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Abstract. Non-volatile memory (NVM) technologies offer DRAM-like
speeds with the added benefit of failure resilience. However, developing
concurrent programs for NVM can be challenging since programmers
must consider both inter-thread synchronisation and durability aspects
at the same time. To alleviate this, libraries such as FliT have been de-
veloped to manage transformations to durability, allowing a linearizable
concurrent object to be converted into a durably linearizable one by
replacing the reads/writes to memory by calls to corresponding opera-
tions of the FliT library. However, a formal proof of correctness for FliT
is missing, and standard proof techniques for durable linearizability are
challenging to apply, since FliT itself is not durably linearizable. In this
paper, we study the problem of proving correctness of transformations
to durability. First, we develop an abstract persistency library (called
PLib) that operationally characterises transformations to durability. We
prove soundness of PLib via a forward simulation coupled with a prophecy
variable used as an oracle about future behaviour. Second, we show cor-
rectness of the library FliT by proving that FliTrefines PLib under the
realistic PTSO memory model, i.e., the persistent version of TSO mem-
ory model implemented by Intel architectures. The proof of refinement
between FliT and PLib has been mechanised within the theorem prover
KIV. Taken together, these proofs guarantee that FliT is also sound wrt
transformations to durability.

Keywords: Durable Linearizability, Px86-TSO, Persistency Libraries, FliT, Ver-
ification

1 Introduction

Byte-addressable non-volatile (aka persistent) memory (NVM), e.g., Memory-
Semantic SSD [25] and XL-FLASH [7], offer higher performance than flash
memory while providing resilience to system-wide crashes. Unlike DRAM, the
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contents of NVM survive failures (e.g., a power outage). However, developing
NVM programs is challenging since they must provide properties such as failure
atomicity and recoverability, introducing a high level of additional programmer
overhead. This is particularly acute for concurrent programs under weak mem-
ory, which have thread-safety and concurrency synchronisation requirements in
addition to persistency for failure atomicity.

In recent years, there have been several proposals [5, 13, 26, 30] that aim to
help programmers with the transition to NVM, i.e., correct durability of concur-
rent programs developed for systems without NVM. Many of these approaches
provide mechanisms that support transformations to durability, whereby pro-
gram operations such as reads and writes to memory are replaced by calls to
library operations that manage durability. In particular, given a (concurrent)
library that is correct in a setting without crashes, the transformation mecha-
nism can be used to ensure correctness with crashes. We note that the notion of
“correctness” may also change as part of the transformation to durability.

Proposals such as TL4x and PMDK [1,26] support durable transactions that
provide failure atomicity (but not necessarily thread safety [26]). Atlas [5] ensures
thread-safe durability provided that a programmer can guarantee that the orig-
inal program is race-free. Mirror [13] transforms linearizable [14] objects (viz.,
data structures like stacks or queues) into durably linearizable [15] objects, pro-
vided that the object in question is non-blocking. FliT [30] is a generic proposal
that ensures correct durability by tracking read-write dependencies on behalf of
a programmer using persistent-write-back (pwb) instructions. Neither FliT nor
Mirror have a fully formalised correctness proof of such transformations.

In this paper, we take a more abstract approach to the question of transfor-
mations to durability for linearizable concurrent objects, which may implement
concurrent data structures such as stacks or queues. As our first contribution,
we develop a persistency library (called PLib) that abstractly models the essen-
tial requirements for durability. Such requirements capture the key dependencies
between read and write accesses to shared variables and their persistence order.
We prove that PLib guarantees sound transformation to durability. This proof
proceeds by showing PLib refines a canonical durable automaton [9] that is de-
rived from the sequential specification of the object. Our proof employs forward
simulation using information about the future alike prophecy variables [8].

Our second contribution is a proof of correctness of the FliT library [30].
This proof leverages correctness of PLib by showing FliT in turn to refine PLib.
This part of our overall soundness proof has been mechanised in the theorem
prover KIV [28]. For this concrete implementation level, we model FliT over a
real processor, i.e., to be subject to the effects of the (weak) memory model of the
processor. Here, we take the memory model of persistent PTSO [16], the persis-
tent version of the TSO memory model of Intel’s x86 processor [23]. As a result,
both refinements together show that FliT guarantees correct transformations to
durability on PTSO.

Overview. This paper is structured as follows. §2 motivates our work and §3
presents the formal background and key definitions. We present PLib and its
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1 put(x, arg){

2 write(x.val , arg);

3 write(x.flag , true);

4 }

5 get(x){

6 r := read(x.flag)

7 if r {

8 s := read(x.val);

9 return s; }

10 return ⊥; }

Fig. 1: Operations put and get (initially x.val = 0 and x.flag = false)

correctness proof in §4, present the FliT library implementation (under the PTSO
memory model) in §5 and its correctness proof in §6.

Auxiliary material. The KIV mechanisation corresponding to the proofs in
§6 may be found at [4].

2 Motivation

We start by illustrating the challenges involved in concurrent programming
on NVM. Consider the object O implementing put and get operations in Fig. 1
that use a variable x.flag to determine whether a value for a given location
x.val has been set. Operation get(x) only reads from x.val after x.flag has
been set, otherwise it returns the value ⊥5. Without NVM, these operations are
clearly linearizable [14] wrt an abstract specification that performs each of the
operations atomically since the fine-grained implementation only sets x.flag

to true after writing to x.val. Thus any (concurrent) history of put and get

operations can be reordered (while preserving the real-time order of operations)
into a valid sequential history.

Let us now consider the behavior of Fig. 1 under NVM. In NVM, writes are
first cached in volatile memory. Written values only reach persistent memory on
flush actions. We then talk about persisted writes. Read actions return values
from volatile memory and – if this does not contain an entry for a location –
then read from persistent memory. On a crash, only the contents of persistent
memory is preserved; thus a crash action resets the volatile memory to persis-
tent memory. It is straightforward to see that executing put and get in such a
memory model results in histories that are not durably linearizable [15], where
durable linearizability holds if a history after removing crashes is linearizable.
In particular, it is possible to generate the history in Fig. 2a, where the get

operation before the crash can read from unpersisted writes of the put opera-
tion, and the crash can occur before these writes are persisted (so that the get
after the crash returns ⊥). This history is not linearizable after removing the
crash, thus is not durably linearizable. Similarly, since writes do not persist in

5 Note that the put operation would in principle need to reset flag to false before
writing a new value. For simplicity we elide this here.
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put(x,1) get(x,1)
crash

get(x,⊥)

(a) History H1: Fails durably
linearizability because the sec-
ond get returns ⊥ instead of 1

put(x,1)
crash

get(x,0)

(b) History H2: Fails
durably linearizability
because the get returns
0 instead of 1 or ⊥

put(x,1)

get(x,1)

crash

get(x,⊥)

(c) History H3: Fails
durably linearizability
because the second get

returns ⊥ instead of 1

Fig. 2: Three histories (dotted lines denote operations of different threads, x-axis
is time)

the order of their occurrence, histories such as H2 (Fig. 2b) would also be pos-
sible. Here, the get operation performs a read and sees the flag to be true (i.e.,
x.flag is persisted), but still returns the old (initial) value. A naive approach
to addressing this issue is to modify the program so that each write is flushed
to persistent memory immediately after it occurs. However, this approach is not
only inefficient, it is also incorrect. For instance, under concurrency, it would be
possible to generate the history in Fig. 2c since the second write to x.flag in
put may have occurred, but not yet persisted, yet be read by the first get.

The key to achieving durable linearizability generically is to ensure that a
client (i.e., a thread) executing an object’s operation (e.g., get) that reads from
another client operation (e.g., put) should not complete unless it can be assured
that all writes it has read from have persisted. With this approach, histories
such asH3 (Fig. 2c) cannot occur even when the put(x,1) executes concurrently
with get(x). In particular, the get itself would then ensure that any unpersisted
writes that it has read from have been persisted before returning. Thus it would
be impossible for the second get(x) to return ⊥. Second, to prevent writes from
being persisted out-of-order, we must ensure prior writes executed by a thread
have persisted before starting a new write by that thread. This prevents histories
such as H2 (Fig. 2b).

The ideas above have been implemented by libraries such as FliT [30] by pro-
viding read/write methods that efficiently track read-write dependencies between
client operations. A programmer can gain durable linearizability guarantees by
calling reads/writes of such a library in place of standard reads and writes, to-
gether with a call to a complete method before returning from an operation.
The method complete ensures that any dependent unpersisted writes are per-
sisted after executing complete. One of our main contributions in this paper is
an abstract persistency library PLib (presented as an input/output automaton
in Fig. 5) that we prove to abstractly capture this correctness principle. With
this correctness proof for PLib at hand, we can then prove correctness of FliT by
showing FliT to refine PLib.
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ε

b

Fig. 3: Possible cases for a forward simulation abs, where a ∈ external(C) =
external(A), b ∈ internal(C), c ∈ internal(A), as, as′ are abstract and cs, cs′

concrete states. ε indicates no action of A. Existentially quantified states and
actions must be found such that the diagram commutes.

3 Using IOAs to Verify (Durable) Linearizability

This section provides some standard definitions and known results, providing
background for the rest of the paper.

Input/Output Automata (IOA). We use input/output automata (IOA) [20]
for all of our sequential and concurrent models. We let Loc be the set of shared
locations, Tid the set of thread identifiers and Val the values of locations.

Definition 1 (Input/Output Automaton (IOA)). An Input/Output Au-
tomaton (IOA) is a labeled transition system A with a set of states states(A), a
set of actions acts(A), a set of start states start(A) ⊆ states(A), and a tran-
sition relation trans(A) ⊆ states(A)× acts(A)× states(A) (so that the actions
label the transitions).

The set acts(A) is partitioned into internal actions internal(A) that represent
events of the system that are hidden from the environment, and external ac-
tions external(A) (typically atomic steps or invocations/responses to calling an
operation) representing the IOA’s interactions with its environment. We specify
IOAs (like the one in Fig. 4) by giving the states in terms of state variables and
their initial values. For every action a ∈ acts(A) we give a precondition Pre on
the state s that enables a step (s, a, s′) ∈ trans(A), and specify the result state
s′ by assignments given under Eff.

We next define the correctness conditions relevant for our approach. Lineariz-
ability is the standard correctness condition for concurrent objects [14]. Here,
we provide a definition of linearizability in terms of refinement.

Refinement. An execution of an IOA A is a sequence σ = s0a0s1a1 . . . snansn+1

of alternating states and actions, such that s0 ∈ start(A) and for all states si,
(si, ai, si+1) ∈ trans(A). We write first(σ) = s0 for the initial and last(σ) for
the last state (if it exists) of an execution σ.

A trace of A (an element of traces(A)) is any sequence of (external) actions
obtained by projecting the external actions of any execution of A. For IOAs
C and A with external(C) = external(A), we say that C is a refinement of
A, denoted C ≤ A, iff traces(C) ⊆ traces(A). Refinement can be proven by
establishing forward or backward simulations between IOAs (see e.g., [18]). Given
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that the methodology is well-known, we elide the formal definition, and provide
an overview of the proof obligations for forward simulation diagrammatically in
Fig. 3.

Canonical (Durable) Automata. We provide an operational definition of
linearizability and durable linearizability using the notion of canonical (durable)
automata, both of which are defined in terms of a sequential object specifying
the expected behavior.

Definition 2 (Sequential Object). A sequential object is a 4-tuple (Σ,S, I, ρ)
where Σ is an alphabet of operations, S is a set of states and I ⊆ S are the ini-
tial states, and ρ : (S ×Σ ×Val∗) → 2S×Val∗ is a transition relation generating
a set of next states and output values (if any) for a given state, operation and
input values.

The canonical automaton [19], Can(S), and canonical durable automaton [9],
DAut(S), for a sequential object S are shown in Fig. 4. Can(S) splits every op-
eration op ∈ Σ of S into separate external invocation and response actions and
an internal do-action that occurs between the invocation and response. DAut(S)
additionally includes a crash action. The traces of a canonical (durable) automa-
ton are well-formed histories [14, 15], comprising invocations and responses of
each operation plus the crash actions in the case of the durable automaton.
Unlike the sequential object, the histories of a canonical automaton may be
concurrent. However, since the effect of operations op of the sequential object
(the do-action) occurs between the invocation and response, each history of the
canonical (durable) automaton is (durably) linearizable wrt the given sequential
specification, S. Thus, in general, an automaton is (durably) linearizable wrt
S iff it refines the canonical (durable) automaton for S. Note that the durable
automaton reflects the persistent state of the object, thus, only the program
counters of the threads are affected by the crash.

Definition 3 (Linearizability and Durable Linearizability). Let C be an
IOA. We say that C is linearizable wrt S if C ≤ Can(S), and that C is durably
linearizable wrt S if C ≤ DAut(S).

Our main result is to show that a linearizable object can be transformed into
a durably linearizable object. Formally, this requires (c.f. [2]) that we transform
an IOA whose histories contain invocations and responses of operations to his-
tories that contain invocations, responses and crashes. The addition of crash
is straightforward if the crash has no effect on the original IOA except on the
program counters of the threads. Given an IOA A, we let Ac be the IOA A
augmented with the crash action from Fig. 4. Note that DAut(S) = Can(S)c.
We have the following proposition.

Proposition 1. If A ≤ Can(S) then Ac ≤ DAut(S).

Composing Client and Library IOAs. In the following, we will have several
instances of a client calling a library, written Client [Lib]. These communicate via
external actions, which may be invocation and response actions or atomic calls.
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State variables:
pc : Tid → {notStarted , crashed , idle} ∪

{inv(op), res(op) | op ∈ Σ}
(initially: ∀ τ ∈ Tid . pc(τ) = notStarted)

s : S (initially: s ∈ I)
in, out : Tid → Val∗

Actions:
invτ (op, v)
Pre: pc(τ) ∈ {notStarted , idle}
Eff: pc(τ) := inv(op)

in(τ) := v

doτ (op)
Pre: pc(τ) = inv(op)

(s′, o′) ∈ ρ(s, op, in(τ))
Eff: pc(τ) := res(op)

(s, out(τ)) := (s′, o′)

resτ (op, v)
Pre: pc(τ) = res(op)

v = out(τ)
Eff: pc(τ) := idle

crash
Eff: pc := λ τ : Tid . if pc(τ) ̸= notStarted then crashed else pc(τ)

Fig. 4: The canonical durable automaton DAut(S) for a sequential object S =
(Σ,S, I, ρ); automaton Can(S) is derived by removing the highlighted program
counter values and transitions

The instances of Client [Lib] that we use are shown in Fig. 8. In [2], Client [Lib] is
defined formally as a product of two IOAs and the following theorem is shown,
which establishes refinement for client-library compositions.

Theorem 1 (Refinement in context). Let A,B,C be IOAs with external(C)
= external(A) ⊆ acts(B). If C ≤ A, then B[C] ≤ B[A].

4 Abstract Persistency Library and its Correctness

In this section, we present our first contribution: the abstract persistency library
PLib, which guarantees the transformation to durability for concurrent lineariz-
able objects. An object O has to call the libWrite and libRead actions of PLib
to access shared variables and additionally call complete before returning from
operations. The key requirement on PLib to ensuring durability is that it tracks
certain dependencies (see [30]) and persists writes in this order. Namely 1) writes
of the same thread must persist in the order in which they occur, and 2) when
a thread, say τ , executes complete, all of τ ’s writes as well as the writes τ has
read from must have been persisted.

Persistency Library. Fig. 5 gives the IOA of PLib. The state of PLib assumes
a volatile memory vmem, a persistent memory pmem and a log of all read/write
events together with their persistency status and a program counter. Note that
the program counter tracks the control flow of the library and is unrelated to the
program counter of the client thread. When a crash occurs, all currently running
threads are stopped and cannot continue. To comply with durable linearizabil-
ity [15], a thread that crashes is never restarted. Note that like the canonical
(durable) automata, PLib specifies a concurrent system since each thread can
independently execute its actions.
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pdr(x, ε) = ε

pdr(x, ⟨Wτ (x, v),flag⟩ · log) = ⟨Wτ (x, v),flag⟩ · log
pdr(x, ⟨Rτ (x, v),flag⟩ · log) = ⟨Rτ (x, v), true⟩ · pdr(x, log)

pdr(x, ⟨Wτ (x
′, v),flag⟩ · log) = ⟨Wτ (x

′, v),flag⟩ · pdr(x, log) for x ̸= x′

pdr(x, ⟨Rτ (x
′, v),flag⟩ · log) = ⟨Rτ (x

′, v),flag⟩ · pdr(x, log) for x ̸= x′

lwp(x, log) = false ↔ ∃ log1, log2. log = log1 · ⟨Wτ (x, v), false⟩ · log2 ∧ log2|Wr,x = ε

State variables:

vmem, pmem : Loc → Val (initially: ∀ x ∈ Loc. vmem(x) = pmem(x) = 0)
log : ((Rd ∪Wr)× B)∗ (initially: log = ε)
pc : Tid → {notStarted , idle, crashed} (initially: ∀ τ ∈ Tid . pc(τ) = notStarted)

Actions:

libWriteτ (x, v)
Pre: pc(τ) ∈ {notStarted , idle}

log |τ,false = ε

Eff: vmem(x) := v
log := log · ⟨Wτ (x, v), false⟩
pc(τ) := idle

libReadτ (x, v)
Pre: pc(τ) ∈ {notStarted , idle}

v = vmem(x)
Eff: log := log · ⟨Rτ (x, v), lwp(x, log)⟩

pc(τ) := idle

completeτ
Pre: pc(τ) ∈ {notStarted , idle}

log |τ,false = ε

Eff: pc(τ) := idle

persist(x)
Pre: ∃ log1, log2.

log = log1 · ⟨Wτ (x, v), false⟩ · log2

∧ log1|Wr,x,false = ε

Eff: pmem(x) := v
log := log1 · ⟨Wτ (x, v), true⟩ · pdr(x, log2)

crash
Eff: pc := λ τ ∈ Tid . if pc(τ) ̸= notStarted then crashed else pc(τ)

vmem := pmem
log := ε

Fig. 5: PLib specification (where log|Wr restricts log to all Wr entries, log|τ,false
to all entries of τ with flag false and so on)

Let Rd and Wr be the set of all read and write events. Each read event has the
form Rτ (x, v), where τ is a thread identifier, x ∈ Loc is a location and v ∈ Val is
a value. Similarly, a write event has the form Wτ (x, v). The log pairs write events
with a boolean flag that determines whether the operation has been persisted.
We call a write persisted if its effect is written to persistent memory and it has
flag true, and a read persisted if the write that it reads from is persisted.

A libWrite and complete executed by thread τ may only proceed if it has
neither unpersisted writes nor unpersisted reads in log , i.e. when log |τ,false = ε.
We believe the condition is as weak as possible to allow a proof of durable

8



notStarted

inv(op) · · · res(op)

crashed

idle fin(op)

invτ(op)

crash
invτ(op)

crash
crash

crash

completeτ

resτ(op)

crash

Fig. 6: States of a thread τ when calling operations
of object Occ (· · · are program counter values within
the body of some op ∈ Σ)

completeτ
Pre: pc(τ) = res(op)
Eff: pc(τ) := fin(op)

resτ (op)
Pre: pc(τ) = fin(op)
Eff: pc(τ) := idle

Fig. 7: complete and res
actions of Occ

linearizability for arbitrary data structures: A write is disallowed only if there
is a previous read or write by the same thread that has yet to be persisted.
Returning from an operation must have persisted its values.

Execution of the write updates the value of the written location in vmem,
then appends a new write event to log with flag false. Execution of read reads
the value from volatile memory. It adds the read to the log together with a flag
that is computed by checking whether the last write to this location (if there is
any; otherwise the flag is set to true) has already been persisted using predicate
lwp. Persisting a write also persists dependent reads (i.e., those which have read
this value) using function pdr . The recursive definition of pdr ensures that the
reads affected are those in the log before the next write to the same location.

Correctness of PLib.Next, we prove theorem 2 below, i.e., that PLib guarantees
a transformation to durability for linearizable objects. First, we explain the
construction of the automaton Occ[PLib]. Let Occ be the object Oc (as described
in proposition 1) further modified so that each operation calls a complete action
before returning (see Fig. 6). The complete and res(op) actions of Occ are depicted
in Fig. 7. Let Occ[PLib] be Occ but with internal actions read, write, complete and
crash replaced with calls to the libRead, libWrite, complete and crash actions of
PLib, as depicted on the left of Fig. 8.

Theorem 2. Suppose S is a sequential specification and O an object. Then we
have that O ≤ Can(S) ⇒ Occ[PLib] ≤ DAut(S).

We show that Occ[PLib] is a refinement of DAut(S) by proving three separate
refinements:

1. Oc ≤ DAut(S). This follows from proposition 1 and the assumption O ≤
Can(S).

2. Occ ≤ Oc. This change again only affects program counter values, thus it is
trivial to show.

3. Occ[PLib] ≤ Occ. This is the challenging part, which we discuss in more detail
below.
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O

Oc

Occ

PLib

complete

crash

libWrite

libRead

inv(op)

res(op)

FliT
wPSC /
PTSO

read, write

fetch and inc/dec

flush opt

mfence, sfence

crash

inv(lib rw) ,

res(lib rw)

complete

Fig. 8: Interface between client and library IOAs in our formal models;
highlighted actions denote external events and lib rw ∈ {libRead, libWrite}

We start the proof of Occ[PLib] ≤ Occ by first clarifying the state and operations
of Occ. As we need to show correctness of PLib for all objects, we cannot assume
any specific knowledge about the actions of Occ. We only assume that Occ uses
the following state variables.

– A program counter opc for each thread τ , which in particular may take values
notStarted , idle, inv(op), fin(op), res(op) and crashed as well as values for
each atomic statement within the implementations of operations of the object
op. The values are changed according to Fig. 6.

– The shared memory, mem : Loc → Val , that is written atomically by write
operations and read atomically by read operations.

– Local registers of type Reg for each thread and a mapping regs : Reg →
Val that describes the local state that the object uses in its concurrent
implementation of the sequential specification S.

The state of Occ[PLib] is similar, except that Occ[PLib] calls libWrite/libRead of
PLib instead of reading and writing to shared memory using the write and read
operations. Thus, in Occ[PLib] the shared memory mem is omitted since memory
is only indirectly accessed via PLib (see Fig. 5).

Next, we describe the overall idea of the proof. Proving refinement in our
setting amounts to proving trace inclusion, i.e., traces(Occ[PLib]) ⊆ traces(Occ).
Concretely, from an execution of Occ[PLib] we will construct an execution of Occ

with the same sequence of external actions. This is guided by the following ideas:

Step 1. Crash events divide executions (and hence traces) of Occ[PLib] into so-
called eras (of non-crash actions). We will reason about each era of Occ[PLib]
in isolation and construct corresponding eras of Occ. At the end, we join the
constructed eras of Occ to form a consistent execution of Occ.

Step 2. Refinement is usually proven by showing a forward or backward simula-
tion that uses an abstraction relation to relate states of a concrete automaton
(Occ[PLib]) to the states of an abstract automaton (Occ), see Fig. 3 for con-
ditions in a forward simulation. Here, we will employ a forward simulation
together with a prophecy variable containing information about the future
to define the abstraction relation. Our prophecy variable refers to the log
from the end of the era, which we use to determine whether libRead/libWrite
actions at the concrete level should be matched to corresponding read/write
actions at the abstract level of Occ, or to ε.
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Step 3. For every execution σ of Occ[PLib] (more specifically, every era) we use
forward simulation to show the existence of an execution ρ (viz. era) of Occ

such that ρ|τ ⪯ σ|τ holds for all threads τ . Basically, the construction of ρ
keeps the steps of τ which are “persisted” in σ and preserves the external
actions of the trace.

Step 1 (Decompose into eras). Let σ be an execution of Occ[PLib]. Moreover,
suppose σ = σ1 crashσ2 crash . . . crashσk such that each σi contains no crashes.
We refer to σ1, σ2, . . . , σk as the eras of σ.

Let σi be an era of a concrete execution of Occ[PLib]. We construct a corre-
sponding abstract era ρi of Occ as follows. In σi, execution starts with vmem =
pmem since this is true initially and each crash resets vmem to pmem (see
Fig. 5). The abstraction relation we use (see below) ensures that in correspond-
ing states, mem of Occ is the same as pmem. The crash actions for Occ[PLib] (and
Occ) leaves pmem (and mem) unchanged. The abstraction relation below further
ensures that the same set of threads are “active” in corresponding concrete and
abstract eras and hence the effect of crash on abstract and concrete program
counters is the same. Thus ρ1 crash ρ2 . . . crash ρn is an execution of Occ.

Step 2 (Constructing the abstraction relation). We augment the states
of Occ[PLib] with information from the end of each era. More specifically, we
consider the value log := sn.log of the log variable at the end of the era
σ = s0a0s1a1 . . . sn, and use it as a prophecy variable. (Note that although
this discussion is about era σi, we drop the index i for notational convenience).
Using the (standard) construction of [18, Proposition 5.13], log is added to every
state sj resulting in an era σ′ = s′0a0s

′
1a1 . . . s

′
n.

We now work towards an abstraction relation that relates σ to a correspond-
ing era ρ = q0a

′
0q1a

′
1 . . . qn of Occ by relating each state s′j to qj . We show that

this relation gives rise to a forward simulation below. Note that, as described
in Fig. 3, the forward simulation ensures that each concrete step is matched by
some abstract step, thus σ and ρ have the same length. Namely, in the case of
stuttering steps, the concrete action is matched by an abstract ε step.

By construction, in the abstract execution, Occ can only perform reads and
writes from the persistent part of log. Formally, the persistent part pp(log) of
log is defined recursively as a list of read and write events. We use l(j) ̸=
⟨RWτ ( , ), false⟩ to mean l(j) ̸= ⟨Wτ ( , ), false⟩ ∧ l(j) ̸= ⟨Rτ ( , ), false⟩.

pp(ε) = ε

pp(l · ⟨eτ , false⟩) = pp(l)

pp(l · ⟨eτ , true⟩) = if ∀ j. l(j) ̸= ⟨RWτ ( , ), false⟩ then pp(l) · eτ else pp(l)

Thus pp(log) contains all writes in era σ that are persisted by the end of σ. Note
that the precondition libWrite for PLib (Fig. 5) ensures that there cannot be an
earlier write with flag false followed by a write from the same thread with flag
true. Persisted reads are dropped from the persistent part iff they are preceded
by other unpersisted reads or writes of the same thread.
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The reads and writes executed in era σ′ when we reach state s′i are recorded
in s′i.log (see Fig. 5). Operations that are persisted before the end of the era
σ are those in the persistent part of plog(i) := log[0..#(s′i.log) − 1], i.e., in
pp(plog(i)). Thus, plog(i) contains the same events as s′i.log in the same order.
However, while s′i.log indicates read/writes that have been persisted thus far,
plog(i) records the reads/writes that are guaranteed to be persisted before the
era σ ends.

We can use plog(i) to relate the persistent memory s′i.pmem to the abstract
memory qi.mem. In qi we want to have exactly the memory state that corre-
sponds to executing the events of pp(plog(i)), the relation between persistent
memory of s′i and the abstract memory qi.mem is thus

qi.mem = s′0.pmem⊕ pp(plog(i)) (1)

where pmem ⊕ evs is inductively defined as

pmem ⊕ ε = pmem

pmem ⊕ ((R ( , ), ) · evs) = pmem ⊕ evs

pmem ⊕ ((W (x, v), ) · evs) = pmem[x 7→ v]⊕ evs

So the abstract memory qi.mem is obtained by taking the persistent memory
pmem from s′0 and performing the updates of all writes of the persisted part of
the log that have been executed up to state s′i in order. Each individual thread τ
has executed reads and writes that are persisted at the end of the era only, if and
only if plog(i)|τ and si.log|τ are equal, which is equivalent to plog(i)|τ,false = ε.

The abstraction relation keeps registers and program counter values of a
thread τ identical in the concrete and abstract levels until the thread reaches
its first unpersisted read or write, i.e., until plog(i)|τ,false becomes nonempty.
Therefore, the abstraction relation states

plog(i)|τ,false = ε =⇒ s′i.regs = qi.regs ∧ s′i.pc = qi.pc (2)

The full abstraction relation is the conjunction of (1) and (2).

Step 3 (Proving forward simulation). For the forward simulation, we have
to map the steps s′iais

′
i+1 of the augmented era σ′ of Occ[PLib] to steps of the

corresponding era in Occ (in the sense of Fig. 3). Specifically,

– if ai = libWrite(x, v) and plog(i + 1)|τ,false = ε we map to qi write(x, v) qi+1

in the abstract era ρ,
– if ai = libRead(x, v) and plog(i+1)|τ,false = ε we map to qi read(x, v) qi+1 in

the abstract era ρ, and
– in all other cases, we map to qi ε qi+1 in ρ

Note that plog(i)|τ,false = ε iff pp(plog(i))|τ = plog(i)|τ .
Intuitively, a thread continues executing actions until it reaches a read or

write that is not persisted at the end of the era (and hence will be lost when a
crash occurs). The libReads and libWrites that are persisted in the concrete era are

12



libWrite(x, arg){

sfence;

fetch_and_inc(flit_ctr(x));

write(x, arg);

flush_opt(x);

sfence;

fetch_and_dec(flit_ctr(x));

}

libRead(x){

val = read(x);

if (flit_ctr(x) > 0)

flush_opt(x);

return val;

}

complete (){ mfence; }

Fig. 9: Core algorithm of the FliT library

mapped to reads and writes. Both sets of corresponding operations see the same
memory state at the abstract and concrete levels due to (1) of the abstraction
relation. Steps of the object that are preserved can be mapped one-to-one since
they see the same register values by (2).

This mapping of steps preserves invocations and responses (i.e., gives us the
same sequence of external actions): A thread executing a return (the argument
for an invocation is similar) must have all reads and writes persisted in si.log |τ ,
since it has just called the complete operation. Therefore, all events are persisted
in plog(i)|τ as well, so the step is kept in the abstract era. All earlier actions of
the thread are kept as well, simply because plog(j) for j ≤ i is a prefix of plog(i).

5 The Library FliT and Memory Models

For our second contribution, we prove soundness (of a transformation to
durability) for a concrete persistency library (FliT [30]) executing on a realistic
memory model (PTSO [16, 24]). We first explain FliT and PTSO, then prove
soundness in §6.
Library FliT. The pseudo code of the core algorithm of FliT is given in Fig. 9.
For our proofs, it is translated into an IOA as described in [10] with a step
for every instruction. FliT comprises operations libRead and libWrite that
perform reads from and writes to shared memory (i.e., locations x in Loc)6. Like
Occ[PLib], the concurrent object Occ calls libRead and libWrite when accessing
memory. In addition, FliT implements an operation complete that the object O
has to call before completing one of its operations op ∈ Σ.

The key idea behind FliT is that it manages persistent memory operations
on behalf of a user. It guarantees that crucial dependencies among reads and
writes are maintained and thereby achieves durable linearizability. The shared
variable flit ctr(x) for location x is used (for efficiency) to determine whether

6 In [30], the operations are called shared load and shared store, respectively. Since
we aim to prove a durable linearizability theorem that assumes all reads and writes
are durable, we omit the additional pflag of the original algorithm and assume that
each FliT operation is called with the persistent flag. We also do not make use of
private stores and loads (this is future work).
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a shared write is in progress, i.e., another thread is currently writing to location
x so that the current value at x may not be persisted yet. libWrite performs a
fetch and inc (i.e., a read-modify-write, RMW, operation) on flit ctr(x) be-
fore performing the write itself, and a corresponding fetch and dec (another
RMW) on flit ctr(x) after the write. Both libRead and libWrite issue
flush opt instructions7. Finally, libWrite issues an sfence instruction at its
start and end, and complete issues an mfence.8 Basically, the flush opt op-
eration serves as a marker signifying a prior access of a thread τ to location
x. RMW and mfence/sfence operations must wait until the marked access is
persisted, i.e., reaches persistent memory.

Memory models. FliT achieves its guarantees by employing a number of hard-
ware instructions with a semantics defined by the memory model of the pro-
cessor. Here, we study the usage of FliT on the memory model TSO of the
Intel x86 processor [21], viz. its version PTSO for NVM as formalized in [16].
There are alternative definitions of the persistent version of x86 (e.g., [6, 23]);
we have taken PTSO here because it matches the intention of developers about
program behaviour well and it has a clear connection to the persistent version
of sequential consistency (which we will employ in our proof). Fig. 10 provides
an automaton specification of PTSO based on the operational semantics given
in [16], and Fig. 8 (on the right) shows the events FliT uses for communication
with the memory model. For simplicity, we do not give a specification of flush
instructions here, as they are not used by FliT. For the same reason, we omit
the generic RMW transitions and directly define transitions for fetch and inc

and fetch and dec.

PTSO contains non-volatile memory m : Loc → Val and shared persistence
buffers P (x) storing a sequence of markers Wτ (v) and FO(τ) for every x ∈ Loc,
representing pending write and flush opt instructions by thread τ that have
not yet been persisted. These markers in P are visible to all threads, i.e., threads
can access the values of pending writes in P . Note that, compared to the original
model in [16], Wτ (v) markers are augmented with the identifier τ of the thread
that issued the write, which is relevant for verification only.

In addition to P , PTSO contains a private store buffer B(τ) for each thread
τ that contains similar markers W(x, v) and FO(x) for write and flush opt

instructions, as well as markers SF issued by sfence instructions. When a write,
flush opt, or sfence is executed by a thread τ , the corresponding markers are
first put into its store buffer B(τ) (actions writeτ , flush optτ , and sfenceτ in
Fig. 10). Propagate steps then move entries from store buffers to persistence
buffers (under some conditions), which make the entries visible to other threads
(actions prop w, prop fo, and prop sf). Finally, persist steps move entries from
persistence buffers to the main memory m (actions persist w and persist fo). As

7 In [30], they employ an instruction pwb (persistent-write-back) for this. Here, we
directly give the architecture-specific instruction.

8 In [30], both operations use a generic PFENCE instruction for which no precise seman-
tics is given. We instantiate these instructions with the appropriate concrete fence
instructions based on the semantics of the memory models given by [16,24].
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State variables:
m : Loc → Val (initially: m = λ x. 0)
P : Loc → {FO(τ),Wτ (v) | τ ∈ Tid , v ∈ Val}∗ (initially: P = λ x. ε)
B : Tid → {FO(x),W(x, v),SF | τ ∈ Tid , x ∈ Loc, v ∈ Val}∗ (initially: B = λ τ. ε)

Actions:
mfenceτ
Pre: B(τ) = ε

∀ y. FO(τ) /∈ P (y)

sfenceτ
Eff: B(τ) := B(τ) · SF

persist fo(x)
Pre: P (x) = FO(τ) · p
Eff: P (x) := p

prop fo
Pre: B(τ) = b1 · FO(x) · b2

W(x, ), FO(x), SF /∈ b1
Eff: B(τ) := b1 · b2

P (x) := P (x) · FO(τ)

flush optτ (x)
Eff: B(τ) := B(τ) · FO(x)

persist w(x)
Pre: P (x) = Wτ (v) · p
Eff: P (x) := p

m(x) := v

prop w
Pre: B(τ) = W(x, v) · b
Eff: B(τ) := b

P (x) := P (x) · Wτ (v)

prop sf
Pre: B(τ) = SF · b

∀ y. FO(τ) /∈ P (y)
Eff: B(τ) := b

readτ (x, v)
Pre: v = (m ⊕ P ⊕ B(τ))(x)

writeτ (x, v)
Eff: B(τ) := B(τ) · W(x, v)

fetch and inc/decτ (x, v)
Pre: B(τ) = ε

∀ y. FO(τ) /∈ P (y)
v = (m ⊕ P ⊕ B(τ))(x)

Eff: P (x) := P (x) · Wτ (v ± 1)

crash
Eff: P := λ x. ε

B := λ τ. ε

Fig. 10: Automaton of the PTSO memory model (which is equivalent to
Px86 [16]).

given by the crash action, all pending markers in B and P are lost during a crash
(the buffers are reset to ε), while only m is kept.

When thread τ intends to read location x (action readτ ), it first of all consults
its store buffer, then the persistence buffer and finally persistent memory. This is
modelled by the following function producing the combined memorym⊕P⊕B(τ)
visible to thread τ .

m⊕ P ⊕B(τ) = λ x.


v if B(τ) = b1 ·W(x, v) · b2 ∧W(x, ) /∈ b2

v else if W(x, ) /∈ B(τ) ∧ P (x) = p1 ·W (v) · p2
∧W (v) /∈ p2

m(x) otherwise

The read-modify-write actions fetch and incτ (x) and fetch and decτ (x) block un-
til the store buffer is empty, and immediately propagate the updated value to
the shared persistence buffer. Additionally, they require that all FO-markers of τ
have left the persistence buffers, so that they have a similar effect to the strong
mfenceτ action.

We prove soundness of FliT via a chain of refinements. This chain includes an
intermediate memory model called wPSC, as an abstraction of PTSO. This mem-
ory model is based on the often assumed sequential consistency model (SC [17]),
resp. PSC for NVM as given in [16]. The automaton of wPSC is given in Fig. 11.
wPSC abstracts from the store buffers B of PTSO so that all markers are directly
put into the shared persistence buffers P . Consequently, wPSC does not have any
propagate actions, and writeτ and flush optτ steps directly add markers to P (x).
Actions sfenceτ and mfenceτ are identical in wPSC as they both require all FO-
markers of τ to be persisted. The combined memory for reading is identical for
all threads: m⊕ P = m⊕ P ⊕ ε.

15



State variables:
m : Loc → Val (initially: m = λ x. 0)
P : Loc → {FO(τ),Wτ (v) | τ ∈ Tid , v ∈ Val}∗ (initially: P = λ x. ε)

Actions:
mfenceτ/sfenceτ
Pre: ∀ y. FO(τ) /∈ P (y)

weak persist fo(x)
Pre: P (x) = p1· FO(τ) · p2

p1|τ = ε p1|W = ε

Eff: P (x) := p1· p2

crash
Eff: P := λ x. ε

flush optτ (x)
Eff: P (x) := P (x) · FO(τ)

weak persist w(x)
Pre: P (x) = p1· Wτ (v) · p2

p1|τ = ε

p1|W = ε

Eff: P (x) := p1· p2

m(x) := v

readτ (x, v)
Pre: v = (m ⊕ P )(x)

writeτ (x, v)
Eff: P (x) := P (x) · Wτ (v)

fetch and inc/decτ (x, v)
Pre: ∀ y. FO(τ) /∈ P (y)

v = (m ⊕ P )(x)
Eff: P (x) := P (x) · Wτ (v ± 1)

Fig. 11: Memory models wPSC and PSC, where PSC is obtained by removing
blue parts .

The motivation for using this intermediate layer is to split the proof into two
parts dealing with separate concerns. Based on wPSC, the first part of the proof
(see §6.1) shows that the use of flush opt and sfence resp. mfence in FliT is
sufficient to guarantee a persist order that coincides with the persist constraints
of our specification PLib. The second part of the proof (see §6.2) then shows that,
when introducing per-thread store buffers in PTSO, propagations may only lead
to uncritical reorderings in the persistence buffers. However, this is only the case
in the context of FliT (or a similar persistency library).

Fig. 11 also depicts the differences to the original PSCmodel of [16]. Basically,
wPSC differs only in that the persist actions have slightly weaker preconditions
than PSC: persisting an FO- or W-marker of location x is possible even if there
are some other markers before it in P (x) (as long as they are just FOs of other
threads). This adjustment is necessary due to the possible propagation reorder-
ings of PTSO, see also §6.2.

6 Proving Correctness of FliT

Our correctness proof of FliT proceeds via proving FliT to refine PLib, i.e.,
to satisfy the requirements that PLib imposes on persistence orderings. More
specifically, we aim to prove FliT[PTSO] ≤ PLibIR. Therein, PLibIR (where IR
= Invoke/Respond) is a slight modification of PLib which replaces libRead and
libWrite with invocations to and responses from the library (i.e., inv(libRead),
inv(libWrite), res(libRead), res(libWrite)) in addition to do-steps (i.e., do(libRead),
do(libWrite)). This split is necessary because FliT’s reads and writes do not occur
atomically. The proof of FliT[PTSO] ≤ PLibIR proceeds in two steps:

1. FliT[wPSC] ≤ PLibIR, where wPSC is given in Fig. 11.
2. FliT[PTSO] ≤ FliT[wPSC], where PTSO is given in Fig. 10.

Combining this result with the simple to prove refinement PLibIR ≤ PLib and
theorems 1 and 2, we get correct transformation to durability for FliT on PTSO,
i.e., O ≤ Can(S) ⇒ Occ[FliT[PTSO]] ≤ DAut(S).
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The proofs of the two refinements are non-trivial; each of them took around three
weeks to verify. They have been mechanised in the theorem prover KIV [28] and
are described below. The proofs follow the strategy detailed in [10, 27], which
splits invariants and the abstraction relation into a global part for the shared
state and a thread-local part to get thread-local proof obligations.

6.1 Proof of FliT[wPSC] ≤ PLibIR

We show the two refinements via forward simulations. This means that we need
to define an abstraction relation, abs, and then have to map steps (occurrences
of actions) of the concrete automaton to steps of the abstract one as depicted in
Fig. 3.

The first refinement FliT[wPSC] ≤ PLibIR maps all relevant steps of FliT[wPSC]
(in particular, the inv, do, and res steps of read and write as well as the persist w
step) steps to the corresponding steps of PLibIR. The only exception is persist fo
which is mapped to an empty step. The core of the verification then is to ensure
that the precondition of do(write) of FliT[wPSC] is more restrictive than the one
of PLibIR.

Essentially, the modifications of the flit counter (which are RMW instructions
of wPSC) are responsible for this: the fetch and inc instruction before writing
ensures that the values read before the write get persisted, the fetch and dec

at the end of writing ensures that the write just done gets persisted, so each
thread never has more than one unpersisted write (the formal proof has corre-
sponding assertions). However, formally the preconditions of RMW instructions
(fetch and inc/decτ in Fig. 11) only guarantee that all FO-markers of the thread
have left the persistence buffer P (x), so some additional reasoning is needed to
prove this. The crucial assertion for FliT[wPSC] is that a thread τ that has just
added an FO-marker to P (x) before the fetch and dec instruction will keep this
marker longer in P (x) than the write event W it has added to P (x) in the write
instruction right before it. Also, the FO-marker will always be after the write
event, so the write must be persisted first. To ensure this, all global (persist)
steps and all steps by other threads than τ must preserve this. The thread relies
on the fact that all these steps can only remove an initial piece from each P (x)
(including some writes) and then some of the FO-markers before the next write
(but not FO-markers after that write). They can also add new events to the end
of P (x), but those are not events of thread τ .

The abstraction relation between FliT[wPSC] and PLibIR keeps both the
volatile and persistent memories equal (where the volatile memory of FliT[wPSC]
is m⊕P ). Not yet persisted events for any location x (the elements of log |x,false)
must have a corresponding entry in P (x). For writes, the same write events must
appear in the same order in P (x). For reads, an FO-marker must appear later
in P (x) than their position in log , except if the thread executing the read is
directly after the read instruction, before it has a chance to add an FO-marker.
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libWrite

inv ε sfτ faiτ ε ε ε wrτ foτ sfτ fadτ res

inv sfτ prop sf faiτ wrτ foτ sfτ prop w prop fo prop sf fadτ res

Fig. 12: Forward simulation (cf. Fig. 3) for FliT[PTSO] ≤ FliT[wPSC] for the
libWrite operation. Internal steps of PTSO are depicted blue. wrτ , foτ , sfτ , fadτ ,
faiτ stand for writeτ , flush optτ , sfenceτ , fetch and decτ , fetch and incτ , respec-
tively.

. . .
inv rdτ foτ res ε

libRead

inv rdτ foτ res prop fo

Fig. 13: Forward simulation (cf. Fig. 3) for FliT[PTSO] ≤ FliT[wPSC] for the
libRead operation. Internal steps of PTSO are depicted blue. rdτ , foτ stand for
readτ , flush optτ , respectively.

6.2 Proof of FliT[PTSO] ≤ FliT[wPSC]

The main idea for the proof of FliT[PTSO] ≤ FliT[wPSC] is to keep the two
volatile memories represented by the two persistence buffers P (denoted PwPSC

and PPTSO in the following) approximately equal. In particular, both should
contain the same sequence of write events, ensuring that reading on both levels
yields the same result values. The refinement therefore has to delay writes of
FliT[PTSO], which add the event to the store buffer B, until they are propagated
to PPTSO by the system via a prop w step. To get a forward simulation, the
flush opt and sfence instructions called during libWrite (see Fig. 9) are delayed,
too. They take effect only when they are propagated to PPTSO. Formally, in the
forward simulation, they all refine an empty step ε of FliT[wPSC], while the
propagation steps refine the instructions of FliT[wPSC] (see Fig. 12). The delay
is possible since propagation is ensured to happen in the same order, and since
the fetch and decτ step at the end of writing can proceed only when the events
have all been propagated and the store buffer B is empty (so the responses from
writing at the end can be matched again). Informally, the “linearization point”
of libWrite of FliT[PTSO] is not the write instruction which adds to B, but the
propagation of the write to volatile memory, and this is the order in which writes
happen in FliT[wPSC] as well as in PLibIR.

For reading the situation is different. There, we cannot match adding an
FO-marker (with flush optτ ) on FliT[wPSC] to the corresponding prop fo step
on FliT[PTSO] since propagation may happen long after the read operation has
finished. Therefore, it is necessary to match the flush optτ steps one-to-one, and
instead to match prop fo for FO-markers issued by reading to an empty step ε
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as shown in Fig. 13. The two instances of prop fo for an FO(τ) can be distin-
guished by checking whether thread τ is currently in its libWrite. However, the
abstraction relation must now deal with the reordering of FO-markers caused
by this mapping, which results in the somewhat tricky abstraction relation that
essentially allows FO-markers of reads that are in PwPSC to be somewhere later
in PPTSO or still in B.

The persist steps (persist fo and persist w, which are omitted in Fig. 12) of
FliT[wPSC] and FliT[PTSO] are mapped one-to-one sinceW-events must have the
same order in PPTSO as in PwPSC. However, the weakening of the original PSC
model to wPSC as shown in Fig. 11 is essential for this refinement: PTSO always
persists the leading marker in PPTSO for some location x, and thus, wPSC must
be able to persist the corresponding event in PwPSC. But due to the potential
reordering of FO-markers (see above), this event does not have to be the leading
event in PwPSC. The weakened preconditions of the wPSC persist steps take this
into account while not being too liberal (in particular, the order of writes must
be maintained).

7 Related Work

D’Osualdo, Raad and Vafeiadis [11] pursue the idea of reusing proofs of lineariz-
ability for showing concrete data structures to be durable linearizable. They
formulate a so-called Pathway Theorem which presents a method for proving
durable linearizability. This method is modular in the sense of separating the
proof of linearizability from issues concerning volatile and persistent memory.
They base their work on a declaratively defined memory model. A similar ap-
proach (but for durable opacity) has been investigated by Bila et al. [2] who
aim at reusing proofs of opacity [3]. Durable opacity is the NVM analogue of
the correctness criterion opacity employed for Transactional Memory [29] (not
concurrent objects). Bila et al. assume sequential consistency.

Verification of FliT differs from these earlier works [2, 10, 11] since FliT is a
generic instrumentation technique. It transforms any linearizable object into a
durably linearizable object. Thus, the proof methods in [2,10,11] are orthogonal
to ours since they provide proof techniques for concurrent objects that are al-
ready durably linearizable without using FliT. Moreover, FliT alone is not durably
linearizable.

Besides FliT, there are a number of other works investigating techniques
for making linearizable concurrent objects durably linearizable, most notably
NVTraverse [12] and Mirror [13]. Both provide transformations to durability
for lock-free concurrent objects whereby NVTraverse is limited to node-based
tree data structures. Mirror is trimmed towards using a volatile replica of the
data structure in RAM for speeding up reading (though it can be used solely
with NVM as well). Its approach for ensuring durable linearizability is stricter
than the one of FliT: the algorithm enforces modifications to be persisted be-
fore their linearization points. To achieve this, reading accesses only the volatile
replica, which is only updated after the corresponding write has passed the per-
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sistence buffer. Moreover, writing is performed via a strong CAS implementation,
which prevents multiple pending writes to the same location in the persistence
buffers. This behaviour also matches the PLib specification presented in this pa-
per (yielding a log that always contains only persisted R markers and at most
one unpersisted W marker per location). Thus, a formal proof of Mirror’s cor-
rectness should be possible by showing a refinement analogous to the one for
FliT shown in §6, which we intend to do as future work.

Israelevitz and Scott [15] also propose a technique for converting linearizable
objects into (buffered) durably linearizable objects by inserting pfence and pwb

instructions. They prove correctness of their transformations. Montage [31] is
a library for use by programmers when intending to achieve buffered durable
linearizability [15]. To this end, programmers need to identify so-called payloads
and follow several additional rules. Neither of these approaches is accompanied
by a fully formal proof of its soundness.

Regarding other memory models, recent works [6] have defined persistency
models for Arm (PArm) building on a prior operational semantics based on
promises [22]. To prove correctness of FliT under this model, one would need
to introduce other types of fence and flush instructions (that are compatible
with PArm), then prove that this implementation refines PLib. However, NVM
implementations and semantics for Arm are less developed than for TSO; the
PArm semantics by Cho et al. [6] has not been validated against real hardware.
Moreover, the current implementation of FliT is for Px86 only9. We therefore see
a full verification of FliT[PArm] against PLib to be future work. Such work would
be able to reuse the correctness of PLib described in §4. The focus instead would
be on developing appropriate abstractions, invariants, and refinement relations
as described in §5 for FliT[PTSO].

8 Conclusion

In this paper, we have studied approaches for transformations to durability of
linearizable objects. We have proposed an abstract persistency library and have
proven that it guarantees such a transformation. As a second step, we have shown
that one of the existing concrete libraries (FliT) also correctly implements such a
transformation, in particular when running on the weak memory model PTSO.
As future work, we intend to consider a full proof for other such proposals,
specifically for Mirror [13].

Acknowledgements. We thank Michal Friedman for helping clarify the be-
haviour of FliT.

Data availability. The KIV specifications and mechanised proofs supporting
this work’s results are publicly available at figshare with the identifier https:
//doi.org/10.6084/m9.figshare.24132495.v1.

9 See https://github.com/cmuparlay/flit.
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