positive and negative contexts are truncated from the beginning of the
positive and negative spectra, as seen in Figure 3.3.3(b). Both are consistently employed to
assist in the processing of all noisy segments created from the same noise recordings. In this
way, each enhanced frame can take use of the same information from positive and negative
contexts. The enhanced frames are concatenated into the enhanced spectrum, which is then
transformed into the enhanced audio using inverse Short-Time Fourier Transform (iSTFT)
with the phase of the contaminated audio.

3.3.3.3 Functionality I: Selective Noise Suppression

Comparison Methods
To the best of our knowledge, selective noise suppression is explored for the first time in
N-HANS. In this case, to measure the efficacy of our developed model, we establish a base-
line model with the same architecture as N-HANS model, except that it solely conditioned
on the negative contexts. Only the negative auxiliary network is used to learn a negative
noise embedding specifying the noise to be suppressed. Meanwhile, the specifications of
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Table 3.3.5: N-HANS test results for the selective noise suppression task. SNR(+) and
SNR(−) represent the Signal-to-Noise ratio (SNR) applied to the positive and negative
noises, respectively. For each condition, i. e., a pair of SNR(+) and SNR(−), the follow-
ing evaluation metrics are given: log spectral distortion (LSD), signal-to-distortion ratio
(SDR), perceptual evaluation of speech quality (PESQ), short-time objective intelligibility
(STOI), Mel cepstral distortion (MCD), and segmental SNR (SSNR). For comparability,
the performance of the baseline model is given in parentheses. (Source: [34])

SNR

(+) (−) LSD SDR PESQ STOI MCD SSNR

0dB

0dB 0.76 (0.91) 7.72 (6.38) 2.86 (2.70) 0.79 (0.76) 5.36 (5.45) 7.13 (5.51)

3dB 0.69 (0.83) 9.49 (8.07) 3.09 (2.89) 0.84 (0.81) 4.96 (5.10) 8.55 (6.76)

5dB 0.65 (0.76) 10.64 (9.35) 3.23 (3.09) 0.87 (0.85) 4.67 (4.65) 9.46 (7.75)

8dB 0.59 (0.69) 12.12 (11.00) 3.40 (3.28) 0.90 (0.88) 4.29 (4.23) 10.83 (8.88)

3dB

0dB 0.78 (0.92) 7.16 (5.96) 2.78 (2.61) 0.78 (0.75) 5.58 (5.69) 6.56 (5.06)

3dB 0.73 (0.82) 8.93 (7.81) 2.98 (2.84) 0.83 (0.81) 5.29 (5.25) 7.79 (6.37)

5dB 0.68 (0.79) 10.06 (8.82) 3.12 (2.98) 0.85 (0.83) 4.97 (5.03) 8.90 (7.19)

8dB 0.64 (0.72) 11.46 (10.56) 3.29 (3.19) 0.88 (0.87) 4.68 (4.64) 9.93 (8.55)

5dB

0dB 0.81 (0.93) 7.19 (5.80) 2.74 (2.57) 0.78 (0.75) 5.71 (5.87) 6.30 (4.73)

3dB 0.75 (0.87) 8.68 (7.61) 2.93 (2.76) 0.82 (0.79) 5.44 (5.57) 7.44 (5.91)

5dB 0.72 (0.82) 9.76 (8.67) 3.06 (2.90) 0.84 (0.82) 5.28 (5.34) 8.27 (6.69)

8dB 0.65 (0.73) 11.33 (10.36) 3.26 (3.11) 0.88 (0.86) 4.83 (4.86) 9.85 (8.20)

8dB

0dB 0.86 (0.98) 7.01 (5.63) 2.67 (2.48) 0.77 (0.74) 5.99 (6.06) 5.83 (4.04)

3dB 0.79 (0.89) 8.63 (7.35) 2.86 (2.68) 0.81 (0.79) 5.71 (5.70) 7.07 (5.40)

5dB 0.74 (0.92) 9.62 (6.38) 2.99 (2.68) 0.84 (0.76) 5.44 (5.54) 7.92 (5.46)

8dB 0.68 (0.78) 11.30 (10.47) 3.18 (3.02) 0.87 (0.86) 5.09 (5.14) 9.36 (7.77)

the enhanced network and its negative auxiliary network are identical to the N-HANS (cf.
Table ??). We optimised the baseline model for the purpose of selective noise suppression
based on exactly the same data. Thus, the only difference between our presented model and
the baseline is the use of the positive embedding. Similar methods have proven effective for
noise-aware speech enhancement [52, 153].

Evaluation Methods
We assess the performance of our selective noise suppression model using a variety of eval-
uation metrics that are widely used in prior work [154], including Log Spectral Distortion
(LSD), Signal-to-Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ),
Short-Time Objective Intelligibility (STOI), Mel Cepstral Distortion (MCD), and Segmen-
tal Signal-to-Noise Ratio (SSNR), in terms of numerous Signal-to-Noise Ratio (SNR) con-
ditions.

Results Analysis
As the experimental results given in Table 3.3.5, the N-HANS model outperforms the base-
line model for all the evaluation metrics considered and SNR combinations in the selective
noise suppression task. We attribute the performance gains over the baseline architecture
to the introduction of the complementary auxiliary network that captures more information
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from the positive noise context. The baseline model, on the other hand, is agnostic to the
noise sources it should preserve and ends up removing parts of them due to its inability to
discern between audio contents that should be preserved and those to be removed. This
comparison demonstrates the need of using a positive embedding for more effective selective
noise suppression.

In fact, the model performs best for the given task when the speech environment contains
more energy for the positive noise than for the negative, i. e., the lower SNR for the positive
noise, or higher SNR for the negative noise. As expected, the performance of our model
degrades as the strength of negative noise grows (lower SNR(−)) or the power of positive
noise reduces (higher (SNR+)). Given the lowest SNR on the positive noise (i. e., 0dB), a
higher SNR on the negative noise resulted in improved performance across all the evaluation
metrics. This is very likely because the increased the intensity difference between the
positive and negative noises provides an extra cue for their discriminate; As a consequence,
less negative noise is more easily to be removed by the model while the positive noise is
consistently protected.

The fact that SSNR gains are reduced as the SNR(+) rises while the LSD and SDR
metrics remain constant or even worsen indicates that our approach performs aggressive
denoising, whereby distortion effects dominate the noise reduction gains, leading to worse
subjective performance (as measured by STOI and PESQ) for higher SNR(+).

3.3.3.4 Functionality II: Audio Denoising

Supplying silent audio as the positive context to the +A Network of the N-HANS selective
noise suppression model, it turns into an environment-aware speech denoising system capa-
ble of adapting to unseen environments. Such a denoising model benefits from identifying
the speech surroundings as presented in [155, 156].

Comparison Methods
The performance of N-HANS denoising system is compared to that of several state-of-the-art
approaches, including SEGAN [56], Wavenet [70], MMSE-GAN [157], and DCUnet-20 [58].
In addition to testing our model with the test set of the same databases used for training, we
conduct additional tests using two publicly available databases: The Diverse Environments
Multichannel Acoustic Noise Database (DEMAND) [158], and the Voice Bank corpus [159],
both of which are employed in the comparison methods. The DEMAND database provides
recordings of real-world noise in a variety of settings, and the Voice Bank corpus collected
more than 300 hours of English recordings from approximately 500 healthy speakers.

Evaluation Methods
First, we test the N-HANS denoising model on the test sets prepared using LibriSpeech
and AudioSet in terms of the same performance measures for selective noise suppression.
To compare with the other speech enhancement methods, we consider PESQ, SSNR, and
three other evaluation metrics defined in [160], i. e., CSIG, CBAK and COVL, indicating the
Mean Opinion Score (MOS) predictor of signal distortion, background-noise intrusiveness,
and the overall signal quality, repectively.

Results Analysis
Our N-HANS denoising model is capable of producing audio output with comparable LSD,
SDR, and MCD performance to previous speech enhancement systems [154, 161], accord-
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Table 3.3.6: Test results for the speech denoising task with N-HANS trained on the Lib-
riSpeech and AudioSet corpora considering the Evaluation Metrics: LSD, SDR, PESQ,
STOI, MCD, and SSNR. (Source: [34])

SNR LSD SDR PESQ STOI MCD SSNR

0dB 1.17 7.02 2.49 0.81 6.79 4.06

3dB 1.10 8.72 2.70 0.84 6.51 5.10

5dB 1.05 9.60 2.84 0.86 6.40 5.90

10dB 0.93 11.86 3.12 0.90 5.98 7.80

15dB 0.84 13.35 3.34 0.92 5.49 9.58

Table 3.3.7: Test results for the speech denoising task with SEGAN, Wavenet, MMSE-
GAN, DCUnet-20, and N-HANS considering the Evaluation Metrics: CSIG, CBAK, COVL,
PESQ, and SSNR (cf. the caption of Table 3.3.5). For N-HANS, results are given considering
the Librispeech and AudioSet corpora (Train 1), as well as Voice Bank and DEMAND
(Train 2), for training. Note that the other evalauted methods are trained with Voice Bank
and DEMAND, thus, results for Train 2 enable a fairer comparison. (Source: [34])

CSIG CBAK COVL PESQ SSNR

SEGAN 3.48 2.94 2.80 2.16 7.73

Wavenet 3.62 3.23 2.98 − −
MMSE-GAN 3.80 3.12 3.14 2.53 −
DCUnet-20 4.24 4.00 3.69 3.13 15.95

N-HANS (Train 1) 3.60 2.84 2.83 2.05 6.42

N-HANS (Train 2) 4.00 3.18 3.23 2.44 8.24

ing to an evaluation on the synthesised data using the LibriSpeech and AudioSet corpora
(cf. Table 3.3.6). Moreover, our system yielded to high STOI values for all the examined
SNR conditions, showing strong speech intelligibility even for the lower SNR.

To ensure a more equitable comparison with different SE methods, the data of DE-
MAND and Voice Bank corpus are partitioned in accordance to Choi et al. [58]. Since the
functionality of speech denoising is a byproduct of the selective noise suppression system
and the model is trained with LibriSpeech and AudioSet data, the testing performance
has not yet been optimised for the Voice Bank and DEMAND corpora. In spite of this,
the N-HANS denoising model is able to achieve comparable results w. r. t. state-of-the art
approaches (cf. Table 3.3.7). Our method performs slightly better than SEGAN in terms
of CSIG and COVL, indicating superior signal quality and less distortions. Regrading the
remaining three performance measures, however, N-HANS cannot outperform SEGAN in
reducing noise signals selected from DEMAND corpus.

Transfer learning can be used to adjust the denoising model to the DEMAND and
the Voice Bank corpus, hence improving its performance on the test set for all of the
evaluation metrics considered. Despite the overall gains, our denoising model trails behind
of the model using a DCUnet-20 architecture, which is tailored for boosting the hearing
experience using the loss function of wSDR [58]. Negative aspects of this training objective
include the necessary duration of the model input signal. Indeed, this requirement might
affect the real-time factore (RTF) of the model for inference. Though applying wSDR and
employing lengthier input has the potential to further improve the evaluation performance
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Table 3.3.8: Test results for the speech separation task considering the evaluation metrics
signal-to-distortion ratio (SDR), signal-to-artifacts ratio (SAR), and signal-to-interference
ratio (SIR), for the baseline with Deep Clustering (DC), Conv-Tasnet, and N-HANS meth-
ods. Results for combining female (f) and male (m) speakers are given, followed by their
overall average (all). (Source: [34])

SDR SAR SIR

Method f+f m+m f+m all f+f m+m f+m all f+f m+m f+m all

DC 3.05 2.52 4.33 3.48 5.73 5.32 6.59 6.00 9.46 9.05 11.31 10.21

Conv-Tasnet 4.18 6.16 6.76 6.38 8.29 9.10 10.46 9.94 8.12 9.75 10.83 10.19

N-HANS 7.62 8.92 10.58 9.47 8.61 9.71 11.04 10.15 17.13 18.93 22.48 20.21

of N-HANS, we persist to use wMSE (cf. Eq.13) to guarantee real-time processing for more
realistic applications.

3.3.3.5 Functionality III: Source Separation

Comparison Methods
To evaluate the efficacy of N-HANS for the task of source separation, we implemented two
baseline source separation algorithms, Deep Clustering (DC) [149, 150] and Conv-Tasnet
[67], using our created data based on VoxCeleb. Both approaches adhere to the conventional
problem formulation for source separation and are not dependent on additional context
recordings.

The deep clustering model [149] exploits a deep recurrent neural network with two bidi-
rectional LSTM layers to process the spectrogram of an audio of overlapping speech. The
model is trained to generate similar embeddings for TF-bins originating from the same
speaker. Subsequently, based on these embeddings, a clustering technique is used to as-
sign the TF-bins to different speakers . The Conv-Tasnet [67] uses an encoder-decoder
framework for end-to-end time-domain speech separation, wherein the encoder, a tempo-
ral convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, is
trained to learn a speech representation optimised for separating speakers, and the linear
decoder is used to transform the speech representation back to waveform.

Evaluation Metrics
Three objective evaluation metrics, signal-to-distortion ratio (SDR), signal-to-artefacts ratio
(SAR), and signal-to-interference ratio (SIR) have been implemented in the BSSEval tool-
box [162], and are well-known to be effective in evaluating source separation models [163].
As their names imply, SDR, SAR and SIR assess the composition of the target speech in
terms of the distortion, artefacts and interference left in the processed audio caused by the
interfering speaker.

Results Analysis
Our N-HANS speech separation system is compared to the baselines for two female speakers
(f+f), two male speakers (m+m), and speakers of different genders (f+m). In addition, we
include the overall results for both speakers in Table 3.3.8 (all).

The testing results indicate that N-HANS can significantly outperforms the DC baseline
in a two-tailed t-test, yielding a p < .0004 for the SDR, SAR, and SIR measures. Concerning
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the Conv-Tasnet baseline, N-HANS also presents a significant improvement in terms of SDR
and SIR: p < .008. Although the performance of our N-HANS source separation system
can surpass Conv-Tasnet regarding SAR, the improvement is not statistically significant:
p = .558. Intriguingly, although the baseline methods achieved strong separation results on
the WSJ0 and the TIMIT corpus [149, 150], their performance worsened when confronted
with the VoxCeleb corpus, which is more complicated than the prior ones. Indeed, the
higher performance of N-HANS on this more challenging dataset increases our confidence
in the robustness of applying the presented system to real-world conditions.

An further insight arising from Table 3.3.8 is that all three separation models perform
better on the speakers of different genders than the speakers of the same gender. This is
because speech from speakers of the same gender share similar acoustic features, making it
more difficult to separate the mixed spectrum. The results obtained from speakers of the
same gender to those acquired from speakers of different genders reveal a larger average
performance difference between N-HANS and the baseline methods for the three evaluation
criteria. This discovery leads us to the conclusion that, particularly in challenging cases,
conditioning a source separation model on additional contexts can successfully inject useful
information that improves the separation process. Moreover, our N-HANS source separation
method circumvents the notorious problem of label permutation [164]—a research question
that has consumed a substantial amount of human efforts [150]. Some recent studies [149,
165, 164] have sought to overcome this issue. Our solution tackles this issue by learning the
extra target and interference recordings. As a consequence, the enhanced network is able
to determine the speaker labels, i. e., ‘target’ or ‘interference’, enabling the separation of a
mixture speech without the label permutation problem.

3.3.3.6 Functionality IV: Voice Suppression

Acoustic Scene Classification Models
The ultimate aim of our voice suppression system is to improve the speech robustness of
ASC models. For this, we consider two ASC architectures, i. e., the official 2019 DCASE
baseline and attentive atrous CNN [166]. The specifications of these two models appear in
Table 3.3.9 and Table 3.3.10.

The DCASE baseline model is a two-layer CNN in which convolution, batch normali-
sation, ReLU activation, dropout and max-pooling are sequentially applied to each layer.
Two dense layers are utilised to project the convolution outputs onto the classes. As model
input, we extract log mel spectra from the audio waveform using a frame size of 40ms and
hop size of 20ms, yielding a 40 × 500 Mel-band spectrum. On the official test set of the
2019 DCASE challenge, the baseline model achieves a classification accuracy of 62.20%.

The second CNN model employs atrous convolution and spatial attention mechanism,
which has been shown to be effective for the ASC tasks [166]. An atrous CNN incorporates
dilation settings, a tweak that controls the spacing between the convolutional kernel points
[167], to replace the need of pooling layers, hence expanding the receptive field for each
convolutional layer in comparison to the normal CNN design. Our attentive atrous CNN
consists of four atrous convolutional layers, 2D attention values are learnt and assigned
to each pixel in the feature maps. The attentive feature maps are then averaged across
all locations (time steps and frequency bins) and projected onto the scene labels using a
fully-connected layer. The classification accuracy can reach 69.0% on the test set of the
2018 DCASE challenge and 77.51% for the same challenge in 2019.
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Table 3.3.9: Specifications of DCASE2019 baseline model. (Source: [134])

Block Kernel #Ch input #Ch out

conv1 (7, 7) 2 32

pool1 (5, 5) 32 32

conv2 (7, 7) 32 64

pool2 (4, 10) 64 64

flatten − − 128

fc1 − 128 100

fc2 − 100 10

Table 3.3.10: Specifications of attentive atrous CNN. (Source: [134])

Block Kernel Dilation #Ch input #Ch out

atrous conv1 (5, 5) 1 2 64

atrous conv2 (5, 5) 2 64 128

atrous conv3 (5, 5) 4 128 256

atrous conv4 (5, 5) 8 256 512

attention (1, 1) − 512 512

global average − − − 512

fc − − 512 10

Evaluation Methods
Data augmentation can be utilised as a straightforward method to strengthen the ASC clas-
sifiers’ generalisability in the presence of speech. To this end, both classifiers are trained
using scene recordings that are contaminated with speech samples from the Edinburgh
database. This solution is evaluated under two conditions: matched-SNR and multi-SNR.
The first case augments the training data with the same SNR as for the test data, but the
second one is more realistic, i. e., instances of the training data are combined with a random
SNR selected to be one of −10,−5, 0, 5, 10, 20 or 30 dB.

Results Analysis
First of all, we need to explore the robustness of the baseline ASC models with respect
to human speech. For this purpose, we test the baseline models, which are trained on the
clean training data from the 2019 DCASE challenge, with the test data from the same
database that has been corrupted with speech noise from the Edinburgh database. The
testing results in the “Noisy” column of Table 5.3.3) reveal that the performance of both
ASC models degrades when the relative volume of the human voice to the acoustic scene
grows, i. e., under stronger SNR conditions. We observe that under conditions of high
SNR, the noise has negligible influence on the ASC classifiers. However, once the SNR
falls to -10 dB, , i. e., the speech is 10 dB more energetic than the surrounding environment,
classification accuracy declines to near chance levels, rendering both models utterly useless
for the ASC task. Even at the reasonably high SNR of 10 dB, the performance declines by
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Table 3.3.11: Test results for the voice suppression task. The testing accuracy[%] of two
ASC models are given regarding Signal-to-Noise Ratio (SNR). (Source: [134])

2019 DCASE Baseline

SNR Noisy Multi-SNR Matched SNR Denoised

Clean 62.20 − − −
30 dB 61.60 41.46 59.89 61.67

20 dB 59.40 42.15 59.90 60.81

10 dB 47.38 44.87 59.42 57.35

5 dB 36.27 46.81 60.22 56.42

0 dB 25.19 49.68 58.97 57.08

-5 dB 17.11 52.21 56.27 57.71

-10 dB 14.27 53.41 57.37 57.71

Attentive Atrous Model

SNR Noisy Multi-SNR Matched SNR Denoised

Clean 77.51 − − −
30 dB 76.58 58.78 65.93 77.16

20 dB 71.95 59.93 62.22 67.00

10 dB 54.84 60.86 61.51 62.08

5 dB 41.17 61.15 63.23 60.45

0 dB 28.29 61.74 58.87 61.91

-5 dB 21.48 61.31 59.73 63.25

-10 dB 17.99 60.05 58.23 61.95

15% and 23%, respectively. Indeed, both models appear to be able to handle minor audio
disturbances, since their performance does not degrade much for SNRs up to 20 dB. This
inspires us to apply a voice suppression system to reduce the speech noise content in the
scene recordings to a level that an ASC model can manage.

Moreover, the results in Multi-SNR and Matched SNR columns of Table 5.3.3 reveal that
data augmentation can recover most of the lost accuracy owing to the mismatch between
training and testing conditions. The baseline model performs better under the conditions
of all the matched SNR cases than under the multi-SNR conditions. Besides, we find the
attentive atrous CNN can perform better with multi-SNR settings than with matched SNR
under the low SNR situations, suggesting that training with several distinct SNRs provides
a generalisation advantage.

In general, our developed N-HANS voice suppression model can successfully support the
ASC classifiers considered in obtaining higher classification accuracy for the large SNR cases
(cf. . the “Denoised” column of Table 5.3.3). When only little quantity of human speech
appear in the recordings of noisy scenes, such as for SNRs exceeding 20 dB, the original ASC
classifiers function similarly as for the clean recordings. Using voice suppression as forefront
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Fig. 3.3.4: Spectrograms illustrating the audio components involved in the N-HANS selec-
tive noise suppression system, i. e., the clean spoken utterance (speech), the contaminated
audio (noisy), the ideal result (target), the negative and positive noises, and the achieved
outcome (denoised). Positive noise: train; Negative noise: telephone busy signal. (Source:
[34])

processing, the baseline model attains average performance across all SNRs, resulting in a
classification accuracy of around 60%. Nonetheless, the attentive atrous CNN performs less
stable across these SNRs. As the speech level rises, the classification performance declines.
Using voice suppression, however, can mitigate this impact and boost the scene classification
performance for the contaminated recordings by a great margin.

The ASC classifiers are incapable of achieving the performance of clean scene recordings
despite the use of voice suppression as a front-end. Although we aim to suppress the human
voice in noisy scene recordings to its greatest possible extent, in fact some residual speech
components remain in the processed scene audio. The speech residue sometimes turns into
fizzer noises that are not always audible, but are deemed detriment to ASC. Moreover, the
voice suppression system seeks to eradicate all speech components in scene recordings, and
thus maybe it is too aggressive towards the scene context itself, resulting in an unwanted
loss of environmental information if the scene recordings include any useful voice.

3.3.4 Performance Visualisation

We end this section with some selected examples of the performance of our four N-HANS
audio processing functionalities, selective noise suppression in Figure 3.3.4, speech denoising
in Figure 3.3.5, speech source separation in Figure 3.3.6, and voice suppression Figure 3.4.7,
respectively. Further examples for the performance visualisation can be found in original
articles [34, 134].

Selective Noise Suppression
Figure 3.3.4 depicts the procedure of N-HANS selective noise suppression. Provided are
the spectra of a sample of the clean spoken utterance, the noisy audio (mixture of the
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Fig. 3.3.5: Spectrograms illustrating the audio components involved in the N-HANS denois-
ing system, i. e., the clean spoken utterance (speech), the contaminated audio (noisy), the
interfering noise, and the achieved outcome (denoised). Bird song. (Source: [34])

clean utterance, positive and negative noises), the target (mixture of the clean utterance
and the positive noise), the positive and negative noises, and the denoised sample (the
system output). The objective of N-HANS selective noise suppression system is to remove
the negative noise from the noisy spectrum. Therefore, it is anticipated that the output
should be a near estimate to the target spectrum which comprises of speech and positive
noise. In this example, we can find that our model is able to recover speech signals under
the heavy noise scenario, as the speech components obscured by the negative noise in the
noisy spectrum resurface in the denoised output. The successful selective suppression for
non-stationary noise shown in this example should reduce the concerns over its capability to
handle more stable wide-band stationary noise. Because these kinds of noise contain more
consistent noise context, and hence supplying the system affluent indication of the noise to
be suppressed.

Denoising
The effect of the N-HANS denoising system is shown in Figure 3.3.5. Provided are the spec-
tra of an example of the clean utterance, the noisy utterance, the background noise, and
the denoised sample (the system output). In this example, an utterance is submerged into a
severe industrial noise at an SNR of 0dB; nonetheless, the system can still effectively remove
the majority of noise components, hence improving the speech quality. The denoising model
is capable of removing the noise based on the identification of additional noise contexts, such
as those non-continuous noises characterised by isolated impulses in this example. Note that
when the speech environment includes noise with similar acoustic properties to human voice,
the system may distort the estimated speech spectrum to suppress the noise as much as
possible. Yet, these distortions are not that disruptive to normal human hearing perception.

Speech Separation
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Fig. 3.3.6: Spectrograms illustrating the audio components involved in the N-HANS source
separation system, i. e., the mixture between the two speakers, and the target and inter-
ference speakers before (above) and after (below) to be separated by the system. Target
speaker: id04656 (female); Interference speaker: id04232 (male). (Source: [34])

Fig. 3.3.7: Spectrograms illustrating the audio components involved in the voice suppression
system, i. e., clean scene audio (scene), clean spoken utterance (speech), the contaminated
audio (noisy scene), and the achieved outcome (denoised scene). (Source: [134])

Similarly, the example in Figure 3.3.6 depicts an overlap of two utterances from two speak-
ers of different genders. This mixture signal is processed using N-HANS source separation
model, which can successfully produce the separated target and interference speech. Please
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refer to [34] for For the treatment of two speakers of the same gender, . Although the target
speech is notably distorted at 0.8 s and 1.5 s, the system is still powerful enough to compress
the interfering sounds to a great extent. Another interesting observation arising from the
visualisation is that despite the target utterance’s high resolution at the low-frequency range
(below 1 kHz), which is smeared by the interference speech seen in the mixture spectrum,
the system can jointly estimate the amounts of speech components in each time-frequency
bin, resulting in the recovered target speech with high clarity.

Fig. 3.3.8: Deviation between the extracted log mel-band energies from denoised scene audio
and clean scene over different SNR. (Source: [134])

Voice Suppression
Figure 3.3.7 illustrates the efficiency of the N-HANS voice suppression system on a contam-
inated scene recording by a spoken utterance. Using our method, the speech components
are explicitly suppressed from the recording of the noisy scene, while the environmental
sounds are well protected.

To illustrate the effect of voice suppression, we compare the deviation of the log Mel-
band energies extracted from the enhanced scene audios from that extracted from the clean
scene audios in Figure 3.3.5. The deviation is quantified in terms of the average mean square
error (MSE) between the two feature sets. The blue curve represents the difference between
the noisy and clean scene signals, while the red curve stands for the deviation between the
enhanced and clean scene signals. The presence of human voice has less of an effect on the
feature sets derived from the enhanced scene recordings, particularly for the original noisy
scenes with low SNRs.

3.3.5 Section Summary

In this part, we presented the N-HANS audio enhancement toolkit, which focuses on em-
ploying a single neural network architecture to manage multiple enhancement goals corre-
sponding to diverse practical circumstances. Based on the concept of auxiliary network, our
overall neural network makes use of the propose deep fusion approach to allow the enhance-
ment processing conditioned on extra audio samples that specify the audio contents to be
retained or eliminated. The success of using audio enhancement method to improve the
performance of the following audio application, specifically the use of voice suppression for
the speech robustness of ASC models, inspired us to generalise this framework to a broader
range of computer audition tasks and explore solutions to optimise the audio enhancement
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for a target audio application, which will be discussed in the next section.

3.4 Audio Enhancement for Computer Audition

Audio enhancement has the objective to separate the audio of interest from background
noise and interfering sounds, and it is widely employed at the front-end of a computer
audition (CA) model to ensure the quality of the record audio. Within this framework, we
rely on the enhancement processing to manage the uncertainty in audio recordings that may
contain ambient noise from daily life and speech interference, etc. By doing so to improve
the reliability and robustness of the subsequent audio applications such as ASR [168], SCR,
SER, ASC. However, to fulfil the demands on audio quality and intelligibility for numerous
audio tasks, an audio enhancement model, which is often developed independently, should
be pretty versatile. Integration of such a generalised audio enhancement model with a
subsequent CA model may not result in the optimal performance of the CA task. This is
attributable to two factors: first, the AE model is not optimised towards its subsequent CA
tasks since the loss function used has no association with the performance of the intended
applications. Consequently, due to its decisive influence, the prudent selection or specific
design of an AE training loss is needed, but this also requires adequate understanding
of the CA applications; and second, the CA models process the enhanced output from
the AE system, which may contain introduced distortions. To reduce noise to its utmost
extent, the AE model may damage the audio of interest aggressively, which might affect
the performance of the CA applications. To alleviate this problem, the CA models must
adapt to the AE outputs to lessen the mismatch at the interface between the AE and CA
models. In addition, we make use of multi-task learning to jointly optimise the AE and its
subsequent CA models in order to guide the optimisation of an AE model towards the CA
applications.

The successful uses of neural networks in the realm of computer vision (CV) have pro-
moted the development of various feasible computer audition (CA) solutions. Numerous
CNN architectures have been shown to be effective for audio processing, including speech
enhancement. For instance, the N-HANS toolkit described in Section 3.3 is built on ResNets
[2], which have an advantage in CNN model depth yet can be trained with stable conver-
gence. Recently released U-Net [15] is an alternative CNN architecture that has proven
useful for speech enhancement. U-Net was first proposed as a solution to biomedical image
segmentation, but it has been expanded for numerous CA and CV problems. An U-Net is
constructed based on an auto-encoder structure, with the inclusion of skip-connections to
transmit information from each encoder layer to its respective decoder layer. This model
architecture is appropriate for the task of speech enhancement. In addition to the origi-
nal U-Net, its two variant forms, i.e., complex U-Net and wave U-Net, which circumvent
the primary shortcoming of the original design, the absence of processing phase informa-
tion, are also investigated. We begin by comparing the different U-Net architectures for
audio enhancement in terms of some assessment measures that quantify audio distortions
in enhanced audio. Subsequently, the model producing the fewest distortions is chosen for
further research to enhance the audio quality for the following CA applications. We present
two joint optimisation approaches that optimise the audio enhancement model for our four
representative CA applications, namely ASR, SCR, SER and ASC. These applications are
chosen because they span speech and non-speech, English and non-English (Italian), simple
and complex classification problems.
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×M̂STFT iSTFT

Fig. 3.4.1: U-Net architecture for speech enhancement. The noisy audio is converted to
spectrogram using STFT, and then a ratio mask is estimated based on the spectrogram
using U-Net, an auto-encoder architecture with feedforward connections between encoder
and decoder layers. The mask is applied to original spectrogram to predict the clean
spectrogram, before applying iSTFT to produce estimated clean speech.

3.4.1 Network Architectures & Training Objectives

This section describes the neural network-based models that served as the foundation for
the audio enhancement and our four CA applications. These models provide cutting-edge
outcomes with simple network architectures.

3.4.1.1 U-shaped Audio Enhancement Models

We investigate three architectures of U-shaped neural networks, including the original U-
Net, Complex U-Net andWave U-Net, in an attempt to analyse their potential for enhancing
audio quality for our CA applications under consideration.

Audio Enhancement U-Net
Audio enhancement U-Net [169], as seen in Figure 3.4.1, takes the time-frequency represen-
tations of an audio signal as input. Only the spectrogram (magnitude spectrum) is used,
while the decomposed phase spectrum is left unaltered. The network has an auto-encoder
architecture with feed-forward layers that stack each encoder layer with its mirrored de-
coder layer. The encoder analyses the spectrogram of a noisy audio input, and decompose
the audio of interest, for example speech, from the noise components into separate feature
maps. The decomposition ability increases with the encoder depth. Then, the decoder
recombines necessary feature maps to reconstruct the enhanced audio. Similar to ResNet,
skip-connections can facilitate the retrieval of more complete information from the noisy
input for the reconstruction of the desired audio.

Given a clean sample x, a spectrogram Y is generated from the contaminated audio y.
The U-Net aims to estimate a ratio mask Mask(·), which is used to filter the original noisy
audio to produce the enhanced spectrogram:

X̂ = Y ·Mask(Y ). (15)

Using inverse STFT, the enhanced audio x̂ can be reconstructed with the phase information
of the noisy input. The model parameters are optimised by minimising the weighted SDR
(wSDR) loss of the original and the estimated clean speech and noise [38].:

LSE(x, x̂) = αLSDR(x, x̂) + (1− α)LSDR(n, n̂), (16)
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M̂

Fig. 3.4.2: Wave U-Net architecture for speech enhancement. The noisy audio is processed
by a WaveNet, 1-D convolution neural network, as encoder, and another WaveNet as de-
coder. The output of each encoder layer is fed to the corresponding decoder layer.

where
n = y − x and n̂ = y − x̂

represent the actual and estimated noise signal, and

LSDR(x, x̂) = −
< x, x̂ >

||x|| · ||x̂|| , (17)

where < x, x̂ > indicates the inner product of the actual clean signal and enhanced output,
and

α =
||x||2

||x||2 + ||n||2 (18)

is a hyper-parameter used to weight the importance of the audio of interest and noise during
model optimisation.

Audio Enhancement Complex U-Net
Since it has been shown that phase information is crucial to the quality of the enhanced
audio under low SNR conditions [58], the original U-Net, which does not process phase
components, may result in a suboptimal solution. Attempts have been made to estimate or
rebuild the phase spectrum of clean audio in order to remedy the deficiency of the conven-
tional paradigm of speech enhancement problem [78, 77, 76]. Alternately, we can divide the
noisy audio spectrogram into real- and imaginary-parts, and implement a Complex U-Net
[38] which builds a parallel structure comprising two U-Nets, one of which handles the real
part of the noisy spectrogram, and the other the imaginary part. The model generates
two masks that are individually applied to the real and the imaginary parts of the noisy
spectrogram to estimate the propositions of clean components. The model can be optimised
using wSDR in the same manner as AE U-Net.

Audio Enhancement Wave U-Net
Another strategy for handling phase information during speech enhancement processing is
to directly operate on the time-domain waveform, so avoiding the decomposition of mag-
nitude and phase components of the audio spectrogram. Wave U-Net substitutes the two-
dimensional convolutions of U-Net with one-dimensional convolutions (cf. Fig. 3.4.2). It
learns a mapping function that, when applied to a noisy audio waveform, produces the
enhanced waveform which is ideally identical to the clean audio. During training, the mean
square error (MSE) between the enhanced output and clean audio is minimised to optimise
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the model. Besides, the model may be optimised with a training objective inspired by GANs
as described in [56]. Similar ideas have been applied in other studies [84, 85, 86, 87, 88, 89],
along with the tricks that result in more efficient GAN training [170].

3.4.1.2 Computer Audition Applications & Models

We detail the CA applications under consideration, as well as their corresponding model
architectures, which are used as the downstream audio tasks of the audio enhancement
model to assess our methods for optimising an AE system towards CA applications.

Automatic Speech Recognition
Automatic Speech Recognition (ASR), a problem at the intersection of computer science
and computational linguistics, is the technology that converts spoken language into the
corresponding texts by machine. It is a crucial component for the construction of devices
that enable human-computer interaction (HCI), such as voice assistants can recognise hu-
man voice commands [171]. In the era of deep learning, ASR technology has progressed
significantly, and current neural network-based ASR systems are approaching human recog-
nition capabilities, when the input speech captured by a close-talk microphone [172]. A
typical ASR system contains both an acoustic model and a language model. The acoustic
model learns the speech structure and converts it into probabilities over alphabetic letters.
The language model transforms these probabilities into words of coherent language. The
acoustic models of cutting-edge ASR algorithms are created using self-supervised learning, a
deep learning methodology that aims at discovering general representations from large-scale
data without human labelling. It is expected that the learnt representations are effective
not only for ASR [173, 174, 175], but also for various downstream tasks [47, 176].

The ASR model implemented does not dependent on SSL training, allowing the use of
our joint optimisation approaches detailed in Section 5. The architecture of the model (cf. .
Figure 3.4.3) is similar to that of Deep Speech 2 [177], which is a Convolutional Recurrent
Neural Network (CRNN), i.e., an RNN constructed on top of a CNN. Specifically, the CNN
module is comprised of three residual blocks, each of which contains two convolutional
blocks comprising the sequence of layer normalisation, Gaussian Error Linear Unit (GeLU)
as activation function, Dropout, and convolution modules. Unlike the CNN used in Deep
Speech 2, our additional usage of skip-connections can provide a more stable convergence
[23, 178]. The CNN output is then fed into bidirectional Gate Recurrent Units (GRUs)
capable of capturing the temporal dynamics of data to generate speech representations .
The representations are finally transferred to the character indices, and optimised using
connectionist temporal classification (CTC) loss [179]. During inference, to improve the
quality of the recognised text, the output of the acoustic model is decoded using beam
search with a 3-gram ARPA language model7.

In practical applications, the ASR performance may be hindered by noise environments,
particularly when the noise is intense and obscures the intended speech. Under conditions
of low SNR, machine ASR performance remains inferior to that of humans [180]. A con-
siderable number of studies have been conducted to increase the robustness of ASR models
against noise, including the use of data augmentation techniques that introduce data de-
formations in small partial loss of temporal or frequency information [121], or incorporate
additive noise to speech input [181, 182]. Alternately, a teacher network, which is developed

7The language model is available at https://www.openslr.org/11/.
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Fig. 3.4.3: Acoustic model of the used ASR system. (a) The architecture consists of residual
networks and BiGRU in sequence, fully-connected layers are used to predict the characters
in alphabet. The acoustic model is optimised using CTC Loss. (b) The structure of con-
volutional (conv) block used in the acoustic model. (c) The signal flow of Gated Recurrent
Unit (GRU).

based on clean audio, can be used to train a student network to progressively adjust to noisy
input [183, 184].

Speech Command Recognition
Keyword spotting systems are meant to identify the presence of speech commands in audio,
and are thus commonly deployed on edge devices as the voice interface to activate further
functions, which may cost much energy and time, and should therefore be implemented
on cloud-severs. Since SCR modes [185] are implemented on hardware of edge devices,
they should have a modest model size for memory efficiency, and minimal computation
requirements for improved battery life. Unlike for ASR, a SCR model process limited
numbers of spoken words as opposed to sentences that may include several words, hence
reducing the recognition task to a simple classification problem. As a consequence, it
requires no specific loss function for model training and an additional language model for
decoding.

The SCR model implemented in this study is a modified M5 CNN [186] that is able
to predict the 35 types of speech commands mentioned in [185]. The model is a 4-layer,
one-dimensional CNN that directly processes time-domain audio waveforms. Each CNN
layer comprises of convolution, batch normalisation, ReLU, and max-pooling. The aver-
aged CNN output is linearly projected onto the speech command classes. As the model
processes raw waveform directly, its parameters are meticulously chosen in order to ensure
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Fig. 3.4.4: (a) Speech command recognition model. (b) Speech emotion recognition model.
(c) Acoustic scene classification model, in which the convolutional (conv) block is shown in
(d).

that the audio processing is performed with a suitable CNN respective field.

Speech Emotion Recognition
SER is an essential technology for the effective development of Human-Computer Interac-
tion (HCI) applications [187]. Typically, SER algorithm development is formulated as a
classification (of ‘basic’ emotions) or a regression problem (of emotional dimensions) [187].
The study field has achieved great progress as a result of the development of deep learning
algorithms; yet, model robustness remains a serious barrier. It has been shown that SER
models are particularly susceptible to external noise, since it is beyond the control of the
application developer; and thus audio enhancement is required to overcome this issue.

Specifically, we use a 4-layer two-dimensional CNN, where each layer consists of a se-
quence of convolution, batch normalisation, ReLU activation, max-pooling, and dropout.
Its input is a Mel spectrogram computed with 32 Mel-scale filters, a window length of 20ms,
and a step size of 10ms. The CNN output is projected onto emotion classes using a dense
layer.

Acoustic Scene Classification
As the last application for evaluating our joint optimisation methods, we again consider
the application of voice suppression for ASC models to suppress human voice in scene
recordings. For the ASC model, we implement Dual-ResNet [188] which was awarded as
the best reproducible system for the first task of the 2020 DCASE challenge [189].

The model has two separate paths for independent analysis of the low- and high-
frequency bands. The outputs of these two paths are concatenated using late fusion before
going through two 1×1 convolutional layers to reduce the channels to the number of desired
classes. The low- and high-frequency paths share the same architecture, a residual network
consists of eight convolutional blocks, each of which is a sequence of batch normalisation,
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ReLU activation, and a convolution processing (cf. . Figure 3.4.4(d)).

3.4.2 Systematic Combination & Training Paradigms

To combine the audio enhancement system and a CA model into a sequence, as well as
to enable end-to-end learning for training the entire system, we make a minor but crucial
change to the U-Net specifications by setting the max-pooling along the time-axis to 1, while
leaving the pooling along frequency-axis unchanged. By doing this, the audio enhancement
model can handle audio signals of varying lengths for applications like ASR. Consequently,
the AE system is flexible in cascading with any subsequent audio models. Intermediate
features, such as Mel-Frequency Cepstral Coefficients (MFCCs) as ASR model input, are
extracted from the enhanced waveform or the AE outcome.

We investigate two joint optimisation approaches for training an AE and CA models,
namely multi-task learning and iterative optimisation, both of which seek to improve the
mutual promotion between the AE and CA models.

3.4.2.1 Multi-task Learning

The first approach utilises a multi-task learning framework that combines the losses of the
audio enhancement system and a CA model. The total loss is expressed as

L = LAE + LCA. (19)

Minimising the total loss entails optimising both models simultaneously, since the losses
from them are equally weighted. Unlike the typical MTL problem, the alignment and
connection of the two models are distinct. The AE loss is derived from an intermediate
system layer, although the two models are each viewed as a single entity. Consequently,
minimising the AE loss has no impact on the parameters of the CA model, but the CA
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loss back-propagates through the AE model. Therefore, even while the AE and CA losses
function as mutual regularisation terms, they also create a bias towards the updating of
the AE parameters. Similar effects have been reported in supervised auto-encoder research
[190].

3.4.2.2 Iterative Optimisation

Iterative optimisation, as its name suggests, iteratively trains the AE and CA models. The
technique is primarily motivated by a joint view of the two models. First, the CA model
should continuously be tuned to the AE model’s output, which may contain residual noise,
introduced speech distortions, and artefacts, amongst others. Second, the performance of
the CA models can be used to enhance the training process of the AE model, allowing the
optimisation to concentrate on samples that pose particular challenges to the CA tasks. By
doing so, we aim for the optimum performance of the entire neural system, which includes
the front-end audio enhancement and the subsequent CA applications.

To implement the iterative optimisation, given a batch of samples x = [x1, x2, ..., xi, ..., xN ],
we weigh the AE loss by the normalised CA loss:

LI
AE(x, x̂) =

1

N

N∑
i=1

wiLAE(xi, x̂i), (20)

where
wi = LCA(ti, t̂i) (21)

indicates the importance weights, which sum up to 1. These sample-level weights aid in
training the AE model to be biased towards relatively more difficult data, for example,
those contaminated by more intense noise.

The CA model should be trained using data from the AE system as opposed to the
clean signal, to prevent the performance gap between the AE and CA models induced by a
cold cascade.

As long as the AE model is optimised, a more robust CA model must be adapted to the
enhanced audio, and a more robust CA model can further assist the AE model’s optimisation
by updating the sample difficulties. Therefore, we alternate between the optimisation of the
CA and AE models, i.e., training the CA model based on the AE output while freezing the
parameters of the AE system, and training the AE system with the indications from the CA
outcomes. The execution of both optimisation steps iteratively can eventually approach to
an optimum solution.

3.4.2.3 Comparison Methods

To assess the efficacy of our proposed joint optimisation methods, we compare them with
the methods outlined below over different levels of noise intensity:

• Baseline: CA models only and they are not trained on noisy data. Since these mod-
els are not optimised for noise robustness, we anticipate a considerable performance
decrease when confronted with noisy data.

• Data Augmentation (DA): CA models only, and they are trained on synthesised
noisy data. We intentionally introduce noise into the clean audio recordings with
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different SNR ratios. Considering that data augmentation is a common machine
learning technique for improving robustness, the CA models should perform better on
the noisy test data.

• Cold Cascade: The CA models exploit a front-end AE component. However, the
AE and CA models are independently optimised. To do this, the AE model is trained
to reach a satisfactory enhancement performance, and then the CA model is trained
with clean data and stacked on top of the AE model.

• Cold Cascade + Data Augmentation (DA): Both the AE and CA models are
trained with synthesised data. The AE model is trained to achieve a satisfactory
performance. Subsequently, the CA model is optimised based on the enhanced output
from the AE model. Due to the models’ exposure to noisy data and the incorporation
of an AE component, this method should exhibit promising noise robustness.

To evaluate ASR performance using the CHiME-4 challenge pipelines8, a classic GMM-
HMM model and a DNN-HMM-sMBR model employing an RNN language model for rescor-
ing, we distinguish two comparison methods of the cold cascade style using distinct training
data, both methods only train the SE component:

• Cold Cascade 1: The SE model is trained using the data synthesised from the
LibriSpeech and AudioSet corpora.

• Cold Cascade 2: The SE is trained using CHiME-4 training set.

3.4.3 Experiments & Evaluation

We begin by comparing different U-shaped AE neural networks presented in Section 3.4.1.
The model with the best performance, which produces the least audio distortions in en-
hanced audio, is chosen as the front-end enhancement module of our CA tasks to evaluate
the effectiveness of our proposed joint optimisation approaches. Following is a description
of the data used in this study and an introduction to the data processing. The training
parameters for these models are detailed in Section 3.4.3.2.

3.4.3.1 Data Description & Processing

Audio Enhancement
The performance assessment of the U-shaped AE models is based on Edinburgh noisy speech
database [152], a corpus including both clean and noisy speech in parallel. The speech data
was collected from 56 speakers, 28 males and 28 females, from distinct accent areas (Scot-
land and United States). Each speaker contributed around 400 utterances. The noisy data
was created using two artificially generated noise and eight real noise recordings from the
Demand database [158]. The chosen noises represent a variety of real-world situations,
including domestic noise, office noise, public space noise, transportation noise and street
noise. SNR values of 0, 5, 10, 15 dBwere considered to synthesise the training data. The
test set employs slightly higher SNR values of 2.5, 7.5, 12.5, or 17.5 dB, to synthesise speech
recordings from a male and a female speaker with five kinds of noises from the Demand

8CHiME-4 ASR pipelines are available at http://spandh.dcs.shef.ac.uk/chime challenge/CHiME4/

software.html
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database. All data is sampled at a frequency of 48 kHz, while the audio recordings are
downsampled to 16 kHz for computing efficiency.

Automatic Speech Recognition
The performance of ASR is first evaluated using synthesised audio data based on Librispeech
and AudioSet, with SNR values in the range of 0, 5, 10, 15, 20, 25dB. Additionally, we base
our study on a standard benchmark released in the fourth CHiME challenge, which estab-
lishes a target for distant-talking automatic speech recognition using the Wall Street Journal
(WSJ0) corpus. The simulated training set is generated by artificially mixing clean speech
with noisy backgrounds, resulting in 35 690 utterances from 83 speakers in four different
noisy circumstances. The test set comprises simulated recordings and utterances recorded
by 4 other speakers in actual noisy environments.

Further, Mel-Frequency Cepstral Coefficients (MFCCs) are taken from the audio as
input features to the ASR model, the number of Mel-band filters is set to 40. The MFCCs
are generated by calculating the Short-Term Fourier Transform (STFT) of an audio sample,
and then mapping its powers onto the Mel scale using triangular overlapping windows.
Applying discrete cosine transform on the logarithmic values of the powers at each of the
Mel bands yields the in final MFCCs. Note that in our two joint optimisation methods, the
MFCCs are retrieved from the SE output.

Additionally, we develop the models using the more difficult and realistic data from the
CHiME-4 challenge, and then evaluate their performance with the given ASR pipelines.

Speech Command Recognition
The Speech Commands dataset contains 105,829 one-second audio clips of 35 words, includ-
ing the numerals zero through nine, fourteen words used as commands in IoT and robotics
applications, and other spoken words that cover a variety of phonemes. It also contains
recordings of only background noise or non-command audio, with the expectation that the
tested keyword spotting systems are able to distinguish the audio of commands from the
audio of none with the lowest possible false positives.

To evaluate the robustness of a SCR model, noise recordings from AudioSet are se-
lected, trimmed to a length of one second, and then added to speech commands with SNR
values within the pale of 0, 5, 10, 15, 20, 25dB. This results in a large-scale audio collection
of speech commands in noisy conditions. Since our implemented model for SCR directly
handles the raw audio, no further data processing is needed.

Speech Emotion Recognition
The DEMoS database encompasses 9,365 emotional and 322 neutral audio samples collected
from 68 native speakers (23 females and 45 males; mean age 23.7 years, std 4.3 years). Seven
emotions, namely anger, sadness, happiness, fear, surprise, fear, and guilt, were evoked
by listening to music, watching pictures or movies, pronouncing or reading emotionally
sentences and recalling personal memories. All recordings are sampled at 44.1 kHz.

We used all of the emotional samples from DEMoS, and the data partitioning for train-
ing, development and testing is the same as in [191], which ensures a gender- and class-
balanced speaker-independent split. To maintain consistent with other CA applications,
DEMoS samples are downsampled to 16 kHz, which according to [191], will not lead to
much information loss . Similar to the study of ASR, we simulate background noise along
by adding environmental recordings from AudioSet to speech utterances.

We extract Mel spectrogram from the audio samples using STFT with a window length
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of 20 ms and a step size of 10 ms, as well as 32 Mel-scale filters.

Acoustic Scene Classification
To evaluate our approach on the ASC task, we use the DCASE 2021 Challenge dataset [192].
This is accomplished by incorporating speech samples from LibriSpeech into the soundscape
recordings from the DCASE 2021 challenge in order to create the noisy scene audio. The
SNR range is expanded to −25,−20,−15,−10,−5, 0, 5, 10 dBto account for a wider range of
real-world circumstances. A lower SNR implies that the scene dominates the soundscape,
while a higher SNR indicates that speech interference is more prominent. The ASC model
input is a log Mel spectrogram derived from the audio using STFT with a window length
of 64ms and a hop size of 16ms. Meanwhile, the number of Mel bands is set to 128.

3.4.3.2 Training Settings

From our empirical experience, a batch size of 16 is optimal for training a U-Net for audio
enhancement. Thus, the batch size remains constant throughout the experiments presented
in this section. CTC loss is utilised to optimise the ASR model, while cross-entropy loss
between the predicted and ground-truth labels is used for the other three CA classification
tasks. These models are all optimised using an Adam optimiser. Weight decay is addition-
ally applied to the training of the SCR and ASC models for the L2 regularisation effect.
The AE, ASR and ASC models are optimised using a learning rate of 0.0001, and the SER
model is trained with a learning rate of 0.001 . For SCR optimisation, the initial learning
rate reduces from 0.01 to 0.001 after 20 epochs. Additionally, for CA applications like ASR
and SER that handle audio of varying lengths as model input, the recordings are padded
to the length of the longest sample within a batch for training.

3.4.3.3 Choice of U-shaped AE Models

Using the Edinburgh noisy speech database, we will first determine the most appropriate
AE model among the U-shaped neural networks, i. e., the original U-Net, complex U-Net
and wave U-Net. The selection criterion is associated with audio distortions in the AE
model’s output, which can be represented by the following evaluation metrics.

Evaluation Metrics
We consider Cepstral Distortion (CD), SDR, STOI and LSD as performance metrics. These
evaluation metrics were chosen to complement [38] as they better reflect improvements in
machine understanding and are thus deemed suitable for assessing AE systems tailored for
further audio applications.

Results Analysis
The standard U-Net, whose specifications can be found in the appendix, surpasses the
other two alternative architectures, i. e., Complex U-Net and Wave U-Net, in terms of all
the metrics tested, as shown in Table 3.4.1. In particular, an SDR of 18.16, which is 8.35
higher than the original noisy audio, indicates a substantial increase in audio quality w. r. t.
signal distortions. Moreover, according to the STOI results, the U-Net model seems to have
no detrimental effect on speech intelligibility, but the other two AE models do. Therefore,
the AE U-Net will be used for further testing of our proposed joint optimisation approaches.
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Table 3.4.1: Testing results of different U-shaped neural networks for speech enhancement
using Edinburgh noisy speech database.

Methods CD SDR STOI LSD

original audio 7.03 9.81 0.93 6.29

U-Net 6.90 18.16 0.93 5.76

Complex U-Net 6.91 17.89 0.89 5.89

Wave U-Net 7.16 13.21 0.89 5.97

Table 3.4.2: Testing results, WER [%], using Librispeech and the AudioSet corpus. DA
stands for the method using only data augmentation. MTL represents the proposed multi-
task learning solution.

Methods Inf 25dB 20dB 15dB 10dB 5dB 0dB average

original ASR 7.84 10.74 13.53 19.87 31.97 49.72 68.46 32.38

DA - 9.58 10.18 11.17 14.50 21.05 35.46 16.99

Cold Cascade - 9.53 10.84 13.31 18.16 28.07 43.78 20.62

Cold Cascade + DA − 8.15 8.76 10.03 13.30 20.89 34.67 15.97

MTL - 8.03 8.69 9.91 12.93 19.45 32.64 15.27

iterative optimisation - 8.35 8.79 10.00 12.71 19.27 31.93 15.18

3.4.3.4 Application I: Automatic Speech Recognition

We evaluate the proposed MLT and iterative optimisation methods using ASR as the first
application of interest. The testing is undertaken first with the artificially generated noisy
speech data using Librispeech and AudioSet at different SNR levels, and then using CHiME-
4 benchmark data.

Evaluation Metrics
Character Error Rate (CER) and Word Error Rate (WER) are two standard performance
assessment measures for ASR systems. The first one estimates the proportion of alphabetic
letters in an utterance that are erroneously classified, whereas the second one calculates the
same percentage with respect to the words in speech. We choose WER as our performance
metric in order to make a fair comparison to prior work.

Results Analysis

Testing on Synthesised Noisy Speech

Training and testing the implemented ASR model using clean speech recordings from Lib-
riSpeech yields to a WER of 7.84%, approaching the performance reported in the previous
work [177] and thus adequate for evaluating our suggested joint optimisation approaches,
albeit being lower than some current state-of-the-art methods [173, 175]. Adding noise to
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Table 3.4.3: Testing results, WER [%], using CHiME-4 challenge set. DA stands for the
method using only data augmentation. MTL represents the proposed multi-task learning
solution.

GMM-HMM DNN-HMM

Methods simu real simu real

original ASR 24.46 22.19 12.96 11.56

Cold Cascade 1 18.48 18.06 12.54 11.14

Cold Cascade 2 16.06 14.59 11.15 9.50

MTL 15.04 12.76 9.88 8.73

iterative optimisation 14.08 12.53 9.45 8.12

the clean test audio recordings reduces the accuracy of speech recognition (cf. Table 3.4.2).
As the SNR declines to 5dB, almost half of the words in each utterances are misidentified,
resulting in a WER of 49.72%. The ASR performance degrades at lower SNR values like
0dB.

Applying data augmentation to the training of the ASR model improves the WERs
under all SNR conditions. It outperforms the use of an independently trained SE model at
front-end of the ASR model trained on clean speech, especially at relatively lower SNRs.
Applying data augmentation to the training of the ASR model improves the WERs under
all SNR conditions. It outperforms the use of an independently trained SE model at front-
end of the ASR model trained on clean speech, especially at relatively lower SNRs. For
example, data augmentation reduces WER by 28.67% at the SNR of 5dB, and 33.00% at
the SNR of 0dB. Additionally, speech enhancement can boost the WERs further, yielding
in an average WER of 15.97% for all SNR levels evaluated.

Our two suggested optimisation methods can further reduce WERs for all SNR sce-
narios. With a WER decrease of 2.03% for 0dB SNR and 2.74% for 5dB SNR, the MTL
method provides considerable performance gains for low SNR levels. The iterative optimi-
sation strategy improves the ASR performance in low SNR situations while maintaining a
similar recognition performance at other SNR levels. It reaches an average WER of 15.18%
across all SNR levels considered. In general, at low SNR levels, the two presented joint
optimisation techniques that strengthen the interaction between the SE and ASR models
outperform those that rely on separate training.

Testing on CHiME-4 Challenge Data

We also apply both joint optimisation approaches to the training of the SE and ASR models
using CHiME-4 training dataset, however we only assess the performance of the SE system
in combination with the CHiME-4 ASR pipelines.

Using the approach of Cold Cascade 1, the GMM-HMM ASR model can obtain WER
reductions of 5.98% and 4.13% for the simulated and real recordings, respectively (cf. .
Table 3.4.3). The DNN-HMM-sMBR model performs slightly better than the other model
on both the simulated and real data, presenting a minor decrease in WER when the front-
end SE model is exploited. Adapting the SE model to the CHiME-4 training data set
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Table 3.4.4: SCR testing results, (Acc)uray[%], using Speech Commands data set and the
AudioSet corpus. DA stands for the method using only data augmentation. MTL represents
the proposed multi-task learning solution.

Methods Inf 25dB 20dB 15dB 10dB 5dB 0dB average

original SCR 85.07 83.37 81.35 76.87 67.57 51.52 33.12 65.63

DA - 82.69 82.07 80.09 77.53 71.66 58.26 75.38

Cold Cascade - 84.34 83.38 80.85 75.54 66.06 51.92 73.68

Cold Cascade + DA − 82.65 82.31 81.64 79.31 74.22 64.93 77.51

MTL - 85.53 84.21 82.12 80.04 76.54 67.18 79.27

iterative optimisation - 85.35 83.93 82.37 81.56 77.41 69.18 79.97

considerably enhances the speech recognition performance of both ASR pipelines, and both
simulated and real-world recordings.

In addition, the joint optimisation approaches result in additional WER improvements
(cf. Table 3.4.3). Using iterative optimisation, a more effective SE model is connected to
the CHiME-4 ASR pipelines, resulting in a WER of 9.45% on the simulated recordings and
8.12% on the real recordings for the DNN-HMM-sMBR-based ASR models with language
models for rescoring. This improvement can be attributed to the specialised training of
the SE model towards the samples that are more critical to the ASR performance. Despite
the fact that ASR systems may encounter unique challenges in speech recognition, their
performance degrades for contaminated audio samples with similar causes, such as the
same type of speech disturbance.

3.4.3.5 Application II: Speech Command Recognition

Evaluation Metrics
Although the amount of utterances for each speech command recorded in [185] are not
absolutely equal, the distribution of classes in its standard test partition9 are sufficiently
balanced, allowing the use of classification accuracy as the assessment measure for the task
at hand.

Results Analysis
The classification accuracy of the SCR model trained on the original data of Speech Com-
mands reaches 85.07% (cf. . Table 3.4.4). As the noise intensity increases, the SNR de-
creases, and the classification performance diminishes. When the SNR falls to 5dB, more
than fifty percent of the spoken keywords are misclassified. The average accuracy across all
examined SNRs rises from 65.63% to 75.38%, when the model is trained with the contami-
nated data. This pertains particularly to the situations with a low SNR. The additional use
of speech enhancement at its front-end leads to a 2.13% improvement in average accuracy.

Our two joint optimisation approaches attain an average classification accuracy of 79.27%
and 79.97%, outperforming the baseline methods. In scenarios with a relatively lower SNR,
the iterative optimisation strategy performs better than the MTL method. Moreover, when

9http://download.tensorflow.org/data/speech commands test set v0.02.tar.gz
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Table 3.4.5: SER testing results, Unweighted Average Recalls (UAR)[%], using DEMOS
and the AudioSet corpus. DA stands for the method using only data augmentation. MTL
represents the proposed multi-task learning solution.

Methods Inf 25dB 20dB 15dB 10dB 5dB 0dB average

original SER 81.32 81.18 79.95 78.98 73.70 59.82 40.32 68.99

DA - 79.53 79.46 79.05 78.30 75.69 68.06 76.68

Cold Cascade - 80.45 79.59 79.45 77.86 69.93 54.34 73.60

Cold Cascade + DA − 77.59 77.27 77.07 77.54 74.52 69.02 75.49

MTL - 81.30 80.67 80.31 79.93 77.29 75.44 79.16

iterative optimisation - 81.31 80.76 80.35 79.95 78.09 76.91 79.56

adding noise to the spoken commands at the SNR level of 25dB, both of our methods man-
age to achieve higher classification results than the models trained with the original clean
data, which is likely owing to the effect of data augmentation using additive noise.

3.4.3.6 Application III: Speech Emotion Recognition

Evaluation Metrics
Considering the imbalanced class distribution in the test set, we assess the trained models
using Unweighted Average Recall (UAR), i. e., the unweighted average of the class-specific
recalls.

Results Analysis
When training the SER model using the clean Italian speech samples, the UAR on the
clean test set approaches 81.32%. With an average UAR of 68.99%, the model presents a
degree of robustness to additive noise. However, when the SNR is below 15dB, the SER
classification accuracy reduces considerably (cf. . Table 3.4.5).

Data augmentation, which involves noise into the training audio, boosts the mode ro-
bustness to strong noise, for example in cases when the SNR is below 10dB. However,
introducing a separately trained SE model to the SER task can hardly improve or even
degrade the classification results.

Both of our joint optimisation approaches indicate improved SER performance, with
UARs of 79.16% and 79.56%, respectively, surpassing the best-performing baseline model
which yields a UAR of 76.68%. This improvement is in part the consequence of closing
the language gap. The original SE model is trained on English data; thus it needs to be
optimised for the Italian-SER model for better performance.

3.4.3.7 Application IV: Acoustic scene classification

We train a U-Net as a voice suppression system capable of enhancing the speech robustness
of an ASC model.

Results Analysis
According to Table 3.4.6, training the ASC model using the original recordings of acous-
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tic scene yields a testing accuracy of 77.81% for classification. Similar to the previous
speech tasks, the classification performance falls as the intensity of voice interference in
the testing scene recordings rises. Consequently, an overall average accuracy of 57.48% is
attained across all SNR cases evaluated. For the SNR values of −25 and −20 dB, applying
data augmentation or voice suppression might negatively impact the ASC performance.
Nonetheless, the benefit of data augmentation begins at the SNR of −15 dB, yielding in an
average accuracy gain of 10.68%. On the other hand, the effectiveness of voice suppression
starts at the SNR of −20 dB. However, using voice suppression at the front-end of the ASC
model trained with clean scene audio or contaminated audio cannot result in better average
accuracy.

Table 3.4.6: ASC testing results, (Acc)uracy[%], using DCASE2021 and Librispeech corpus.
DA stands for the method using only data augmentation. MTL represents the proposed
multi-task learning solution.

Methods Inf −25dB −20dB −15dB −10dB −5dB 0dB 5dB 10dB average

original ASC 77.81 75.45 72.92 69.05 65.02 60.14 51.19 39.12 26.91 57.48

DA - 70.51 71.44 71.50 70.84 69.08 68.86 63.73 59.31 68.16

Cold Cascade - 73.83 73.11 71.14 67.60 62.58 56.87 50.53 44.53 62.53

Cold Cascade + DA − 72.92 72.84 72.65 71.71 69.27 63.59 60.16 59.23 67.80

MTL - 74.31 73.97 73.01 72.48 71.52 70.10 65.79 61.34 70.32

iterative optimisation - 74.26 73.50 73.12 72.71 72.09 71.43 66.81 63.19 70.89

Training the voice suppression and ASC models using a multi-task learning approach is
shown to be superior to iterative optimisation in the case of low SNR, i. e., the presence of a
tiny amount of speech in acoustic scene recordings. However, the iterative optimisation out-
performs the MTL approach for the worse SNR levels. The average classification accuracy
for the two techniques is 70.32% and 70.89%, respectively. Both techniques successfully
boost the system’s robustness across all SNR situations.

3.4.4 Performance visualisation

To provide a more intuitive understanding of the audio enhancement performance of our
approaches, for both the tasks of speech enhancement and voice suppression, we visualise
the input and output of the trained U-Nets. First, we illustrate the denoising performance
on English utterances, the same language used to train the SE model, and then on three
additional languages: Italian , Chinese, Japanese, with Chinese and Japanese being actual
recordings. Finally, we demonstrate how effective our voice suppression U-Net is removing
English speech from environmental backgrounds.

Speech Enhancement
Fig. 3.4.6a displays the performance of our SE U-Net on a testing noisy speech sample.
Even when the speech signal is obscured by a severe industrial noise, our model is able to
recover voice from the noisy recording while keeping the low-frequency speech components.
The similar effect is seen when extracting Italian from the traffic noise (cf. Figure 3.4.6b),
and the well-preserved harmonic structure of the speech results in a pleasant audio quality.
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(a) Language: English; Noise: Factory production

(b) Language: Italian; Noise: Traffic

(c) Language: Chinese; Noise: TV & Music

(d) Language: Japanese; Noise: Street traffic

Fig. 3.4.6: Spectrograms illustrating the performance of speech enhancement U-Net for
English, Italian, Chinese and Japanese in different kinds of real-life environments. The SE
model processes the the contaminated audio (noisy) and output the denoised speech.
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Fig. 3.4.7: Spectrograms illustrating the effect of training an U-Net for voice suppression.
The model targets at removing the speech components in the acoustic scene recording to
the maximum possible extent.

The SE U-Net trained on noisy English speech data has also been examined for recov-
ering Chinese and Japanese speech in noisy environments. These eastern languages are
believed to be fairly dissimilar to English. Nonetheless, the enhancement model retains
the ability to improve audio quality by eliminating irrelevant background sounds. There-
fore, we conclude that the SE U-Nets trained using our proposed approaches have adequate
cross-language processing capabilities, alleviating the difficulty associated with transferring
an SE model to a particular language for real-world applications.

Voice Suppression
The purpose of voice suppression is to protect acoustic scene recordings from spoken inter-
ference. As seen in Figure 3.4.7, our trained U-Net for voice suppression can successfully
suppress the speech components present in the scene audio. Even with some residual speech
that is still audible, the enhanced scene audio is of higher audio quality and can improve
the following ASC performance.

3.4.5 Section Summary

The emphasis of this section was on single-channel audio enhancement tailored for spe-
cific CA applications under low SNR circumstances. Specifically, we considered three CA
tasks taking speech as the signal of interest and one with the background soundscapes
as the target audio. Instead of a separate training paradigm for audio enhancement and
CA models, we presented the multi-task learning and iterative optimisation methods that
strengthen the interaction between the two models during training. The testing results
reveal considerable improvements determined by the respective assessment criteria for each
CA task, particularly for low SNRs. Our suggested solutions allow the customisation of
an audio enhancement front-end to the specific CA problem that needs denoising, resulting
in substantial improvements over generic enhancement models trained with out-of-domain
data. Inspired by the gains, additional effort should be put on the coupling between the
two models, and using recent discoveries in self-supervised learning that have been shown
to improve audio enhancement.
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3.5 Chapter Summary

In this chapter, we presented a deep learning framework that integrates multiple audio en-
hancement functionalities, including audio denoising, source separation, and selective noise
suppression. The framework utilises additional auxiliary networks to encode extra audio
samples that indicate the components to be preserved and to be discarded. We also ex-
plored the multi-task learning framework aimed to use audio enhancement to improve the
succeeding audio applications, i. e., ASR, SCR, SER and ASC, in terms of their robustness
and reliability in everyday noisy environments. Our proposed iterative training scheme can
improve the global performance of the audio applications in real-world situations, especially
when the audio recordings contain intense noise or interference. During the study of this
joint training method, we optimised an audio enhancement system with respect to target
audio application, respectively. A straightforward approach would be to train such an audio
enhancement system with multiple subsequent audio applications. The simultaneous opti-
misation of an audio enhancement system and these applications models has the potential
to further improve both the enhancement efficacy and the application performance. Due to
the demand for multi-label data, this idea has not been implemented in this study.
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CHAPTER 4

Detection of Coronavirus Disease 2019
(COVID-19)

4.1 Introduction

Since the outbreak of Coronavirus Disease 2019 (COVID-19) at the end of December 2019,
the epidemic has spread globally and affected every aspect of human life. As of the time of
writing, more than 523 million positive cases of COVID-19 have been confirmed, including
6.27 millions deaths, according to the World Health Organization (WHO) 10. The most
prevalent signs of COVID-19 infection are fever, cough, fatigue, and a loss of taste or smell.
Less common symptoms include sore throat, pains and aches, headache, red or irritated
eyes, and diarrhoea, etc. The infection can cause more severe results, including immobility,
difficulty in breathing and speaking, chest pain, and even death. Patients are suggested to
seek emergency medical care in this situation. Initially, elderly COVID-19 patients were
more likely to experience a serious or fatal illness [193]. Numerous mutant strains, including
Delta and Omicron, have increased transmissibility, decreased neutralisation by antibodies
generated from previous infection or vaccination, impaired efficacy of past treatments or
vaccinations, and the ability to attack individuals of all ages. Moreover, recent evidence
indicates that COVID-19 is likely responsible for the recent surge of the acute hepatitis of
unknown origin in young children. [194].

Currently available approaches for diagnosing COVID-19 infection include CT-scan,
PCR test, and rapid test, amongst others [195]; however, they require expensive medical
equipment or public expenditures. Presently, rapid point-of-care testing can be completed
within minutes at medical facilities, allowing medical teams to rapidly determine the cause
of symptoms and manage the isolation and treatment. In actuality, however, COVID-
19 patients undergo rapid testing only after the onset of symptoms, resulting in delayed
treatment and isolation. The urgent need for a cost-efficient solution that can continually
monitor a person’s health, and provide immediate alerts upon the detection of a potential
COVID-19 infection prompts us to utilise AI technology.

More importantly, measures must be taken to prevent the spread of COVID-19 virus,
such as maintaining a safe distance from others, wearing a properly fitted mask in public
domains, routinely washing hands, and covering mouth and nose when coughing or sneezing,
to mention a few. Vaccination is an effective method of preventing infection or mitigating
the disease severity. According to a study based on the data collected from Israel, Sweden
the United States of America, and the United Kingdom [196], it can lower the likelihood
of hospitalisation by over 80 percent. However, the vaccinations have been shown to be
less effective against coronavirus variants such as Omicron, and some adverse reactions to
the COVID-19 vaccine have been documented. Another policy for combating the spread
of COVID-19 is implementing the mobility restrictions. Despite its evident effectiveness,

10https://covid19.who.int/
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lockdown and social isolation are detrimental to our everyday lives, as they can result in
financial challenges for the human community, cause health issues including to mental health
damage, and negative emotional responses [197].

Thanks to the unremitting efforts of medical experts, epidemiologists and scientific re-
searchers, we have a more comprehensive and in-depth understanding of the coronavirus
and its diffusion. Normalcy is gradually returning to public life alongside the global rise
in vaccination rates and more effective implementation of regulations to prevent epidemics.
In the fight against COVID-19, various challenges remain to be overcome. Above all, the
current procedures for confirming the disease may need patients to visit a clinical facility,
and certain methods necessitate the use of specialised clinical equipment. These methods
are incapable of reaching an early and automatic diagnosis upon the onset of COVID-19
symptoms, making it impossible to take immediate interventions, such as patients isolation,
to limit the extent of the virus’ dissemination.

In an effort to combat COVID-19 using deep learning technology [198], we propose
deep learning solutions for COVID-19 detection based on several . Our methods for de-
tecting COVID-19 rely on either audio data or heart rate measurements. The possibility
of collecting these kinds of data up to 24 hours, for instance via wearable devices such
as smartwatches, enables continuous monitoring of an individual’s health, and prompts a
timely notification of illness detection. To take advantage of this, we construct neural net-
work models that can analyse cough or breath sounds, or combine the two audio kinds,
to predict the COVID-19 detection outcome. The other method, which is based on the
analysis of heart rate measurements, frames the task as an anomaly detection problem to
mitigate the impact of class-imbalance, an issue frequently encountered in the COVID-19
data collection, on training the neural networks.

In the reminder of the chapter, we first provide a summary of the work related to the
current COVID-19 detection methods using machine learning techniques. In Section 4.3
and Section 4.5, we detail our presented AI algorithms for COVID-19 detection using cough
and breath sounds, and heart rate measurements, respectively. At last, we aim to employ
the speech enhancement method introduced in Section 3.4 to improve the performance of a
speech based COVID-19 detection model in noisy environments. We detail the test results
in Section 4.4, with the hope that it may inspire more research to aid public health and
safety in the era of COVID-19.

4.2 Related Work

Current research towards machine learning solutions for COIVD-19 disease screening in-
cludes CV [199, 200, 201, 202], CA [203] methods, and biomedical data analysis approaches
[204, 205], particularly those derived based on data from wearable devices. By highlighting
some of these methods in ??, ?? and ??, we aim to provide a concise overview of the present
status of this research. In addition, we briefly summarise the work on face mask detection
in ??, focusing on the most popular CV techniques. The speech-based method we propose
later can be seen as an alternate solution for completing this task.

CV Solutions to COVID-19 Detection
Based on chest X-ray images or computed tomography (CT) scans, two prominent ideas for
using CV approaches to solve COIVD-19 diagnosis [199] are 1. localisation and segmentation
of the infected areas [200], and 2. identification of COVID-19 positive cases[201, 202]. For
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these purposes, numerous classic deep neural network architectures have been investigated
[206, 207, 18, 208, 209], including VGG[210, 211, 212], residual network (ResNet) [213, 214],
MobileNet [212, 215], Inception nets [214], U-Net[216, 217], visual Transformer (ViT) [218],
Capsule Net [219] amongst others. Moreover, transfer learning can be adopted to boost the
performance [213, 220, 221, 222]. Within these CNN frameworks, some additional module
blocks, such as squeeze-excitation (SE) block [213], have been found effective in improving
the classification performance. Similar CV approaches used to ultrasound images have
resulted in more cost-effective solutions [223, 224]. More advanced, contrastive learning has
already been investigated to detect COVID-19 from CT scans or X-ray images as presented
in [225], which exploited a Siamese network with contrastive loss for n-short learning of
COVID-19 patients. Similar to this, Chen et al [226] suggested momentum contrastive
learning for few-shot COVID-19 detection. Hou [227] aims to advance the representation
of COVID-19 through a contrastive training training.

A COVID-19 detection system can integrate a hybrid architecture comprising the afore-
mentioned two processes, i.e., a localisation or segmentation module to identify the probable
infected region, followed by a COVID-19 classification model [228, 216, 229]. Wang et al.
[228] introduced a such system to first localise lung anomalies in chest radiographs before
classifying them using a pyramid network. Chen et al. [216] proposed a similar method
for identifying the suspicious COVID-19 pneumonic lesions, in which the segmentation of
infection regions is conducted on successive CT scans, and classification is accomplished
using a UNet++. The segmentation and classification can also be performed concurrently
by using multi-task learning as in [230, 231, 232, 233]. Li et al. [234] has confirmed the
improvement in generalisability of this method for unseen chest CT and X-ray images.

To access the illness severity, He et al. suggested a method analysing CT images using
synergistic learning of lung lobe segmentation and hierarchical multi-instance classification
approaches [235]. Alongside the development of COVID-19 detection algorithms, the re-
sults’ interpretability has raised growing interest [222, 236, 237]. Besides, great efforts have
been undertaken to differentiate a COVID-19 infection from other kinds of pneumonia with
similar symptoms [238, 239].

CA Solutions to COVID-19 Detection
Recent research has investigated alternative data streams that can be easily acquired with a
smart device or platform [240], such as audio recordings of coughing and breathing [203] and
speech signals [241, 242], that may possibly be used to detect COVID-19. Particularly, Xia
et al. [243] collected a large-scale crowdsourced audio database titled COVID-19 Sounds
encompassing recordings of human speech, cough, breathing. The authors explored methods
to identify COVID-19 based on each of these audio types, and exhibited the performance
of fusing the audio types to reach a greater detection accuracy. Imran et al. [244] built a
cough detector and a COVID-19 diagnostic module for an AI-powered smartphone app that
identifies COVID-19 from coughing data. The cough detector analyses the Mel-spectrogram
of the recorded audio using a CNN, and the diagnostic module integrates three classification
models in parallel. The app announces a diagnosis only if all the classification models yield
identical findings. To capture the temporal dynamics of cough sounds, it is recommended to
utilise an LSTM model supplemented with an attention block [245] or a simple Transformer
[246] to improve the processing, which results in improved detection accuracy and reliability.
The research of Faezipour and Abuzneid [247] has prompted the analysis of the time and
frequency components of breathing sounds for this disease detection. In three distinct works,
AUCO ResNet [248], QUCoughScope [249], and [250] have examined the efficacy of using
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cough and breathing recordings for this detection task.
Transfer learning has also been considered as a potential CA solution for the detection of

COVID-19. For example, Laguarta [251] implements a CNN composed of three pre-trained
ResNets to identify COVID-19 individuals based on the acoustic biomarker attributes un-
derlying cough sounds. For the same audio type, an ensemble learning approach [252]
integrates shallow machining learning, CNN and pre-trained CNNs to analyse six feature
representations of a cough sample to test COVID-19 illness. Furthermore, Pal and Sankara-
subbu [253] sought to create representative embeddings for interpretable cough symptoms.

COVID-19 Detection using Bio-signals
Wearable technology and smart devices can be utilised to record biomedical signals or health
data for COVID-19 detection. [204, 205, 254, 255, 256]. Using data collected from wearable
biosensors, Un et al. [257] suggested an indicator generated using machine learning tech-
nique that measures the general health status of patients with moderate COVID-19. Hirten
and colleagues [258] performed an evaluation of heart rate variability (HRV) collected from
a wearable device in order to identify and predict COVID-19 and its associated symptoms.
In addition to the analysis of resting heart rate, Radin and colleagues [259] considered
the duration of sleep for approximately 47 000 individuals to enhance model predictions
of influenza rates in five US states. Similarly, Quer et al. [260] and Mishra et al. [256]
have shown the feasibility of utilising heart rate and sleep duration data, as well as activity
data which can also be collected from smart wearable devices, to accomplish this detection
task. Natarajan and colleagues [261] trained a CNN to predict illness using Fitbit data
from 1 181 individuals, and reported an area under the receiver operating characteristics
curve (AUC-ROC) of 0.77± 0.03. Moreover, Mishra et al. showed the possibility to detect
COVID-19 prior to the onset of symptoms. The method relies on the continuous acquisition
of physiological and activity data to measure vital signs associated with COVID-19 illness
[262].

In the ongoing DETECT study11 [260], researchers are tracking outbreaks of viral in-
fections including COVID-19 based on the resting heart rate collected [263]. In addition
to some prior studies [205, 261], similar continuing endeavours include the German project
Corona-Datenspende12, which has a cohort of over 500 000 volunteers, and the american
TemPredict study 13.

4.3 COVID-19 Detection using Cough and Breath Sounds

Due to the effect of the COVID-19 virus on the respiratory system, coughing and breathing
serve as possible diagnostic indicators for the disease. In this section, we first investigate the
application of deep learning approaches to this detection problem utilising each of the two
audio types individually. To advance the complementarity effect between breathing and
coughing signals, we consider several data fusion techniques, such as concatenation, and
convolutional fusion, as well as our own deep fusion approach, to merge the information
learnt from these two audio types. Unlike the method exploited in section 1 for audio
enhancement, we extend deep fusion as a solution for information fusion. In the following,
we present the single-type, multi-type fusion and our deep fusion models, with a particular

11http://detectstudy.org/ [as of 03 August 2021]
12http://corona-datenspende.de/science/en/ [as of 03 August 2021]
13http://osher.ucsf.edu/research/current-research-studies/tempredict [as of 03 August 2021]
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Fig. 4.3.1: Block diagram illustrating (a) The single-type model, in which either breathing
or coughing segments are used as input. (b) The multi-type fusion model implemented, in
which both breathing and coughing segments are simultaneously used as input. (c) The
deep fusion model proposed. The kernel size of each convolutional and max-pooling layer
is given next to each block. The channel change is provided next to each transition arrow
between adjacent blocks. The feature fusion mechanisms applied to this network are either
direct concatenation or 1 × 1 convolution. It projects the learned embedding features to
match the channel-dimension of the convolutional layer, and adds them to the feature map
obtained at the output of the convolution.(Source: [264])

emphasis on comparing the deep fusion method with the other two conventional data fusion
techniques.

4.3.1 Network Architectures

We consistently employ the same CNN backbone to assess different model structures intro-
duced above for the task of COVID-19 detection. The single-type model analyses a single
audio type, either a breathing or coughing signal segment. The multi-type model contains
two subnetworks, with each subnetwork processing one audio type. The two generated au-
dio representations from the subnetworks are concatenated or processed using an additional
convolutional layer to merge the information. Unlike these two late fusion approaches, we
suggest the use of the deep fusion approach that allows a more thorough information cou-
pling across all CNN layers involved, hence enhancing the effect of complementarity between
the two audio types.

4.3.1.1 Single-type Models

The single-type model (cf. Figure 4.3.1(a)) is constructed as a 2-layers CNN taking the
MFCC of an audio segment as input, and the convolutional output is averaged across all
locations to squeeze it into an embedding vector. Subsequently, the embedding vector is
projected to the predictions, i. e., COVID-19 positive or negative, using two fully-connected
layers. Besides, batch normalisation [142] and ReLU activation are used for every convolu-
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tional layer in order to obtain a more efficient convergence. Softmax function is used by the
output layer to produce the prediction probability of each class. These probability values
can thus be seen as the confidence scores used to classify the input audio sample into each
possible class.

4.3.1.2 Multi-type Fusion Models

The multi-type model (cf. Figure 4.3.1(b)) should analyse an individual’s both breathing and
coughing data simultaneously. For achieve this goal, the model is built with two subnetworks
sharing the same architecture as the single-type model. One subnetwork processes the
breathing segment, and the other processes the coughing segment. Again, average pooling
is applied to the outputs of both subnetworks to create the breathing and coughing audio
embeddings. To combine the two audio information, we first apply two basic data fusion
techniques: concatenation and convolution. The first fusion method concatenates the two
embeddings into a single, bigger embedding that preserves the information of both audio
types to the greatest extent possible. The alternate way is to stack the embeddings into
a two-channel representation, and then compress the channels using a 1 × 1 convolution.
Following data fusion, the resulting embedding is processed via the dense layers for the
illness detection.

4.3.1.3 Deep Fusion Model

The proposed deep fusion model (cf. Figure 4.3.1(c)) also contains two subnetworks. Specif-
ically, the audio segment of one audio type is learnt and embedded into a representation
vector, and the representation is injected into all the convolutional layers of the other subnet-
work. For this, the learnt embedding vector from the first subnetwork is linearly projected
to match the channel dimension of each convolutional layer in the second subnetwork. The
projected embedding vectors are then added to the convolution activations. In this way,
the learning of one audio type takes into consideration the other audio type, producing a
deeper information fusion. From a different perspective, the detection is primarily depen-
dent on the learning of one audio type, while an auxiliary network supplies additional audio
information by learning from the other audio type.

4.3.2 Experiments & Evaluation

The performance of the three presented CNN models is compared on the basis of two audio
levels, namely segment level and sample level. All the presented models are optimised by
minimising a cross-entropy loss between the predictions and ground truth using an Adam
optimiser with a learning rate of 0.0001. The batch size for training is consistently set at
32.

4.3.2.1 Data Description & Processing

The breathing and coughing audio data used in this experiment were acquired using a web-
or Android-based recording platform [265]. For this, each participant was instructed to
cough three times and take three to five deep breaths to the app. As the ground truth,
the participants were required to report whether or not they tested positive for COVID-
19. A portion of the collected data has been made available for research purpose. The
original release comprises of 62 COVID-positive patients providing a total of 141 cough and
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Table 4.3.1: Summary with the distribution of the data available over the training, val-
idation, and test partitions. In this table, we depict the number of patients populating
each partition, the total number of breathing (B) and coughing (C) segments available, and
the total number of breathing-coughing segment pairs (B+C) combined. The information
from each partition is provided independently for both COVID-19 (Pos) and healthy (Neg)
patients. (Source: [264])

Train Validation Test Total

COVID-19 Pos Neg Pos Neg Pos Neg Pos Neg

Patients 22 170 13 13 27 27 62 210

B 464 938 162 52 260 304 886 1294

C 207 410 55 27 109 165 371 602

B+C 1337 2047 370 126 678 695 2385 2868

breathing samples, and 220 non-COVID individuals who submitted 298 audio samples. For
the goal of evaluating the models that need both audio types, we excluded the individuals
supplying only a single audio type. In addition, we meticulously listened to the audio
samples and removed those recordings that are too quiet, with the purpose of improving
data quality for training more reliable detection models. This yields a total of 288 audio
samples from 210 healthy individuals for our experiments.

These selected audio samples are then partitioned into participant-independent training,
validation, and test splits with proportions of 70%, 10% and 20% of all data, while taking
into account the balance of COVID positive and negative patients in both the validation
and test partitions (cf. Table 4.3.1). The data balance maintained for development and
evaluation ensures a fair evaluation of the models under similar conditions. The audio
samples are then split into participant-independent training, validation, and test partitions
with the proportion 70%, 10% and 20% of all data, considering the balance of the COVID
positive and negative patients in both the validation and test partitions (cf. Table 4.3.1).
The balance maintained in validation and test guarantee a fair evaluation of the models
under similar conditions 14.

Unlike previous work that used the entire audio recordings of variant lengths, we segment
each breathing and coughing sample into frames of a certain duration, i. e., 2 seconds for
coughing samples and 2.5 seconds for breathing samples, in order to provide the models with
a common input format. The duration of breathing segments can guarantee at least one
full inspiration or expiration included. Nonetheless, some coughing segments may include a
deep inhalation during the preparation phase prior to the actual coughing. The truncation
is preformed without using overlap between successive segments, and segments that are
insufficiently lengthy are discarded. For examining the effectiveness of fusing coughing
and breathing information, a cough and breathing trunk belonging to an individual are
combined as a cough-breath pair, resulting in more training and evaluating trunk pairs.
The distribution of the cough, breathing samples, and cough-breath pairs in each split is
detailed in Table 4.3.1. As input to our models, we take first 40 Mel-Frequency Cepstral
Coefficients (MFCCs) [266] derived from the audio’s short-term power spectrum.

14The samples and data partitioning needed to reproduce our experimental findings are publicly available
at https://github.com/EIHW/MultiTypeFusionForCOVID19Detection.
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Table 4.3.2: Performance comparison [µ ± CI in %] of the models trained on the test set,
when considering each audio segment as an individual sample. B and C correspond to
the single-type models trained using breathing and coughing samples, respectively. B+C
corresponds to the multi-type models. The performance of the multi-type models is differ-
entiated in terms of the fusion method they use. B2C/C2B indicate the models that inject
breathing representations into the convolutional layers responsible for learning the coughing
representations, and vice versa. (Source: [264])

Model ACC UAR UAP UF1

B 71.1± 2.2 70.0± 3.5 74.0± 2.9 69.2± 2.7

C 74.1± 2.3 72.7± 3.2 73.6± 3.3 72.9± 2.6

B+C – Concat 74.2± 2.1 75.0± 3.3 74.7± 3.0 74.2± 2.5

B+C – Conv 74.4± 2.2 75.1± 3.2 75.6± 3.0 75.1± 2.4

B+C – B2C 83.1± 2.3 83.7± 3.4 83.9± 3.4 83.8± 2.7

B+C – C2B 81.4± 3.5 81.9± 3.3 83.1± 2.8 81.9± 2.3

4.3.2.2 Evaluation Methods

We report the experimental results separately in terms of the audio segment and full sample
levels. The first one considers each audio segment to be an independent sample, whereas the
second views each original audio sample as a whole. For sample-level testing, all possible
segments extracted from an audio sample are processed separately by the model, and the
final prediction for the sample is determined by the majority vote of the individual pre-
dictions. As performance measures for assessing our models, we choose Accuracy (ACC),
Unweighted Average Recall (UAR), Unweighted Average Precision (UAP), and Unweighted
F1 (UF1) score, allowing for a fair comparison with other similar studies that encounter the
glaring class imbalance. Along with the experimental results, we report the 95% Confidence
Interval (CI) for each metric evaluated by computing 100x bootstraping for testing purpose
(random selection with replacement).

It would be unfair to compare the performance of our models to the baseline given in
[265] due to the differences in data partitioning and validation method. We divided and
fixed the available data into three disjoint participant-independent train, validation and
test sets, while the baseline is dependent on a user-based 10-fold-like cross-validation.

4.3.2.3 Performance Comparison — Audio Segments Level

In general, the multi-type models that process both breathing and coughing audio perform
better than the single-type models (cf. Table 4.3.2). Based on the performance compari-
son of the single-type model that analyses either a breathing or coughing segment, we find
that cough sounds are more informative for COVID-19 detection, resulting in improved
detection accuracy, UAR and UF1. Concerning UAP, the single-type model that processes
breathing sounds has better performance and a smaller confidence interval. The two con-
ventional fusion methods investigated in the multi-type models show similar accuracy and
UAR outcomes. In terms of UAP and UF1 metrics, however, the convolution fusion model,
which applies channel convolution to the embeddings of the two audio types, outperforms
the simple concatenation method. Moreover, our suggested deep fusion strategy performs
the best and surpasses the performance of other fusion methods studied in terms of all the
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Table 4.3.3: Performance comparison [µ±CI in %] of the models trained on the test set, when
considering each audio sample as a whole. B+C indicate the performance of the multi-type
models. The performance of the multi-type models is differentiated in terms of the fusion
method they use. B2C/C2B indicate the models that inject the deep representations learned
from the breathing audio segment into the convolutional layers responsible for learning the
deep representations of the coughing audio segments, and vice versa.

ACC UAR UAP UF1

B 71.2± 2.4 72.1± 3.7 73.5± 3.6 71.6± 3.1

C 73.3± 2.3 73.8± 3.7 73.1± 3.5 72.8± 3.0

B+C – Concat 74.6± 2.4 73.8± 2.9 69.2± 3.4 70.2± 3.7

B+C – Conv 76.7± 2.2 76.9± 3.4 71.3± 3.3 72.4± 2.8

B+C – B2C 78.4± 2.4 78.3± 3.5 77.6± 3.6 78.0± 2.7

B+C – C2B 78.4± 2.0 77.6± 3.1 79.7± 2.9 78.0± 2.6

evaluation metrics.
With the inclusion of cough information into the learning of an individual’s breathing

feature, the learnt representation is more discriminative for a better COVID19 detection
than without using cough information. Similarly, when learning a cough representation,
incorporating breathing information can result in a considerable gain, as shown by compar-
ing it to the feature retrieved from cough sounds alone. Intuitively, deep fusion promotes
a more thorough coupling between the two audio types in comparison to the conventional
fusion techniques, yielding to an overall improvement in detection performance.

4.3.2.4 Performance Comparison — Audio Samples Level

Regarding audio sample level, we examine further the effectiveness of deep fusion. When an
audio sample can be split into multiple segments, our deep fusion model predict COVID-19
for each segment individually, resulting in a sequential COVID-19 predictions. The au-
dio sample corresponds to a COVID-19 patient if the majority of the predictions in this
sequence are detected positive. Similar to the findings of audio segment level, the perfor-
mance of multi-type models outperforms that of single-type models, and our deep fusion
model dominates in all the performance measures analysed. The deep fusion mechanism
yields superior performance. The accuracy and UF1 scores are comparable whether cough-
ing information is introduced into the learning of breathing representation or vice versa.
Incorporating breathing information into the learning of coughing data results in a higher
UAR, but the reverse fusion produces a better UAP result.

4.3.3 Section Summary

In this part, we presented a novel CNN-based multi-type feature fusion method. The
approach is successfully adopted to the COVID-19 detection by combining breathing and
coughing information from the same patient. It surpasses approaches utilising a single audio
type, and the newly presented deep fusion yields superior detection results when compared
to the two conventional fusion methods examined. Future research should focus on the
verifying this methodology with more COVID-19 related datasets encompassing breathing
and coughing audio. Considering the impact of information fusion method on the overall
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model’s performance, future study might target at the creation of new information-fusion
mechanisms that make greater use of the complementarity between diverse data types.

4.4 COVID-19 Detection using Enhanced Speech

The objective of this section is to integrate the audio enhancement solution presented in
Section 3.4 into a speech-based COVID-19 detection system in an attempt to make speech
captured in noisy environments of everyday life useful for the disease diagnosis.

4.4.1 Network Architectures

The model for speech enhancement has the same architecture as the U-Net presented in
Section 3.4.1.1. The architecture of the COVID-19 detection model is based on a ResNet18
model [267] with the initialisation of using the pre-trained weights. Using a using a following
dense layer to shrink the speech information into a more compact representation, the output
dimension is reduced to 16. The final classification is accomplished using two fully-connected
layers with a dropout rate of 0.3. Following the first layer, the output is activated using
a ReLU function, and then fed into the second layer to produce two output neurons that
correspond to the probability scores of COVID-postive and -negative predictions.

4.4.2 Experiments & Evaluation

First, we test the robustness of the COVID-19 model against several levels of noise. To
do this, we augment the DiCOVA [268] test set with chosen environmental recordings from
AudioSet [146]. We then perform speech enhancement using a U-Net previously trained for
ASR on the created noisy data, with the expectation that the enhanced speech would have
a higher audio quality, hence enhancing the stability of COVID-19 detection from speech.
By augmenting the training speech from DiCOVA with environmental noises, we hope to
improve the robustness of the COVID-19 model. Finally, we evaluate the performance of
our joint optimisation approaches in comparison to these baseline methods.

4.4.2.1 Data Description & Processing

The DiCOVA corpus comprises coughing, breathing and speech recordings collected from
individuals with and without COVID-19 infection in several countries using an online ap-
plication [268]. Only the number counting speech recordings are taken into the our investi-
gation. The corpus has its own data partitioning, with 172 confirmed positive individuals
out of 965 in the development set, and 71 positive patients out of 471 in the evaluation set.

To synthesise the noisy samples for training and testing, we mix each speech recording
from DiCOVA with an AudioSet sample using an SNR ranging from 0, 5, 10, 15, 20, 25dB.
During training, a random SNR is chosen for synthesising each speech sample in order
to maximise the overall generalisation ability of the trained model. At test, the model
performance is assessed in terms of all SNRs considered. As input to the COVID-19 model,
the logarithmic values of the speech spectrogram are computed.

4.4.2.2 Evaluation Metrics

As suggested by the DiCOVA challenge, we use Area Under the Curve (AUC) as our
performance measure. AUC reveals a classifier’s ability to differentiate between two classes,
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Table 4.4.1: Testing results, AUC [%], using DiCOVA and selected samples from AudioSet
corpus. DA stands for the method using only data augmentation. MTL represents the
proposed multi-task learning solution.

Methods Inf 25dB 20dB 15dB 10dB 5dB 0dB average

original 81.85 74.16 73.48 69.22 65.69 61.85 56.67 66.84

Cold Cascade - 70.93 70.70 68.01 65.72 64.99 58.08 66.57

Cold Cascade + DA - 78.42 76.33 73.65 70.02 68.48 66.74 72.27

MTL - 81.73 80.62 76.98 74.59 74.45 71.15 76.59

iterative optimisation - 81.35 81.01 76.49 74.48 74.73 73.12 76.87

and it summarises the Receiver Operator Characteristic (ROC) curve, which illustrates the
probability curve of TPR versus FPR at different threshold values. A higher AUC score
indicates that the model is more effective at distinguishing data from two classes.

4.4.2.3 Results Analysis

According to [267], the implemented ResNet-18 can get an AUC of 81.85% on the clean
testing data of DiCOVA (cf. Table 4.4.1). This model is however susceptible to noise
disruption, with even a tiny noise (SNR = 25dB) causing an AUC drop of more than 7%.
As the noise rises, the detection performance gradually diminishes until it reaches an AUC
of 56.67% at the SNR of 0dB. Applying an independently trained SE model to the frontend
of the COVID-19 model cannot improve the average AUC result. In particular, although
the frontend enhancement has some favourable effects in circumstances with low SNRs, such
as 0 and 5dB, the audio distortions introduced by the SE system can hinder the COVID-19
diagnosis in the cases with high SNRs. Using the augmented data, i. e., adding noise to
speech data of the DiCOVA training set, the noise robustness of the model can be boosted,
yielding an average AUC of 72.27% and improved results across all the SNR conditions.
Particularly for the low SNR cases, such as 0dB, the detection performance is improved by
more than 10%.

Our two presented joint optimisation approaches, multi-task learning and iterative opti-
misation, are able to further enhance the detection, yielding an average AUC of 76.59% and
76.87%, respectively. For high SNR cases, such as 20 and 25dB, both approaches can reach
a COVID-19 diagnostic success rate comparable to the performance of the original detection
model on the clean test set. The iterative optimisation method surpasses the conventional
MTL method in conditions with very low SNR like 0dB, demonstrating its advantage in
more noisy environments. Overall, the two solutions jointly optimise the models for audio
enhancement and COVID-19 detection, resulting in AUC performance gains of over 4%.

4.4.3 Section Summary

This section explored speech-based COVID-19 detection, with a focus on the model’s noise
tolerance. We extended the joint optimisation approaches given in Section 3.4 to this en-
deavour. Experimental findings support that a task-specific speech enhancement system
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can efficiently recover speech signal from noisy recordings to improve COVID-19 identi-
fication performance. Although both solutions have been previously validated for other
audio applications, the particular optimisation of the audio enhancement model towards
the COVID-19 task substantially boost the detection performance, producing comparable
results to the same model processing clean audio.

4.5 COVID-19 Detection using Heart Rate Measurements

Wearable fitness trackers can estimate parameters such as heart rate up to 24 hours per
day, enabling for the monitoring of individuals with diverse health states, lifestyles, and
demographic variables. The quantity and quality of remotely gathered data has the po-
tential to improve our knowledge of the correlations between a variety of health conditions
[269]. Deep learning algorithms, which benefit from large-scale data, can make substantial
contributions in this area [270]. Particularly, it has shown progress in the context of infec-
tious diseases, such as COVID-19, allowing the individual screening and population-level
surveillance while minimising contact with infected individuals [259, 260, 261, 256].

We aim to apply deep learning techniques to such heart rate data to predict the presence
of COVID-19 symptoms. Considering the prevalence of data imbalance, we frame the task
as anomaly detection, and explore the use of a convolutional auto-encoder (CAE) with
contrastive loss [271, 272]. Specifically, the contrastive loss is used to guide training of
the CAE to produce high reconstruction error for positive (symptomatic) input pairs. The
method strengthens the model’s ability to learn discriminative latent attributes for distinct
classes compared to some typical neural network architectures, including simple multi-
layer perception (MLP), long short-term memory (LSTM), convolutional neural networks
(CNNs), and a standard (CAE) [1] without applying contrastive loss. Our experiments are
based on the heart rate measurements collected as part of IMI2 RADAR-CNS programme15

conducted at multiple clinical sites in several European countries. In addition, we conduct a
series of ablation studies to investigate the critical aspects that contribute to the successful
adoption of this methodology, especially the setting of the margin value and the necessity
for pre-training.

4.5.1 Network Architectures & Training Objectives

As an approach for learning data representations, CAE [273] contains a CNN to encode
latent attributes of the input feature map, and a second CNN to reconstruct the original
input based on the learnt attributes. As a bottleneck imposed by this model, it is critical
to determine the ideal dimension of the latent attributes in order to achieve a reasonable
balance between the comprehensiveness and discrimination of the representations. To op-
timise an auto-encoder network, the reconstruction error between the decoder output and
the original input is minimised, by doing this to train the decoder to reproduce the original
input from the compressed knowledge representation.

However, this method for optimising a standard CAE via unsupervised learning dis-
regards class differences. To incorporate the class information into training, we exploit a
contrastive loss [39] instead of reconstruction error, such as Mean Square Error (MSE), to
assist the model in learning sufficiently discriminative latent attributes for different classes.

15https://www.radar-cns.org/

67

https://www.radar-cns.org/


4. DETECTION OF CORONAVIRUS DISEASE 2019 (COVID-19)

Rec. 
Error

32
24

⇥
16

8

conv1

32
12
⇥

84

64
12
⇥

84

conv2

64 6
⇥ 42

128 6
⇥

42

conv3

128 3⇥
21

256 3
⇥ 21

conv4

256 1⇥
7

1
17

92

flatten

1
10

0

latent
at-
tribute 1

17
92

reshape

256

256 3⇥
21

deconv4

128

128 6
⇥ 42

deconv3

64

64
12
⇥

84

deconv2

32

32
24

⇥
16

8

deconv1

�

Fig. 4.5.1: The convolutional auto-encoder (CAE) architecture with 4 encoder layers and
4 decoder layers as an example. An encoder layer is a sequence of convolution – batch-
normalisation – PReLU – max-pooling. A decoder layer is a sequence of transposed
convolution – batch-normalisation – PReLU – transposed max-pooling. The dis-
tance between the original and reconstructed image represents the reconstruction error.
(Source:[274])

4.5.1.1 Convolutional Auto-encoder

The architecture of our CAE is depicted in Figure 4.5.1, and the encoder and decoder
specifications are given in Table 4.5.1. Each encoder layer is made up of a convolutional
layer, batch normalisation, PReLU and max pooling. The kernel size and stride determine
the receptive field, i. e., the perceptual scope on the original input, which is indicative of the
convolutional layer’ capability to represent data. Additionally, the representation diversity
correlates to the number of kernel filters. By preforming batch normalisation, we can limit
the impact of internal covariate shift (ICS), which is caused by distinct training data batches
with slightly different distributions [22]. The use of parametric rectified linear unit (PReLU)
[275] activation function keeps the fast model convergence of ReLU [276], while using a
learnable slope parameter to prevent the frequently observed issue of dead neurons in DNN
training. Max-pooling serves to compress the activations into more compact representations
with reduced feature size.

We denote the encoding process by fenc(·) for given features [x1, x2, ..., xi, ..., xN ] ex-
tracted from N heart rate segments. Its flattened output is projected to latent attributes
using a fully-connected layer:

h = fenc(xi). (1)

The decoder targets at recreating the original input from the latent attributes h; hence, it
presents a symmetric structure from the encoder, which can be seen as an inverse of the
encoding. To do this, the feature map of each decoding layer is subjected to transposed
convolution and transposed max-pooling in order to recover the feature maps to the same
size as its corresponding encoding layer. The decoding process is represented as

x̂i = fdec(h). (2)

Note that we describe our CAE structure using a 4-layer example, since it provides the
best experimental detection performance. The results of different numbers of convolutional
layers are further compared in experiments. The last layer of the encoder controls the size
of the flattened encoder output. We add a subsequent dense layer to alter its dimension for
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Table 4.5.1: Specifications of our CAE models. Each convolution and pooling layer, as well
as de-convolution and de-pooling layer contains its own kernel size, stride, padding size,
and number of channels. *=dimensionality depends on the total number of layers, **=
dimensionality of latent attributes. fc abbreviates fully-connected layer. (Source: [274])

Blocks Kernel Stride Padding #Channels

conv1 (5, 5) (1, 1) (2, 2) 32

pool1 (2, 2) (2, 2) − 32

conv2 (5, 5) (1, 1) (2, 2) 64

pool2 (2, 2) (2, 2) − 64

conv3 (5, 5) (1, 1) (2, 2) 128

Encoder pool3 (2, 2) (2, 2) − 128

conv4 (5, 5) (1, 1) (2, 2) 256

pool4 (3, 3) (3, 3) − 256

conv5 (3, 3) (1, 1) (1, 1) 512

conv6 (3, 3) (1, 1) (1, 1) 1024

flatten ∗
fc ∗∗
fc ∗∗
deconv6 (3, 3) (1, 1) (1, 1) 512

deconv5 (3, 3) (1, 1) (1, 1) 256

deconv4 (3, 3) (1, 1) (1, 1) 128

depool3 (3, 3) (3, 3) − 128

deconv4 (5, 5) (1, 1) (2, 2) 64

Decoder depool4 (2, 2) (2, 2) − 64

deconv5 (5, 5) (1, 1) (2, 2) 32

depool5 (2, 2) (2, 2) − 32

deconv6 (5, 5) (1, 1) (2, 2) 1

depool6 (2, 2) (2, 2) − 1

more flexibility in optimising the CAE model.
Typically, an auto-encoder is optimised by minimising its reconstruction error, for ex-

ample, root mean squared error (RMSE):

RMSE =

√√√√ 1

N

N∑
i

|xi − x̂i|2. (3)

However, this kind of training losses makes it challenging to find a suitable latent attributes,
i. e., to adjust a proper dimension. Due to the absence of class information during the
auto-encoder optimisation, too short latent attributes may have inadequate representation
capability, while setting it too long may embed the information with a great deal of redun-
dancy that, though helpful for input reconstruction, falls short of concentrating the learning
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of the saliently features to differentiate between classes. In particular, for our COVID-19
detection task based on heart rate measurements, the auto-encoder may have a tendency to
learn the latent attributes that better reconstruct the original pattern, while ignoring the
salient attributes that indicate the distinctions between symptomatic and asymptomatic
segments.

The deficiency of class information in auto-encoder optimisation has been discussed in
previous work [190]. To alleviate this problem, it is recommended that class information
be added to the latent attribute layer to make a supervised auto-encoder. As is the case
with most supervised learning frameworks, cross-entropy loss can be used to optimise the
predictions, and is seen as the regularisation term added to the reconstruction error of the
auto-encoder. Nonetheless, this joint optimisation necessitates a proper combination factor
capable of balancing the convergence of the two losses involved, which stem from different
stages of the auto-encoder model.

4.5.1.2 Contrastive Loss

To enable the CAE to learn latent attributes that are more discriminative between distinct
classes, we integrate class information – symptomatic and asymptomatic – into its opti-
misation by fitting the reconstruction error of the two classes into a contrastive loss [39].
Similar to anomaly detection, it is expected that the CAE would generate a margin dif-
ference between the reconstruction errors of the symptomatic and asymptomatic segments,
namely a low reconstruction error for asymptomatic segments, and a large reconstruction
error for symptomatic segments. To achieve this, the loss function is expressed as

Loss =

√√√√ 1

N

N∑
i

|xni − x̂ni |2 + (m−

√√√√ 1

N

N∑
i

|xpi − x̂pi |2), (4)

where p and n are used to differentiate positive (symptomatic) from negative (asymp-
tomatic) samples.

A typical anomaly detection task involves training an auto-encoder with negative sam-
ples only, with the expectation that it would generate a low reconstruction error when
processing a negative sample during testing. Since the model has not been exposed to the
pattern of a positive sample during training, a large reconstruction error can be expected
when it encounters a positive sample. Unlike this, we include both positive and negative
samples for model training, and build a contrastive loss function to imitate the effect of
anomaly detection (cf. Eq. 4). The reconstruction error for a negative pair, i. e., an origi-
nal feature map and its reconstructed image for an asymptomatic segment, is suppressed
to 0, indicating a successful feature reconstruction. In contrast, the reconstruction error
for a positive input pair should converge to a margin value of m. The selection of this
margin value is crucial to the success of a contrastive CAE, we thus will discuss the effect
of different m on the model convergence in Section 4.5.2.8. Within this training method,
both positive and negative data contribute to the CAE optimisation, and the final model
is capable of producing effective anomaly detection. Consequently, we can directly perform
classification based on the reconstruction errors using classic machine learning techniques,
such as logistic regression.
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4.5.1.3 Comparison Methods

The performance of the presented model, contrastive CAE, is compared to that of several
classic neural network prototypes, including an MLP, LSTMmodels operating on 1D and 2D
feature types, a CNN with the same architecture as the CAE encoder, and a CAE optimised
using RMSE. Additionally, by applying MLP classifiers to the learnt latent attributes, we
can compare the quality of the latent attributes generated using our approach to that from
a conventional CAE. For this, we explore dimensions of 50, 100, 300, 500, and 1 000 for the
latent attributes in our experiments. A 2-layers MLP is used to project the latent attributes
of different lengths to classes – symptomatic and asymptomatic.

4.5.2 Experiments & Evaluation

We conduct experiments to access the proposed method for identifying COVID-19 using
heart rate data acquired from individuals wearing Fitbit smartwatches. In addition to
comparing our model with other typical neural network models, we analyse the contribution
of each model component to the successful adoption.

4.5.2.1 Data Description & Processing

The heart rate data for this study was constantly recorded 24 hours a day, 7 days a week
using a Fitbit Charge 2 or Charge 3 device connected with participants’ own Android smart-
phones when available, or a Motorola G5, G6, or G7 given, to disseminate questionnaires
[277]. To assess the impact of COVID-19, a specific active questionnaire was given to all
active RADAR participants on March 25, 2020 and April 8, 2020, separately. We base our
study on the Fitbit heart rate measurements of 87 volunteers over the course of ninety days,
from 21 February to 20 May 2020. The participants from Denmark, Italy or Spain ranged
in age of 23 to 73 (mean = 46.5± 10.5 standard deviation).

According to [277], two criteria are utilised to determine the presence of COVID-19
among participants . The first case definition (CD1) states that the participants experienced
fever or anosmia/ageusia in addition to any other COVID-19 symptoms, such as respiratory
symptoms, fatigue, and gastrointestinal symptoms, or respiratory symptoms plus two other
COVID-19 symptoms. The second case definition (CD2) applies to patients who had fever
and any additional COVID-19 symptoms, or respiratory symptoms in combination with
anosmia/ageusia. Among the 87 individuals who contributed data to this study, 30 female
and 38 male participants reported COVID-19 symptoms, including 49 patients who did
not fulfil CD1 or CD2 criteria. In addition, each symptomatic patient is paired with a
symptom-free control participant matched for site, gender and a similar age. In Table 4.5.2,
we provide a summary of the participants counts for each data partition, together with
gender, age, and location information.

In Figure 4.5.2, we demonstrate the approach for segmenting and preprocessing the heart
rate data of a participant who reported COVID-19 symptoms. The heart rate measurement
is divided into temporal segments, each of which spans 7 days prior and after the symptom
onset. We aim to identify changes in heart rate associated to COVID-19 infection that
are indicative of the illness. According to the research published in [278, 279, 258], the
choice of this interval meant to cover a COVID-19 incubation period. It may help to
compress the anomalous effects of daily variations in participants’ activity, such as those
often seen between weekdays and weekends [280]. Specifically, a symptomatic segment refers
to the heart rate segment spanning 14 days centred at the beginning (0:00) of the day of
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Table 4.5.2: Gender-, age-, and site-related distribution of participants per data subset.
(Source: [274])

Positive participants Health control

Pre-training for testing for testing

Genders
Female 14 5 5

Male 35 14 14

Locations

Italy 18 7 7

Spain 19 6 6

Denmark 12 6 6

Ages

≤ 30 1 2 2

30 - 39 10 3 4

40 - 49 12 6 5

50 - 59 19 6 6

60 - 69 6 1 1

≥ 70 1 − −

the reported symptom onset (red box on top of Figure 4.5.2), whereas an asymptomatic
segment stands for any consecutive 14-days heart rate data (starting from 0 o’clock of a
possible day) that is at least 7 days apart from a symptomatic segment (green box in top
of Figure 4.5.2).

To make full use of a heart rate measurement, asymptomatic segments are generated
by incrementally sliding a segmentation window across data sections that are at least 7
days away from the symptomatic segment. The 7-day separation between asymptomatic
segment and the symptomatic segments account for two reasons: first, a participant might
not have been infected 14 or more days previous to the beginning of symptoms; and second,
the individuals may have fully recovered 14 days after the onset of symptoms. Besides, a
control segment is truncated from the segment of the same time from a control subject.
Consequently, we can achieve 49 symptomatic segments and 1 470 asymptomatic segments
from the 49 participants in the pre-training set. Taking into account the disparity between
the number of available symptomatic and asymptomatic segments, we up-sample the symp-
tomatic segments to match that size of asymptomatic segments, in this way to bias the
model detection towards the minority class. For testing the model, each of the 19 patients
who reported symptoms contributes a symptomatic segment. Finally, 1710 asymptomatic
segments are extracted, including 570 segments from these 19 patients, and 1 140 from the
controls. In Table 4.5.3, we detail the available symptomatic and asymptomatic segments
, as well as the data completeness for each partition.

The heart rate estimations should ideally be sent to the Radar sever every five seconds
(blue curve in the middle of Figure 4.5.2). To get a smoother signal pattern, the heart
rate measurement is averaged every 5 minutes. The average result should still be able to
track slow short-term changes in the heart rate. Additionally, this smoothing step helps
alleviate two concerns associated with Fitbit data collection: (1) discrepancies in sampling
rates of heart rate estimates, and (2) missing values observed in real-life conditions. Both
of these issues make it impossible to compare the features in comparison to the mean
heart rate in 5-minutes intervals. To mitigate the impact of missing data for a whole 5-
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Fig. 4.5.2: Segmentation and pre-processing of heart rate data of a participant with reported
COVID-19-like symptoms. Top: Heart rate data recorded 24-hours-a-day/7-days-a-week
from 21 February to 20 May 2020 (total 90 days). Onset (black vertical bar) indicates
0 o’clock at the reported symptom onset date. Red rectangle – 7 days heart rate data
before and after symptom onset representing a symptomatic segment; green rectangle –
asymptomatic segment. Middle: Symptomatic segment. Blue curve – unprocessed heart
rate trajectory of the red rectangle above; red curve – heart rate trajectory averaged over
5-minutes intervals. Bottom: Representation of the symptomatic segment as 24×168 sized
image of 5-minutes heart rate data related pixels. Each column represents an interval of 2
hours, the 168 columns sum up to 14 days. (Source: [274])

minutes period, the median estimate of the 14-day segment is substituted, giving robustness
against outliers when comparing to the mean value. Despite the completeness of heart rate
segments (cf. Table 4.5.3), missing data may occur across an entire heart rate segment. In
this situation, a smoothing interval that is too short may result in more empty mean values,
whereas a too long interval can cause loss of information on the variations within the heart
rate segments. The resultant smoothed heart rate trajectory, consisting of a single heart rate
value every 5 minutes (red curve in the middle of Figure 4.5.2), is suitable for modelling
the global heart rate patterns associated with COVID-19 symptoms. Subsequently, we
convert the averaged 14-day heart rate segment into a 24 × 168 image feature (bottom of
Figure 4.5.2). Each column encodes a heart rate trajectory of two hours (24×5 minutes), and
each pixel of the image represents a heart rate mean value of five minutes. We experimentally
confirmed the use of this feature size can yield promising detection results.

4.5.2.2 Training Settings

The data from the 49 patients who reported their COVID-19 symptoms but did not satisfy
CD1 or CD2 criteria are used to pre-train our model throughout the experiments. Leave
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Table 4.5.3: Available symptomatic and asymptomatic segments per data subset. Data
completeness [%] of respective heart rate segments is given in parentheses (mean + std).
(Source: [274])

Positive participants Health control

# (%) Pre-training for testing for testing

Symptomatic 49 (98.7± 0.3) 19 (97.6± 0.2) −
Asymptomatic 1470 (98.1± 0.4) 570 (97.4± 0.2) 1140 (99.2± 0.5)

one subject out (LOSO) cross-validation (CV) is then applied to evaluate the models using
the data from 19 patients whose symptoms satisfy CD1 or CD2 criteria, and the matching
symptom-free control group. In particular, for each round of the 19-fold LOSO CV, the
pre-trained models were fine-tuned using the data of 18 patients with COVID-19 symptoms
and their 18 control participants without symptoms. Then, the model is tested on the
remaining pair of symptomatic and asymptomatic participants.

The models presented are optimised using an Adam optimiser with a learning rate fading
from 0.03 to about 0.0001 per 50 epochs, corresponding to a decay factor of 0.33. During
training, we use a constant batch size of 32. These hyper-parameters are meticulously
chosen to ensure the model convergence.

4.5.2.3 Evaluation Metrics

To make fair comparisons, we use mean unweighted average recall (UAR), sensitivity,
and specificity, the area under receiver operating characteristic curve (AUC-ROC), and
Matthews correlation coefficient (MCC) to assess all the models implemented. The Matthews
correlation coefficient serves as a measure of the quality of binary classifications that ac-
counts for true and false positives and negatives. Hence, it is typically considered as a
balanced metric that can be used even when the class sizes are vastly different. A MCC
value of +1 indicates a prefect prediction, 0 reveals an average random prediction, and −1
implies an inverse prediction.

4.5.2.4 Comparison to Classic Neural Networks

As comparison methods, we first choose neural networks that can function on one-dimensional
signals (noted as “1D” in Table 4.5.4), such as the MLP and LSTMmodels [1]. These models
impose no extra need to transform the smoothed signal into two-dimensional image (noted
as “2D” in Table 4.5.4). The MLP classifier performs optimally when four layers are used,
with the number of hidden units in each layer decreasing along the model depth. More ef-
fective is the LSTM model with 64 hidden units in the recurrent cell. Another LSTM model
that processes the two-dimensional feature map created as described in Section 4.5.2.1 can
attain its best performance when its recurrent cell has 128 hidden units. The CNN model,
whose architecture is identical to the encoder of our CAE, outperforms the LSTM model in
terms of all the evaluation metrics considered, and also exhibits significant improvements
over the two models operating on 1D heart rate data in paired t-tests with a significance
level α equals to 0.05.

Our contrastive CAE with up to six layers in its encoder and decoder is evaluated. To do
this, logistic regression is used to classify the reconstruction errors of the test data. Using
a model with two encoder and two decoder layers, the contrastive CAE is able to provide
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Table 4.5.4: Evaluation results for the binary COVID-19 yes/no (based on the symptom
CD1/CD2 definitions above) classification [%] of the baseline methods and contrastive CAE
models with a different number of (#) layers. For the contrastive CAE, classification is
performed based on reconstruction error using logistic regression. (Source: [274])
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MLP (1D) 61.0 63.2 58.8 0.542 0.046

LSTM (1D) 67.3 73.7 61.0 0.577 0.074

LSTM (2D) 72.8 73.7 71.9 0.685 0.105

CNN (2D) 76.0 78.9 73.1 0.705 0.122

1 58.8 70.2 47.4 0.508 0.044

2 83.0 84.2 81.9 0.769 0.176

Contrastive 3 90.6 100.0 81.3 0.878 0.213

CAE 4 95.3 100.0 90.6 0.944 0.310

5 93.9 100.0 87.7 0.931 0.270

6 90.9 100.0 81.9 0.883 0.217

considerable detection improvements compared to baseline methods. With four layers of
encoder and decoder, the CAE reaches its greatest detection results. Consequently, the final
UAR of 95.3%, sensitivity of 100.0%, specificity of 90.6%, AUC-ROC of 0.944, and MCC
of 0.310 are obtained, demonstrating significant improvements over the CNN approaches in
paired t-tests (p < 0.05).

4.5.2.5 Comparison to Conventional CAE

Next, we analyse the efficacy of optimising the CAE with a contrastive loss (cf. (Equation (4)))
as opposed to RMSE loss (cf. Equation (3)) w. r. t. the quality of the latent attributes. In
order to evaluate the quality of the latent attributes, a two-layer MLP classifier is trained
to project them onto classes, i. e., symptomatic and asymptomatic. Additional compar-
ison is accomplished by performing classification directly on the reconstruction errors of
contrastive CAE.

The conventional CAE model obtains its optimum UAR, specificity, and MCC when the
size of the latent attributes is set to 50, and its optimum sensitivity and AUC-ROC when
the size is 500. The classification results indicate, however, that this model is incapable of
acquiring discriminative latent attributes for distinct classes. Due to the absence of class
information during the extraction of these latent attributes, the classification performance
is reliant on the MLP classifiers. Its performance is even lower than that of the CNN model
(cf. Table 4.5.4), confirming the necessity to incorporate the class information into the CAE
training. The binary classes can be integrated in the contrastive loss as given in Equa-
tion (4). It guides the CAE training to create a margin between the positive and negative
reconstruction errors. To achieve this, the contrastive CAE must learn latent attributes
that carry salient information to differentiate between symptomatic and asymptomatic seg-
ments. In our experiments, the contrastive CAE with an attribute size of 100 yields the
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Table 4.5.5: Comparison of results [%] between convolutional auto-encoders (CAEs) with
4 encoder and 4 decoder layers trained with RMSE loss vs contrastive loss. Classification
is performed based on the latent attributes. #Attr: dimensionality of latent attributes.
(Source: [274])
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50 66.6 57.9 75.4 0.545 0.080

100 58.5 47.4 69.5 0.465 0.038

CAE 300 63.4 63.2 63.7 0.527 0.058

500 65.8 68.4 63.2 0.591 0.068

1000 55.3 47.4 63.2 0.448 0.023

50 92.0 100.0 83.9 0.904 0.233

Contrastive
100 92.2 100.0 84.3 0.907 0.236

CAE
300 90.9 100.0 81.9 0.890 0.217

500 90.9 94.7 87.1 0.881 0.247

1000 71.9 68.4 75.4 0.597 0.105

Table 4.5.6: Classification results [%] of the contrastive CAE with 4 encoder and 4 decoder
layers based on the reconstruction error (rec. error) using logistic regression. #Attr:
dimensionality of latent attributes. The last row indicates removing the latent attributes
layer. (Source: [274])
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50 93.9 100.0 87.7 0.927 0.270

Contrastive 100 95.3 100.0 90.6 0.944 0.310

CAE 300 91.5 100.0 83.0 0.890 0.226

(rec. error) 500 92.4 100.0 84.8 0.895 0.240

1000 94.4 100.0 88.9 0.936 0.284

− 93.3 100.0 86.6 0.923 0.258

best UAR, sensitivity and AUC-ROC. As the size climbs to 500, the proposed approach
outperforms the conventional CAE in terms of specificity and MCC by a substantial margin.

Performing classification on the reconstruction errors, rather than the latent attributes,
reveals a more straightforward yet effective solution to the task at hand (cf. Table 4.5.6). To
determine a decision threshold between positive and negative reconstruction errors, logistic
regression is applied to the training set of each LOSO CV round. A positive COVID-19 case
(CD1/CD2 criteria) is identified if the reconstruction error of a heart rate segment exceeds
the decision boundary. The optimal performance is reached when the attribute size equals
100, with a UAR of 95.3%, sensitivity of 100.0%, specificity of 90.6%, AUC-ROC of 0.944,
and MCC of 0.310. Our approach preserves the performance consistency across different
attribute sizes, hence reducing the difficulty of finding the most appropriate dimension. In
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Table 4.5.7: Test results [%] for shifting the sliding window by days. (Source: [274])

#Days
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−3 57.4 52.6 62.2 0.420 0.032

−2 64.7 68.4 61.0 0.558 0.063

−1 95.6 100.0 91.2 0.946 0.320

0 95.3 100.0 90.6 0.944 0.310

Contrastive 1 95.4 100.0 90.8 0.945 0.313

CAE 2 96.1 100.0 92.1 0.957 0.337

3 94.9 100.0 89.9 0.949 0.298

4 87.4 94.7 80.2 0.823 0.193

5 61.5 68.4 54.6 0.517 0.048

Fig. 4.5.3: Reconstruction errors for continuous binary COVID-19 yes/no classification on
14-days heart rate windows of an exemplary individual (the same as in Figure 4.5.2, top).
(Source: [274])

fact, excluding the layer of latent attributes from the contrastive CAE (given in the last
row of Table 4.5.6) does not diminish the model’s detection ability.

4.5.2.6 Decentralised Symptomatic Segments

The preceding experimental findings are contingent on the assumption that the patients
reported a positive COVID-19 status at the actual onset of symptoms. As a consequence,
our contrastive CAE is optimised for the symptomatic segments centred on the symptom
onset. In this part, we explore the possibility of detecting COVID-19 using heart rate
segments with a decentralised onset of symptoms. To do this, the 14-day timeframe for
slicing the symptomatic segments is shifted to earlier or later days that still encompass the
symptom onset. As in prior experiments, the asymptomatic segments remain unchanged.

Our method remains valid when the symptomatic segments are shifted by one day ahead
and three days backward (cf. Table 4.5.7). Shifting the sliding window to stray more from
the original symptomatic segments, such as by two preceding days or four days later, results
in a decrease in classification performance. There are two possible explanations for this ob-
servation. On the one hand, perhaps some individuals reported inaccurate onset dates for
their symptoms. For example, a patient may have recognised the start of symptoms but
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Table 4.5.8: Classification results [%] of the contrastive CAE with 4 encoder and 4 de-
coder layers based on the reconstruction error (rec. error) using different numbers of (#)
participants for pre-training. (Source: [274])
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49 95.3 100.0 90.6 0.944 0.310

Contrastive 40 95.9 100.0 91.7 0.950 0.329

CAE 30 95.2 100.0 90.3 0.940 0.305

(rec. error) 20 82.3 84.2 80.3 0.823 0.167

10 79.8 84.2 75.4 0.737 0.143

0 76.4 78.9 73.8 0.696 0.124

waited days to confirm the infection before reporting the sickness. On the other hand, the
symptomatic segments can be shifted up to a few days later, a maximum of three days in
our experiments, to increase the assurance that the symptoms are included. Nevertheless,
in case the symptoms began earlier but rapidly dissipated, moving the symptomatic seg-
ments to many days later may, to some degree, exclude the period containing symptom.
Consequently, the final classification results can be impacted (cf. Table 4.5.7). A curve de-
picting the estimated reconstruction errors is shown in Figure 4.5.3, which identifies the
COVID-19 illness using our contrastive CAE to continually on the same data given in the
top of Figure 4.5.2.

4.5.2.7 Necessity of Pre-training

Pre-training a neural network can improve the model’s generalisation effect, which has been
investigated in a variety of machine learning frameworks, including unsupervised learning
[281], transfer learning [281] and self-supervised learning [46, 48]. We find that pre-training
is crucial for our presented contrastive CAE in order to achieve the model’s representa-
tion capability. It is worthwhile to evaluate the efficacy of this pre-training with different
numbers of participants.

For each number of participants considered for pre-training, a random selection is con-
ducted five times. Using the chosen individuals, we pre-train a contrastive CAE while the
LOSO CV assessment is maintained unaltered. The average test results are shown in Ta-
ble 4.5.8. Using data from a minimum of 30 individuals for pre-training, the model shows
promising detection outcomes. As the number of participants for pre-training falls below 20,
the classification accuracy decreases considerably, emphasising the need to supply sufficient
pre-training data to achieve the optimal performance.

4.5.2.8 The Effect of Margin Size

When utilising the contrastive loss (cf. Equation (4)) to optimise a CAE, the reconstruction
errors of a positive and a negative input pair should ideally converge to 0 andm, respectively.
The margin m stands for an expected distance between the two reconstruction errors, which
is thus another essential component affecting the classification performance.
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Fig. 4.5.4: Training and testing curves illustrated by the reconstruction errors when using
different margin sizes. (Source: [274])

To retain model generalisability, its practical optimisation must leave some space around
both ideal reconstruction errors, though a smaller fluctuation range usually suggests a more
effective convergence. Hence, a too tiny margin, such as m = 1, might be excessively
restrictive and limit the allowable fluctuation region during training, preventing the model
convergence as seen in Figure 4.5.4. As the margin reaches 2, the model manages to converge
after a few training iterations, with a successful creation of the expected margin between
the reconstruction errors of the two classes. However, an improperly wide margin, such as
m = 15, can cause serious oscillations as the positive reconstruction error approaches its
intended margin value. A larger margin can impede the model convergence. A suitable
margin size must also account for enough space to determine a decision threshold between
the reconstruction errors of the two classes. The classification results for test the influence
of various margin sizes are based on our best-performing model (cf. Table 4.5.9).

An intriguing behaviour manifests with the successful training of a contrastive CAE, such
as when adjusting the m to 10 or 15. During the early period of training, the reconstruction
errors of both positive and negative samples exhibit similar growing patterns. To a certain
point, the two reconstruction errors start diverging before eventually approaching to their
respective expected output. This phenomenon can be explained according to Eq. 4. This
behaviour is explicable by analysing Equation (4). The optimisation begins with enabling
the model to synchronise the encoder input and decoder output, followed by a compromise to
create the margin between the positive and negative reconstruction errors. Correspondingly,
the two reconstruction errors exhibit parallel growth for the first few epochs, followed by
a trade off between the two objectives, i. e., feature reconstruction and margin generation.
As a result, the two reconstruction error curves are compelled to diverge.
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Table 4.5.9: Classification results [%] of the contrastive CAE with 4 encoder and 4 decoder
layers based on the reconstruction error (rec. error) using logistic regression, for using
different margin sizes. (Source: [274])
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2 78.9 84.2 73.6 0.753 0.136

Contrastive 3 91.4 100.0 82.8 0.905 0.224

CAE 4 94.1 100.0 88.2 0.920 0.275

(rec. error) 5 95.3 100.0 90.6 0.944 0.310

10 90.5 94.7 86.2 0.861 0.238

15 90.9 94.7 87.0 0.861 0.247

4.5.3 Section Summary

We presented a contrastive CAE to frame the task of COVID-19 detection given 14-day
heart rate measurements into an anomaly detection problem The presence of symptoms
is specified by CD1/CD2 criteria. Our approach optimises the CAE using a contrastive
loss which integrates class information, It outperformed conventional CNN, CAE and other
typical deep learning models for our task. The model was examined using different numbers
of layers, and various dimensions of latent attributes. Particular attention was paid to
the exploration of the optimal data amount for pre-training and the adjustment of the
margin size, both of which were found to be critical for achieving steady convergence and
classification performance. In addition to COVID-19 identification, the binary classification
method should be generalisable to the prediction of other diseases.

4.6 Summary

In this chapter, we described our deep learning approaches for detecting COVID-19 using
cough and breathing sounds, speech data and heart rate measurements, respectively. To
boost the noise robustness of the speech-based detection model, we additionally examined
the use of audio enhancement to improve speech quality, resulting in improved detection
performance in noisy conditions. Due to the availability of continuous data gathering from
everyday smart devices such as smartphones and consumer wearables such as smart watches,
we anticipate widespread use of our presented methodologies in real-world conditions. Using
this technology, it is feasible to continually conduct preliminary illness detection, allowing
for timely alerts to be delivered to patients so that they can take appropriate measures,
such as managing social isolation or seeking immediate medical treatments.
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CHAPTER 5

Face Mask Detection from Speech

5.1 Introduction

Wearing masks in public areas is widely approved as an effective measure to reduce the
spread of the COVID-19 virus. Despite the fact that many public COVID-19 epidemic
prevention policies are not enforced as strictly as they formerly were, wearing a mask in
public is still strong encouraged, even mandatory in closed and crowded venues to ensure
public safety. However, its compliance is contingent upon people’s commitments. Still, the
strategies for continuous mask-wearing monitoring merit additional study. The solutions
to automatic detection of whether a person wears a face mask can assist governments
worldwide in better monitoring the public respects with the obligatoriness. The study of
the detection task using machine learning or deep learning approaches has vastly increased
since the pandemic outbreak. A straightforward idea is to take the task as an object
detection problem and solve it using computer vision methods [282, 283, 284, 285, 286].
From the perspective of audio, face masks can alter speech properties in frequency since
the mask materials absorb speech components differently in different frequency bands. On
the other hand, wearing a mask can introduce temporal changes in speech, due to its
interference to respiratory process [287, 288, 289], altering the natural tempo, rhythm,
and pronunciation speed. Conditioned on these alterations, ML models can be applied to
distinguish the speech recorded from a speaker wearing or not wearing a face mask. Previous
works for this detection task from speech are based exclusively on the use of CNNs, and
have shown promising outcomes. However, CNNs have very limited ability to remember
time-dependencies between audio frames, which is very crucial when performing audio signal
processing.

To make full use of the temporal dynamics in speech signals, this section presents two
effective neural network models to detect surgical masks from speech. Both models are built
based on Convolutional Neural Networks (CNNs) to extract the spatial representations of
the audio signals. On top of the CNNs, one architecture captures the time-dependencies us-
ing a Long Short-Term Memory (LSTM) network, strengthened with an additional attention
mechanism, while the other architecture applies a transformer block containing a positional
encoder to mark the relative position of a sequence. Furthermore, to assess the complemen-
tary effect using both modules, i. e., LSTM and Transformers, to model temporal dynamics,
we explore three hybrid models combining them in either a cascade or a parallel structure.
Besides, data augmentation techniques, particularly strengthening the transitions between
audio frames can advance the performance of our proposed architectures.

In short, this chapter explores potential improvements to mask-wearing detection based
on speech with regard to the following aspects:

• Capturing the temporal dependence of speech signals to advance the current state-of-
the-art in mask-wearing detection.
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• Enriching the temporal dynamics of speech representations by extracting the transient
information between audio frames.

• The influence of audio data augmentation techniques, such as SpecAugment, on the
detection performance.

• The performance of gender-specific model for this task, and the effectiveness of ap-
proaching the challenge in a multi-task framework.

5.2 Related Work

CV Solutions to Face Mask Detection
To identify whether a person is wearing a face mask or not, deep learning techniques that
analyse a face image begin processing with detecting or cropping the face region and then
sending the cropped outcome to a classifier [290, 291, 284, 285]. Using this strategy, sev-
eral common CNN architectures, including AlexNet, VGG16/19, ResNet, MobileNet and
a customised CNN model were assessed for the task [292]. In [293] and [294], facial repre-
sentations were learnt from angle-corrected face images so the methods can circumvent the
possibility of errors due to face rotations during photography. Goyal et al. [295] deployed a
CNN-based model to expand this application to multiple-person scenarios. Besides, trans-
fer learning [283, 286] and model assembly [282] that combines machine learning and deep
learning methods, have also been investigated for this detection task.

CA Solutions to Face Mask Detection
The research of mask-wearing detection from speech has been carried out from the view-
points of acoustic features, data augmentation and model architectures [296], primarily
based on MASC database collected for the Mask Sub-Challenge (MSC) of the INTER-
SPEECH 2020 COMputational PARalinguistics challengE (COMPARE). Researchers have
made particular efforts to search for feature representations that can differentiate masked
speech from regular speech [297, 298, 299]. In [298], Das and Li studied three distinct
acoustic features designed to discriminate between speech covered by masks and unmasked
speech, resulting in a 1.7% improvement in classification UAR compared to the baseline
method given by the ComParE challenge [300]. Szep and Hariri [297] suggested to enrich
the representations by fusing several kinds of acoustic features and assembling three CNN
models, VGGNet, ResNet, and DenseNet, in order to improve the detection performance
over the approach using a single model. Xu et al. [299] aggregated low-level descriptors
within the framework of deep neural network, however the process did not lead to further
gains in classification performance. Moreover, data augmentation (DA) has been considered
in several studies to further enhance the representations [301, 302, 303]. In [301] and [302],
a variety of DA techniques, such as SpecAugment or Mixup, that can successfully expand
the training data size are compared. Moreover, [302] adapted PANS, a large-scale pre-
trained audio neural network, for this task, and successfully made further improvements.
Using GAN as a DA approach, [303] generates more training utterances for more thoroughly
training an ensemble model consisting of a series of ResNets coupled via a Support Vector
Machine (SVM), surpassing the baseline by an UAR of 2.8%. Overall, despite these en-
couraging outcomes on automatic face mask detection from speech, the majority of these
earlier investigations have relied solely on CNN methods.
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5.3 Face Mask Detection from Speech

In this section, we will first describe the neural network architectures we have to improve the
capture of temporal dynamics from speech. Their performance are presented and compared
in experiments, with ablation study to analyse the essential components leading to their
effectiveness of capturing temporal information.

5.3.1 Network Architectures & Training Objectives

We construct our models by stacking a CNN for analysing spatial features and a second
network for processing the temporal information of speech input. To do this, the attentive
convLSTM model makes use of a bidirectional LSTM (BiLSTM) network with a multi-head
attention mechanism to capture the audio temporal dynamics. The alternative approach,
conventional transformer, employs the encoder of a standard transformer [4], which embeds
the temporal information, i. e., the relative position of audio frames, using a positional
encoder. In addition, we examine three hybrid models that integrate both a LSTM and a
transformer on top of a CNN, by cascading them in a sequence or aligning them in parallel.
It is expected that these hybrid architectures would incorporate the advantages of both
modules, making them more efficient at acquiring temporal information.

Following is a description of the architectures of our proposed attentive convLSTM
(cf. Section 5.3.1.1) and convolutional transformer (cf. Section 5.3.1.2). Then, we present
the methods for building the hybrid models (cf. Section 5.3.1.3 and Section 5.3.1.4). The
combination of the introduced LSTM with attention and transformer networks in two cat-
egorises: cascade mode and parallel mode, according to their relative position alignments.
The neural network specifications are summarised in Table 5.3.1.

5.3.1.1 Attentive ConvLSTM

The attentive convLSTM, as seen in Figure 5.3.1a, combines a CNN, a BiLSTM network,
and a multi-head attention layer. To allow a steady convergence of this deep neural network,
we apply skip-connections in the CNN module, similar to ResNet, to learn the spatial
features from its input. Given the input M̃, the process is expressed as

Mconv = fconv(M̃). (1)

The output is then fed into a sequential BiLSTM composed of a forward LSTM and a
backward LSTM, which produces:

−→
ht =

−−−−→
LSTM(Mconv

t ,
−−→
ht−1), (2)

←−
ht =

←−−−−
LSTM(Mconv

t ,
←−−
ht−1), (3)

where h represents the hidden states of the LSTM cell and t indicates the time-step. The
forward and backward outputs are concatenated as

ht =
[−→
ht ;
←−
ht

]
. (4)

To promote the model’s capacity to extract temporal information from more salient
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Fig. 5.3.1: The network architectures of mask detection models. (a) Attentive convolutional
LSTM, which consists of three cascading modules: a CNN containing 5 convolutional blocks
with two skip connections, a bidirectional LSTM, and a multi-head self-attention. (b)
Convolutional transformer, which exploits a transformer encoder instead of the BiLSTM
and the attention module to capture time-dynamics. Extracted features are averaged along
the time axis are then projected onto classes using fully-connected layers. (Source: [304])

audio frames, multi-head attention is applied to the LSTM output features

H = (h1, h2, ...hT ) , (5)

yielding a more temporally more informative representations

MultiHead(H,H,H). (6)

The representations are then averaged across all time-steps and projected onto classes using
two fully-connected layers.

5.3.1.2 Convolutional Transformer

A transformer employs an attention mechanism to connect its encoder and decoder, allowing
for an efficient global mapping between its sequential input and output. The encoder and
decoder are constructed in a similar fashion by stacking a module comprised mostly of a
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Table 5.3.1: Specifications of our mask-wearing detection models. (Source: [304])

CNN

Block in ch out ch kernel stride padding

conv1 3 32 (3, 3) (1, 1) (1, 1)

conv11 32 32 (3, 3) (1, 1) (1, 1)

pool1 32 32 (2, 2) (2, 2) (0, 0)

conv2 32 64 (3, 3) (1, 1) (1, 1)

conv22 64 64 (3, 3) (1, 1) (1, 1)

pool2 64 64 (1, 2) (1, 2) (0, 0)

conv3 64 128 (3, 3) (1, 1) (1, 1)

conv33 128 128 (3, 3) (1, 1) (1, 1)

pool3 128 128 (1, 2) (1, 2) (0, 0)

conv4 128 256 (3, 3) (1, 1) (1, 1)

conv44 256 256 (3, 3) (1, 1) (1, 1)

pool4 256 256 (1, 1) (1, 1) (0, 0)

conv5 256 512 (3, 3) (1, 1) (1, 1)

conv55 512 512 (3, 3) (1, 1) (1, 1)

pool5 512 512 (1, 1) (1, 1) (0, 0)

skip13 32 128 (1, 1) (1, 1) (0, 0)

pool13 128 128 (1, 4) (1, 4) (0, 0)

skip35 128 512 (1, 1) (1, 1) (0, 0)

pool35 512 512 (1, 1) (1, 1) (0, 0)

LSTM

parameters values

dim features 2560

hidden states 128

Mutli-Head Attention

parameters values

heads 4

Transformer(N = 2)

parameters values

dim features 2560

heads 4

dim feed forward 128

dropout 0.5

dim fc in 2560

dim fc out 128

FCs

Block in features out features

fc1 128 64

fc2 64 2

multi-head attention layer and a feed forward component. For a classification problem, we
use a transformer encoder only while discarding its decoder for processing the CNN output.
Using a positional encoding approach, each time-step of the CNN output is given a unique
encoding. The transformer is thus aware of the relative position of each audio frame during
processing. A standard positional encoding method is to add

p
(i)
t =

sin(wk · t), if i = 2k

cos(wk · t), if i = 2k + 1
(7)
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Fig. 5.3.2: Hybrid model architectures for mask detection: (a) a cascade sequence of
ResNet - LSTM - Transformer; (b) a cascade sequence of ResNet - Transformer
- Attentive LSTM; (c) a parallel alignment of ResNet - Attentive LSTM � Trans-
former. (Source:[304])

where

wk =
1

100002k/d
(8)

to the transformer input Mconv. Other more sophisticated or even learnable positional
encoder, such as the relative positional encoder presented in previous works [305, 306], have
the potential to further progress the convolutional transformer. We adhere to the original
positional encoding solution given with the first introduction of transformer [4].

We use a transformer with two encoder layers (N=2), and the number of attention
heads in each layer is fixed at 4. Besides, dropout of 50% is performed to improve the
model’s generalisation ability. The output of the transformer is again temporally averaged
into a vector representation, which generates class predictions through two fully-connected
layers.

5.3.1.3 Cascade Hybrid Model

The attentive LSTM and transformer modules can be stacked into two sequential structures,
i. e., ResNet - LSTM - Transformer (cf. Figure 5.3.2a) and ResNet - Transformer - Attentive
LSTM (cf. Figure 5.3.2b). Considering that multi-head attention layers are included within
the transformer architecture, we prune the first hybrid model by removing the attention
layer after the LSTM, relying on the transformer’s proficiency in learning features from
more saliently informative audio frames on its own. Additional modifications are made to
the extra modules to enable their connection to the original models.
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5.3.1.4 Parallel Hybrid Model

An alternate construction is to place the attentive LSTM and the transformer side by side,
labelled as ResNet - Attentive LSTM � Transformer (cf. Figure 5.3.2c). Using the CNN
output as the input to the attentive LSTM and the transformer, the resulting representations
from both modules are concatenated along the frequency-axis. The temporally averaged
output is then mapped into classes using fully-connected layers.

5.3.2 Experiments and Evaluation

To test our proposed models, we perform experiments using the MASC database [300].
The evaluation mainly focuses on comparisons to past studies that used CNNs alone to
solve the detection problem. In addition, we undertake an ablation analysis to see how
much the model can be enhanced by using neural networks that are adept at learning time-
dependencies. Additional research is conducted to explore the impact of several audio data
augmentation techniques. Finally, we assess the efficacy of gender-specific models for the
task at hand.

All presented models are optimised by minimising a cross-entropy loss using an Adam
optimiser. The learning rate and batch size are set to 0.0001 and 32, respectively. Using a
computation unit of a Geforce RTX 3090, we can perform the model training and inference
in a time-efficient manner.

5.3.2.1 Data Description

Mask Augsburg Speech Corpus (MASC) [300] is a dateset made available for the Mask Sub-
Challenge (MSC) presented at the Computational Paralinguistics Challenge (ComParE) at
Interspeech 2020. Using this speech data, several researchers have attempted to establish
automated solutions to face mask detection. The dataset contains around 10 hours of
speech recordings taken from 16 female and 16 male German native speakers between the
ages of 20 and 41 years (mean age 25.6 years, std. dev. 4.5 years). To collect this data,
participants were instructed to conduct a number of spoken tasks, including answering
questions, reading, or describing pictures, while wearing or not wearing a surgical mask
from Lohmann and Rauscher (type Sentinex Lite). All the audio files are recorded in the
single-channel format at a sampling rate of 16 kHz and then segmented into chunks of one
second.

Unlike the approach of data partitioning given in the ComParE challenge, [297] con-
ducted cross-validation on the union of the original training and development data to assure
the model generalisability, achieving the current state-of-the-art results on the MASC test
set. According to the ComParE guidelines, the fusion of the training and development data
set is explicitly permitted and used in baseline generation. To bypass the cross-validation
used in [297], we simply include a portion of the development data into the training of
the model. Consequently, we train our models using the new expanded training set and
observe the training curves on the new reduced development set during training. The test
set remains unaltered from the original partitioning. We detail the new data partitions in
Table 5.3.2 in terms of class, partition, and gender information.
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Table 5.3.2: Data partitioning of the audio samples available in the Mask Augsburg Speech
Corpus (MASC). The absolute number of instances and the sum (

∑
) according to each class

(No-mask and Mask), partition (Train, Development, Test), and speaker gender (female (f),
male (m)) are indicated. Furthermore, the number of speakers for each partition is also given
in parentheses. (Source: [304])

Train Development Test
∑

f m f+m f m f+m f m f+m f m f+m

(9) (10) (19) (2) (1) (3) (5) (5) (10) (16) (16) (32)

No-mask 4689 6457 11146 599 274 873 1955 3598 5553 7243 10329 17572

Mask 4266 8221 12487 766 270 1036 1738 3721 5459 6770 12212 18982∑
8955 14678 23633 1365 544 1909 3693 7319 11012 14013 22541 36554

5.3.2.2 Data Processing

Log Mel spectrogram, denoted as M, is extracted from each one-second audio chunk by
mapping its spectrogram onto the Mel-scale frequencies, which is then converted to the
logarithmic scale in magnitude in order to reflect the non-linear properties of human hearing
with respect to both audio frequency and intensity. For this, we use STFT with a Hamming
window of length 25ms and step size of 3.125ms, as well as 40 Mel filter-banks for the
creation of the Mel spectrogram.

We augment the audio representations with the first- and second-order temporal dif-
ferences, i. e., deltas (∆M) & delta-deltas (∆2M), between successive audio frames. The
transition information can approximate the first and second derivatives of the features to
represent the constant flux of speech signals. Subsequently, a Z-score normalisation is per-
formed respectively on the tri-channel feature maps. For a given Log Mel spectrogram
M,

M = (M−mean(M))/std(M), (9)

and the final tri-channel feature map as the model input:

M̃ = [M,∆M,∆2M]. (10)

We also explore SpecAugment [121], an additional data augmentation method commonly
used for speech processing. The approach improves the generalisability of a model by
training it to resist deformations caused by the partial loss of temporal and frequency
information.

5.3.2.3 Evaluation Metrics

To compare with previous works, we choose the assessment criterion, Unweighted Average
Recall (UAR), the same as in ComParE challenge, for fair comparisons. To conduct the
ablation study and make more thorough comparisons among our models presented, we take
into account other performance measures including Unweighted Average Precision (UAP),
Unweighted Average F1 (UF1), and Matthews Correlation Coefficients (MCC) [307].

88



5. FACE MASK DETECTION FROM SPEECH

Table 5.3.3: Results in Unweighted Average Recall (UAR) [%]. w/ PE and wo PE stand
for with and without positional encoding, separately. (Source: [304])

Results in the literature [%]

ComParE baseline[300] 71.8

Four acoustic features[298] 73.5

LLA [299] 69.1

Mask Filer [308] 70.7

DA on Spectrograms[301] 71.5

Cycle-consistent GANs[303] 74.6

PANNs+Mixup[302] 76.2

Image classifiers [297] 80.1

Proposed Models

CNN 75.3

ConvLSTM 77.4

Attentive ConvLSTM 78.6

Convolutional Transformer (wo PE) 76.6

Convolutional Transformer (w/ PE) 79.3

Proposed Hybrid Models

ResNet - LSTM - Transformer 78.9

ResNet - Transformer - Attentive LSTM 77.7

ResNet - Attentive LSTM � Transformer 79.0

5.3.2.4 Comparisons to Previous Work

The attentive convLSTM and convolutional transformer can obtain UARs of 78.6% and
79.3% for mask-wearing detection (cf. Table 5.3.3), indicating substantial gains over the
ComParE challenge baseline [300]. Both models outperform the most previously published
results with only the exception of [297], which combines the prediction results of 4 distinct
models, similar to [300, 298, 299]. These ensemble approaches benefit from the versatility
of multiple models and numerous feature sets. Our testing results, on the other hand, are
dependent on a single model and typical spectrogram-based features. In fact, in terms of
UAR, our two approaches outperform all previous single model approaches in the literature
[308, 301, 303, 302]
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Table 5.3.4: Testing results of each of our models regarding Unweighted Average Preci-
sion (UAP) [%], Unweighted Average F1 measure (UF1) [%], and Matthews Correlation
Coefficient (MCC). The number of the model parameters is also provided on the scale of
(M)illions. (Source: [304])

Models UAP [%] UF1 [%] MCC

CNN 75.4 75.3 .507

ConvLSTM 77.4 77.4 .549

Attentive ConvLSTM 78.3 78.3 .565

Convolutional Transformer (wo PE) 76.7 76.5 .532

Convolutional Transformer (w/ PE) 79.3 79.3 .586

Hybrid Models

ResNet - LSTM - Transformer 78.9 78.9 .578

ResNet - Transformer - Attentive LSTM 77.7 77.7 .554

ResNet - Attentive LSTM � Transformer 79.1 79.0 .581

5.3.2.5 Ablation Study

Ablation tests are conducted to analyse the importance of learning time-dependencies of
speech signals for mask-wearing detection. To do this, we compare our models employing
the LSTM network or the transformer on top of the CNN with a basic CNN model without
modules that capture temporal dynamics. In addition, the impact of positional encoding
for the convTx model is also evaluated prior to evaluating the three hybrid models.

Both the presented models exhibit considerable detection improvements over a simple
CNN model, which achieves a detection UAR of 75.3% (cf. Table 5.3.3), according to a
one-tailed z-test at significance level α = 0.05. By layering an LSTM network on top of
the CNN, the detection performance can be improved by 2.1% in terms of UAR, while
the inclusion of a multi-head attention layer yiels an additional 1.2% performance boost.
Other attention mechanisms, such as soft attention [28], local attention [30], and component
attention [309, 310] are also investigated; however, they do not produce better detection
results than using multi-head attention with 4 heads.

The best performing model, the convolutional transformer, annotates the temporal posi-
tions of its input sequence using positional encoding. Without the use of positional encoder
in this convolutional transformer, denoted as Convolutional Transformer (wo PE) in Table
5.3.3, results in the loss of the time-dependencies information. Our experimental result
for the convolutional transformer without PE falls to 76.6%, which is inferior to the per-
formance of ConvLSTM that applies CNN and LSTM only. These findings imply that
capturing temporal dependencies in speech can promote the identification of whether a
speaker is wearing a mask or not.

Regarding the hybrid models, the first hybrid model that stacks a transformer on top of
it can slightly improve the detection performance compared to the original attentive convL-
STM. The second method employing the attentive LSTM to advance the convTx, however,
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Fig. 5.3.3: Comparison of the ROC curve of our different models, and the corresponding
Area Under Curve (AUC).

results in a performance decrease of 1.6%. The parallel alignment of the attentive LSTM
and transformer reaches a UAR of 79.0%, which is though comparable to the performance
of convTx but surpasses the other two hybrid models. The performance of these three
hybrid models can be improved by augmenting the input feature using SpecAugment, as
detailed in Section 5.3.2.6. As shown in Figure 5.3.3, the Receiver Operating Characteristic
(ROC) curve [311] are depicted based on the prediction results for all the models presented.
The hybrid model, ResNet - attentive LSTM � Transformer, outperforms other techniques
with an area under the ROC curve (AUC-ROC) of .874. Overall, a the balance between the
ratio of true positives and false positives is reserved for all our proposed models, allowing
for accurate mask-wearing detection with a low number of false alarms. This can also be
supported by the testing results shown in Table 5.3.4, where the convolutional transformer
achieves the highest performance for all the metrics evaluated, obtaining a UAP of 79.3%
and a UF1 of 79.3%, and a MCC of .586.

5.3.2.6 The Influence of Data Augmentation

The Effect of Deltas & Delta-Deltas
To validate the efficacy of using deltas and delta-deltas of the Mel spectrogram to enrich the
model inputs, we separately feed the Mel spectrogram (M), along with the first-order and
second-order differences (∆M, ∆2M) to three tested models, i. e., the CNN, the attentive
convLSTM, and the convolutional transformer (cf. Table 5.3.5). Using these transitions as
the input to the CNN increases the detection performance by 0.9% in terms of UAR. The
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Table 5.3.5: The testing results in UAR [%], based on models using different set of features.
(Source: [304])

Models M M+∆M M+∆M+∆2M

CNN 74.4 75.0 75.3

Attentive ConvLSTM 76.2 78.0 78.6

Convolutional Transformer (w/ PE) 77.5 78.2 79.3

Table 5.3.6: Testing results, obtained by applying SpecAugment, for the Attentive ConvL-
STM, the Convolutional Transformer, and the three hybrid models. The evaluation mea-
sures are Unweighted Average Recall (UAR) [%], Unweighted Average Precision (UAP)
[%], Unweighted Average F1 measure (UF1) [%], and Matthews Correlation Coefficient
(MCC).SA abbreviates SpecAugment. (Source: [304])

Models SA UAR [%] UAP [%] UF1 [%] MCC

Attentive ConvLSTM
− 78.6 78.3 78.3 .565

" 79.5 79.6 79.5 .592

Convolutional Transformer (w/ PE)
− 79.3 79.3 79.3 .586

" 80.8 81.0 80.8 .619

Hybrid Models

ResNet-LSTM-Transformer
− 78.9 78.9 78.8 .578

" 82.2 82.2 82.1 .643

ResNet-Transformer-Attentive LSTM
− 77.7 77.7 77.7 .554

" 79.9 79.9 79.9 .598

ResNet-Attentive LSTM � Transformer
− 79.0 79.1 79.0 .581

" 81.1 81.1 81.1 .622

performance of the other two models is improved by 2.4%, and from 1.8%, respectively,
owing to the features augmented by these transitions. Therefore, in order to attain the
optimal detection result, it is prudent to investigate feature augmentation techniques and
neural networks that are proficient in collecting time-dependencies across time steps.

The Effect of SpecAugment
We further study the impact of SpecAugment and provide the testing results in Table 5.3.6.
Applying SpecAugment to the input Log Mel Spectrogram improves the effectiveness of
convTx, obtaining a UAR of 80.8%, a UAP and UF1 of 81.0%, and an MCC of 0.619,
which surpasses all models presented in the literature (cf. Table 5.3.3). The SpecAugment
is particularly efficient in enhancing the three hybrid models. As a result, the first hybrid
model, ResNet - LSTM - Transformer, provides a new state-of-the-art result, reaching a
UAR and UAP of 82.2%, a UF1 of 82.1%, and a MCC of .643.
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Table 5.3.7: Results in UAR [%] for the performance of training and testing our best
model, ResNet - LSTM - Transformer, on different genders, (f)emale & (m)ale. Overall
UAR indicates the combination of the results for both genders. Gender UAR measures the
gender classification performance from the multi-task learning. (Source: [304])

Single task

Training Set Test Set UAR [%] overall UAR [%]

f + m f 77.6
82.2

f + m m 83.0

f f 78.6
82.5

m m 84.1

f m 68.4 −
m f 68.7

Multi-task

Training Set Test Set gender UAR [%] UAR [%]

f + m f + m 98.6 81.5

f + m f − 79.0

f + m m − 82.6

5.3.2.7 Gender-specific Models

Male and female voices may be affected differently by face masks. We therefore further
analyse the gender dependence of our best-performing model, i. e., ResNet - LSTM - Trans-
former, (cf. Table 5.3.7). The detection result obtains a UAR of 77.6% and 83.0% for the
female and male speakers in the MASC test set, respectively. There are fewer female speaker
accessible than male speakers in the training set, which contributes in part to the perfor-
mance discrepancy between the two genders. Hence, designing gender-dependent models
might result in greater performance. Individually trained convTx models for the female
and male speakers may achieve UARs of 78.6% and 84.1%, respectively, yielding an overall
UAR of 82.5%. This suggests that it is advantageous to condition our model on gender
information for improved face mask detection. In particular, we can frame our task as a
multi-task learning that concurrently recognises the gender of the speaker and determines
whether or not the speaker is wearing a mask. To this end, an extra output is introduced
to the model architecture given in Figure 5.3.2a, used to predict the speaker gender from
the learnt audio representation. The cross-entropy loss for gender prediction is added to
the mask detection loss, and the overall loss is reduced to optimise both predictions. As
a consequence, a UAR of 98.6% can be obtained for gender classification. The identifica-
tion of face masks reaches a UAR of 79.0% and 82.6% for the female and male speakers,
respectively, minimising gender-related biases between speakers of the two genders.

Regarding the gender of the speakers, we should not infer that the proposed models
perform better for male speaker than for female speakers due to the imbalanced data dis-
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tribution for the two genders in both the training and test sets. The gender inequality of
ML systems caused by biases in the data is a well-known issue [312]. Hence, it is highly
suggested to collect more data while attempting to balance the data across genders in order
to create a model with improved detection performance that is free of gender bias. How-
ever, our work reveals that that the use of a gender-dependent model is a plausible way to
reduce the gender bias in the data. This method, which further boosts the performance by
conditioning the structure on known gender information, is in line with gender de-biasing
strategies studied in other disciplines [313]. We hypothesise that a front-end gender clas-
sification model may outperform the results obtained by our multi-task approach. This is
inspired by the observation that a gender classification model already exists in other speech-
related tasks [314], such as emotion recognition [315]; hence, similar techniques should be
examined in the context of mask-wearing detection. As the contrast between female or
male speech is more distinct than that between a speaker wearing a mask or not, we are
optimistic about the prospective outcomes.

5.3.2.8 Additional Efforts

Recent studies have advocated for the exploitation of Self-Supervised Learning (SSL) for
audio and speech processing [48]. Considering that our mask-wearing detection task is
dependent on speech signal, we attempted to use several SSL models, including Wav2Vec
2.0 [173], HuBERT [174], XLSR [175], and BYOL for audio [316], that have gained great
success in speech-related applications. However, the fine-tuning of the big SSL models,
such as Wav2Vec 2.0 and HuBERT, is very time-consuming, and shown to be inferior to
our proposed solutions. A potential reason is the mismatch between the languages used
for training, i. e., Wav2Vec 2.0 is trained using an English corpus, whereas the MASC
dataset is in German. XLSR, which is built on Wav2Vec 2.0, learns cross-lingual speech
representations, including German. However, we are unable to see gains by fixing the
language mismatch problem. Based on these experiments, we believe that a model with
great performance for speech recognition may not be as suitable for our purpose, compared
to the models that are specifically designed. In addition, the primary objective of ASR
is to understand the contextual meaning of the input speech, and hence, an ASR model
may suppress the tempo and rhythm changes caused by masks. BYOL-A, unlike the other
evaluated SSL models, does not apply contrastive loss during its training and has the
potential to learn more complete information from audio signals. Regardless of whether
SpecAugment was applied, fine-tuning the BYOL- A model yields experimental results
that are marginally inferior to those of our proposed method. As the research on audio SSL
is still in its infancy, we are enthusiastic about its efficacy in detecting the use of a mask
detection task in future works.

5.4 Summary

In this chapter, we presented several speech-based solutions to the mask-wearing task.
The success of these solutions can be attributed to their ability to capture the temporal
dynamics of speech signals. In the absence of visual information, these approaches may serve
as alternatives to those utilising CV techniques. In spite of the encouraging findings given
in this study, several restrictions should be addressed in the future before our models can
be applicable to real-life circumstances. First, our methods must be tested for other mask
types, such as FFP-2, despite the fact that surgical masks cause relatively less alterations to
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human voice [289], making the detection task easier. Moreover, cross-lingual tests should be
conducted to examine the generalisation effect of the models to other languages, concerning
the substantial variation of paralinguistics across different languages [317]. Moreover, the
individuals that contributed to the MASC data collection wore their masks correctly. In
reality, however, this is not always the case, since people do not always wear a mask properly,
such as covering their mouths only [318, 319]. Hence, future models thus incorporate the
identification of incorrect mask-wearing. At last, the proposed models may encounter real-
world noise; thus, audio enhancement techniques, including those presented in previous
chapters of this dissertation, should be applied to improve the robustness of a mask-wearing
detection model.
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CHAPTER 6

Discussion

This dissertation focus on the use of cutting-edge deep learning techniques to solve pressing
concerns in speech and digital health. In the course of our study, we have extended the
algorithms to real-world settings in order to satisfy several real-world application criteria,
including robustness and generalisabiity. Due to the constraints of problem modelling (we
cannot exhaust all possibilities in actual applications), and deep learning’s reliance on data
characteristics, these approaches still have certain limitations in practical applications.

For audio enhancement, we have shown N-HANS, developed based on our proposed
±Auxiliary Network, can serve several audio enhancement purposes. The approach is adapt-
able to diverse environments and audio sources, including speakers and backgrounds that
were not seen during training. Nonetheless, this toolkit takes into account the variety of
speakers and environmental contexts. In practical applications is the distance between
speakers and recording equipments during data recording can arise a formidable obstacle,
as it not only results in low SNR circumstances but also causes audio reverberation. In
order to facilitate the system’s adaptability, we compromise its performance in low SNR
settings. Therefore, future research should concentrate on boosting speech intelligibility
under conditions of very low SNRs to compensate for the distortions that are occasionally
present in audio. Due to the limitations in creating our training data, the source separation
model is primarily designed to separate overlapping speech from two speakers. Further
efforts are needed to extend the system to any number of audio sources, including music
source separation.

The joint optimisation methods are intended for adjusting an audio enhancement model
for multiple computer audition applications, particularly when these applications confront
the extreme low SNR circumstances. Collectively, in five distinct application areas, i. e.,
ASR, SCR, SER, ASC and COVID-19 detection, our findings demonstrate that the sug-
gested methods outperform comparable baselines. In most cases, it is possible to recover a
substantial percentage of the performance loss caused by noise. This highlights the necessity
of specialised AE systems that can differentiate between the task-specific relevancy of audio
signals and noise sources. However, there are some limitations associated with this study,
since the performance of some baseline models is inferior to that of recent state-of-the-art
methods when simply trained and tested on clean data. For instance, an ASR model may
benefit from self-supervised learning [130], which allows them to scale up the amount of
data and gain the associated advantages. Using joint SSL and enhancement pre-training
on larger size of data, followed by fine-tuning with our iterative optimisation on the target
downstream task is a promising future research direction.

The experiments in Fitbeat study were intended to determine whether COVID-19 symp-
toms emerged within a period of recorded heart rate data, the models have limitations in a
causative setting, i.e., when attempting to anticipate possible symptoms before they occur.
To this purpose, future research will seek to address the issue of how many days in advance
it is feasible to accurately and reliably forecast the beginning of COVID-19 symptoms.
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6. DISCUSSION

Our suggested COVID-19 detection algorithm is expected to benefit with a larger training
dataset. Additionally, other time frames of data segments should be analysed to further
decrease the needs for model input. Overall, we are optimistic that an accurate identifica-
tion of the presence of COVID-19 can be reached based on the symptoms outlined in this
study and machine learning analysis of heart rate measurements. From the perspective of
algorithm, the effectiveness of contrastive CAE provides a foundation for future study. As
a general binary classification approach, it should be extended for a widespread adoption,
particularly for predicting diseases outside COVID-19. In contrast to typical unsupervised
learning methods for anomaly detection using auto-encoders, our method frames the task
as a supervised learning approach by supplying a training objective analogous to the that of
anomaly detection during the model optimisation. The goal-oriented optimisation should
not limited to the task of COVID-19 detection alone. Since our proposed method introduces
a new parameter indicating margin size, the challenge of transferring our method to other
applications may reside in determining the optimal margin size. In addition, the proposed
model requires a sufficient quantity of data for pre-training, which hinders its use, for in-
stance to the diagnosis of rare diseases. In the near future, our suggested contrastive CAE
will be expanded to multi-class paradigms to accommodate a broader range of applications.

In the research of using deep learning techniques to detect face masks from speech, our
experimental findings reveal the importance of considering the time-dependencies in audio.
Thus, the neural networks that can account for the positional information facilitate the
modelling of the time-dynamics. Our method overcomes the difficulty of seeking for proper
features, which is typically a time-consuming procedure that normally needs specialised
expertise, and substantial manual effort. In general, some biases can be unintentionally in-
troduced based on the design parameters during model construction. The lack of adequate
representative training data may lead to a decrease in overall accuracy or biased results,
when a deep learning model reinforces patterns in non-representative data set. Due to the
acquisition of data, this issue emerges in our investigation of mask recognition from speech.
As a consequence of having more male speakers in training set, testing results for male
speakers are superior. Indeed, we also built gender-dependent models in an attempt to
narrow the performance gap between both genders, it may be advantageous to incorporate
more personalisation factors, such as age, location, etc, to improve the overall recognition
performance. A more sophisticated method of including general and intricate speaker infor-
mation has been proposed in the model design of N-HANS. Intuitively, we anticipate future
research on personalised models to increase in order to meet practical needs, particularly
those deployed by edge devices.

Besides the encouraging results, it is crucial to emphasise that future research should
concentrate on several aspects that were not assessed in our experiments. First, we con-
ducted the experiments only using surgical masks. In comparison with other mask types,
such as FFP-2, surgical masks induce relatively less alterations to the human voice [289],
resulting in more difficulty in differentiating speakers wearing masks or not. More study
should be carried out with other kinds of mask in order to examine the generalisability
of the presented approach. Second, all of the findings have been obtained from German-
speaking participants. Since para-linguistics may vary substantially across languages [317],
and these may be affected differently by the effect of wearing a mask, more cross-lingual
studies are necessary to assess the generalisability of the proposed approaches to other lan-
guages. Third, participants were instructed to wear their masks appropriately during data
collection of MASC (with proper mask size and fit). In daily life, however, some individuals
may wear masks improperly, such as by covering their mouth only but not nose [318, 319].
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6. DISCUSSION

In light of the actual application of automatic wearing-mask detection that can include the
identification of irregular mask usages, it is necessary to carry out more research on mask
positioning. We believe the detection will be more precise after considering these cases.

The importance of data ethics and AI ethics is concerned throughout the whole disser-
tation. Except for the Fitbeat project, which uses participant-consented data for research
purposes, we rely on publicly available data for the rest of our work. Particular ethical
care is given to the medical applications. Our objective for the task of COVID-19 detection
should not only be to obtain a high level of detection accuracy, but also to minimise the
risk of false alarms and miss detection from the designed models. Reducing the likelihood
of a missed detection might lessen the possibility of ignoring COVID-19 positive patients,
which could lead to a delay in treatment and isolation; nevertheless, false alarms can cause
unwarranted stress and anxiety. When building the COVID-19 models based on heart rate
data and speech data, we prioritise the former concern due to the hazards involved involved
in the two cases. For the model processing coughing and breathing sounds, a good balance
between the two concerns is retained. Besides, our COVID-19 detection solutions should
not be seen as a method of clinical diagnosis; rather they are indicated as means of assisting
in the monitoring of potential COVID-19 cases. For a more exact model for practical appli-
cation, personalisation, or case adaptation in general, should be considered as a following
effort to better fit the encountering context. However, model personalisation or customisa-
tion may be intrusive to user privacy, and a reasonable trade-off between privacy protection
and model efficacy should be taken into account for production.
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CHAPTER 7

Conclusion and Future Work

From the perspective of applications, this thesis focuses mostly on 1) the employment of AI
techniques to overcome certain remaining challenges in the process of audio enhancement,
and 2) the potential contribution of deep learning approaches to COVID-19 related prob-
lems. Our study focuses on discovering versatile neural network frameworks and generic
training paradigms across these two research domains.

To address our first research question (Q1), we presented a model assisted with auxiliary
networks that yields a solution to integrate multiple audio enhancement functionalities into
a single framework. The same structure is also effective for data fusion, as demonstrated
by the method for detecting COVID-19 utilising data of two audio types. The joint op-
timisation strategies, including our suggested iterative training solution, were proposed as
a response to second research question (Q2), which aimed to train an audio enhancement
model reliant on its subsequent audio applications in order to maximise the application
performance in noisy environments. Such audio applications include COVID-19 detection
based on speech, which confirmed in part the feasibility of exploiting speech enhancement
technology to improve the effectiveness of COVID-19 detection per speech in real-world
circumstances (Q3).

Additionally, we expanded our search for COVID-19 detection methods to heart rate
data to investigate a deep learning alternative, thereby addressing the third research ques-
tion (Q3). Concerning the typical issue of class imbalance in the data for this task , we
formulate the binary classification problem into an anomaly detection problem, and pro-
posed a contrastive CAE algorithm. These modelling methodologies and deep learning
approaches should not be restricted to the tasks presented in this paper, but should also
be instructive for other tasks with a similar learning objective. As a response to the fourth
research question (Q4), we provide several basic and hybrid deep learning models for the
efficient recognition of face masks from speech, therefore establishing the foundation for
monitoring the public usage of masks. In the section of Discussion, we analysed the mer-
its and drawbacks of our proposed methodologies, as well as their proximity to the actual
implementation.

Inspired by the outcomes of the joint optimisation approach, more attention should be
give to the study of combining neural network modules. Though each module of the sequen-
tial chain has a specific purpose, these modules not only benefit from adapting to one another
to retain their functional connection, but a synergistic effect can be achieved. This enables
end-to-end learning of multiple neural networks as a substitute for the error-accumulating
cold cascade of neural networks. Moreover, unlike the cold-cascade combination, each mod-
ule of the entire sequential framework contributes more fairly to the overall performance,
i. e., although each module has its own primary functionality, it also assists other modules
on the chain. Due to the expansion of the model structure and the interactions between
these modules, the constraints on training individual module may be relaxed, yet the system
as a whole has the opportunity to shoot a higher score. In this regard, further study should
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7. CONCLUSION AND FUTURE WORK

first consider these two factors: the suitable connection of these modules in terms of, for
instance, data format and transformation, and the alignment of modules that may provide
unique interaction effects. Given the overwhelming success of AI technology in the present
day, the connection of AI components will play a crucial role in bringing AI solutions to
satisfy real-world requirements. This may eventually lead to significant advancements to
several systems, including audio systems.

In addition to their great performance in terms of evaluation metrics such as detection
or classification accuracy, the models developed in this paper account for a number of
practical application requirements, such as storage efficiency and computational complexity,
inference speed and reliability, etc. In fact, we place a premium on the robustness of
these models when applying them to real-world circumstances. First of all, we exploit
large-scale data to assure the generalisability of our enhancement models, so that they
can manage varied recording conditions, including difference in speakers and noise sources,
recording equipment and so on. Taking into account all these distinctions, the enhancement
process can format the audio style for future processing, so lowering the requirements on
the following model’s robustness against noise disturbance. We assess the efficacy of this
technique using several audio applications, including ASR, SER, SCR, ASC and COVID-19
detection, A similar method should also be applicable to other applications and signals, such
as the identification of COVID-19 based on heart rate measurements. Due to daily activities,
heart rate measurements, particularly those available from wearable devices, may contain
perturbations more than just additive noise. Using front-end enhancement to improve the
signal quality is a viable solution for this issue. For example, we may use the N-HANS
model, which learns from extra samples indicating the desired and unwanted components,
to help acquire clean heart rate data. In this kind of framework, we also made attempts to
strengthen the connection between the enhancement module and the model for subsequent
audio application in order to further increase the system’s robustness. Specifically, using
joint optimisation allows the training of the two modules to mutually benefit, and as the
training anticipates their cascade, it eliminates the difficulty that would be encountered if
they are trained separately.

We evaluate speech, breathing and cough sounds, as well as heart rate data in the search
for feasible deep learning methods for COVID-19 diagnosis. Currently, the diagnostic ac-
curacy of these solutions falls behind that of other clinical methods, such as Polymerase
Chain Reaction (PCR) or rapid tests; however, they rely on more efficient ways to collect
data without interfering with the participants’ daily activities, and can therefore be used
as a supplement to alert patients for earlier diagnosis. We anticipate that, despite the time
required for the technology to mature, such research will have a significant commercial im-
pact on the general public. As of the writing date, AI approaches are thriving to this study
field. However, the majority of research are dependent on exploiting fundamental machine
learning methods, or applying transfer learning. Unlike them, we proposed a more appro-
priate modelling technique in terms of neural network design and training objective, which
were tailored for the task of COVID-19 detection, resulting in improved illness diagnosis
over the conventional methods. In order to further the clinical use of these technologies, we
advocate for additional study on the investigation of deep learning algorithms.

Nevertheless, there are still some remaining problems that need to be resolved in the
future. First of all, although the N-HANS toolkit integrates numerous audio enhancement
functionalities via auxiliary networks, the enhancement performance can significantly de-
grade under certain challenging conditions, such as when the noise or interference is so loud
that it overwhelms the audio of interest. Similarly, when the recording device is placed
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far from the sound source, two issues, i. e., low SNR and the far field effect, are frequently
encountered during audio recording, which can impede a number of research. Such kind of
disturbance can even obliterate the presence of the audio of interest, rendering it inaudi-
ble to human hearing and scarcely possible to extract using machine learning technology.
Even worse, distant recordings may be affected by reverberation, a sort of multiplicative
noise that prolongs the audio of interest with attenuated sound tails in the same structure.
De-reverberation, the countermeasure against reverberation, has been considered as a sepa-
rate task from noise reduction. Recent research attempts to solve both audio enhancement
and de-reverberation using a single model, shedding light on the integration of more audio
enhancement functionalities into the tool.

Despite increasing efforts to the development of COVID-19 detection models, most cur-
rent research only targets at the detection accuracy. This is owing to the strong hopes
for finding an early COVID-19 surveillance solution. In spite of this, it has to be tested
whether the established methods are reliable and robust when being applied in actual world.
Future work should focus more on model interpretability to reveal the role of AI for the
task at hand. Concerning the task of mask-wearing detection, in order to better fulfil the
requirements of its practical applications, the presented methods should be extended in two
ways: their generalisation to other types of face mask, such as FFP-2 and fabric masks,
and to more conceivable mask-wearing positions. Additionally, to expand the applicability
of AI technology, one should continue research on methodologies that promote both the
the front-end processing and its intended application, as opposed to treating them as two
independent parts. Its benefits urge us to apply deep learning algorithms to a broader range
of practical applications.
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Nomenclature

xi Feature map of the ith heart rate segment

xpi Feature map of the ith positive (symptomatic) heart rate
segment

xni Feature map of the ith negative (asymptomatic) heart rate
segment

x̂i Reconstructed feature map of the ith heart rate segment

x̂pi Reconstructed feature map of the ith positive (symptomatic)
heart rate segment

x̂ni Reconstructed feature map of the ith negative (asymptomatic)
heart rate segment

fenc(·) Encoder processing

fdec(·) Decoder processing

m Margin value

N Number of samples

conv Convolutional layer

deconv Transposed convolutional layer

pool Max-pooling layer

depool Transposed max-pooling layer

flatten Flatten layer

fc Fully-connected layer

avg. pool Average pooling operation

PReLU Parametric rectified linear unit

ReLU Rectified linear unit

CNN Convolutional neural network

CAE Convolutional auto-encoder
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MLP Multi-layer perception

LSTM Long short-term memory

LOSO Leave-one-subject-out

CV Cross validation

UAR Unweighted average recall

RMSE Root mean square error

AUC Area under the (receiver operating characteristics) curve

CD1/2 First/Second case definition

ICS Internal covariate shift

Attr. Latent attributes

std Standard deviation
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other WaveNet as decoder. The output of each encoder layer is fed to the
corresponding decoder layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Acoustic model of the used ASR system. (a) The architecture consists of
residual networks and BiGRU in sequence, fully-connected layers are used to
predict the characters in alphabet. The acoustic model is optimised using
CTC Loss. (b) The structure of convolutional (conv) block used in the
acoustic model. (c) The signal flow of Gated Recurrent Unit (GRU). . . . 41

3.4.4 (a) Speech command recognition model. (b) Speech emotion recognition
model. (c) Acoustic scene classification model, in which the convolutional
(conv) block is shown in (d). . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.5 Diagrams showing the methodologies used. The red arrows demonstrate the
back-propagation through the network modules with respect to the losses L
of the AE and the CAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.6 Spectrograms illustrating the performance of speech enhancement U-Net for
English, Italian, Chinese and Japanese in different kinds of real-life environ-
ments. The SE model processes the the contaminated audio (noisy) and
output the denoised speech. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.7 Spectrograms illustrating the effect of training an U-Net for voice suppres-
sion. The model targets at removing the speech components in the acoustic
scene recording to the maximum possible extent. . . . . . . . . . . . . . . . 54

4.3.1 Block diagram illustrating (a) The single-type model, in which either breath-
ing or coughing segments are used as input. (b) The multi-type fusion model
implemented, in which both breathing and coughing segments are simulta-
neously used as input. (c) The deep fusion model proposed. The kernel size
of each convolutional and max-pooling layer is given next to each block. The
channel change is provided next to each transition arrow between adjacent
blocks. The feature fusion mechanisms applied to this network are either
direct concatenation or 1×1 convolution. It projects the learned embedding
features to match the channel-dimension of the convolutional layer, and adds
them to the feature map obtained at the output of the convolution.(Source:
[264]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 The convolutional auto-encoder (CAE) architecture with 4 encoder layers
and 4 decoder layers as an example. An encoder layer is a sequence of con-
volution – batch-normalisation – PReLU – max-pooling. A decoder
layer is a sequence of transposed convolution – batch-normalisation –
PReLU – transposed max-pooling. The distance between the original
and reconstructed image represents the reconstruction error. (Source:[274]) 68
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4.5.2 Segmentation and pre-processing of heart rate data of a participant with
reported COVID-19-like symptoms. Top: Heart rate data recorded 24-
hours-a-day/7-days-a-week from 21 February to 20 May 2020 (total 90 days).
Onset (black vertical bar) indicates 0 o’clock at the reported symptom on-
set date. Red rectangle – 7 days heart rate data before and after symptom
onset representing a symptomatic segment; green rectangle – asymptomatic
segment. Middle: Symptomatic segment. Blue curve – unprocessed heart
rate trajectory of the red rectangle above; red curve – heart rate trajectory
averaged over 5-minutes intervals. Bottom: Representation of the symp-
tomatic segment as 24×168 sized image of 5-minutes heart rate data related
pixels. Each column represents an interval of 2 hours, the 168 columns sum
up to 14 days. (Source: [274]) . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.3 Reconstruction errors for continuous binary COVID-19 yes/no classification
on 14-days heart rate windows of an exemplary individual (the same as in
Figure 4.5.2, top). (Source: [274]) . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.4 Training and testing curves illustrated by the reconstruction errors when
using different margin sizes. (Source: [274]) . . . . . . . . . . . . . . . . . . 79

5.3.1 The network architectures of mask detection models. (a) Attentive convolu-
tional LSTM, which consists of three cascading modules: a CNN containing
5 convolutional blocks with two skip connections, a bidirectional LSTM, and
a multi-head self-attention. (b) Convolutional transformer, which exploits
a transformer encoder instead of the BiLSTM and the attention module to
capture time-dynamics. Extracted features are averaged along the time axis
are then projected onto classes using fully-connected layers. (Source: [304]) 84

5.3.2 Hybrid model architectures for mask detection: (a) a cascade sequence of
ResNet - LSTM - Transformer; (b) a cascade sequence of ResNet -
Transformer - Attentive LSTM; (c) a parallel alignment of ResNet -
Attentive LSTM � Transformer. (Source:[304]) . . . . . . . . . . . . . 86

5.3.3 Comparison of the ROC curve of our different models, and the corresponding
Area Under Curve (AUC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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To Myself

During the second round of reviewing the manuscript, I began to recall the past four years
in Augsburg and extended to the past ten years living and studying in Germany. The
growth in these days not only helped me gain a deeper understanding in the professional
fields I love, such as artificial intelligence, speech processing, and human health, but also
helped me internalise many contradictions, such as misunderstandings and grievances. Such
growth has allowed me to downplay the trivialities in my life, allowing me to focus on the
realisation of my dreams, goals and values. Needless to say, during my Ph.D. research, I had
a difficult time and almost gave up my career. For this, I made more efforts and attempts
which brought more setbacks and blows. However, in this case, you can’t let your failures
define you, you have to let the failure teach you. Your failures are telling you that you need
to do differently next time, and sometimes they are hinting you what you should do.

My superstar, Kobe Bryant once said ”rest at the end, not in the middle“. I have made
my study and work for the past ten years very compact. In January 2020, a morning that
I was about to wake up, I was told by my family and friends that Kobe passed away in
helicopter crash. I didn’t subconsciously cry because physically he was always so far away
from me, and he might have gone to play basketball with God this time. Today, I often
feel regret and sad that I have never met him in person, since he left the precious treasure
of life in my heart, Mamba Mentality. The four years of my Ph.D. have been arduous but
super worthwhile, a lot of growth comes along the time. It provides me a good start for
considering some questions I am facing in my life: When to keep persistent and when to
give up, how to approach success and how to accept failure, how to work alone and when
to ask for help.

I often reminisce about two friends from my youth. Whenever I am flustered and
hesitant, I will think of one of them. He is very good at calming himself in the face of
difficulties and never seems to be flustered. From time to time, he makes jokes of himself in
difficult situations. He became an excellent surgeon after graduating from a famous medical
school. The other friend works as a news reporter and interpreter, working across several
countries. When I was only six or seven years old, for the first time in my life, he made
the point that one should do things with attention to the sense of beauty. The pursuit of
beauty brings your patience, curiosity and respect to your work. It can make what you are
doing more passionate.

I should be more grateful for the tolerance and patience of my family, supervisor, men-
tors, friends, colleagues, and many familiar and unfamiliar around me. Those tolerances
have given me more freedom to be willful, to think, and to adjust the trajectory of my
career. Those patience carry their expectations of me, and allows me the time to think and
explain. It is very appreciated that the world treats me kindly, and I wish everyone deserves
all the kindness in the world.

Don’t forget those work habits
Don’t forget what has gotten you to where you are.
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