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© 2024 Başaran, Can, André and Ersoy. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Relieving the burden of intensive
labeling for stress monitoring in
the wild by using semi-supervised
learning
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Stress, a natural process a�ecting individuals’ wellbeing, has a profound impact on

overall quality of life. Researchers from diverse fields employ various technologies

and methodologies to investigate it and alleviate the negative e�ects of this

phenomenon. Wearable devices, such as smart bands, capture physiological

data, including heart rate variability, motions, and electrodermal activity, enabling

stress level monitoring through machine learning models. However, labeling data

for model accuracy assessment poses a significant challenge in stress-related

research due to incomplete or inaccurate labels provided by individuals in

their daily lives. To address this labeling predicament, our study proposes

implementing Semi-Supervised Learning (SSL) models. Through comparisons

with deep learning-based supervised models and clustering-based unsupervised

models, we evaluate the performance of our SSL models. Our experiments

show that our SSL models achieve 77% accuracy with a classifier trained on

an augmented dataset prepared using the label propagation (LP) algorithm.

Additionally, our deep autoencoder network achieves 76% accuracy. These results

highlight the superiority of SSL models over unsupervised learning techniques and

their comparable performance to supervised learning models, even with limited

labeled data. By relieving the burden of labeling in daily life stress recognition, our

study advances stress-related research, recognizing stress as a natural process

rather than a disease. This facilitates the development of more e�cient and

accurate stress monitoring methods in the wild.

KEYWORDS

mental stress, psychophysiological, electrodermal activity, CNN-LSTM, label propagation,

deep autoencoder, emotion regulation, DBSCAN

1 Introduction

Stress, defined by the World Health Organization (WHO), has emerged as
the health epidemic of the 21st century (Fink, 2009). Factors such as traumatic
experiences, family issues, workplace challenges, economic concerns, and the
recent COVID-19 pandemic have significantly increased stress levels in society,
impairing vital processes such as decision-making, social interactions, and
mental wellbeing. In the field of clinical psychiatry, extensive studies are being
conducted to diagnose and treat this problem (Maercker et al., 2013). Concurrently,
computer scientists are developing smart sensor technologies and machine learning
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algorithms for stress recognition. Previous research has explored
various signals, including electroencephalogram (EEG) (Kalas
and Momin, 2016), electrocardiogram (ECG), electromyography
(EMG) (Cho et al., 2019), combined ECG and galvanic skin
response (GSR) (Sriramprakash et al., 2017), smartphone sensors
and usage data (Garcia-Ceja et al., 2016), and Photoplethysmogram
(PPG) (Can et al., 2020a), to detect stress levels. Wearable smart
devices enable the direct collection of physiological data related
to stress, such as movements, brain activity, muscle tension, heart
rate, and electrodermal activity. Other studies investigate image,
video, and speech data using cameras andmicrophones, but privacy
concerns and compatibility issues with in-the-wild environments
limit the use of these devices for daily life monitoring.

Initially, stress monitoring research took place in controlled
environments such as laboratories or offices, where subjects could
be continuously monitored, and context was always known.
However, researchers realized that stress experienced in these
artificial settings differs from the stress encountered in daily
life, which holds greater significance to individuals (Picard,
2016). Daily life stress reflects the complexities and nuances
of real-world experiences. It arises from authentic situations
that people encounter in their day-to-day lives, making it more
ecologically valid. In contrast, laboratory-induced stress may not
fully replicate the natural stressors individuals encounter outside
the controlled environment.

Furthermore, since the participants know that the inducer does
not occur in their lives and affect their life directly in most cases,
their reaction level might be lower than they give to a daily life
stressor. While researchers strive to design tasks that simulate real-
life stressors, the artificial nature of the laboratory setting may limit
the generalizability of findings to everyday life. As a result, the focus
of research shifted toward studying stress in unrestricted real-life
environments. Nevertheless, tracking subjects’ physiological data
continuously in their daily lives and labeling this data for specific
periods present new challenges. With limited knowledge of the
context, researchers heavily rely on self-reports from participants
as labels (ground truth) to train machine learning algorithms for
classification or regression tasks.

Despite the significant effort and resources required for
labeling, it is crucial to acknowledge that the success of supervised
learning models hinges on the quality of the labels in the
dataset. Hence, the objective is to develop techniques that
alleviate the labeling burden without compromising performance.
Semi-supervised learning (SSL) architectures have been proposed
precisely for this purpose, providing a viable solution for problems
with sparsely labeled data that is expensive and challenging to
collect. SSL leverages both supervised and unsupervised learning
approaches, making mathematical assumptions about the dataset’s
distribution with a small amount of labeled data and a sufficient
quantity of unlabeled data. Inductive and transductive methods are
employed under the SSL umbrella to establish these assumptions.
Given the nature of our problem and data, we identified graph-
based and deep neural network-based SSL solutions as promising
avenues, particularly considering the underexplored potential
of SSL techniques with multi-sensor physiological raw data in
the literature.

In this study, we applied semi-supervised learning architectures
for stress recognition in daily life scenarios. We utilized a

comprehensive physiological dataset (Can et al., 2020b) recorded
from individuals in unrestricted environments. This dataset
includes continuous tracking of 14 different subjects for 1 week,
using the Empatica E4 smart band to collect electrodermal activity
(EDA), blood volume pressure (BVP), skin temperature (ST), and
3D accelerometer data. By selecting this dataset, we aimed to
investigate the binary stress classification problem (stress class
vs. non-stress class) that occurs in subjects’ daily lives, without
the constraints of a laboratory setting. We explored both graph-
based and deep neural network-based SSL methods in the stress
recognition context. To demonstrate the performance benefits of
reducing the labeling burden using SSL models, we compared them
with state-of-the-art supervised/unsupervised machine learning
and deep learning models. This study represents a robust
implementation of SSL models with raw multi-modal physiological
sensor data collected in unrestricted daily life scenarios for
stress recognition.

2 Related work

In a general perspective, stress recognition studies can be
classified under restricted environments (i.e., laboratory, office) and
unrestricted daily life environments (Can et al., 2019a). Studies
were mostly carried out in a laboratory setting. Firstly, traditional
classifiers were explored with handcrafted features (Mozos et al.,
2017; Can et al., 2019b; Garg et al., 2021). Then, state-of-the-art
deep learning architectures such as regular CNNs (Ghosh et al.,
2022) and (Gil-Martin et al., 2022), Hybrid CNNs (Rashid et al.,
2021), the combination of CNN and LSTM algorithms (Rastgoo
et al., 2019), 1D-CNNs, and LSTM (Feng et al., 2023) were applied
in these laboratory studies and promising results of around 90%
stress recognition accuracy were obtained.

Stress data collected in the laboratory environment is different
from daily life. The primary objective of laboratory studies is to aid
individuals in effectively managing their stress levels during their
daily life routines. However, recognizing stress in the wild is more
challenging because of unlimited movements, unknown context,
lack of golden standard ground truth (only self-reports), and low
data quality of unobtrusive devices that are suitable for daily life
usage. Due to these issues, daily life stress recognition accuracies
are generally lower. The research on daily stress recognition began
by employing conventional machine learning algorithms such as
k Nearest Neighbor (kNN), Support Vector Machine (SVM), and
Random Forest, as stated in Inoue (2018), cStress, and Gjoreski
et al. (2016). For instance, Smets et al. (2018) curated a large
multimodal dataset comprising electrocardiogram (ECG), EDA,
Skin Temperature, and Acceleration data from 1,002 participants.
They applied the Random Forest classifier and obtained an F1
score of 0.43. Subsequently, with the emergence and widespread
adoption of neural networks in the field of machine learning,
stress recognition studies also incorporated them (Can et al.,
2020b). However, the accuracy achieved by the aforementioned
studies in stress level recognition was ∼70%, still considerably
distant from being highly accurate (refer to Table 1). To enhance
stress recognition accuracy, Inoue (2018) introduced contextual
information such as step count, sleep duration, and calorie usage
to physiological signal data. They achieved an accuracy of 85.40%
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in recognizing perceived stress levels using the decision tree
classifier. Similarly, Gjoreski et al. (2016) improved daily life stress
recognition accuracy from 76 to 92% by incorporating activity
context and utilizing a Random Forest classifier. Especially deep
learning algorithms rely on large amounts of labeled data. However,
for long-term daily life monitoring studies, it is challenging to
collect complete and high-quality labels.

After recognizing the importance of labeling challenges when
creating stress detection systems, semi-supervised architectures are
proposed to relieve this burden. Yu and Sano (2022) developed
a sequence-to-sequence LSTM auto-encoder (LSTM-AE) and
combined it with data augmentation and consistency regularization
techniques. They applied their semi-supervised learning approach
to SWEET (Smets et al., 2018) and TILES (Mundnich et al.,
2020) datasets and obtained a maximum of 0.65 accuracy which
is far from a robust performance. They extracted handcrafted
features from in-the-wild physiological data and applied a three-
layer LSTM in a semi-supervised setting. They obtained accuracies
from 0.58 to 0.65 in binary-level stress classification. However,
using raw data and systems instead of windowing and feature
extraction increases the amount of data, and RNN variants can
learn better and result in higher accuracies. The model constructed
with the sequence-to-sequence approachmight givemore weight or
importance to recent inputs in the sequence, potentially neglecting
or downplaying earlier information. This bias can affect the
model’s ability to capture long-term dependencies or make accurate
predictions that require a broader context. On the other hand, the
consistency regularization that the authors use aims to encourage
the model’s predictions to be consistent across different views or
perturbations of the same input. This method can help improve
generalization and robustness. However, if the regularization
enforces strong consistency requirements that are not appropriate
for the underlying data distribution, the model might become
biased toward certain patterns or fail to capture certain variations.

The same authors tested semi-supervised learning systems for
both stress and activity recognition tasks (Yu and Sano, 2023).
After noise removal and windowing, they used an autoencoder for
feature extraction purposes. They reported a maximum accuracy
of 63.44 in the binary stress recognition task which is just above
the random baseline. Stress recognition is still a new field for
SSL architectures in the wild and in terms of performance, there
is still room for improvement. Recognizing this new research
opportunity, we wanted to carry out a robust study that works
with SSL architectures and raw, multi-modal daily life data.
We explored both graph and deep neural network-based semi-
supervised learning algorithms in the stress recognition context
and compare their performance with unsupervised and supervised
learning algorithms.

3 Data description

Can et al. (2020b) conducted a daily life experiment involving
14 university students aged between 20 and 25, consisting of nine
male and five female participants. Each participant was provided
with an Empatica E4 smart band to wear for 1 week. They were
instructed to wear the smart bands for 12 h a day, from 9 a.m. to

9 p.m., as part of their daily routine. The days on which they wore
the smart bands were not necessarily consecutive. The researchers
chose to use an online version of the Perceived Stress Scale (PSS-
5) questionnaire for self-reporting. The PSS-5 questionnaire is a
shortened version of the PSS-14 and has been found to be highly
correlated with it (Cohen et al., 1983). It is also considered suitable
for use in ambulatory settings (Plarre et al., 2011). The PSS-5
consists of six Likert scale questions related to five emotions, with
two of them being positive (happy and cheerful) and three of them
(anger, sadness, and frustration) being negative. To calculate the
total stress score, the scores for positive emotions are reversed,
while the scores for negative emotions are used directly. For
instance, if a participant rates their happiness as 6 on a scale of
1–6 (extremely happy), it is evaluated as 1 since happiness and
cheerfulness are inversely related to stress levels. Conversely, the
scores for anger, sadness, and frustration are added directly when
calculating the total stress score (see Equation 1) (Can et al., 2020b).

PercStress = (7−Hi)+ (7− Ci)+ Ai + Si + Fi (1)

where Hi, happiness score; Ci, cheerfulness score; Ai, anger score;
Si, sadness score; and Fi, frustration score. Total scores can change
from 0 to 30. Scores ranging from 0 to 15 (midpoint) are considered
as low perceived stress and scores ranging from 15 to 30 are
considered as high perceived stress. They divided the scores by
adapting the 3-class division of PSS-14 (PSS, 2020). Participants
were instructed to complete the questionnaire every 3 h, referred
to as a “session.” To ensure the collection of self-reports, reminder
emails containing questionnaire links were sent at the end of each
session for seven consecutive days while participants were wearing
the wristband. Specifically, participants were reminded to fill in
the PSS-5 questionnaire at 12 p.m., 3 p.m., 6 p.m., and 9 p.m.
throughout the seven-day period. The survey app, accessible on
both desktop and mobile browsers, was utilized to deliver the
questionnaire to participants. The questionnaire link was provided
to participants via email. In total, the researchers obtained 989
h of physiological data and 332 self-reports. Some sessions had
missing Ecological Momentary Assessments (EMAs), totaling 60
missing EMAs, and the corresponding physiological data for those
sessions were excluded. The synchronized raw data and extracted
features can be accessed through the provided link: https://github.
com/ysaidcan/mood_aware_emotion_recog.

The distribution of self-reported ground truth labels in
the daily life dataset was imbalanced, with 73% of the data
belonging to the relaxed class and the remaining 27% to the
stressed class. Empatica E4 smart band collected electrodermal
activity (EDA) with a 4 Hz sampling rate, blood volume
pressure (BVP) at 64 Hz, skin temperature (ST) at 4 Hz, and
3D accelerometer data at a 32 Hz sampling rate. The data
were averaged for 1-s intervals to equalize different sampling
rates for synchronization. To address this issue, we employed
a commonly used technique for imbalanced datasets, which
involves randomly undersampling the majority class (relaxed
class) to obtain a balanced representation of the data (Kotsiantis
et al., 2006). In this method, the majority of class instances
are randomly deleted and the distribution of two classes
becomes balanced.
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TABLE 1 Literature review on stress detection.

References Learning
model

Stress signal Dataset Environment Unobtrusive Number of
participants

Duration
(p/ part.)

Method Accuracy

Rashid et al. (2021) Supervised L. Photoplethysmography (PPG) WESAD Laboratory Yes 15 1 h Hybrid CNN 88.56

Lai et al. (2021) Supervised L. Electrocardiogram (ECG),
respiratory,
Electromyography (EMG), EDA,
PPG, ACC, skin temperature

WESAD Laboratory No 15 1 h Multi layer perceptron (MLP) 97.75

Ghosh et al. (2022) Supervised L. Electrocardiogram (ECG),
respiratory,
Electromyography (EMG), EDA,
PPG, ACC, skin temperature

WESAD Laboratory No 15 1 h Convolutional neural network
(CNN)

94.8

Garg et al. (2021) Supervised L. Electrocardiogram (ECG),
respiratory,
Electromyography (EMG), EDA,
PPG, ACC, skin temperature

WESAD Laboratory No 15 1 h k-NN, linear discriminant
analysis, random forest (RF),
AdaBoost, and Support
Vector Machine (SVM)

83.34 F1

Gil-Martin et al.
(2022)

Supervised L. Electrocardiogram (ECG),
respiratory,
Electromyography (EMG), EDA,
PPG, ACC, skin temperature

WESAD Laboratory No 15 1 h CNN 96.6

Rastgoo et al. (2019) Supervised L. ECG Driving_
Simulation

Laboratory No 24 45 min CNN-LSTM 92.8

Dalmeida and
Masala (2021)

Supervised L. ECG, EMG, GSR, HR, and
respiratory

Driving_
Simulation

Laboratory No 24 45 min kNN, SVM, MLP, RF 0.79 F1

Feng et al. (2023) Supervised L. PPG, ECG, EDA,
EMG, ACC

WESAD Laboratory No 15 1 h 1D-CNN, LSTM 94.9

Hovsepian et al.
(2015)

Supervised L. ECG, respiratory, accelerometer cStress Daily Life No 20 1 week Support Vector Machine
(SVM)

72

Can et al. (2020b) Supervised L. PPG, EDA,
Skin temperature

Lab_to_daily Daily life Yes 14 1 week MLP, random forest,
SVM, logistic regression

73

Can and André
(2023)

Supervised L. PPG, EDA,
Skin Temperature

Lab_to_daily Daily life Yes 14 1 week LSTM, GRU,
CNN-LSTM, 1D CNN

95

Smets et al. (2018) Supervised L. ECG, EDA, ACC
Skin temperature

SWEET Daily life Yes 1002 5 days Random Forest 0.43 F1

Inoue (2018) Supervised L. Heart rate, step count,
Sleep and calories

Local Daily Life Yes 10 10 days kNN, SVM and decision tree 85.40

Gjoreski et al.
(2016)

Supervised L. PPG, skin temperature,
EDA, HeartRate (with context
info)

Local Daily life Yes 5 11 days Random forest 92

Yu and Sano (2022) Semi
Supervised L.

ECG, EDA, ACC
Skin temperature

SMILE and
TILES

Daily Life Yes 45 and 212 5 days LSTM-AE 63.44 (max.)

Our Work (2023) Semi-
Supervised
L.

EDA, BVP
ACC, ST

Lab_to_daily Daily life Yes 14 1 week Label propagation
Deep autoencoder based SSL

77
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FIGURE 1

The block diagram of the stress detection system with two di�erent semi-supervised learning models.

4 Proposed semi-supervised learning
architectures and benchmarking

An overview of the approaches employed in our research is
depicted in Figure 1. Fusion techniques are utilized to prepare
the multi-sensor raw physiological data, which is subsequently
employed as input in our Label Propagation andDeep Autoencoder
models. The operational principle of the LP algorithm is illustrated
in Figure 2. This section will provide a detailed explanation of our
Label Propagation and Deep Autoencoder-based architectures. In
Sections 4.3 and 4.4, we implemented LSTM, CNN-LSTM, and
Clustering algorithms to assess the effectiveness of the proposed
SSL models. We also created an open repository with the codes and
the link is as follows: https://github.com/basarantugay/ssl-stress-
paper.

4.1 SSL via label propagation unit

Label Propagation (LP) is an SSL technique grounded in graph
theory. In this approach, nodes represent data samples, and edges
symbolize the similarity between nodes. Propagation, facilitated
through nodes with known labels, allows unlabeled nodes to adopt
labels akin to those of the labeled nodes (Bengio et al., 2006).

4.1.1 Theoretical formulation and preliminaries
The algorithm was developed by Zhu and Ghahramani (2002).

The mathematical formulation can be expressed as:
Labeled data:

(x1, y1)...(xn, yn),where YN = (y1...yn) ∈ {1...C}, (2)
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FIGURE 2

Label propagation mechanism is shown through labeled data

samples.

xn refers to data points, and YN refers to the labels for the different
classes available in our dataset. While C expresses the number
of classes, we assumed that there are samples from each class in
the dataset.
Unlabeled data:

(xn+1, yn+1)...(xn+t , yn+t),where YT = (yn+1...yn+t), (3)

Entire dataset:

X = {x1...xl+t} ∈ RD. (4)

After the dataset is defined, the ultimate goal is to estimate
YT using X and YN . A fully connected graph infrastructure has
been designed to solve the problem. While each data sample in
the dataset represents a node, the relationship between nodes is
weighted thanks to the calculated Euclidean distance. The weights
can be expressed mathematically as:

wij = exp

(

−
d2ij

σ 2

)

(5)

Labels are disseminated to all unlabeled data samples based
on the edges determined by weights. σ is employed as a control

parameter for weight calculation. The probabilistic transition
matrix is utilized to accurately assign labels. Consequently, labels of
nodes can be updated along edges with higher weights. The matrix
can be expressed as:

Tij = P(j → i) =

(

wij
∑l+t

k=1 wkj

)

(6)

The probability of transition from node j to node i is calculated
through the Tij matrix defined in (l+ t)x(l+ t). As can be seen from
the formula, this calculation changes according to the weight of the
edges between the nodes. MatrixY , whose size is defined as (l+t)xC
depending on the number of classes, keeps the label probabilities of
the nodes. The working principle of the algorithm consists of three
basic steps:

1. All nodes propagate labels using the probabilistic
transition matrix Y .

2. Y matrix rows are normalized to provide class
probability interpretation.

3. Run the algorithm from step 2 until Y converges.

4.1.2 Algorithm implementation
The algorithm is implemented using the sci-kit-learn

library (Pedregosa et al., 2011). The strategy followed during
implementation is shown in Algorithm 1.

1: Split the test data. (Test Size = 30%)

2: Split the training dataset into labeled and

unlabeled data points.

3: Predict the labels of unlabeled samples with the

label propagation algorithm.

4: The pseudo-labels, which are the outputs of the

Label Propagation algorithm, are replaced with

unlabeled samples in the training dataset.

5: Training the classifier with the new augmented

dataset of labeled and pseudo-labeled samples.

6: Use this model to predict test data.

Algorithm 1. SSL via label propagation.

4.1.3 Hyper-parameter optimization
The LP algorithm has two different kernel functions. Therefore,

before starting the performance evaluation, we experimented
with these kernel functions. The best performance of the LP
algorithm was obtained by choosing the correct kernel function.
LP algorithm has kNN and RBF options as its kernel. Tables 2, 3
show the performance metrics obtained using these two kernels.
LP algorithm with kNN kernel has high precision scores for both
classes. f-Measure is also acceptable (0.9 for the non-stress class and
0.7 for the stress class).

The key point to note is that the original dataset is partially
imbalanced, with the non-stress class value count being three
times the value count (or the number of samples) of the stress
class (almost 1.5 million class-0 and 0.5 million class-1 samples).
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TABLE 2 Performance of the label propagation algorithm for creating

pseudolabels (selected LP Kernel = k-NN).

Class Precision Recall f-Measure

Non-stress (%5 labeled data) 0.53 0.60 0.58

Stress (%5 labeled data) 0.56 0.47 0.49

Non-stress (%10 labeled data) 0.65 0.75 0.67

Stress (%10 labeled data) 0.69 0.52 0.56

Non-stress (%15 labeled data) 0.74 0.86 0.82

Stress (%15 labeled data) 0.78 0.64 0.67

Non-Stress (%20 labeled data) 0.86 0.99 0.92

Stress (%20 labeled data) 0.97 0.72 0.75

Macro average 0.92 0.86 0.84

Weighted average 0.89 0.92 0.88

TABLE 3 Performance of the label propagation algorithm for creating

pseudolabels (selected LP kernel = RBF).

Class Precision Recall f-Measure

Non-Stress 0.86 0.85 0.83

Stress 0.88 0.62 0.68

Macro average 0.87 0.74 0.76

Weighted average 0.86 0.80 0.79

Consequently, achieving a high f1-score for class-0 is quite natural.
However, we still obtained a satisfactory f1 score of 0.75 for class-1.
Nevertheless, the performance results of the LP algorithm with the
RBF kernel are lower than the kNN kernel version. Upon reviewing
Table 3, it is evident that f-measure and recall scores are lower,
especially in the non-stress class where the success of the RBF kernel
function has decreased. Considering the performance metrics, it
has been confirmed that using kNN as a kernel function in the LP
algorithm yields better results.

Now, we have new labels successfully classified by the LP
algorithm. After adding these observations to the training data (by
replacing the unlabeled data with the new predictions) on which we
have moderate confidence, these are referred to as pseudo-labeled
in contrast to labeled data. Subsequently, we trained this new
(augmented) dataset using different classifiers and employed these
models to predict the accuracy of the test data, which comprises
651,600 samples.

After tuning the kernel parameter of the label propagation
algorithm, experiments were conducted with various classifiers.
The performance comparison among these classifiers was based on
examining the accuracy score. While the performance results of
classifiers such as kNN, Naive Bayes, Logistic Regression, Decision
Tree, and Random Forest are closely aligned, the random forest
classifier yielded the highest accuracy score.

Specifically, we compared the performance of classifiers before
the hyper-parameter tuning stage and then selected the classifier
that exhibited the best performance metrics for the hyper-
parameter tuning process. In this case, the Random Forest (RF)
Classifier had already demonstrated superior performance even
before the hyper-parameter tuning stage. With a relatively small set

TABLE 4 RF classifier’s accuracy results for variablemax_depth and

n_estimators parameters.

max_depth n_estimators

100 300 500

2 75.23 75.23 75.23

4 75.49 75.49 75.49

6 75.78 75.78 75.78

8 76.00 75.99 75.99

10 76.11 76.11 76.11

15 76.49 76.50 76.50

20 76.86 76.88 76.86

The bold values indicate the highest accuracy performance.

of labeled and unlabeled datasets, assisted by the LP algorithm, we
achieved an acceptable accuracy of 75% on this test set.

After this stage, hyper-parameter tuning was performed to
increase the performance of the random forest classifier. The
RF algorithm consists of many parameters such as criterion,
min_samples_split, min_samples_leaf, min_weight_fraction_leaf,
max_features, max_leaf_nodes, min_impurity_decrease, bootstrap,
oob_score, n_jobs, verbose, warm_start, class_weight. We used
max_depth and n_estimators parameters in the hyper-parameter
tuning process. The parameters max_depth and n_estimators
are directly related to the learning ability of the model due to
their impact on the complexity and capacity of the ensemble.
By controlling the max depth, you can limit the complexity of
the trees and prevent them from memorizing noise or specific
instances in the training data. Increasing the number of trees
improves the model’s ability to capture diverse patterns and
reduces the variance of the predictions. With more trees, the
random forest becomes more robust and less sensitive to the
idiosyncrasies of individual trees. This helps stabilize predictions,
enhance generalization, and reduce overfitting. Due to the
competencies of these two parameters, they are preferred over
other existing parameters, contributing to an overall enhancement
of classification performance. The accuracy scores of the Random
Forest (RF) classifier were obtained for parameter values that
vary relative to each other, and the results are shared in Table 4.
Three different forest scenarios (100, 300, 500) were examined for
increasing the maximum depth of tree values. Excessive increase
in the max_depth parameter can cause the model to overfit, a
situation that requires attention. In the case of the random forest
classifier, increasing the max_depth parameter significantly can
lead to overfitting, as it determines the maximum depth of each
decision tree in the ensemble. Excessive max_depth values can
result in trees that are too complex, fitting the training data
closely, including noise and random fluctuations. It can lead to
memorizing or overfitting individual instances in the training
data, sacrificing generalization for specificity. Moreover, higher
max_depth values can create more complex decision boundaries,
making the model less interpretable and more prone to overfitting.
Hence, careful tuning of the max_depth parameter is essential, and
in our experiments, it was observed that the model overfits the

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1293513
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
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FIGURE 3

Visualization of stress and non-stress classes via t-SNE.

TABLE 5 Classification report of MLP classifier (default parameters).

Class Precision Recall f-Measure

Non-Stress 0.65 0.73 0.69

Stress 0.69 0.61 0.65

Accuracy 0.68

training data for values of max_depth >20, which is why it was
constrained tomax_depth=20.

Increasing the number of estimators in the Random Forest
ensemble involves incorporating a larger collection of individual
decision trees. However, higher values can escalate the model’s
computational complexity, so it needs to be controlled to
prevent excessively long training times. Evaluation of accuracy
scores revealed that the best performance was achieved with
max_depth=20 and n_estimators=300. Beyond this point, further
increasing the n_estimators did not significantly improve the
model’s performance. In summary, the random forest model
consisting of 300 trees with a depth of 20 units demonstrated the
best overall performance.

Moreover, the underperformance of the simple autoencoder
model prompted us to experiment with a deep autoencoder
design. Prior to the hyper-parameter tuning stages, visualizing the
data using the t-Distributed Stochastic Neighbor Embedding (t-
SNE) nonlinear statistical method was deemed useful. The t-SNE
algorithm, developed in 2008 (Van Der Maaten and Hinton, 2008),
reduced the dimensions of the data, providing a two-component
representation. Figure 3 depicts the result, where red dots represent
the stress class, and green dots belong to the non-stress class. The
close proximity of samples from both classes suggests that the
dataset poses a significant challenge for simple models.

As the next step, evaluating how close we are to the
performance of the label propagation algorithm by training a more
robust classifier becomes crucial. For this reason, experiments
were conducted with the MLP classifier. Initially, the classifier was
trained with its default parameters, and performance results were
obtained. The parameters used during the initial training are:

• Hidden layer size = (100,), Activation F. = ReLU
• Solver = Adam, Alpha = 0.0001, Learning R. = Constant

The performance results of the MLP classifier, trained using the
aforementioned parameters, are presented in Table 5. Surprisingly,
the basic MLP Classifier without parameter tuning outperformed
the RF Classifier in terms of maximum performance. In light of
this, it becomes essential to assess the results by scrutinizing a
more comprehensive parameter grid. Hyperparameter tuning was
conducted across a broad parameter space, and the parameters
yielding the best model estimation were obtained using the sci-
kit-learn library’s GridSearchCV tool. The best parameters were
identified after hyperparameter tuning within the parameter space
outlined in Table 6:

• Hidden Layer Size = (50, 100, 50), Activation F. = tanh
• Solver = Adam, Alpha = 0.0001, Learning R. = Adaptive

4.2 SSL via deep autoencoder unit

Autoencoder studies were initially published in 1986
(Rumelhart and McClelland, 1987). These studies began with
the perspective of unsupervised learning to comprehend the
internal representation of the data. The input, encoded through
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TABLE 6 Parameter grid via GridSearchCV.

Parameters Parameter values

Hidden layer size [(50, 50, 50), (50, 100, 50), (100,)]

Activation function [“lbfgs,” “sgd,” “adam”]

Solver [“logistic,” “tanh,” “relu”]

Alpha [0.00001, 0.0001, 0.05]

Learning rate [“constant,” “invscaling,” “adaptive”]

a neural network, is then reconstructed, aiming to extract the
informative parts of the data.

4.2.1 Theoretical formulation and preliminaries
Autoencoder was expressed mathematically by Baldi (2012).

The encoder and decoder functions can be expressed as:

Y :R
n → R

p (encoder), (7)

Z :R
p → R

n (decoder), (8)

while learning the above functions, it is necessary to consider
the following constraint:

arg minY ,ZE[1(x,Z o Y(x)]. (9)

Expectation over the distribution of x is calculated with the
help of operator E. 1 operator expresses the reconstruction loss
function by calculating the distance between the encoder input and
the decoder output.

4.2.2 Algorithm implementation
The autoencoder, serving as an unsupervised learning (UL)

technique, was tailored to construct a semi-supervised learning
(SSL) architecture in our study. By presenting only a small
subset of the non-stress samples to the autoencoder model,
the model endeavors to learn the optimal representation of
the non-stress class. Subsequently, using the same model, stress
samples are generated in a distinct manner from non-stress
samples. This enables the autoencoder to effectively distinguish the
automatically generated stress samples. The pseudocode is outlined
in Algorithm 2.

4.2.3 Hyper-parameter optimization
Initially, we aimed to explore the results by commencing with

a simple model. Table 7 illustrates the design of our initial, less
complex autoencoder model. This model lacks batch normalization
layers, features fewer dense layers, possesses a bottleneck size much
larger than the input size, and has almost half the number of
trainable parameters compared to our final model. The learning
curves, depicted in Figure 4, clearly indicate that the model is prone
to overfitting the training data. Consequently, making predictions
based on input reconstruction with such an autoencoder model is
likely to yield fallacious and biased results.

1: Create an autoencoder network with input and

output layers.

2: Apply Min-Max Normalization.

3: Train autoencoder model with a small amount of

non-stress samples.

4: Create a new network consisting of the weights of

the trained network (This will create a network of

latent representations of non-stress samples.).

5: Predicting raw non-stress and stress samples’

hidden representation.

6: Hyper-parameter tuning in parameter space(hidden

layer sizes, activation function, solver, alphas,

learning rate).

7: Train and validate the classifier with the dataset

containing the latent representation with the best

parameters.

Algorithm 2. SSL via deep autoencoder unit.

TABLE 7 First experiments of deep autoencoder model summary.

Autoencoder layers Output shape Parameters

input_1 (InputLayer) (None, 4) 0

dense (dense) (None, 100) 500

dense_1 (dense) (None, 50) 5,050

dense_2 (dense) (None, 50) 2,550

dense_3 (dense) (None, 100) 5,100

dense_4 (dense) (None, 4) 4,004

Total params: 13,604

Trainable params: 13,604

Nontrainable params: 0

Considering the challenges posed by our data, the design of
the autoencoder was carefully executed. Attempting to work with
a high-dimensional and imbalanced dataset using a single-layer
autoencoder proved impractical for effective learning from the
data. Consequently, we devised a Deep Autoencoder architecture
utilizing stacks of layers, symmetrically created on both the encoder
and decoder parts. The encoder and decoder components comprise
shallow layers interconnected with a bottleneck.

In an autoencoder, the bottleneck represents the layer or
segment of the network with lower dimensionality compared to
the input and output layers. This central layer compresses the
input data into a condensed representation, crucial for capturing
the most salient features or patterns. The bottleneck is pivotal in
achieving dimensionality reduction, extracting and representing
features, supporting unsupervised learning, noise reduction, and
data compression and reconstruction.

We conducted numerous experiments to determine the input
nodes of the shallow layers in the encoder. With four features in
mind, the dense layer, starting with a hundred nodes, was gradually
reduced to three nodes as it approached the bottleneck. The design
decision for the bottleneck size is significant; experiments revealed
that an excessively large bottleneck results in a network that merely
copies the input’s low-dimensional representation, while a too
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Başaran et al. 10.3389/fpsyg.2023.1293513

FIGURE 4

Problematic learning curves of initial model with simple autoencoder where parameters could not be tuned precisely.

narrow bottleneck hampers the network’s learning capacity due to
significant information loss. Consequently, the number of nodes
was systematically reduced from one hundred to three in the
encoder part. The encoder layers were designed with a width of
100, 75, 50, 25, and 3 nodes, respectively. In the decoder, which
mirrors the encoder, layers were designed incrementally for input
reconstruction with 3, 25, 50, 75, and 100 nodes. The gradual
reduction and subsequent increase in node width were found to
enhance the network’s learning ability. The introduction of noise
to the encoder side improved learning outcomes.

L1 regularization was employed as a feature selection
mechanism, encouraging the autoencoder to focus on informative
features while discarding less important ones. Given our high-
dimensional dataset, L1 regularization was deemed advantageous,
and a regularization value of 0.00001 was selected based on
experiments. Mean Squared Error Loss (MSE Loss) was chosen as
the error measurement between the actual and reconstructed input.

Activation functions were strategically chosen within the
layers, using tanh in the first two encoder layers, tanh in the
last two decoder layers, and ReLU for the remaining layers. The
mixed design was found to yield superior performance. A deep
autoencoder entails numerous stacked layers, making recursive
training computationally intensive and prone to overfitting. Batch
normalization was incorporated to enhance network reliability,
prevent overfitting, and expedite convergence during layer designs.
Multiple BatchNorm layers were utilized, particularly beneficial
for high-dimensional and imbalanced datasets, contributing
to dimensionality reduction, balanced representations, and
improved generalization.

During the autoencoder training phase, the batch_size was
systematically adjusted, with batch_size=256 yielding the best
performance. Adadelta optimizer, a stochastic gradient descent
method with an adaptive learning rate, was identified as
the most effective optimizer through experimentation. The
adaptability of Adadelta without depending on the initial
learning rate proved advantageous in the hyper-parameter
tuning phase.

A comprehensive overview of the deep autoencoder model is
presented in Table 8. During the design process, decisions were
guided by achieving optimal training performance, as evidenced
by the examination of loss and accuracy curves in Figure 5.
The success of classifying stress and non-stress samples by
reconstructing the latent representation of non-stress input is
illustrated in Figure 6.

Subsequently, the performance of the dataset obtained with the
deep autoencoder model was evaluated using various classifiers,
starting with a linear classifier. Limited-memory Broyden Fletcher
Goldfarb Shanno (L-BFGS) algorithm was initially used as a solver,
but the results did not meet expectations, with an overall accuracy
of 0.61, slightly above 50%. Given that L-BFGS solver only supports
L2 regularization, it imposes a constraint, prompting a shift to the
SAGA optimizer. While the performance results with SAGA were
marginally better than L-BFGS solver, the overall classifier accuracy
increased to around 0.63. Despite this improvement, the expected
performance scores were not achieved.

To further evaluate the dataset, an augmented dataset created
through the LP algorithm was subjected to a Random Forest
(RF) classifier, employing similar parameters (max_depth=20,
n_estimators). The RF classifier achieved an accuracy score of 0.68.
Although this performance appears more successful than the linear
classifier, there is still room for enhancement. Notably, when the
RF classifier was trained with similar parameters, it was observed
that the augmented dataset generated by the label propagation
algorithm yielded superior results compared to the dataset created
with the deep autoencoder.

4.3 Supervised learning—Deep neural
networks

In supervised learning, employing networks like LSTM and
CNN provides an advantage in terms of feature engineering,
allowing direct use of raw data. Consequently, we opted to utilize
LSTM and CNN-LSTM deep learning architectures for stress
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TABLE 8 Final deep autoencoder model summary with parameters.

Autoencoder layers Output shape Parameters

input_1 (InputLayer) (None, 4) 0

dense (dense) (None, 100) 500

batch_normalization (BatchNorm) (None, 100) 400

dense_1 (dense) (None, 75) 7,575

batch_normalization_1 (BatchNorm) (None, 75) 300

dense_2 (dense) (None, 50) 3,800

batch_normalization_2 (BatchNorm) (None, 50) 200

dense_3 (dense) (None, 25) 1,275

batch_normalization_3 (BatchNorm) (None, 25) 100

dense_4 (dense) (None, 3) 78

dense_5 (dense) (None, 3) 12

batch_normalization_4 (BatchNorm) (None, 3) 12

dense_6 (dense) (None, 25) 100

batch_normalization_5 (BatchNorm) (None, 25) 100

dense_7 (dense) (None, 50) 1,300

batch_normalization_6 (BatchNorm) (None, 25) 100

dense_8 (dense) (None, 75) 3,825

batch_normalization_7 (BatchNorm) (None, 75) 300

dense_9 (dense) (None, 100) 7,600

dense_10 (dense) (None, 4) 404

Total params: 28,081

Trainable params: 27,275

Nontrainable params: 806

recognition. Given that physiological sensor data is time-series
in nature, initiating the design with an LSTM architecture
that accommodates sequential input seemed advantageous.
Additionally, since features were not pre-extracted from raw data,
investigations were conducted on the CNN-LSTM architecture,
where CNN layers facilitate superior feature extraction before
feeding the data into the LSTM layer. This approach is supported
by various studies in the literature (Zhao et al., 2019).

However, it’s crucial to address potential biases in LSTM and

CNN-LSTM models arising from cross-validation implementation

policies, especially when dealing with time-series data. Shuffle
splitting during training can lead to biased results, particularly

as the LSTM network perceives data sequences both ahead and

behind during training. To mitigate this, a time series data split
method is employed, avoiding division into different participants

(i.e., personalized models are not used) and treating the data as
a whole. In training, time series split techniques are applied with

k-fold cross-validation, where k is set to 5, resulting in four splits
for training and one split for validation. This choice aligns with
previous studies in the field for comparability reasons (Yu and
Sano, 2023).

The models were implemented using the PyTorch Deep
Learning Tensor Library in a Google Collaboratory Notebook. This

approach allows efficient training of the models with the large
dataset, utilizing the GPU processing capability of the existing
server through the CUDA API. The evaluation of the current
NVIDIA Tesla T4 GPU performance and competence determined
a maximum initial batch size of 128. Since the problem at
hand involves binary classification, hyper-parameter tuning was
conducted based on the accuracy score. This decision facilitates
easy comparison of the performances of our semi-supervised (SSL)
and unsupervised learning (UL) architectures using the accuracy
score in the final discussion. The experiments commenced with the
LSTM network.

Our goal was to enhance network performance by tuning
Hidden Size, Learning Rate, Activation Function, and Batch
Normalization parameters in the LSTM and CNN-LSTM models.
The Hidden Size parameter, representing the number of features
in the hidden state, was fine-tuned by gradually increasing it. For
hidden_size values <20, the model exhibited underfitting, resulting
in lower accuracy scores. Conversely, for hidden_size values >20,
the risk of overfitting increased, leading to insufficient accuracy
scores. To strike a balance, hidden_size was set to 20.

The Learning Rate was set to 0.0001 to balance the trade-off
between overshooting the global optimum (with larger learning
rates) and reduced learning capacity and longer training times
(with smaller learning rates).

Different activation functions were experimented with, and
ReLU outperformed others, providing better performance and
efficient, fast training by disallowing negative gradients. Similar
to the deep autoencoder model, a Batch Normalization layer was
integrated into the LSTMnetwork, enhancing its reliability in terms
of stability and robustness. Batch Normalization is particularly
beneficial for LSTM networks, which are known for capturing
long-term dependencies in sequential data.

During training, Binary Cross Entropy (BCE) loss was
employed instead of Mean Squared Error (MSE) loss, given
the binary classification nature of the problem. The output
layer was designed with a sigmoid function, aligning with
BCE loss.

Experiments with the CNN-LSTM model followed a similar
hyper-parameter tuning strategy based on accuracy metrics. In
addition to accuracy, loss curve, f-measure, recall, and precision
metrics were concurrently monitored. The maximum batch
size, determined during the LSTM network training phase, was
maintained at 128 for the CNN-LSTM network, considering the
overall network structure.

In the CNN-LSTM network, parameters were separately tuned
for the CNN and LSTM parts. Parameters like Kernel Size, Stride,
and Hidden Size were tuned for the CNN network, taking into
account the dataset dimensions. Kernel Size and Stride were tested
in the range of one to three, considering the four attributes in
the convolution layer. A kernel size of two provided optimal
performance, mitigating overfitting, and a stride of one was
set accordingly.

The CNN network’s Hidden Size parameter was determined
by observing similar findings as in the LSTM model experiments,
maintaining consistency with its value in the LSTM network. The
LSTM network layers were designed based on the initial LSTM
model, with input sizes adjusted according to the output of the
CNN network part.
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FIGURE 5

Learning curves of our final best performing deep autoencoder model.

FIGURE 6

Visualization of stress and nonstress classes via t-SNE by reconstructing the latent representation of non-stress input.

Additionally, 17% of the labeled data (the same percentage
used in SSL models) was employed in the LSTM and CNN-LSTM
models, ensuring performance measurements on an equivalent
amount of data. The detailed results are presented in Table 12.

4.4 Unsupervised learning—clustering
analysis

When assessing our problem and dataset, we decided to
employ three different clustering algorithms. Some of these
algorithms require predefined parameters such as the number
of clusters or the minimum distance between observations.
To address the challenge of initializing the cluster number,

we utilized a hyper-parameter tuning algorithm, allowing
the model to autonomously determine the most suitable
cluster number. During the tuning phase, we selected the
optimal number of clusters by evaluating the Silhouette
Score metric.

K-means, a well-known clustering algorithm, operates by
minimizing the average squared distance of samples within
the same dense region or cluster. Recognizing that traditional
clustering algorithms, like K-means, can be enhanced in areas
such as running time, memory management, and processing
performance, we explored the Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) algorithm (Zhang et al.,
1996). Additionally, we experimented with the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm, offering a distinct alternative (Ester et al., 1996).

Frontiers in Psychology 12 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1293513
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Başaran et al. 10.3389/fpsyg.2023.1293513

Given the varied scales of feature units, we standardized the
data using the sci-kit-learn StandardScaler method before running
the three clustering algorithms. Throughout the hyper-parameter
tuning phase, we monitored the Silhouette Score to allow the
models to autonomously determine the number of clusters. The
highest Silhouette Score was achieved with the algorithm selecting
two clusters. While we were already aware that our data had two
classes, we validated the K-means algorithm’s ability to correctly
cluster these two classes using the Silhouette Score metric. Similar
results were obtained by assessing the Silhouette Score for the
BIRCH algorithm. Though the results are closely aligned, it can
be inferred that the BIRCH algorithm slightly outperforms in
clustering the two classes with minimal difference.

5 Experimental results and discussion

5.1 Supervised learning architectures
performance

In the LSTM model, after completing the hyper-parameter
tuning, we present the layers of the finalized model and the number
of trainable parameters formed in these layers in Table 9. To assess
the benefits of using GPU, we also trained the LSTM model via
CPU, and the training times are shared in Table 10. During GPU
training, each iteration took 2.2 s, while on the CPU, it took 50
s per iteration. Each iteration involves one forward pass and one
backward pass. Training on the GPU resulted in 23 times faster
iterations. In the CNN-LSTM model, the layers of the finalized
model and the number of trainable parameters formed in these
layers are presented in Table 11. The CNN network part of the
CNN-LSTMmodel imposed a substantial load on the CPU, leading
to a 70× longer training time with CPU. However, the training
duration of the CNN-LSTM network was lower than that of the
LSTM network. Training the CNN-LSTM model with the GPU
took 1.1 s per iteration, which is even two times faster than training
the LSTM network with a GPU.

Considering the performance metrics in Table 12, a more
successful result was obtained with the CNN-LSTM network.
The results achieved are competitive with those reported
in the literature. The CNN-LSTM model exhibited slightly
better performance in accuracy, precision, recall, and f-measure
compared to the LSTM model. In the CNN-LSTM network,
saturation occurred around the 80th iteration, similar to the LSTM
model, despite training for 100 epochs. The performance results of
the LSTM and the CNN-LSTM models are provided together in
Table 12. Although the results were close, the CNN-LSTM model
demonstrated improvement. One of the main contributing factors
is that, thanks to the CNN layers, more informative features were
extracted from the raw data and fed to the LSTM layers, enhancing
overall performance. Apart from the performance boost, the CNN-
LSTM model provided another valuable output-training using the
GPU took significantly less time. Models of this kind facilitate
working with large datasets.

Finally, supervised learning (SL) models were trained with
only 17% labeled data for comparison with semi-supervised
learning (SSL) models. Examining Table 12 reveals a performance
degradation. With less labeled data, the model may have limited

TABLE 9 Number of trainable parameters of LSTM network.

Modules Parameters

lstm.weight_ih_l0 80

lstm.weight_hh_l0 400

lstm.bias_ih_l0 20

lstm.bias_hh_l0 20

fc.0.weight 12,000,000

fc.0.bias 1,000

fc.2.weight 1,000

fc.2.bias 1,000

fc.3.weight 1,000

fc.3.bias 1

Total trainable params: 12,004,521

TABLE 10 Number of trainable parameters and training time of networks.

Network Parameters GPU (s) CPU (s)

LSTM 12,004,521 220 5,000

CNN-LSTM 1,030,753 115 8,000

exposure to positive instances, leading to a reduced understanding
of the positive class and a lower precision score. The decrease in
accuracy can be attributed to the lack of diversity and generalization
capability in the model’s training. In such cases, while SSL models
spare us from the burden of labeling, they also achieve promising
performance results in scenarios with limited labeled data.

5.2 Semi-supervised L. architectures
performance

Our Label Propagation algorithm demonstrated impressive
precision scores of 86% for class-0 (non-stress) and 97% for class-
1 (stress). Examining f-Measure, class-0 achieved a commendable
92%, while class-1 achieved 72%. Subsequently, the classifier
trained with the augmented dataset prepared using the label
propagation algorithm achieved an accuracy of 77%.

Moving on to the deep autoencoder model, performance
results are obtained with the final tuned parameters, as shown in
Table 13. In comparison to the simpler autoencoder design, the
deep-stacked autoencoder model yielded significantly improved
and further improvable results. The final model achieved an 81%
precision score for class-0 (non-stress) and 72% for class-1 (stress).
Examining f-Measure, a score of 77% was achieved for the non-
stress class, and a score of 76% was achieved for the stress
class. Ultimately, the classifier trained with the augmented dataset
prepared using the deep autoencoder model achieved an accuracy
of 76%. These promising results were obtained using a reduced
number of labeled samples from an imbalanced dataset, where the
non-stress class constitutes 75.17% and the stress class 24.83% of
the dataset.
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TABLE 11 Number of trainable parameters of CNN-LSTM network.

Modules Parameters

cnn.0.weight 307,200

cnn.0.bias 256

cnn.1.weight 256

cnn.1.bias 256

cnn.3.weight 65,536

cnn.3.bias 128

cnn.4.weight 128

cnn.4.bias 128

lstm.weight_ih_l0 40

lstm.weight_hh_l0 400

lstm.bias_ih_l0 20

lstm.bias_hh_l0 20

fc.0.weight 65,5360

fc.0.bias 256

fc.2.weight 256

fc.2.bias 256

fc.3.weight 256

fc.3.bias 1

Total trainable params: 1,030,753

TABLE 12 Classification results of LSTM and CNN-LSTM networks: using

all labeled data and 17% labeled data.

Algorithm Accuracy f-Measure Precision Recall

LSTM 90.38 82.60 83.18 82.01

CNN-LSTM 91.35 83.84 85.70 82.09

LSTM (17%
labeled data)

72.73 72.52 75.10 70.10

CNN-LSTM
(17% labeled
data)

74.89 76.32 72.71 80.32

The bold values indicate the highest accuracy performance.

5.3 Unsupervised learning architectures
performance

We previously posited that the BIRCH algorithm provides
advantages in terms of runtime, CPU utilization, and memory
management. To validate this theoretical information, runtime
and resource utilization experiments were conducted on a server
equipped with an NVIDIA RTX A2000 GPU, 11th Gen Intel(R)
Core(TM) i7-11850H @2.50GHz (16 Cores), and 32 GB RAM.

Upon examination of Table 14, it is evident that the BIRCH
algorithm exhibits more efficient CPU and RAM utilization
compared to other algorithms. Additionally, BIRCH demonstrated
a shorter runtime than the others. The DBSCAN algorithm’s
attempt to handle even the smallest density regions was observed
to result in longer runtimes and higher resource demands.

TABLE 13 Classification report of MLP classifier (hyper-parameterized).

Class Precision Recall f-Measure

Non-stress 0.81 0.73 0.77

Stress 0.72 0.80 0.76

Accuracy 0.76

TABLE 14 Runtime and resource utilization.

Algorithm Runtime (ms) CPU Util. (%) RAM
Util. (%)

K-Means 85,809 0.77 0.12

DBSCAN 10,1286 0.81 0.14

BIRCH 65,052 0.73 0.10

TABLE 15 Accuracy results of SL & SSL & UL architectures.

Model Hyp. tuning Accuracy

Supervised learning results

LSTM Yes 90%

CNN-LSTM Yes 91%

Semi-supervised learning results

Label propagation (RF classifier) Yes 77%

Autoencoder (LR classifier-lbfgs) No 61%

Autoencoder (LR classifier-saga) No 63%

Autoencoder (RF classifier) Yes 68%

Autoencoder (MLP classifier) No 68%

Autoencoder (MLP classifier) Yes 76%

Unsupervised learning results

K-Means Yes 73%

BIRCH Yes 70%

DBSCAN Yes 56%

The bold values indicate the highest accuracy performance.

To make a final decision, the accuracy metric of the algorithms
was calculated using the data samples labeled by the clustering
algorithms and the existing ground truth samples. The accuracy
scores are presented in Table 15. The K-means algorithm achieved
a higher accuracy score (73%) than BIRCH and DBSCAN,
successfully clustering stress and non-stress samples. It’s important
to note that K-means assumes convex clusters with similar sizes,
and its performance may vary in datasets with more features.

BIRCH performed closely to the K-means result and
demonstrated a crucial trade-off in terms of runtime and resource
usage, making it advantageous for high-dimensional datasets.
The lower accuracy score of DBSCAN suggests that it struggles
with variable density regions in the dataset, resulting in almost
random predictions.
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TABLE 16 Performance comparison of classifiers for stress level

regression from 1 to 3.

Method HA -
MSE

HA -
MAE

EDA -
MSE

EDA -
MAE

Random Forest 0.39 0.53 0.33 0.48

MLP 0.38 0.54 0.344 0.464

SVM 0.40 0.51 0.36 0.41

kNN 0.47 0.49 0.41 0.51

Linear Regression 0.41 0.55 0.33 0.48

LSTM 0.36 0.47 0.28 0.43

LSTM-CNN 0.34 0.44 0.25 0.41

Heart activity (HA) from PPG data and electrodermal activity (EDA) from GSR sensors

evaluated separately. Mean square error (MSE) and mean absolute error (MAE) were

calculated.

5.4 Continuous stress level prediction

In the exploration of continuous stress level prediction using
regressors, an analysis was conducted on binary stress and relax
state classification, and additional focus was given to continuous
prediction of stress levels. The ambulatory PSS-5, with scores
ranging from 0 to 30, was categorized into three levels based on
the guidelines from the PSS-14 official website (PSS, 2020). Scores
were then assigned as 1, 2, and 3.

Regressors were applied to measure mean square errors
(MSE) and mean absolute errors (MAE) for Heart Activity
and Electrodermal Activity modalities separately. Traditional
algorithms, including kNN, SVM, Random Forest, MLP, and Linear
Regression, were tested after extracting handcrafted features from
bothmodalities as outlined in the previous study (Can et al., 2019b).
Hyperparameter optimization was performed with the following
parameters: kNN (k = 6), SVM (Regularization parameter = 1.0,
epsilon = 0.05, kernel = “rbf”), Random Forest (max_depth=2,
random_state = 0, number_of_trees = 100), and MLP (activation
= “tanh,” hidden_layer_sizes = (50, 100, 50), max_iter = 5,000).
Additionally, LSTM and CNN-LSTM algorithms were tested.

The results are summarized in Table 16, where an MSE score of
around 0.3 was achieved with the EDA signal. The regression codes
have been included in the newly created repository.

6 Conclusion

In conclusion, this study focused on the semi-supervised
classification of mental stress in daily life, aiming to address the
labeling problem of sensory data. We designed LP and deep
autoencoder models and compared their performance with existing
SL (LSTM, CNN-LSTM) and UL (K-means, BIRCH, DBSCAN)
algorithms. Specifically, for time-series data, we used the time-
series split method instead of the conventional train-test split model
in the cross-validation phase to accurately evaluate the performance
of our LSTM and CNN-LSTMmodels.

This study is the first to investigate semi-supervised mental
stress classification using daily life physiological data with a graph-
based label propagation algorithm and deep autoencoder model.

The accuracy scores of our models are presented in Table 15. We
also provide a comparison with daily life stress recognition studies
(see Table 17). Since most of the studies use different datasets, one
can not infer directly the success of a technique over others. They
were presented to give the reader a sense about the performance
of state-of-the-art stress recognition techniques in daily life. While
SL architectures outperformed in terms of performance, as they
benefit from having ground truth labels beforehand, the results
of our label propagation algorithm, which was designed with very
limited labeled data, are also promising. The LP algorithm achieved
precision, accuracy, and f-measure performance metrics that were
close to those of the SL models. The deep autoencoder, initially
categorized under UL, was utilized in our study from a semi-
supervised learning perspective. Such an approach using raw daily
life data has not been explored in the literature.

However, when examining the performance of the deep
autoencoder with a logistic regression classifier, it achieved a
lower accuracy score compared to some clustering algorithms. One
possible reason for this discrepancy is imperfect decoding, where
the lossy reconstruction phase may have resulted in decreased
performance or the augmented dataset obtained with the deep
autoencoder may not have been compatible with the subsequent
classifier. Consequently, we conducted experiments with different
classifiers after the deep autoencoder model. Initially, we trained an
RF classifier with the same parameters to compare it with the label
propagation algorithm. The deep autoencoder, when trained with
the RF classifier, exhibited a 5% improvement over the LR classifier,
yet it still performed nearly 10% lower than the label propagation
algorithm. Nevertheless, the results were closer to those obtained
with clustering algorithms.

Based on these findings, we decided to test the autoencoder
model with a more advanced classifier. Thus, we employed
the MLP classifier and obtained the best parameters through
hyper-parameter tuning. As a result, the overall accuracy score
approached that of the LP algorithm. In summary, the performance
results demonstrate the superiority of SSL architectures over UL
architectures. Moreover, while LSTM and CNN-LSTM models
achieved high performance, the labeling burden cannot be
disregarded. Therefore, utilizing SSL architectures to achieve results
with minimal labels would be more advantageous. However, the
study is not without limitations.We used one of the largest daily life
multimodal physiological datasets for stress recognition (around
1,000 h) but the number of participants is still relatively small.

Since most of the data is recorded from a similar age group
(college students aged between 20 and 25), there is a likely bias
leading classifiers to perform better for that age group and it limits
the generalizability of findings. Future work should involve a larger
and more representative population. We also relied on subjective
reports as the ground truth for stress levels in the wild. However,
unfortunately, they are the only alternative to annotate the data
in the wild. They have several problems such as subjectivity, they
can change from person to person, people can try to hide their real
emotions, people can forget stressful events at the end of the session
and participants might not give importance to the experiment.
Having said that, more context information such as the number
of people nearby, location of the participant, activity type (eating,
working, presentation, etc.), and physical activity intensity can
improve the reliability of the self-report ground truth. In future
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TABLE 17 Performance comparison of daily life stress recognition methods.

References Dataset Type of learning Method Accuracy

Yu and Sano (2022) SMILE, TILES
CrossCheck

Semi-supervised learning LSTM-autoencoder 64%–70%

Yu and Sano (2023) SMILE, TILES Semi-supervised learning LSTM-Autoencoder 63.44%

This study (2023) Lab_to_Daily Semi-supervised learning Label Propagation 77%

This study (2023) Lab_to_Daily Semi-supervised learning AutoEncoder 76%

Inoue (2018) Local Supervised learning kNN, SVM, Decision tree 85.40%

Gjoreski et al. (2016) Local Supervised learning Random forest 92%

Can and André (2023) Lab_to_Daily Supervised learning LSTM, GRU, CNN-LSTM, 1D CNN 95%

research, hybrid models can be constructed, incorporating CNN or
LSTM layers, particularly on the autoencoder side, to potentially
yield improved results. A promising research area is deep clustering
in UL, where researchers aim to enhance the effectiveness of
clustering algorithms by leveraging neural networks to extract
data features.
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