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larr, Juliane, Kunze, Philipp, Kresin, Noah, Liebig, Wilfried V., Inal, Kaan, Weidenmann, Kay A.

25 mm

25 mm

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴 𝑑𝑑𝐴𝐴𝑎𝑎𝑑𝑑𝑎𝑎𝐴𝐴𝑑𝑑𝐴𝐴𝑑𝑑 = 0.027 ≈ 2.7 %
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Introducing a novel computational thresholding method and a convolutional neural network for the 
determination of fiber volume contents of carbon fiber reinforced polyamide 6 from µCT images
Juliane Blarr | KIT

Low contrast CT 
images of CFRP

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴 𝑑𝑑𝐴𝐴𝑎𝑎𝑑𝑑𝑎𝑎𝐴𝐴𝑑𝑑𝐴𝐴𝑑𝑑 = 0.0146 ≈ 1.46 %
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ovel thresholding method and convolutional neural network for fiber volume content determination from 3D
CT images

larr, Juliane, Kunze, Philipp, Kresin, Noah, Liebig, Wilfried V., Inal, Kaan, Weidenmann, Kay A.

• Alternative to experimental determination of FVC through CT image processing

• Convolutional neural network and novel thresholding technique

• Especially for low contrast material combinations

• Average absolute deviations of only about 2.7 % (novel thresholding) and 1.46 % (CNN)
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Novel thresholding method and convolutional neural network for fiber volume
content determination from 3D µCT images
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bstract

order to determine fiber volume contents (FVC) of low contrast CT images of carbon fiber reinforced polyamide
, a novel thresholding method and a convolutional neural network are implemented with absolute deviations from
perimental values of 2.7 % and, respectively, 1.46 % on average. The first method is a sample thickness based

djustment of the Otsu threshold, the so-called "average or above (AOA) thresholding", and the second is a mixed
onvolutional neural network (CNN) that directly takes 3D scans and the experimentally determined FVC values as
put. However, the methods are limited to the specific material combination, process-dependent microstructure and
an quality but could be further developed for different material types.

eywords: X-ray tomography, carbon fiber reinforced polymers, thermoplastics, low contrast, deep learning

. Introduction

Owing to their superior lightweight potential through
cellent specific strength and stiffness, fiber reinforced

olymers (FRP) gain market relevance in engineering
aterials mostly substituting metals in the automotive,
ronautic, energy or sports sector [1]. While thermosets

re still more widespread, there seems to be a trend
the field of matrix systems towards using thermo-

lastics, since they offer more advantageous recycling
roperties [2] and rapid processing [3]. Despite being
ore expensive, the use of carbon fibers instead of glass
bers provides superior mechanical properties concern-
g most aspects, like tensile and flexural strength as
ell as Young’s modulus [4]. Considering the evaluation
f µCT images, which is one of the most common non-
estructive testing (NDT) methods for heterogeneous
aterials, carbon fibers embedded in polymers prove
be challenging. With their smaller diameter (5 µm -
µm) and close proximity to polymer matrix materials

∗Corresponding author.
Email address: juliane.blarr@kit.edu (Blarr, Juliane)
URL: https://www.iam.kit.edu/wk/21_2831.php (Blarr,

liane), https://www.grk2078.kit.edu/members_358.php
larr, Juliane)

regarding density, reaching both sufficient resolution and
contrast for good distinction between fiber and matrix is
difficult [5, 6].

While continuous FRP, like unidirectional tapes, show
the best mechanical properties, discontinuously fiber re-
inforced polymers allow for high design flexibility at
relatively low costs [7]. The latter are in general more
challenging to characterize, owing to having a more com-
plex, stochastic microstructure. The complexity of the
microstructure of the material in this work arises both
from the extrusion part (stochastic fiber length distribu-
tions) and the compression molding part of the process
(locally differentiating fiber volume contents as well as
fiber orientation distributions) (cf. Section 3).

In order to be able to characterize the microstructure
quantitatively anyway and to create mechanical mate-
rial models, necessary quantities for description have
developed. Fiber length distributions (FLD) describe
how many fibers of different lengths occur in a specimen.
The fiber length is relevant to the mechanical properties –
only above a certain critical fiber length the maximum
stress transfer is possible [8].

The fiber orientation distribution is classically de-
scribed by means of three-dimensional fiber orientation
tensors (FOT) of second or fourth order [9, 10, 11]. FOT

reprint submitted to NDT & E International January 31, 2024
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specially affect the isotropy properties. These tensors
an be difficult to determine experimentally because re-
oval of the matrix implies dissolution of the orientation-

iving structure. Accordingly, they are determined from
CT images using structure tensor-based image analysis
2, 13]. Since this evaluation is limited to a certain
mple size due to the necessary resolution, there are

ifferent approaches to interpolate these local fiber ori-
ntation tensors to determine a more global orientation
istribution [5, 14, 15, 16].

Probably the simplest sounding quantity at first is that
f the fiber volume content (FVC). The percentage of
bers compared to the matrix in a specimen obviously
ffects the mechanical properties of that specimen. In
ochastic microstructures, the fiber content varies to a
ertain degree throughout a component.

Fiber volume contents can be determined experimen-
lly. Pyrolysis, i.e. ashing of the matrix and subsequent
eighing of the fibers in comparison to the total mass, is
e most common method (also called thermogravimet-
c analysis (TGA)). This method works quite reliably
r glass fibers [17], but poses difficulties for carbon

bers [18]. The authors tested this procedure for the
aterial used in this paper but encountered problems as
ell. Either the temperature or the period of exposure to
mperature was too high and the carbon fibers were ex-
rnally attacked. Or one of both or both were too small

nd then the fibers did not disperse properly because
sidues of the matrix still held the fibers together.
Instead, there is also the option of chemically dis-
lving the matrix through acid, which is a more stable
ethod for carbon fibers as well. Neither of these meth-

ds, however, is a way to determine FVC for natural fiber
inforced polymers. Natural fibers would be attacked by

oth processes [19]. Moreover, these methods have other
isadvantages: Process-related, fiber volume contents
so fluctuate within a sample and exhibit specific charac-
ristics along different axes (compare "shell-core effect"
, 20, 21, 22]). These cannot be detected by the experi-
entally destructive determination of the fiber volume

ontent. Several sections would have to be made in or-
er to obtain three-dimensional information. A 3D µCT

age, on the other hand, can also provide information
bout local volume distributions and thus help to under-
and process correlations. Furthermore, µCT scans are
ften required for fiber orientation analysis anyway, so it
ould not mean any additional effort to determine fiber
olume contents from these scans as well.

Despite all these advantages, there is no standardized
mputational method known to the authors for reliably

etermining the fiber volume content of carbon fiber re-
forced polymers. A simple threshold to distinguish

between matrix voxels and fiber voxels turns out to be
clearly too inaccurate [23, 24, 25], especially for dis-
continuously carbon fiber reinforced polymers. For this
reason, this paper deals with a comparison of methods
for the determination of fiber volume contents of carbon
fiber reinforced (CF) polyamide 6 (PA6) produced in
the long fiber reinforced thermoplastic direct (LFT-D)
process [26]. Both thermogravimetric analysis, so ash-
ing the matrix, and chemical dissolution of the matrix in
acid followed by volume content determination through
the weighting of the fibers were tested experimentally.
For the reasons mentioned above, only the results of the
chemical dissolution are included in detail in this paper.
Furthermore, two computational methods are presented.
For this purpose, high-resolution three-dimensional com-
puted tomography images of the CF-PA6 samples are
acquired. The novel thresholding method "average or
above" (AOA) was developed, which was validated using
the experimental FVC results of the chemical dissolution
of the matrix. In addition, a convolutional neural net-
work (CNN) was developed to predict the FVC directly
from the 3D CT images, which was trained using the
scans and also the acid-based FVC values.

2. State of the Art

Gray value thresholding has been an image process-
ing method known for years. Multiple different auto-
mated thresholding methods for picture segmentation
have been developed; some of the most common are
the one by Otsu in 1979 [27], the moment-preserving
method by Tsai [28] or the mean threshold [29, 30, 31].
Pre-implemented thresholding methods in ImageJ have
been used to determine the fiber volume content of glass
fiber reinforced polymers, e.g. in [32]. However, Pinter
et al. mention that high contrast between matrix and fiber
is required, which is not necessarily given for CFRP. The
authors applied conventional thresholding techniques
onto the material at hand showing its inapplicability in
this case in the methods (Section 4). These common
thresholding techniques are still widely used when deter-
mining pores, voids or unsaturated and hence dry fiber
areas in composites [33]. Air inclusions are usually easy
to detect due to their high contrast. Nonetheless, even
in the case of entrapped air, deep learning has shown
to outperform conventional thresholding techniques, es-
pecially concerning the detection of small voids or the
detection of voids in volumes with small percentages of
porosity [34]. A combination of machine learning (ML)
and conventional thresholding has also shown to be an
option for low contrast and noisy X ray images [35].

2
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Gandhi et al. introduced a new µCT procedure as
nother thresholding based option for FVC determina-
on for glass fiber reinforced polymers in 2020 [36].
hile they state that the true threshold value is unknown,
ey proposed to calculate the threshold value as the his-
gram midpoint between the mean value representing
e fibers and the mean value of the background. Subse-

uently, they performed a normalization step by dividing
e individual fiber volume concentration of each slice

y the average fiber concentration of the entire µCT data
t. They claim that this way the ambiguity in selecting
e true threshold value is resolved. The authors address
e impossibility of application of this technique onto
e scans in this work in the methods as well (Section 4).
For the problem of the reliable determination of the

VC of carbon fiber reinforced plastics, deep learning
L) represents a promising opportunity to improve the

atus quo. CNNs have shown that they can handle low
ontrast images and improve statements resulting from
ose [37, 38, 39, 40, 41, 42]. Necessary filtering and
age processing steps do not have to be found and

pplied by the engineer. In particular, deep learning has
een used for the segmentation of low-contrast carbon
ber composites [43].

. LFT-D process and material

The material used as the basis for the FVC determina-
on in this work is carbon fiber reinforced polyamide 6.
is produced in the so-called "long fiber reinforced ther-
oplastic direct (LFT-D)" process [26] (process graphic,

.g., in [5]). This process is characterized by its inline
ompounding of the polymer, direct uncut fiber addi-
on, and subsequent compression molding of the plas-
ficate/initial charge into a plaque/part. Images of two
laques can be seen in Figure 1 and 2. The charge area,
here the plastificate was inserted, can be optically dif-
rentiated from the flow area that was filled during the

ompression process.
The LFT-D process has the advantage that it is a fast

rocess compared to similar processes for FRP produc-
on and as a thermoplastic matrix is used, the product is
cyclable as the matrix can be molten. The fact that the
bers are added to the polymer mass uncut, and are only
ivided into smaller pieces by the shearing of the screw
ovement, leads to pronounced fiber lengths distribu-
ons and typically slightly higher aspect ratios that in
mparable processes. In general, this process causes lo-
lly varying characteristics of fiber length, fiber volume
ntent and fiber orientation exacerbating microstructure
aracterization and homogenization/material modeling.

This is also due to the initial charge already having spe-
cific porosity and fiber orientation distributions [44].

For the investigations carried out, specimens from two
different plaques are used, that were produced in the
same way (hence equal fiber addition, mold temperature,
screw speed, etc.). The specimens are cut out of the
plaques through waterjet cutting. The two cutting plans
are superimposed on an image of a plaque in Figure 1
and 2.

Figure 1: Specimen sizes and positions in the first LFT plaque (cut
by waterjet technique) and insertion area of the plastificate at the left
(white patterned area). The round specimens were used for pyrolysis
investigations and the rectangular specimens for the chemical dissolu-
tion of the matrix (cf. the results in Table 3).

It shall be mentioned that the round specimens in Fig-
ure 1 were meant for the experimental ashing process,
while the rectangular specimens were used for the chem-
ical dissolution of the matrix. The round specimens had
a diameter of 25 mm as this was the size of the crucible,
in which the TGA was carried out. As an acid-based
solution was utilized in the end, the specimens in the
second plaque are exclusively rectangular (cf. Figure 2).
Additionally, in plaque 1 (cf. Figure 1) multiple sizes
of the rectangular specimens are cut: FLD1 and FLD10
have the dimensions 10 mm × 10 mm × 3 mm, FLD2
and FLD11 have the dimensions 20 mm × 20 mm × 3
mm and FLD3 and FLD12 have the dimensions 30 mm
× 30 mm × 3 mm. Possible implications of the speci-
men size on the fiber volume content and fiber length
distribution could thereby be detected. As there were no
significant changes in FVC between the medium sized
sample and the biggest ones, the authors assumed that a

3
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gure 2: Specimen sizes and positions in the second LFT plaque (cut
a waterjet). The results of the FVC measurement after chemical
ssolution can be seen in Table 4.

ze in between (25 mm side length) should be acceptable
dimension for the specimens of the second plaque. In

rder to not cut any long fibers, a fiber length distribu-
on measurement was also conducted for the differently
zed specimens of plaque 1. The fiber length measure-
ents showed that it is extremely rare for fiber lengths to
ceed 10 mm. Furthermore, the on average fiber length
creased between the smallest and the medium speci-
en size but did not in both cases between the medium

nd the large specimen size. Hence, a saturation of the
fluence of the specimen size on the fiber length can

lso be assumed. For the reasons of the FLD measure-
ents, the crucible size of the economically used TGA
d the saturation of the FVC adjustment due to the sam-

le size, the side length of 25 mm was chosen for the
ine specimens in plaque 2. Additionally, the specimens
ere extracted from different regions of the plaques. In
laque 1, the three differently sized specimens are cut
ut of the charge area (FLD1 to FLD3), where the inital
lastificate is inserted, as well as out of the flow area

LD10 to FLD12). In plaque 2, the specimens from the
harge area are labeled with a C, the ones from the flow
ea with a F and the specimens in-between with CF and
corresponding number, respectively. This way, differ-
ces in the microstructure between charge and flow area

an also be considered.
The material constituents, with which the final CF-

A6-LFT-D plaques were manufactured, are Zoltek
X35 commercial carbon fibers and a PA6 by the com-

pany DOMO.

4. Methods

4.1. µCT scans

The Zeiss Metrotom 800 (cone-beam) µCT system
at wbk Institute of Production Science at KIT with the
flat panel detector PaxScan2520V with 1536 pixel ×
1920 pixel was used to scan the specimens of the first
plaque. The resulting projections were reconstructed to a
volumetric image applying the Feldkamp cone-beam al-
gorithm [45] and the Shepp-Logan noise reduction filter.
Subsequently, the reconstructed scans were processed in
VG Studio Max 3.4.2. The samples of the second plaque
were scanned in an YXLON-CT (Yxlon International CT
GmbH, Hattingen, Germany) precision µCT system at
Institute for Applied Materials (IAM-WK) at KIT with
a µ-focus X-ray transmission tube with tungsten target
and a PerkinElmer (Waltham, MA, USA) Y.XRD1620
flat-panel 2048 pixel × 2048 pixel detector. The scan
parameters for the specimens of the two different plaques
are listed in Table 1.

Table 1: Scan parameters of the different plaques. Plaque 1 was
scanned on the Zeiss device, plaque 2 on the Yxlon device.

Parameter Unit Plaque 1 Plaque 2

Voltage kV 100 110
Current mA 0.16 0.13

Voxel size µm 25.98 17.39
Linebinning parameter - - 2
Number of projections - 1450 2220

Exposure/Integration time ms 1000 800

Exemplary 2D images, so-called slices, of those CT
scans are shown in further parts of this work as, e.g., in
Figure 10(b).

4.2. Chemical dissolution

The chemical dissolution and subsequent weighting
and determination of the FVC was conducted by FIBRE
(Bremen). The procedure is briefly described in the
following. In order to chemically remove the matrix,
approximately 50 ml of concentrated sulfuric acid is
added to the samples in an Erlenmeier flask which is
then placed on a hotplate (cf. Figure 3).

This is followed by heating until smoke is produced.
Subsequently, the samples have to react for one hour
at this temperature. After the samples have cooled
down ("warm to the touch"), they are mixed with
approximately 25 ml of a 35 % hydrogen peroxide

4
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Figure 3: Drop of a specimen in sulfuric acid in Erlenmeier flask and dispersion of the fibers. Courtesy of FIBRE Bremen.

lution and heated until the solution becomes clear and
o more gas bubbles rise. The remaining fibers are put

a new specimen cup and can be used for the fiber
olume content determination via weighting and for the
ber length distribution determination.

.3. Computational methods

.3.1. Application and shortcomings of common tech-
niques

The through-thickness fiber concentration analysis by
andhi et al. was mentioned in the state of the art [36].
owever, the authors were unable to apply this proce-
ure to the µCT scans in this work as the first step of
hoosing the midpoint threshold is impossible for the
istograms of the CFRP scans as will be elucidated in
e next section (Section 4.3.2) and can be seen in Fig-

re 6 (only one peak is visible). The authors did try
nventional automatic thresholding methods as compar-
on to the methods introduced in this work, which can
e seen in Tables A5 and A6 in the Appendix (Section
). Therefore, the two common automatic threshold-
g methods Otsu (opencv [46]) and mean (scikit image
7]) were applied, once without filtering the image be-
re and once with the best-performing filter option of

ur self-implemented method (medianBlur with a kernel
ze of 15 for plaque 1 and 23 for plaque 2, respectively)
pplied beforehand. The minimum threshold by scikit

age did not even compile with a "RuntimeError: Un-
ble to find two maxima in histogram", which confirms
e authors’ findings. While the two thresholding pro-

edures that worked were applied in Python supporting
e subsequent further processing of the values, the ex-

ct same threshold and filtering methods can be applied
ImageJ as well. The results were far away from the
perimental values. It is noticeable that the results of
e pure threshold methods deviate on average by almost
0 % relatively compared to the experimental results.
is particularly striking that the calculated FVC values

re almost the same for each sample. A purely constant
ift of the threshold value therefore does not appear to

make sense, as this would also not cover the differences
between the samples. The use of the median blur at least
significantly improved the results with the Otsu thresh-
old. It seems that in the case of low contrast CT images
of composites with high fiber volume content, simple
thresholding is insufficient for fiber segmentation, which
is supported by literature [48].

4.3.2. Novel thresholding method
The novel thresholding method is realized in Python

3.8.7 with the help of the SimpleITK [49, 50, 51], the
OpenCV [46] and the NumPy [52] libraries among oth-
ers. The scans of the samples are generated as 16 bit 3D
images in the .raw and .mhd file format. For all further
steps those scans were converted into 8 bit. Dark slices
at the borders resulting from the specimens not being
exactly even-surfaced and further image errors were cut.
Each loaded scan was converted into a 3D array. In the
following, every slice is handled separately; so the au-
thors iterated through the thickness of the samples and
worked on 2D images. At first, a filter was applied to
reduce the noise. The filters tested include the "normal"
blur filter, the median blur filter, the Gaussian blur filter
and the bilateral filter each with various kernel sizes. The
kernel size defines the dimension of the window that is
slid across the image and in which the filter-specific cal-
culation is performed. The performance of the filters was
judged afterwards by comparing the resulting calculated
fiber volume contents with the experimental values. The
results of the specimens of the first plaque can be seen
in Table B7, Table B8 and Table B9 and the results of
the specimens of the second plaque in Table C10 and
Table C11 in the Appendix (Section 8). The median filter
with resolution-adapted kernel size performed the best.
It works by creating a kernel of pixels around a central
pixel. The values are sorted and the central pixel gets re-
placed by the median value. From the then noise-reduced
image, a threshold value was determined by using the
Otsu algorithm. The Otsu algorithm separates an image
in two sections by maximizing the inter-class variance

5
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f the gray-level intensities between those sections:

σ2
b(t) = ω1(t) · ω2(t) (µ1(t) − µ2(t))2 . (1)

ω1 and ω2 are the probabilities of the two sections
ith

ω1(t) =
t−1∑

i=0

p(i) and ω2(t) =
L−1∑

i=t

p(i), (2)

while p(i) represents the probability for each grey-
vel intensity. µ1(t) · ω1(t) represents the mean intensity
alue of the first section (and vice versa for the second
ction) with

µ1(t) =
t−1∑

i=0

i · p(i)
ω1(t)

and µ2(t) =
L−1∑

i=t

i · p(i)
ω2(t)

. (3)

After calculating the Otsu threshold for each slice, it
plotted over the thickness. In Figure 4, the plot for
ecimen F1 can be seen as an example.

Figure 4: Example of the threshold values from a sample.

Considering the course of the threshold values over the
eight of the sample, it is noticeable that the threshold
alues are the highest in the center and drop to a much
wer level at the borders of the specimen. Inspecting
e scans slice per slice, it is noticeable that there are
ss fibers visible in those border areas compared to the

entral layers of the sample as can be seen in Figure 5.
This phenomenon is due to the material flow in the
mpression molding process. The process-induced dif-
rence between outer layers and the center of the part
called shell-core effect in injection molding vocabu-
ry and can be detected considering both fiber volume

ontent as well as fiber orientation [5, 36]. However,
is would mean that there are more lighter gray values

(a) (b)

Figure 5: First slice (a) and center slice (b) of the scan of the specimen
F1. The low amount of fibers and fiber bundles at the border (a) and
the contrary high amount in the center (b) is clearly visible.

representing the fibers and less darker ones representing
the matrix in the center layers, but the threshold value
distinguishing between the two peaks should not shift.
This therefore cannot be the main reason for the course
of the threshold values over the thickness. However,
the authors tested to normalize the threshold values by
the average brightness but got little to no improvement
on the final FVC results, which seems to support this
conclusion.

A second possible explanation would be that of the
beam hardening effect, a common phenomenon in com-
puter tomography. The further the beam penetrates the
material, the higher the average energy of the photons,
as the low energy photons get scattered easily. How-
ever, uncorrected images typically show increasing gray
values towards the center, hence the rotation axis of the
CT. Consequently, this effect would be contrary to the
observed one. Additionally, multiple specimens were
scanned occasionally, which would superimpose this
effect on multiple samples.

Considering the histograms, one understands the issue
more. In Figure 6, exemplary histograms of specimen
F1 are given.

On the left (a), the histogram of the entire specimen is
shown, in the middle (b), one can see the histogram of
one single slice rather towards the border of the specimen
and on the right (c), the histogram of a single slice in the
center of the specimen is given. In the entire histogram
at the left, it is apparent that there are not two peaks as
expected. To the contrary, all voxels seem to show gray-
values roughly fitting to one single normal distribution.
This is due to the bad contrast between carbon fiber and
polymer in the CT, which has already been mentioned be-
fore (compare e.g. Figure 10 at the right (b)), induced by
the closeness of the densities. Additionally, much higher
resolutions would be necessary to at least come close to
resolving single carbon fibers, which is not given with
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(a) (b) (c)

igure 6: Comparison between the histograms of the entire specimen F1 (a), a border (b) and a middle slice (c) (after having applied the median
lter).

e resolutions of these scans. Both of these facts lead to
ery noisy images. The Otsu thresholding, respectively
ny thresholding method for that matter, therefore can
ot work the way it is supposed to, but calculates some
ind of median value of the entire gray value distribu-
on. Looking at the histogram of the border slice, the
eak intensity is slightly shifted to the left and there is
small shoulder visible at the left of the distribution.
omparing it with the histogram of the center slice, the
istribution is shifted to the right in this case and there
a pronounced shoulder at the right of the distribution.

his leads to the rise of the threshold values towards the
nter of the scans. As these values are more correct than
e low threshold values calculated at the borders, there
the need of a non-constant adaption of the threshold

alues up until the center of the specimens.
Therefore, a two-stage procedure is implemented.

1. The First stage consists of the previously described
approach. A median blur filter is applied to each
slice. Afterwards, the threshold value is determined
and saved as TOtsu[i], with i being the corresponding
slice.

2. At the beginning of the Second stage, the average
threshold value

Taverage = T =

n+1∑

i=0

TOtsu[i]

n
(4)

is calculated. Following, a new array Tnew is de-
clared. If TOtsu[i] is smaller than Taverage, Tnew[i]
will be set equal to Taverage. Otherwise Tnew[i] will
be set equal to TOtsu[i].

his procedure can be seen in the flowchart in Figure 7.
After that, a binary image is created from each slice i

y using the threshold value Tnew[i]. From these binary
ages, the FVC for each slice can be calculated by

etermining the percentage of the pixels with a non zero

START

Calculate TOtsu[i]∀ i ∈ [1, n]

Calculate Taverage =

∑n
i=1 TOtsu[i]

n for the entire stack

Declare array for new threshold values Tnew(n)

TOtsu[i] < Taverage

Tnew[i] = Taverage Tnew[i] = TOtsu[i]

RETURN Tnew(n)

Yes No

Figure 7: The process of the novel thresholding procedure. At first,
the threshold value for each of the n images is calculated with the
Otsu algorithm and stored in TOtsu. Afterwards, the average threshold
value Taverage across all slices is determined. Then, the threshold value
TOtsu[i] for each image i is compared to Taverage. The larger of the two
values is then stored in Tnew as Tnew[i].

7
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alue. The comparison of TOtsu and Tnew can be seen in
igure 8.

gure 8: Example of the threshold values from a sample. The blue line
presents TOtsu, the orange line Taverage and the green line represents
new.

The effects of this two-stage approach can be viewed
Figure 9. This empirical procedure was only one

mong multiple ones tested by the authors, but the one
at showed the best results.

(a) (b) (c)

igure 9: Comparison between the original image (a) and the binary
age after the first (b) and second stage (c).

.3.3. Convolutional Neural Network
put data and data processing. The convolutional neu-
l network is implemented in Python 3.6.8 with the

elp of inter alia the NumPy, Scikit-image [47] and Sim-
leITK packages. Tensorflow [53] and Keras [54] were
sed as AI framework. The calculations were performed
n CPUs provided by the bwHPC cluster 2. For the CNN,
e 16 bit scans are loaded directly into the Python script
r further processing. In contrast to the thresholding
ethod, the scans are handled as 3D arrays without a
op iterating through the slices. A comprehensive set

f uniformization methods is applied so that the neural
etwork’s training algorithms solely train the network
n the intended differences between the scan data.
For the data loading, uniformization and augmen-

tion, the Python libraries of SimpleITK, Keras and

Numpy provide a large variety of useful methods. How-
ever, since the data is processed in 3D, a range of pro-
cessing methods had to be custom-made. Those helper
functions can be found in the Github repository as well.
The steps used to process the scans are as follows:

1. Cutting
First, the scans were cropped individually to the
actual core material volume to avoid noise at the
edges of the scan volume (cf. Figure 10).

(a) (b)

Figure 10: Exemplary slice near the top of the FLD2 scan (a) showing
marking and uneven surface conditions in contrast to (b) a slice of the
same scan 10 layers deeper into the material.

The individual amount of cut back slices per speci-
men can be taken from Table 2.

Table 2: Overview of the original scan data. The resolution is given
in terms of the absolute amount of voxels in each dimension. The
numbers below "Front/Back cut" refer to the amount of slices removed
during data pre-processing.

Scan FVC Original scan
resolution

Front
cut

Back
cut

FLD1 22.3 % 122 x 386 x 386 5 10
FLD2 25.5 % 128 x 780 x 780 12 12
FLD3 28.6 % 148 x 1168 x 1162 35 35

FLD10 17.9 % 130 x 391 x 395 9 14
FLD11 24.0 % 135 x 777 x 772 16 16
FLD12 26.6 % 132 x 1164 x 1167 13 15

F1 23,1 % 168 x 1424 x 1425 0 0
F2 22,1 % 165 x 1421 x 1425 4 0
F3 23,1 % 165 x 1416 x 1428 0 0

CF1 25,6 % 171 x 1403 x 1415 1 5
CF2 22,3 % 161 x 1422 x 1421 4 0
CF3 22,8 % 165 x 1406 x 1415 0 0

C1 26,4 % 165 x 1409 x 1421 2 4
C2 23,1 % 155 x 1414 x 1421 0 4
C3 23,8 % 161 x 1406 x 1425 0 4

8
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2. Resizing

All data used to train the CNN should be of the same
shape so that one input size of the network can be
established. Furthermore, reshaping all arrays into
cubes adds an additional possible axis to rotate the
data by without changing its shape. That allows for
an additional augmentation step and thus doubles
the amount of input data after augmentation.
To reshape the cuboid scans into cubes, the trans-
form()-method from the scikit-image library was
used. The target size of the cubes was constrained
by the computing power available at the bwHPC
cluster. Iterative trials showed that it was capable
of executing the script stably up to a cube size of
100 × 100 × 100 voxels, which was thus selected as
array dimension.

3. Augmentation

Neural networks require extensive amounts of data
to improve their training process. Since only a small
amount of scans are available (14), multiple stages
of 3D-image augmentations were used to enlarge
the input data set.

In the first step, every scan was rotated by 90◦ and
added to the data set with the same FVC as its
original. Since the cuboid shape of the transformed
data allows for rotation about three independent
axes, the process was repeated for the remaining
two orthogonal axes. Solely rotating by multiples
of 90◦ ensures that no data is lost at the edges by
leaving the scope of the arrays. Furthermore, it is
computationally much more efficient than a rotation
by a random angle since only the array indexes need
to be interchanged.

After multiplying the data set by a factor of 4 by
adding rotations of the original scans, all scans are
then flipped in a second step. Similarly to the first
step, copies of the original scans are mirrored at
one plane and then added to the data set with the
same FVC as their originals. The process is re-
peated for the two remaining normal planes, further
multiplying the data set by a factor of 8.

Overall, by combining three rotations and three
mirroring steps, the amount of input data can be
multiplied by a factor of (1 + nrotations) · 2nre f lections =

(1 + 3) · 23 = 32. Therefore, the 14 original scans
multiply to a data set of 448 samples. More combi-
nations are possible but they lead to exact duplicates
of arrays which can be obtained using the method
above. I.e. two consecutive 90◦ rotations about

one axis equal two reflections about two different
planes.

4. Split
Before being fed into the neural network, the data,
consisting of CT scan arrays coupled with their
respective, experimentally observed FVC values,
are split into a training and a validation set. The
larger training set is used for the initial tuning of
the network’s parameters similar to [55].

In between each training epoch, the validation set
is used to verify the model’s performance on un-
seen data, which prevents overfitting and allows for
an estimation of the model’s ability to generalize
beyond the training set. More details on the train-
ing process are discussed in the Network training
process paragraph below.

Network architecture. A special characteristic of the net-
work implemented in this work is the direct input of a
3D scan along with a singular scalar value representing
its corresponding FVC making it a mixed network. How-
ever, the output of the network is only the predicted FVC
as a singular value between 0 and 1 for a given scan.

For image processing tasks, the conventional type of
neural network is a convolutional neural network (CNN).

The model architecture in this work consists of several
layers of convolutions, pooling, dense, and dropout lay-
ers. Overall, the neural network can be divided into two
stages: The feature extraction stage, where the convolu-
tion is happening and the subsequent feature processing
stage, where the extracted features are mapped to a cor-
responding output.

The input layer takes in a 3D tensor of depth, width,
and height, representing the CT-scan data, as a single
channel since the CT-scans are in gray scale. Further-
more, the single scalar value for the FVC is passed along.
The subsequent convolutional layer that extracts features
from the input data is followed by a max-pooling layer
that downsamples the output of the convolutional lay-
ers to reduce the dimensionality of the data and capture
the most important features. In this case, a 2 × 2 × 2
max-pooling layer follows the convolution, where out
of the 23 = 8 voxels only the largest value is passed on
to the next layer. This way, an 87.5 % reduction of data
is achieved without a major loss of relevant information
since for feature extraction, the precise location of cer-
tain features is less relevant. Furthermore, the strongest
features are enhanced more as only the highest value
inside the kernel area is passed on.

After the convolutional and max-pooling layers, the
output is passed through several dense layers with recti-

9
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ed linear unit (ReLU) activation function. In the case
f this study, where FVC percentages are evaluated, any
egative values are implausible and get filtered out au-
matically this way. These layers enable the model to
arn complex relationships between the input and out-
ut. Dropout layers are added after each dense layer to
revent overfitting.

The further one advances into the network during the
nalysis, the less relevant spacial information becomes,
nce the ultimate objective is to compute a single scalar,
at describes the entirety of a scan. A Global Average
ooling Layer transforms the 3D output of the dense
yers into a single-row vector. Its dimensionality corre-
onds to the amount of feature maps which the feature
traction stage feeds forward. This technique and the

hoice of Global Average vs. Global Max Pooling was
spired by Zunair et al. [56] and improved the perfor-
ance of the CNN.
Finally, the output layer is a dense layer with a sigmoid

ctivation function. Its output represents the predicted
ber volume content (FVC) of the CT-scan.
The final network architecture can be seen in Figure
. The parameters that define the shape of all layers

sed were determined using parameter sweeps, which are
iscussed in the Network optimization paragraph below.
he graphic was made with the help of the latex code
ublished in [57].

etwork training process. The CNN described so far
initialized with random weights in all of its layers.

herefore, the initial predictions for the scans of the
aining set will also be random and are unlikely to show
ny causal relation to their actual FVC values. In order

tune the weights in a way that enables the network
make reasonable predictions, a training algorithm is

sed. The training can be divided into two main steps:
odel compilation and model fitting. During the model

ompilation step, the configuration parameters are set
p. The chosen loss function for this task is binary cross-
tropy (BCE). The BCE loss also referred to as log loss

r negative log probability is defined as follows

l (y, ŷ) = −
(
y log (ŷ) + (1 − y) log (1 − ŷ)

)
, (5)

with y being the true term (0 or 1) and ŷ being the
redicted probability (between 0 and 1) [58, 59]. In the
erfect case of the model exactly predicting 0 or 1 cor-
ctly, the loss amounts to zero. However, in this paper
e true term y is not only zero or one, but a continuous

alue in between. While this is not what the BCE loss
as originally intended for, it worked better than other

popular loss functions that are not intended for binary
input (and output) such as MSE/MAE or regular cross
entropy. Literature also suggests that it works in practice
[60, 61], so the authors used the BCE loss in this work.
However, it shall be noted that binary cross entropy is
asymmetric in the case of the ground truth not being a
binary value and the minimum loss is not zero anymore.
As an example for y = 0.24, which is roughly the average
FVC in this case, the minimum loss for ŷ = y = 0.24
amounts to 0.5511 (cf. Figure 12). This will be relevant
when judging the loss plot in the results (Section 5).

Figure 12: Course of the BCE loss over prediction values ŷ between 0
and 1 for a true value of y = 0.24.

The optimizer selected for this task is Adam. It is
an adaptive learning rate optimization algorithm that
adjusts the learning rate dynamically during training,
which helps to converge to an optimal solution faster.
Because of its computational efficiency and little memory
requirement [62], it is a popular choice for training deep
neural networks due to its efficiency and effectiveness
in updating the parameters of the model. Additionally,
the mean squared error (MSE) is used as a metric to
evaluate the performance of the model during training.
It measures the average squared difference between the
predicted and true values. Therefore, it provides insight
into the overall accuracy of the predictions of the model
along the training process.

After model compilation, the model is fitted to the
training data using the model.fit() function from Tensor-
flow. This method implements the general process of
machine learning using the parameters set in the compi-
lation process: Using the weights provided at that stage
in the network, all training scans are passed through
the network. The resulting scalars (the predictions) are
subsequently compared to the actual FVC values of the
respective specimens. The loss function, which was spec-

10
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Figure 11: Final architecture of the CNN used in this paper.

ed earlier, takes both the prediction and the real value
its arguments and computes a loss score. The selected

ptimizer then adjusts the weight in the layers according
the performance of the score, before the entire process
repeated by the set amount of epochs specified in the

eginning. Figure 13 describes this process visually.

igure 13: Illustration describing the training of weights in neural
tworks inspired by [63, 64].

Alongside the training set, the validation set is being
aluated with the same model and loss function simul-
neously. Finally, a loss plot such as Figure 17 is gen-
ated using the training and validation loss values. The

lot shows both as a function of the number of epochs.
his visualization helps to monitor the convergence and
erformance of the model during training, where a de-
reasing loss indicates that the model is learning and

proving over time.
Furthermore, this method also takes over the task of

shuffling the input data and splitting it into training and
validation sets, for which a ratio of 2/3 to 1/3 was set.
The number of training epochs is set to 40, indicating
the number of times the entire training data set is passed
through the model during training. Once the model is
trained, it is used to predict the fiber volume content for
the test data. The deviation between the predicted values
and the true labels is then plotted, as seen in Figure 18.

Network optimization. The CNN required a lot of pa-
rameters to be defined. The authors started with values
provided in similar literature ([55], [64]) and adapted
them to the problem at hand. Most parameters were
defined by so-called parameter sweeps. Instead of sin-
gle values, the parameters were provided with a list of
values, which were looped through. By changing two
parameter values at once, one can find the combination
with the best performance. As an example, the amount
of filters in a 3D convolutional layer is eligible in Keras.
The best amount of connected dense-dropout layers was
also unclear. Hence, lists for the amount of filters in
the convolutional layer n f ilters = {2, 4, 8, 16, 32} as expo-
nential values to the basis 2 in order to cover a greater
field and a list for the amount of dense-dropout layers
ndd−layers = {1, 2, 3, 4, 5} was given to the network in-
stead of singular values of these parameters. These lists
are then iterated through and training is carried out for
each combination, i.e. each new network. The standard
average deviation for the results of each network is fi-
nally compared and the combination of parameters that
leads to the best FVC prediction is used.

A similar procedure was followed for the parameters

11
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f the dropout rate in the dropout layer, the pool size
the max-pooling layer and the kernel size in the con-

olutional layer. Analogously, multiple initial learning
tes, loss functions and optimizers were tested until the

uthors arrived at the presented architecture in Figure
.

. Results

.1. Chemical dissolution

Since the samples that were dissolved in acid of the
rst plate were of different sizes, the dependence of the
ber volume contents on the sample size can be shown.
fact, this effect seems to be clearly pronounced, as can

e seen in Table 3: the fiber volume contents increase
onotonically from sample 1 to 3, as well as from 10 to
.

ble 3: FVC in % for specimens of the first plaque determined through
id-based dissolution of the matrix.

Specimen FVC

FLD1 22.3 %
FLD2 25.5 %
FLD3 28.6 %

Average 25.5 %

FLD10 17.9 %
FLD11 24.0 %
FLD12 26.6 %

Average 22.9 %

With specimen 1 being the smallest (10 mm × 10 mm
3 mm), specimen 2 being the second largest (20 mm
20 mm × 3 mm) and specimen 3 being the largest (30
m × 30 mm × 3 mm), it is noticeable that the larger
e specimen, the larger the FVC. Moreover, the fiber

olume content seems to be higher in the charge region
pecimen 1, 2, 3) than in the flow region (specimen 10,
, 12) - a finding that can partly be confirmed consid-

ring the samples of the second plate (cf. Table 4). The
sults of the FVC in Table 4 of the second plaque have

een first published by Scheuring et al. [65].
While the average FVC of the three charge specimens
1, C2, C3) is equal to the global average with 23.57 %,
is indeed slightly higher than the average FVC of the
ree specimens of the flow region (F1, F2, F3) with

2.74 %. The transition region (specimens CF1, CF2,
F3) shows the biggest average FVC with 24.42 %.

Table 4: FVC in % for specimens of the second plaque determined
through acid-based dissolution of the matrix. From Scheuring et al.
[65].

Specimen FVC

F1 23.07 %
F2 22.08 %
F3 23.06 %

Average 22.74 %

C1 25.57 %
C2 22.31 %
C3 22.81 %

Average 23.57 %

CF1 26.36 %
CF2 23.10 %
CF3 23.81 %

Average 24.42 %

Overall average 23.57 %

5.2. Computational determination of the fiber volume
content

For the assessment of the overall quality of a method,
the following two quantities are introduced. Firstly, the
standard average deviation (SAD) between the experi-
mental and predicted FVC values of the validation set
(FVCexp, FVCpred) is defined as follows

S ADabs =
1

nscans

∑
|FVCexp − FVCpred |

This value describes the absolute error of the predic-
tion.

To compare different thresholding techniques with
each other, the relative SAD is used at times in this
Section given by

S ADrel =
1

nscans

∑ |FVCexp − FVCpred |
FVCexp

,

as a measure of the relative error of the prediction.

5.2.1. Novel thresholding procedure
The scans, that the FVC had to be determined of, all

showed salt and pepper noise. So the first step of the
implemented thresholding method was the application of
a filter. The choice of the filter type and kernel size was
decided on after all other steps of the procedure were
defined. The authors conducted a study, as to which filter
and kernel size produces a FVC closest to the measured
ones. The median blur led to the least average deviation

12
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gure 14: Illustration showing the whole process of FVC determination by AOA thresholding using the example scan of sample FLD3. (a) Shown
a middle slice of the original 3D CT image read into Python. (b) The same slice is shown after applying the median filter (kernel size in this case
, as FLD3 is one of the first specimens). (c) The Otsu threshold of each slice was determined and plotted over the slices. The calculated thresholds
e shown in blue, the average in orange and the value that is ultimately applied in green. The average value is used if the actual threshold of the slice
below the average value, otherwise the calculated value above it is used (cf. Figure 8). (d) The slice is shown with the threshold applied. (e)

inally, the fiber volume content determined by the method is plotted over the slices. The decreasing volume content at the edges is clearly visible.
he mean value over all slices in orange is the final determined value, which is again compared with the experimentally determined value.

etween the calculated and the measured results. It is no-
ceable, that there are differences of the best kernel size
etween the two different plaques. For the specimens of
e first plaque, consisting of FLD1 to FLD12, a median

lur filter and a kernel size of 15 pixel × 15 pixel showed
e least average deviation, as well as the least maximum

eviation. The results can be seen in Table B7, Table B8
d Table B9 in the Appendix. For the specimens of the
cond plaque, consisting of C1 to F3, a median blur and
kernel size of 23 pixel × 23 pixel had the least average
eviation, as well as the least maximum deviation, which
shown in Table C10 and Table C11. In the tables with
e results of the second plaque, only the tested kernel
zes that seemed the most relevant of some filters are
sted. Comparing the dimensions of the images of the
ifferent plaques, to be seen in Table 2, it shows that
e average image size of the second plaque is larger
an that of the first one, hence the image resolution is

igher for the second plaque (cf. Table 1). Apparently
e needed kernel size of the median blur is dependent

n the dimensions and the resolution of the scan used.
he effect of the median blur is visible comparing the
ages (a) and (b) in Figure 14. The determined binary
age after applying the AOA thresholding method of

is particular slice is shown in (d).

However, not all final results of the FVC are convinc-
g (compare Table B8, column "medianBlur(...,15), and
able C10, column "medianBlur(...,23)). While most
mples show decent results, when not including out-

ers, with a relative average deviation of 1.81 % in the
rst measurement series and 3.42 % in the second mea-
rement series, there are samples with a much larger

eviation. The sample FLD10 of the first series and the
mples C2 and F2 of the second series show relative

eviations of up to 116.09 % (FLD10). The reason for
ose differences of the performances of the algorithm

are not entirely clear. FLD10 was a small specimen and
a scan with low resolution, which is not the best com-
bination in general. This condition arose because the
authors desired to have the same resolution for all sam-
ples of one plate and the low resolution was necessary
in order to fit the biggest specimens inside of the beam
path. Hence, the image quality was insufficient but that
was also the case for FLD1, which did not deviate that
massively. Additionally, FLD10 showed a much lower
experimentally measured FVC and the authors assumed
minor measurement uncertainties leading to that value.
For these reasons FLD10 was left out of the error cal-
culations of the AOA thresholding and was not used as
training data in the CNN either. However, the other two
outliers C2 and F2 were included. The authors could
neither detect any visual deviation nor deviations in the
histograms, brightness levels or other measures used for
image comparison in these two scans, which is why they
are included in the absolute average deviations and were
also used as training data for the CNN. That way, the
absolute average deviation of the final AOA threshold-
ing with medianBlur filter of 15 and 23, respectively,
amounts to about 2.7 %. The final results are depicted in
Table D12 in the Appendix.

The final results of the FVC determined by AOA
thresholding after applying the median filter as described
above are also plotted in Figure 15. The two deviating
values of C2 and F2 can be clearly detected.

Considering the progress of the fiber content across a
specimen by the example of specimen F2, a clear non-
monotonous course can be seen in Figure 16.

The lower values at the borders of the sample and
the increase of the FVC towards the center have been
expected. This behavior appears due to the compres-
sion molding process. The so-called "shell-core effect"
known from injection molding signifies changing fiber
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gure 15: Original (orange) and calculated with the novel thresholding
chnique (blue) values of FVC for the fourteen specimens, as well
measured averaged FVC (orange dashed) and calculated averaged

VC (blue dashed).

igure 16: Exemplary progression of FVC over thickness of the spec-
en considering the example of specimen F2. Typical increase of

VC towards the center of the specimen visible.

olume content and fiber orientation between shell and
ore layer of the plaque [5, 36]. While the fiber orienta-
on effect is only visible in the area of the initial charge
ue to a different effect than in injection molding) and

on-existent in the flow area, the effect of the process on
e through-thickness FVC is clearly visible.

.2.2. CNN
As shown in Figure 17, using 40 epochs as training of
e CNN is sufficient since the model’s validation and
aining losses converge after around 22 epochs and there
re no significant improvements beyond that point. The
aining loss value after 40 epochs amounts to 0.5539 and
e validation loss to 0.5535. Considering the shift of the
inimum attainable loss value briefly discussed in the
ethods (Section 4), this can be considered a successful

training process.

Figure 17: Final graph showing the losses for the testing and validation
data sets during the training process as a function of the epoch.

The performance of the CNN is further assessed in
Figure 18. Contrarily to Figure 15 which describes the
results of the thresholding method, the depicted predicted
single values in Figure 18 are themselves an average of
the FVC prediction of the CNN for all input scans with
the same measured FVC (including the original and the
augmented scans).

Figure 18: Original (orange) and calculated with the CNN (blue) values
of FVC for the fourteen specimens, as well as measured averaged FVC
(orange dashed) and calculated averaged FVC (blue dashed).

In the best universal case, hence the final network
depicted and described in Section 4.3.3, an absolute av-
erage deviation of 1.46 % was achieved (cf. Table D12).

Beside the amount of epochs used to train the net-
work, a number of variables were tuned to improve the
prediction’s accuracy. The augmentation process, e.g.,
has multiple steps of flipping and rotating images. Ex-
periments with using less or more augmentation steps
showed that using the most amount of steps showed the
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est results. Changing which scans were fed into the
rogram from the start had a large impact and by down-
lecting systematically, an absolute average deviation

elow 0.9 %, so a performance increase by about 40 %
as achieved.
However, since the goal of this network is to provide
universal method for carbon-reinforced PA6 sample
ans, the authors instead used all data, resulting in worse

redictions for the limited validation data at hand in
vour of general applicability to different scans at a later
me. FLD10, which has already shown to be an outlier
r the thresholding method poses an exception in this

ase. Its implementation caused a remarkable decrease
performance in all cases, for which the authors are

cking an identifiable rationale and thus this scan had to
e removed from the entire data set, as mentioned before.

. Discussion

.1. Novel thresholding method

With the chemical dissolution average being 24.23 %
nd the method estimating 26.54 % when including the
utliers, the absolute average deviation amounts to 2.7 %,
hich is higher than that of the CNN. The number was
ainly driven up by the two outliers, which were in-
uded in the final result as there is no apparent reason to
clude them. Neither the visual inspection of the image

or the histogram showed larger deviations than those
at were also usual between the other samples.
The empirical approach of the binary decision be-
een the single slice Otsu threshold and the average

ack Otsu threshold could still be developed into another
on-constant adaption of the threshold. Specifically, it
ould probably be helpful to mathematically determine
e variation of the histogram across the thickness and

hange the threshold values accordingly continuously.
he rather large influence of the filtering before the AOA
resholding method shall be mentioned here as well
f. Tables B7, B8, B9, C10, C11). However, the main
fluence is still the thresholding. Considering Figure

, it becomes clear that even though a median filter was
plied onto both images, the normal Otsu threshold still

verinterprets the amount of fibers. The right choice
f filter is just an additional factor. Considering in par-
cular that neural networks basically consist of several
lters in a row, the importance of choosing the right fil-
r(s) should not be underestimated, especially for noisy,
w-contrast images. It shall also be stated that the AOA
resholding method is not optimal by any means. How-
er, the authors wanted to compare the CNN not only

to experimental methods, but also to a more conven-
tional image processing method working on 2D slices
and simple thresholding was not an option considering
the high errors (cf. Tables A5 and A6). Therefore, mul-
tiple approaches were tested, including the mentioned
normalization of the threshold values, etc., with the AOA
thresholding delivering the best results for our specific
material and scan quality. It is a comparably fast and
simple method to get to a decent result compared to the
high effort in development and training of the CNN. Es-
pecially the agile adjustment with the values rising or
falling along with increasing or decreasing experimen-
tally determined FVC was convincing.

6.2. CNN
Figure 18 shows the performance of the trained CNN

on specific scans of the validation data set. It can be seen
that although the FVC of some samples was predicted
with very high accuracy, the deviations are distributed
unevenly among the data with some predictions being off
by several percent points. The overall performance of the
CNN is relatively accurate with the average prediction of
24.3 % being very close to the original measured FVC
average of 24.23 % and the absolute average deviation
amounting to 1.46 % (cf. Table D12). However, it is
unreliable in some cases, for which a pattern could not
be observed yet. In particular, the logical connection
(increasing measured value does not correspond to in-
creasing predicted value from the mean) is not given.
However, experimental measurement inaccuracies also
fluctuate randomly around a mean value (cf. boxplots).

Although excluding distinct scans from the training
data improved the accuracy in this case, it is likely due to
the CNN being overtrained on unintended features that
are exclusive to the specific data used.

In order to increase the CNN’s accuracy for a universal
purpose, more diverse input data might be useful. Al-
though a total of 448 scans were used for the training and
validation process, they only stem from 14 original scans
which themselves contain a similar amount of fibers with
FVCs ranging between 22.08 % and 28.6 %. So pro-
viding the network with scans that contain significantly
more and less fibers could allow it to pick up the relevant
patterns more effectively.

Furthermore, a larger scan resolution would detail
more information about the structure of distinct fibers,
which cannot be detected with the 100×100×100 pixels.
However, any resolution larger than this led to memory
issues within the bwHPC cluster and thus posed a limita-
tion on the data evaluation. Rather than only considering
bundles of fibers, considering individual fibers would
allow the network to differentiate better between fibers
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nd irrelevant irregularities within the PA6 matrix and
uld improve the quality of the overall prediction. This

ould require a CT device with better contrast and higher
ossible resolutions.

. Conclusion

The authors implemented a novel thresholding method
ased on the Otsu threshold and a convolutional neu-
l network both for the computational determination

f the fiber volume content of carbon fiber reinforced
olyamide 6 produced in the long fiber reinforced ther-
oplastic direct process. The convolutional neural net-
ork outperformed the thresholding in terms of fiber
olume content prediction when compared to experi-
ental results that were obtained through acid-based

issolution of the surrounding matrix. The absolute av-
rage deviation between the fiber volume content of the
erage or above thresholding and the experimental val-

es was about 2.7 % compared to about 1.46 % of the
onvolutional neural network.

. Outlook

The AOA thresholding method could be adapted to a
ontinuous adjustment of the threshold directly depend-
g on the histogram of the specific slice.
The CNN could be improved by adding additional
ans, and hence input data, of which experimental FVC

alues are available. Especially more specimens with
wider range of different FVCs already in the process
ould be important as the variance of the experimen-
l data is very much limited. While both methods

re highly material-, process-, and scan-dependent, the
ained CNN and its determined weights could be used
pretraining weights for a network with a different ma-

rial type. Furthermore, images of a similar kind, e.g.
e same matrix and process but with a glass fiber rein-
rcement, could be added additionally as input data on
p of the CFRP images.
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ppendices
. Results of FVC determined by different conventional thresholding methods

ble A5: Fiber volume contents of the specimens of the first plaque determined by chemical dissolution and by exemplary slice-wise conventional
resholding procedures in Python that are also available in ImageJ. The results of the white row of FLD10 were not incorporated into the final
aximum deviations, sum of relative deviations and relative average deviations in order to be comparable to the results in Appendix B.

Specimen Exp. values opencv Otsu medianBlur(. . . ,15) + O. skimage mean medianBlur(. . . ,15) + m.

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

FLD1 22.30 % 48.90 % 119.28 % 33.18 % 48.79 % 49.58 % 122.33 % 44.10 % 97.76 %
FLD2 25.50 % 48.89 % 91.73 % 28.20 % 10.59 % 49.66 % 94.75 % 43.50 % 70.59 %
FLD3 28.60 % 48.93 % 71.08 % 30.89 % 8.01 % 49.69 % 73.74 % 43.55 % 52.27 %
FLD10 17.90 % 49.31 % 175.47 % 44.36 % 147.82 % 49.77 % 178.04 % 47.88 % 167.49 %
FLD11 24 % 48.69 % 102.88 % 32.49 % 35.38 % 49.49 % 106.21 % 43.74 % 82.25 %
FLD12 26.60 % 48.88 % 83.76 % 31.45 % 18.23 % 49.59 % 86.43 % 42.51 % 59.81 %

Max. deviation 119.28 % 48.79 % 122.33 % 97.76 %
Sum of rel. dev. 468.73 % 120.99 % 483.46 % 362.68 %
Rel. aver. dev. 93.75 % 24.20 % 96.69 % 72.54 %

ble A6: Fiber volume contents of the specimens of the seecond plaque determined by chemical dissolution and by exemplary slice-wise
nventional thresholding procedures in Python that are also available in ImageJ.

Specimen Exp. values opencv Otsu medianBlur(. . . ,23) + O. skimage mean medianBlur(. . . ,23) + m.

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

C1 23.07 % 47.97 % 107.96 % 30.88 % 33.87 % 49.30 % 113.73 % 44.69 % 93.74 %
C2 22.08 % 48.78 % 120.91 % 46.33 % 109.82 % 49.47 % 124.04 % 49.00 % 121.91 %
C3 23.06 % 48.10 % 108.60 % 33.84 % 46.75 % 49.32 % 113.89 % 45.71 % 98.23 %
CF1 25.57 % 48.32 % 88.94 % 33.25 % 30.01 % 49.37 % 93.05 % 44.16 % 72.68 %
CF2 22.31 % 47.44 % 112.60 % 36.85 % 65.14 % 49.06 % 119.86 % 45.64 % 104.54 %
CF3 22.81 % 47.77 % 109.42 % 32.94 % 44.40 % 49.16 % 115.51 % 46.13 % 102.23 %
F1 26.36 % 48.27 % 83.14 % 39.78 % 50.93 % 49.47 % 87.69 % 46.88 % 77.87 %
F2 23.10 % 48.98 % 112.01 % 46.58 % 101.62 % 49.71 % 115.17 % 49.00 % 112.10 %
F3 23.81 % 48.22 % 102.55 % 36.07 % 51.51 % 49.34 % 107.25 % 46.43 % 95.03 %

Max. deviation 120.91 % 109.82 % 124.04 % 121.91 %
Sum of rel. dev. 946.13 % 534.07 % 990.19 % 878.31 %
Rel. aver. dev. 105.13 % 59.34 % 110.02 % 97.59 %
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. Results of FVC of the first plaque determined by AOA thresholding for different pre-filters

ble B7: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different configurations
the "blur" filter onto the CT images.

Specimen Exp. values blur(...,(11,11)) blur(...,(13,13)) blur(...,(15,15)) blur(...,(19,19))

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

FLD1 22.30 % 25.43 % 14.04 % 23.66 % 6.10 % 22.41 % 0.49 % 21.05 % -5.61 %
FLD2 25.50 % 26.77 % 4.98 % 25 % -1.96 % 23.76 % -6.82 % 21.26 % -16.63 %
FLD3 28.60 % 29.83 % 4.30 % 28.95 % 1.22 % 28.36 % -0.84 % 27.64 % -3.36 %
FLD10 17.90 % 36.30 % 102.79 % 35.09 % 96.03 % 34.16 % 90.84 % 32.97 % 84.19 %
FLD11 24 % 26.07 % 8.63 % 24.65 % 2.71 % 23.26 % -3.08 % 21.91 % -8.71 %
FLD12 26.60 % 26.24 % -1.35 % 23.58 % -11.35 % 22.56 % -15.19 % 20.40 % -23.31 %

Max. deviation 14.04 % 11.35 % 15.19 % 23.31 %
Sum of rel. dev. 33.30 % 23.34 % 26.43 % 57.61 %
Rel. aver. dev. 6.66 % 4.67 % 5.29 % 11.52 %

ble B8: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different configurations
the "medianBlur" filter onto the CT images.

Specimen Exp. values medianBlur(. . . ,11) medianBlur(. . . ,13) medianBlur(. . . ,15) medianBlur(. . . ,19)

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

FLD1 22.30 % 26.12 % 17.13 % 24.37 % 9.28 % 22.97 % 3.00 % 21.26 % -4.66 %
FLD2 25.50 % 27.57 % 8.12 % 25.64 % 0.55 % 24.18 % -5.18 % 22.49 % -11.80 %
FLD3 28.60 % 30.14 % 5.38 % 29.16 % 1.96 % 28.50 % -0.35 % 27.69 % -3.18 %
FLD10 17.90 % 36.30 % 102.79 % 39.47 % 120.50 % 38.68 % 116.09 % 36.81 % 105.64 %
FLD11 24 % 26.68 % 11.17 % 25.06 % 4.42 % 23.91 % -0.37 % 22.31 % -7.04 %
FLD12 26.60 % 29.20 % 9.77 % 27.56 % 3.61 % 26.64 % 0.15 % 25.79 % -3.05 %

Max. deviation 17.13 % 9.28 % 5.18 % 11.80 %
Sum of rel. dev. 51.57 % 19.82 % 9.06 % 29.74 %
Rel. aver. dev. 10.31 % 3.96 % 1.81 % 5.95 %

ble B9: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying a "gaussianBlur" and
ilateralFilter" onto the CT images.

Specimen Exp. values GaussianBlur(. . . ,(15,15),0) bilateralFilter(. . . ,15,350,350)

FVC FVC Deviation FVC Deviation

FLD1 22.30 % 28.30 % 26.91 % 24.39 % 9.37 %
FLD2 25.50 % 30.96 % 21.41 % 25.56 % 0.24 %
FLD3 28.60 % 32.39 % 13.25 % 29.23 % 2.20 %
FLD10 17.90 % 39.79 % 122.29 % 35.52 % 98.44 %
FLD11 24 % 28.39 % 18.29 % 25.11 % 4.63 %
FLD12 26.60 % 29.87 % 12.29 % 25.01 % -5.98 %

Max. deviation 26.91 % 9.37 %
Sum of rel. dev. 92.15 % 22.41 %
Rel. aver. dev. 18.43 % 4.48 %
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. Results of FVC of the second plaque determined by AOA thresholding for different pre-filters

ble C10: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different configurations
the "medianBlur" filter onto the CT images.

Specimen Exp. values medianBlur(. . . ,15) medianBlur(. . . ,21) medianBlur(. . . ,23) medianBlur(. . . ,25)

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

C1 23.07 % 25.88 % 12.21 % 24.41 % 5.81 % 24.07 % 4.36 % 25.39 % 10.06 %
C2 22.08 % 41.43 % 87.63 % 42.06 % 90.50 % 42.20 % 91.10 % 42.56 % 92.73 %
C3 23.06 % 25.48 % 10.52 % 23.43 % 1.62 % 23.04 % -0.08 % 22.59 % -2.03 %
CF1 25.57 % 22.65 % -11.42 % 25.58 % 0.02 % 26.60 % 4.01 % 28.31 % 10.70 %
CF2 22.31 % 24.52 % 9.90 % 23.65 % 5.97 % 23.53 % 5.44 % 23.48 % 5.24 %
CF3 22.81 % 23.33 % 2.28 % 21.97 % -3.69 % 22.53 % -1.24 % 22.41 % -1.76 %
F1 26.36 % 26.90 % 2.07 % 25.70 % -2.48 % 25.48 % -3.33 % 25.28 % -4.09 %
F2 23.10 % 32.43 % 40.37 % 32.52 % 40.74 % 32.76 % 41.81 % 35.16 % 52.19 %
F3 23.81 % 26.46 % 11.15 % 25.29 % 6.23 % 25.11 % 5.49 % 25.00 % 5.01 %

Max. deviation 12.21 % 6.23 % 5.49 % 10.70 %
Sum of rel. dev. 59.55 % 25.82 % 23.95 % 38.89 %
Rel. aver. dev. 8.51 % 3.69 % 3.42 % 5.56 %
Rel. aver. dev. with outliers 20.84 % 17.45 % 17.43 % 20.42 %

ble C11: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying a "gaussianBlur" and
lur" onto the CT images.

Specimen Exp. values GaussianBlur(. . . ,(21,21),0) blur(...,(15,15))

FVC FVC Deviation FVC Deviation

C1 23.07 % 27.03 % 17.20 % 25.86 % 12.13 %
C2 22.08 % 39.09 % 77.03 % 41.19 % 86.55 %
C3 23.06 % 26.53 % 15.05 % 24.99 % 8.36 %
CF1 25.57 % 22.47 % -12.14 % 21.03 % -17.78 %
CF2 22.31 % 25.47 % 14.16 % 24.85 % 11.39 %
CF3 22.81 % 23.83 % 4.45 % 22.53 % -1.24 %
F1 26.36 % 26.00 % -1.35 % 24.97 % -5.28 %
F2 23.10 % 30.93 % 33.88 % 30.41 % 31.64 %
F3 23.81 % 27.81 % 16.80 % 26.51 % 12.89 %

Max. deviation 17.20 % 17.78 %
Sum of rel. dev. 81.15 % 69.07 %
Rel. aver. dev. 11.59 % 9.87 %
Rel. aver. dev. with outliers 21.34 % 20.81 %
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. Final results of AOA thresholding and CNN (averaged) for the 14 samples and absolute deviations to
experimental results

ble D12: Predictions of final AOA thresholding method (compare green columns in Table B8 and in Table C10) and of final CNN structure. The
lues for the CNN are averaged predictions for the original and all augmented 3D image versions with the same FVC.

Specimen Exp. values AOA thresholding CNN

FVC FVC Absolute deviation FVC Absolute deviation

FLD1 22.30 % 22.97 % 0.67 % 26.04 % 3.74 %
FLD2 25.50 % 24.18 % 1.32 % 28.62 % 3.12 %
FLD3 28.60 % 28.5 % 0.1 % 28.41 % 0.19 %
FLD11 24 % 23.91 % 0.09 % 25.24 % 1.24 %
FLD12 26.60 % 26.64 % 0.04 % 25.6 % 1 %
C1 23.07 % 24.07 % 1 % 23.24 % 0.17 %
C2 22.08 % 42.2 % 20.12 % 22.85 % 0.76 %
C3 23.06 % 23.04 % 0.02 % 22.49 % 0.57 %
CF1 25.57 % 26.6 % 1.03 % 23.12 % 2.46 %
CF2 22.31 % 23.53 % 1.22 % 22.35 % 0.04 %
CF3 22.81 % 22.53 % 0.28 % 22.80 % 0.01 %
F1 26.36 % 25.48 % 0.88 % 21.98 % 4.37 %
F2 23.10 % 32.76 % 9.66 % 24.78 % 1.68 %
F3 23.81 % 25.11 % 1.3 % 22.68 % 1.12 %

Mean 24.23 % 26.54 % 24.3 %

Abs. aver. dev. 2.7 % 1.46 %
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