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Abstract: Background: Subarachnoid hemorrhage (SAH) entails high morbidity and mortality rates.
Convolutional neural networks (CNN) are capable of generating highly accurate predictions from
imaging data. Our objective was to predict mortality in SAH patients by processing initial CT scans
using a CNN-based algorithm. Methods: We conducted a retrospective multicentric study of a
consecutive cohort of patients with SAH. Demographic, clinical and radiological variables were
analyzed. Preprocessed baseline CT scan images were used as the input for training using the
AUCMEDI framework. Our model’s architecture leveraged a DenseNet121 structure, employing
transfer learning principles. The output variable was mortality in the first three months. Results:
Images from 219 patients were processed; 175 for training and validation and 44 for the model’s
evaluation. Of the patients, 52% (115/219) were female and the median age was 58 (SD = 13.06)
years. In total, 18.5% (39/219) had idiopathic SAH. The mortality rate was 28.5% (63/219). The
model showed good accuracy at predicting mortality in SAH patients when exclusively using the
images of the initial CT scan (accuracy = 74%, F1 = 75% and AUC = 82%). Conclusion: Modern image
processing techniques based on AI and CNN make it possible to predict mortality in SAH patients
with high accuracy using CT scan images as the only input. These models might be optimized by
including more data and patients, resulting in better training, development and performance on tasks
that are beyond the skills of conventional clinical knowledge.

Keywords: subarachnoid hemorrhage; convolutional neural networks; artificial intelligence; mortality;
prognosis; CT scan

1. Introduction

Subarachnoid hemorrhage (SAH) is a devastating form of hemorrhagic stroke with an
incidence of 6–8 persons per 100,000 inhabitants per year and a higher incidence in specific
regions such as Japan, Finland or Indiana [1]. Around 70–80% of spontaneous SAHs are
caused by the rupture of an intracranial aneurysm, known as aneurysmal SAH (aSAH) [2].
Despite its low incidence, aSAH is a major burden for healthcare systems due to its high
mortality and morbidity rates despite optimal treatment [3].

In a modern series, 30-day mortality rates range between 27% and 44%. Little improve-
ment has been achieved in the last decade despite extensive efforts to treat its causes or
understand the pathophysiology of the many and treacherous complications that may arise
along its course [4–6]. Predictors of in-hospital mortality include the admission clinical
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grade, rebleeding, delayed cerebral ischemia, treatment-related ischemia and intraven-
tricular hemorrhage [4,7]. Early brain injury due to the initial hemorrhagic insult and
aneurysm rebleeding account for most fatalities [4]. Therefore, efforts have been addressed
to prevent aSAH by controlling vascular risk factors and to prevent rebleeding by granting
an early exclusion of the aneurysm. The latter is the epitome of medical debate; optimal
timing and the best therapeutic approach are fiercely discussed [8–10]. However, survival
and functional results have scarcely improved during these first decades of the century.
The accurate prediction of outcomes in patients with moderate to poor grades remains
a challenge.

Accurate predictions in the medical field often require a large amount of data from
large cohorts of patients. Although patient data are increasingly accessible, managing such
complex information has led to the development of modern predictive algorithms and
models based on artificial intelligence (AI). Convolutional neural networks (CNNs), a form
of deep learning (DL), mimic the entangled and complex system of connections existing
in biological neural structures. Nodes are organized into layers and are interconnected to
generate and spread output signals resulting from multiple interlinked activation functions.
CNNs can modify their behavior as they learn from their training. In addition, CNNs
might consider features or variables otherwise ignored by the observer. CNNs have
shown excellent performance in accurately predicting various targeted variables in the
medical field based on different imaging modalities [11,12]. Some known risk factors for
in-hospital mortality associated with aSAH can be identified from the initial CT scan (blood
amount, intraventricular hemorrhage, edema, ischemic changes, etc.) [4,7,13,14]. This is
advantageous as a single sequence of images acquired upon admission can provide most
of the relevant information necessary to predict a patient’s course.

In this clinical investigation, we sought to design, create and evaluate a model based
on a CNN applied to initial CT scans to predict the mortality of patients admitted to the
hospital with a SAH at three months.

2. Materials and Methods

The present investigation was conducted following the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE) [15] and the Checklist for Artificial
Intelligence in Medical Imaging (CLAIM) [16] guidelines. The study protocol was approved
by the Institutional Review Board (22-PI180).

2.1. Study Population

This was a retrospective, non-interventional study. The clinical records of a consecutive
cohort of patients diagnosed with SAH admitted to our institution (Hospital Universitario
Rio Hortega, Valladolid, Spain) between 2011 and 2022 were retrospectively reviewed.
Additionally, a consecutive series of patients from another institution (Hospital Clinic
de Barcelona, Barcelona, Spain) with the same inclusion criteria was included to test the
robustness of the algorithm. Therefore, the inclusion criteria comprised aneurysmal and
non-aneurysmal (perimesencephalic) spontaneous SAH diagnoses based on compatible
clinical signs and a positive CT scan as well as known survival status at three months.
Aneurysmal and non-aneurysmal etiologies were, respectively, established by a positive or
negative AngioCT and/or digital subtraction angiography. Patients whose CT scans were
acquired later than 24 h from the onset of symptoms or those that could not properly be
processed were excluded.

2.2. Variables

Demographic data such as age, sex, cardiovascular risk factors (smoking, hypertension,
diabetes, dyslipidemia and family history of SAH), the admission clinical severity scales
(World Federation of Neurosurgical Societies (WFNS) and Hunt and Hess (HH) grading
scales), modified Fisher (mF) scale and mortality at 3 months were obtained from the
clinical records of included patients [17–19].
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2.3. Image Acquisition

CT scans from the institutional and external cohorts were, respectively, acquired using
Phillips Ingenuity CT (Koninklijke, The Netherlands) and Siemens Somaton CT (Munich,
Germany) scanners (Supplementary Table S1).

2.4. Image Preprocessing

CT images were sourced using the Digital Imaging and Communications in Medicine
(DICOM) format. An initial step involved transformation into the Neuroimaging Informat-
ics Technology Initiative (NIfTI) format and employing the dicom2niix tool v1.0.20220720
(https://github.com/rordenlab/dcm2niix/releases/tag/v1.0.20220720 accessed on 18
January 2023).

To avoid negative Hounsfield units (Hus), we implemented an intensity normalization
through a lossless transformation to Cormack units using the Clinical Toolbox for SPM
(https://github.com/neurolabusc/Clinical accessed on 20 January 2023).

Subsequently, we conducted a brain extraction procedure using the Brain Extraction
Tool (BET) from the Functional MRI of the Brain Software Library (FSL) v6.0 (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide accessed on 20 January 2023). The final step
involved registration to a CT template image with dimensions of 1 × 1 × 1 mm and a 193,
229 and 193 size by applying diffeomorphic registrations using symmetric normalization
(SyN) from the Advanced Normalization Tools program (https://github.com/ANTsX/
ANTs accessed on 21 January 2023).

2.5. Neural Network

In our research, the AUCMEDI (Automated Classification of Medical Images) frame-
work (https://frankkramer-lab.github.io/aucmedi/ accessed on 10 January 2023) [20] was
used to instruct a deep neural network to differentiate between two patient outcomes:
survival and death.

2.6. Architecture

DenseNet121, a derivative of the Dense Convolutional Network (DenseNet), was
implemented [21]. This architecture was selected after trying other CNNs (DenseNet201,
DenseNet161, VGG19 and ResNext) because of its higher efficiency in terms of CPU require-
ments, image size and results. DenseNet121 stands out due to its dense connectivity pattern,
its computational efficiency and minimal memory usage, which stems from the reutilization
of features. It was selected for its proficiency in extracting intricate and hierarchical features
from input images, a critical component in medical image analysis (Figure 1).
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2.7. Activation Output

For our binary classification task, the softmax function was used as the final activation
function. The softmax function converts output logits into probabilities by normalizing
them into a probability distribution so the sum of the output probabilities equals 1. The
class with the higher probability is chosen as the output prediction. Although softmax is
often associated with multiclass classification problems, it is equally applicable to binary
classification. The model predicts the class with the higher probability, so this might
provide relevant insights to understand the probability of an outcome. Therefore, one key
advantage of using softmax over sigmoid in binary classification is its interpretability as it
offers a confidence level associated with the prediction that can be used to support a given
clinical statement.

2.8. Class Imbalance and Loss Function

We initially calculated the class weights to be implemented by the categorical focal
loss function. Class weights were computed using n_samples/(n_classes × bincount(y)),
inspired by the work of King et al. [22]. Focal loss function prioritizes instances that
are harder to classify and downplays simpler examples, thereby guiding the model to
concentrate more on a balanced set of challenging samples. This method has demonstrated
its robustness to class imbalance across different datasets and tasks, thereby enhancing the
model’s performance [23].

2.9. Data Augmentation

In our CNN model, we employed several image augmentation techniques to increase
the diversity and robustness of our training dataset. These techniques included mirroring
(reflecting images across their vertical or horizontal axis), rotation (adjusting images by
a certain degree around the center point), scaling (changing the size of the images) and
elastic transformation (locally distorting the image by randomly displacing each pixel to
simulate natural variations). As suggested by Isensee et al., augmentation techniques are
highly efficient procedures to increase the potential generalization of a model as they allow
for a better performance with unseen data [24].

2.10. Callbacks

In our model, we employed several callbacks, including EarlyStopping, ModelCheck-
point and ReduceLROnPlateau. EarlyStopping is used to halt training when a monitored
metric has stopped improving, preventing overfitting and saving computational resources.
ModelCheckpoint allows for the saving of the model after each epoch, ensuring the reten-
tion of the best performing model. On the other hand, ReduceLROnPlateau lowers the
learning rate when a metric has ceased to improve, optimizing the model’s ability to find
the global minimum and enhance the training performance. These strategies work together
to mitigate overfitting and reduce unnecessary training time.

2.11. Transfer Learning

Transfer learning is a machine learning (ML) approach that applies a pre-trained
model to a new, but related, task. This strategy bolsters learning efficiency, especially when
data for the new task are limited. The model retains or “freezes” the learned weights from
the prior task while fine-tuning the classification layer to the new task. After several epochs,
the model is fully unfrozen for additional fine-tuning, thereby conserving computational
resources and training time. Transfer learning was conducted for 10 epochs using the Adam
optimizer with an initial learning rate of 1 × 10−4 and a batch size of 4 for DenseNet121.

2.12. Explainable Artificial Intelligence

We employed gradient-weighted class activation mapping (Grad-CAM) for explain-
able artificial intelligence [25]. This technique provides visual elucidations for decisions
made by CNNs. It uses the gradients of any targeted concept flowing into the final con-
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volutional layer to generate a coarse localization map that emphasizes the crucial regions
in the image for a prediction of the result. The provided heat map offers insights into
interpretability and helps to identify potential dataset bias.

2.13. Metadata

A second CNN predictive model was developed that incorporated baseline CT scan
images and admission-related clinical information as the input. The clinical data were
limited to the variables available upon admission (age, sex, hypertension, WFNS grade,
acute hydrocephalus, etc.) and demonstrated a statistically significant association with
mortality. This model was created to determine if the addition of clinical information could
enhance the performance of the image-based model.

2.14. Statistics

Excel (Microsoft, Redmon, WA, USA; version 16.16.4) and SPSS Statistics (IBM, Ar-
monk, NY, USA; version 24) were implemented to run conventional statistical methods.
The distribution of continuous variables was assessed using a normality test. Categorical
variables were expressed as frequencies and percentages. The categorical variables were
compared using chi-squared and Fisher’s exact tests. The association between mortality
and the continuous variables was analyzed using a Student’s t-test or Wilcoxon U test. Uni-
variate analysis was performed to study the association of clinical variables with mortality
at three months. The performance of the CNN was evaluated using the metrics typically
implemented in DL methods such as sensibility, specificity, accuracy, F1 score and the area
under the curve (AUC) for the receiver operating characteristic (ROC) curve [26].

3. Results

A total of 219 patients met the inclusion criteria for the study (Figure 2). Among them,
47.5% (104/219) were males and the mean age was 58 (SD = 13.06). A perimesencephalic
pattern on the initial CT scan was observed in 37 patients (16.9%). In 42 cases, the initial
arteriography did not detect the presence of an aneurysm; out of these, 39 cases (17.8%)
were confirmed as idiopathic SAH.
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Figure 2. Flowchart describing the screened, included and excluded patients for the institutional and
external cohort of patients whose images and data were used to create, train and evaluate the model.

Aneurismatic SAH was reported in 180 patients, with 222 aneurysms and 36 cases
(20%) of multiple aneurysms. The mean WFNS and HH on admission were, respectively,
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2.5 (SD = 1.6) and 2.2 (SD = 1.6), with a mode of 2 in both cases. The mean mF scale was 3.3
(SD = 0.9) and the mode was 4. For aSAH, 91 (50.5%) patients were surgically treated, 72
(40%) were endovascularly treated and 17 (9%) were not treated due to brain death signs
prior to it being possible to provide any effective treatment. In 54.6% of treated patients,
the aneurysm was excluded in the first 24 h after the diagnosis. Rebleeding occurred in
15 patients and only 4 of them survived. In the sample of 219 patients, the mean stay was
24 days and the mortality rate was 28.5% (Table 1).

Table 1. Characterization of the sample according to analyzed variables.

Variable Mean/Mode Number Percentage

Female 115 52.5%

Age 57.9 (SD = 13.06) years

RISK FACTORS

HT 96 43.8%

Tobacco 90 41%
Smoker, Female 40 34.8% of females
HT + Tobacco 36 16.5% of total

Diabetes 20 9%

Dyslipidemia 81 37%

Familial History 3 1.5%

Idiopathic SAH 39 18%

Aneurysmal SAH 180 82%
Multiple 36 20%

Anterior Circulation 174 97%

Aneurysm Diameter 7.9 mm (SD = 5.6)

TREATMENT

Surgical 91 50.5%
Endovascular 72 40%
No Treatment 17 9%

Timing of Treatment
Ultra Early (<24 h) 114 70%

Early (24–72 h) 33 20%
Delayed (>72 h) 16 10%

ADMISSION

Hunt and Hess

2.2/2

I 103 47%
II 45 20.5%
III 10 4.5%
IV 17 8%
V 44 20%

WFNS

2.5/2

I 93 42.5%
II 46 21%
III 8 3.5%
IV 26 12%
V 46 21%

Modified Fisher

3.2/4
I 15 7%
II 25 11.5%
III 35 16%
IV 144 65.5%
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Table 1. Cont.

Variable Mean/Mode Number Percentage

Intraparenchymal Hematoma 63 35%

Subdural Hematoma 9 5%

COMPLICATIONS

Acute Hydrocephalus 96 44%
Shunt-Dependent Hydrocephalus 38 17.5%

Seizure 37 17%
Epilepsy 12 6.5%

Symptomatic Vasospasm 38 17.5%
Delayed Cerebral Ischemia 52 23.5%

Length of Stay 24 days

OUTCOME

mRS at 3 Months

3/6

0 46 21%
1 37 17%
2 16 7.5%
3 19 8.5%
4 15 7%
5 23 10.5%
6 63 28.5%

Mortality 63 28.5%
HT: hypertension; mRS: modified Rankin Scale; WFNS: World Federation of Neurological Societies.

Among the patients with SAH, mortality was significantly superior in older indi-
viduals (61.2 vs. 56.5 years old; F = 5.12; t = 2.48; p = 0.014), female patients (35.6% vs.
23.1%; X2 = 4.14; p = 0.042) and patients with hypertension (40.6% vs. 21.1%; X2 = 9.81;
p = 0.002), intraparenchymal hematoma (48.4% vs. 21.9%; X2 = 15.24; p < 0.001) and acute
hydrocephalus (42.7% vs. 19.8%; X2 = 13.04; p < 0.001). Patients with higher grades from
the modified Fisher (X2 = 39.9; p < 0.001), WFNS (X2 = 46.9; p < 0.001) and HH (X2 = 48.6;
p < 0.001) scales experienced higher mortality rates (Figure S1). All these variables were
included as metadata in the CNN model based on baseline CT scan images and clinical
information. Other cardiovascular risk factors like diabetes, dyslipidemia or smoking were
not associated with a higher risk of mortality. Subdural hematoma or seizures on admission
were not associated with mortality.

The highest grades on the WFNS, HH and mF scales demonstrated a strong association
with mortality. Remarkably, mF grades 3 or 4 proved to be a strong risk factor for mortality
compared with mF grade 1 or 2 (odds ratio of 21.7 (p = 0.003; 95% confidence interval:
2.91–161.71)). The results for other variables are shown in Table 2.

CNN algorithms were developed, trained, validated and tested in this study. Among
the models created, the one exclusively based on the initial CT scan demonstrated the
best performance. Optimal performance was achieved during the final epoch, with the
following metrics: sensitivity = 0.75 (SD = 0.025; 95% CI = 0.716–0.786); specificity = 0.75
(SD = 0.025; 95% CI = 0.716–0.786); accuracy = 0.74 (SD = 0); F1 score = 0.72 (SD = 0.025;
95% CI = 0.615–0.829); and AUC (area under the curve) = 0.82 (SD = 0). The inclusion of
additional clinical metadata in the model did not significantly enhance its performance.
The best F1 score obtained with the combined model was as follows: sensitivity = 0.75
(SD = 0.025; 95% CI = 0.716–0.786); specificity = 0.75 (SD = 0.025; 95% CI = 0.716–0.786);
accuracy = 0.74 (SD = 0); F1 score = 0.74 (SD = 0.077; 95% CI = 0.663–0.817); and AUC = 0.80
(SD = 0). The results are presented in Table 3 and depicted in Figures 2–4 (Supplementary
Table S2).
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Table 2. Odds ratios for variables demonstrating statistically significant association with mortality.

Variable Reference Degrees of Freedom p-Value OR 95% CI

Sex (Male) Male 1 0.042 0.54 0.30–0.98

Age 1 0.014 1.03 1.01–1.05

Hypertension Yes 1 0.002 2.55 1.41–4.63

Intraparenchimatous Hematoma Yes 1 <0.001 3.34 1.79–6.22

Acute Hydrocephalus Yes 1 <0.001 3.01 1.64–5.55

WFNS 1 4 <0.001

WFNS 2 0.007 3.67 1.44–9.42

WFNS 3 0.033 5.60 1.14–27.40

WFNS 4 0.001 5.83 2.05–16.62

WFNS 5 <0.001 17.50 6.99–43.77

Hunt and Hess 1 4 <0.001

HH 2 0.002 4.51 1.72–11.86

HH 3 0.047 5.00 1.02–24.51

HH 4 0.02 4.63 1.27–16.87

HH 5 <0.001 25.00 8.99–69.56

Modified Fisher, Dichotomized <2 1 <0.001

mF > 2 0.003 21.70 2.91–161.72

Table 3. Performance of neural networks algorithms. Results are presented as the average of both
analyzed classes (dead or alive at three-month follow-up).

Model Image-Based Neural Network
Performance

IMAGE- and Metadata-Based
Neural Network Performance

Epoch
Best AUC Best F1 Best Loss Last Best AUC Best F1 Best Loss Last

Metric

TP 14.5 15 15 16 16 16.5 15.5 15

TN 14.5 15 15 16 16 16.5 15.5 15

FP 7 6.5 6.5 5.5 5.5 5 6 6.5

FN 7 6.5 6.5 5.5 5.5 5 6 6.5

Sensitivity 0.53 0.61 0.74 0.75 0.60 0.75 0.69 0.50

Specificity 0.53 0.61 0.74 0.75 0.60 0.75 0.69 0.50

Precision 0.56 0.63 0.70 0.72 0.75 0.73 0.68 0.35

FP Rate 0.47 0.39 0.26 0.25 0.40 0.25 0.31 0.50

FN Rate 0.47 0.39 0.26 0.25 0.40 0.25 0.31 0.50

FDR 0.44 0.37 0.30 0.28 0.25 0.27 0.32 0.15

Accuracy 0.67 0.70 0.70 0.74 0.74 0.77 0.72 0.70

F1 0.51 0.61 0.69 0.72 0.60 0.74 0.68 0.41

AUC 0.72 0.74 0.73 0.82 0.78 0.80 0.78 0.35
FDR: false discovery rate; FN: false negative; FP: false positive; TN: true negative; TP: true positive.
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4. Discussion

In this investigation, we retrospectively reviewed all consecutive cases of SAH pa-
tients admitted to our institution and we validated our results with an external cohort from
another center. Images and data were preprocessed and used to train a CNN to predict mor-
tality in a test cohort of patients. The results demonstrated that a CNN predictive algorithm
exclusively based on the initial CT outperformed a combination of images and clinical
data. The results of this image-based algorithm proved the ability of the CNN to establish
solid predictions using medical images as the input. We aimed to develop an innovative,
open-source classification model that could readily be tested on diverse datasets. To accom-
plish this, we chose to utilize a standardized framework (AUCMEDI). Our methodology
included preprocessing techniques like resampling, clipping and intensity normalization to
minimize potential image variability. Additionally, we employed image augmentation to
mitigate the risk of overfitting and to enhance the model’s efficacy on previously unseen
datasets. A transfer learning approach was adopted, leveraging the pre-trained models to
provide well-established and effective weights, thereby boosting the model’s performance.
Lastly, the entire pipeline was not only fully open but also comprehensively documented,
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ensuring its availability and ease of implementation on new datasets in the future. To
the best of our knowledge, this study represents the first successful development of an
image-based CNN algorithm that accurately predicts mortality in patients with SAH.

Several studies have demonstrated the ability of DL models to identify abnormalities such
as hemorrhages, fractures, strokes and edemas from head CT scans [27,28]. These investigations
require extensive labelled image datasets as inputs to build the model [27]. Different approaches
have been used for this purpose, from classifying slices as pathologic or normal to the automatic
segmentation of abnormal areas [28–31]. Using AI models to accomplish iterative and tedious
tasks such as blood segmentation is a significant advancement that reduces working times
and allows large samples of patients to be to processed, increasing the statistical power of the
clinical investigation. However, in most of the available scientific papers regarding SAH or
brain hemorrhages, the automated processes are limited to feature extractions. These features
are then used with conventional statistical methods or in ML algorithms, but a fully automated
pipeline capable of accurately predicting a clinical outcome from raw images is lacking for
SAH. In this sense, our DL model represents a further leap forward.

Regarding SAH, efforts have also focused on aneurysm detection. Using different
modalities of images (CT, DSA or MRI) and approaches (stand-alone AI or AI supporting
a clinician), several reports have demonstrated the ability of AI to assist in aneurysm
detection [32]. Bo et al. demonstrated the utility of a DL-based model to assist radiologists
in the detection of intracranial aneurysms using AngioCT [33]. Increasing the reliability,
particularly the specificity, of these automated models could allow for the future screening
of intracranial aneurysms in large populations in a context in which human intervention
could be relegated to supervision and the final confirmation of positive results.

Mortality and outcome predictions have classically relied on risk factors and clinical
and radiological scales [34]. Advanced methods of data processing represent a great
opportunity to exploit the information patients harbor early on admission. Therefore,
studies have implemented ML methods to extract the best from features with known
implications on the final outcome. Dengler et al. compared the performance of ML
methods on outcome predictions for aSAH patients and established clinico-radiological
scores [35]. The authors found that GCS and age were the most relevant features for
outcome predictions and that ML methods were not superior to conventional scores [35].
In a study based on clinical features and ML methods, Toledo et al. achieved an AUC
for the ROC curve of 0.85 in a decision tree built with Fisher and WFNS scales to predict
functional outcomes [36]. Lo et al. used an extensive database to create an predictive
algorithm for outcomes [37]. This model was based on multiple demographic and clinical
variables that were used as the input for a Bayesian CNN with fuzzy logic inferences [37].
The AUC for the ROC curve was 0.85. However, many of the features that fed the algorithm
were not present on admission; therefore, an early prediction of patient outcomes was not
feasible [37]. Our model has the ability to make predictions without any clinical input or
need for expert assessments, which has potential for automatization, generalization and
applicability in primary and secondary centers referring patients to tertiary hospitals.

Although it remains challenging to speculate about the potential clinical applications
of this model beyond the current level of evidence, this prognostic information comple-
ments other well-known predictive factors, aiding physicians in daily decision-making for
critically ill patients. Thus, we believe that certain potential applications may emerge. These
include improving communication among healthcare teams, supporting the information
conveyed to families, aiding in decisions related to end-of-life care, the withdrawal of
invasive treatments, the implementation of rescue therapies and assisting in determining
the optimal timing of treatment. Although our approach serves as an initial step in this
direction, it requires further development and validation to be decisive in such a critical,
intricate and ethically sensitive subject as mortality prediction. At this juncture, prior to
subjecting our model to a comprehensive validation process using larger and independent
datasets, it would be reckless to regard the predictions of our model as an absolute and reli-
able truth and guide the clinical management of these patients based solely on their varying
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probabilities of survival. For instance, based on a high probability of death provided by our
model, clinical decisions could be skewed, resulting in prematurely discontinuing the best
available treatment for a patient and presumably leading to a self-fulfilling prophecy. There-
fore, the ethical challenges involved in the personalized prognostication of life-threatening
conditions like SAH, particularly in terms of interpreting and conveying the inherent uncer-
tainty to those making decisions on behalf of patients, must be considered. In this scenario,
the advent of artificial-intelligence-assisted prognostication calls for a contemporary and
enduring framework [38]. Such a framework should ensure that physicians, patients and
their families are provided with reassurance amidst the uncertainties surrounding the
unfathomable question of life and death in critically ill patients.

A paradoxical finding of our research was the null improvement of the predictive model
with the addition of clinical metadata with an otherwise proven association with mortality. It
was hypothesized that the CNN would extract information from the images beyond human
capacity, but we also expected that the clinical data would improve the model. The image-
based model was likely able to estimate the quantity and distribution of blood as well as
detect signs of brain damage such as edema and the herniation and effacement of basal
cisterns. Many of these radiological signs are known factors of a poor clinical grade on
admission and have previously been correlated with mortality [4,13,14]. Previous works
in other areas have highlighted how the clinical information adds up to an image-based
model, while other groups have demonstrated exactly the opposite [39–41]. These conflicting
experiences might be due to differences in the targeted prediction, the architecture of the NN
or even how the clinical information is introduced into the model. It is also possible that
baseline CT scans harbor highly valuable information that significantly impacts the outcome.
This would challenge the idea of the influence of clinical management and delayed cerebral
lesions on SAH mortality and emphasize the relevance of initial damage on the final outcome.

Limitations

In addition to the retrospective nature of the sample, which might have led to the
unnoticed loss of some patients, the present study harbored some limitations. First, the
predictions were based on a ground truth, which originated from the results of our practice
in this case. Mortality rates, causes of death, risk factors, treatment choices and overall
management may vary amongst institutions. This flaw can only be tackled if larger training
cohorts from different institutions representing different management protocols are used
to build the model. Efforts should be made in this regard to aim for a predictive tool that
can be applied to as many healthcare contexts as possible. Second, CT scanner protocols
and manufacturers might change the information the model extracts from the image and,
consequently, the class assigned to a particular case. However, the methodology we
implemented to harmonize CT scans was designed to minimize variability in the imaging
data to improve the robustness of the training as well as the accuracy and reliability of
our model. Third, it can be argued that perimesencephalic SAH and aSAH are completely
different diseases with vast differences in clinical evolution and outcomes; therefore, they
should not be mixed in a mortality prediction study. Trained specialists in neurovascular
emergencies might correctly identify a SAH as perimesencephalic with a rapid view of
the CT scan and short assessment of the patient. However, one of the main applications
of an image-based model such as the one herein presented is to support clinicians with
their decisions, especially in non-tertiary centers where knowledge about alarm signs
and prognosis might be scarce. Fourth, although the size of the training cohort was
deemed to be sufficient for the construction of a precise predictive model, we acknowledge
that larger samples are often preferred. As previously stated, we implemented various
image augmentation techniques to increase the diversity and robustness of our training
dataset. These techniques are highly effective in mitigating issues associated with smaller
sample sizes and enhancing the generalizability of a model [24]. Finally, one of the main
problems of DL is that the algorithm does not disclose what their decisions were based
on; in other words, we cannot fully explain why the model classifies a given case into
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a specific class. Efforts are being made to unlock the black box that DL methods often
represent. These efforts are referred as Explainable Artificial Intelligence or XAI. In DL,
XAI methods are mainly post hoc, meaning that the trained model is analyzed to find
learned associations [42]. Our team is currently working on visual activation maps or
saliency maps based on gradient-weighted class activation mapping (Grad-CAM), which
are graphic representations of the areas of an image that are important for the model
to make a decision or classify a case into a group [25,43] (Figures 5 and 6). The use of
saliency maps will assuredly contribute to improving our understanding of prognostic
model’s performance and aid in thoroughly examining each misclassified case. In this
sense, saliency maps are poised to contribute to the development of future research lines.
For example, if we can establish that the maps of most survivors share common patterns,
this may provide valuable insights into the understanding of factors impacting the patient’s
status on admission. Conversely, the maps of non-survivors may exhibit specific patterns
on the initial CT scan, which could signify whether there is a critical sign demanding urgent
attention or an ominous sign that would potentially render all our efforts futile.
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suffering a subarachnoid hemorrhage. Saliency maps highlighted regions in red that were more
significant when classifying patients; in this case, into the group of patients who survived the event.
Thus, it was possible to create a visual depiction of the process the model followed to allocate
patients into each class. These maps highlighted supratentorial brain areas and seemed to disregard
hemorrhages, except when they followed a perimesencephalic pattern. (A) A 60-year-old male who
suffered a perimesencephalic SAH whose angio-MR and angiography were negative. (B) A 43-year-
old male who was diagnosed with a SAH caused by a right middle cerebral artery aneurysm. He
was admitted in good condition (WFNS 1) and was surgically treated and discharged without major
neurological deficits on postoperative day 19. (C) A 75-year-old female who suffered a SAH and was
admitted to the hospital with a WFNS grade 4. The left posteroinferior cerebellar artery aneurysm was
coiled. The patient survived the event, but was still severely impaired at the three-month follow-up
(modified Rankin Scale: 4).
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of both systemic and neurological complications. (B) A 70-year-old female who was diagnosed with 
a SAH caused by a right posterior communicating artery aneurysm who died 40 days after her ad-
mission due to a combination of factors, including delayed cerebral ischemia, meningitis and pneu-
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hemorrhage (SAH). These maps visually illustrate the areas the model considered to allocate patients
into the “dead” group. Grad-CAM maps show that posterior fossa and intraventricular and cisternal
blood might be relevant areas or items to consider in order to classify patients as dead. (A) A 51-
year-old male who suffered a SAH due to the rupture of a left middle cerebral artery aneurysm.
The patient initially presented with a WFNS grade 2, but abruptly deteriorated to a WFNS grade
5 requiring emergent surgical treatment. The patient died on postoperative day 56 as a consequence
of both systemic and neurological complications. (B) A 70-year-old female who was diagnosed
with a SAH caused by a right posterior communicating artery aneurysm who died 40 days after
her admission due to a combination of factors, including delayed cerebral ischemia, meningitis and
pneumonia. (C) A 78-year-old male with a SAH caused by an anterior communicating artery who
was admitted to the hospital with a WFNS grade 5 and an mF grade 4 who died the next day after
the event.

Future research will seek to further validate the present algorithm and apply it to
classification tasks such as the differentiation of perimesencephalic SAH from aSAH and
the prediction of complication occurrence (vasospasm, shunt-dependent hydrocephalus,
delayed cerebral ischemia, etc.).

5. Conclusions

DL algorithms based on initial CT scans allowed us to provide accurate predictions of
mortality for SAH patients. The limited improvement seen with the addition of clinical
information suggested that many factors influencing patient outcomes are present in the
early stages of the disease and could be identified from the initial CT scan. AI predic-
tive models are a promising tool that could significantly improve the understanding of,
and decision-making process in, complex pathologies like SAH. However, further opti-
mization of these models through the inclusion of more data and patients is necessary to
enhance their performance on complex tasks that are beyond the potential of conventional
clinical knowledge.
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