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A clinically applicable connectivity signature
for glioblastoma includes the tumor network
driver CHI3L1
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Tumor microtubes (TMs) connect glioma cells to a network with considerable
relevance for tumor progression and therapy resistance. However, the deter-
mination of TM-interconnectivity in individual tumors is challenging and the
impact on patient survival unresolved. Here, we establish a connectivity sig-
nature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary
glioblastoma (GB) cells using a dye uptake methodology, and validate it with
recording of cellular calcium epochs and clinical correlations. Astrocyte-like
and mesenchymal-like GB cells have the highest connectivity signature scores
in scRNA-sequenced patient-derived xenografts and patient samples. In large
GB cohorts, TM-network connectivity correlates with the mesenchymal sub-
type and dismal patient survival. CHI3L1 gene expression serves as a robust
molecular marker of connectivity and functionally influences TM networks.
The connectivity signature allows insights into brain tumor biology, provides a
proof-of-principle that tumor cell TM-connectivity is relevant for patients’
prognosis, and serves as a robust prognostic biomarker.

Glioblastoma (GB) is the most common malignant primary brain
tumor and patients have a median survival of about 15–20 months
despite full standard therapy1. Resistance is pre-existing or acquired
early and regularly, with no targeted therapy today that is effective2.
Tumor heterogeneity plays a major role in treatment resistance, as
objective responses are seen, but regrowth is fast and frequent.
Although not yet related to clinical resistance, glioblastoma cells
(GCs) exist in at least four main cellular states that recapitulate dis-
tinct brain cell types, are influenced by the tumormicroenvironment,
and exhibit plasticity3.

We have recently discovered that long cellular protrusions named
tumor microtubes (TMs) connect about half of the tumor cells to a
multicellular network in GB preclinical models and patient samples4

and also contribute to incurable pediatric glioma types5. Integration
of malignant cells into these networks promotes resistance against
radiotherapy4, chemotherapy, and surgical lesions6. TM networks
facilitate long-range communicationofGCsby intercellularCa2+waves,
which is used for directed tumor self-repair and better cellular
homeostasis4,7,8. TM networks receive synaptic neuronal input that
activates glioma network communication, further driving glioma
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invasion and proliferation5,9,10. Tumor network connectivity appears
variable between individual tumors4 and the degree of TM-connectivity
is relevant for the level of resistance4,6. So far, little is knownabout single
cell heterogeneity within a TM network, and only a few molecular dri-
vers of TMs and their networks are identified4,11,12. Moreover, the
detection and quantification of the degree of connectivity is difficult to
assess in patient samples8.

Here, we establish a gene expression signature of tumor network
connectivity that improves the cellular and molecular understanding
of TM network connectivity, reveals candidate structures for inter-
vention, and proves to be a straightforward, reliable, and prognostic
biomarker for this central cellular hallmark of glioma malignancy.

Results
Development of a connectivity signature for GB
We first explored the transcriptomic landscape of TM-connected
human patient-derived glioblastoma cells (PDGCs). Three PDGC lines
(PDGCLs, Supplementary Fig. 1a, b, Supplementary Table 1) over-
expressing turbo green fluorescent protein (tGFP) were xenografted
into mouse brains (Fig. 1a) and formed TM networks (Fig. 1b) that
reflected the GB patient TM connectivity (Fig. 1b). To study the
TM-mediated interconnection of PDGCs we administered the fluor-
escent dye Sulforhodamine 101 (SR101, Fig. 1a) that is specifically
taken up by astrocytes13 and spread to the GB network via gap-
junction connections onto PDGCs´ TMs10. Within the GB network,
TM-connected PDGCs reached higher SR101 intensities compared to
TM-unconnected PDGCs (Fig. 1c, d). Importantly, SR101 intensities
correlated positively with the extent of PDGC-interconnection, but
not with astrocyte density (Supplementary Fig. 1c–g11), i.e., SR101
uptake levels of PDGCs are pivotally linked to the extent of TM-
connections to vicinal PDGCs (Supplementary Fig. 1g11,14). Eventually,
highly (tGFPhigh, SR101high) and lowly connected (tGFPhigh, SR101low)
PDGCs, of which the vast majority resided parenchymally (Supple-
mentary Fig. 1h, i), were separated (Supplementary Fig. 1j–l) and their
transcripts subjected to RNA-Seq and scRNA-Seq (Fig. 1a).

The SR101 xenograft scRNA-Seq dataset included a total of 35,822
PDGCs with a median of 5686 PDGCs per PDGCL and SR101 intensity
group and 2086 genes per cell (Supplementary Table 2). We identified
differentially expressed genes (DEGs) between SR101high and SR101low

groups in each PDGCL. DEGs with the same regulated direction and
presence in all three PDGCLs or large fold changes in twoPDGCLswere
considered as connectivity related (Fig. 1e, seemethods). The obtained
71 DEGs (Fig. 1f and Supplementary Data 1) included the extensively
characterized TM regulators delta like canonical notch ligand (DLL)1
and DLL314, growth associated protein 43 (GAP43)4,6,15 and the TM
marker apolipoprotein E (APOE)9.

245 DEGs between SR101high and SR101low groupswere identified in
RNA-Seq data (Fig. 1e, Supplementary Fig. 2a, and Supplementary
Data 2, see methods) and the fold-changes of DEGs individually iden-
tified in the scRNA-Seq and RNA-Seq datasets were highly correlated
(Supplementary Fig. 2b). 13 DEGs were mutual in both datasets
(R = 0.77, Fig. 1g) and the number of overlapping genes would have
been even higher if each individual PDGCL´s contribution was taken
into account (Supplementary Fig. 2c). Neurogenesis related gene
ontology (GO) terms were commonly enriched (Fig. 1h) in both data-
sets and the SR101 DEG profile further independently correlated with
genes summarized in the Neurogenesis term of the gene set enrich-
ment analysis (GSEA, Supplementary Fig. 2d). This supported that
genes involved in TM network regulation are also important for
neurodevelopment4,10,12.

To quantify the degree of TM-connectivity, we calculated scores
based on the aggregated expression levels of the RNA-Seq and scRNA-
Seq derived gene sets. A high overall concordance between the scores
of both gene sets was observed in scRNA-Seq and RNA-Seq datasets
(R = 0.87 in SR101 xenograft scRNA-Seq dataset (Fig. 1i) and R = 0.89 in

The Cancer Genome Atlas [TCGA] GB RNA-Seq dataset [Fig. 1j]). Both
gene sets could well-distinguish SR101high and SR101low groups
(p =0.0049, Supplementary Fig. 2e) in the SR101 xenograft RNA-Seq
dataset. Strikingly, both gene sets had a high accuracy to distinguish
SR101high andSR101low PDGCs,ofwhich the scRNA-Seq score performed
slightly better (0.83 vs. 0.79, Supplementary Table 3), whereas a ran-
dom generated control gene set resulted in expected poor distinction
(accuracy = 0.49, Supplementary Table 3).

Therefore, we decided to use the scRNA-Seq derived gene set,
termed connectivity signature, for further evaluation and the term
connectivity signature score to describe the extent of connectivity.

Two distinct PDGC subpopulations are characterized by high
connectivity signature scores
A proof of concept application of the connectivity signature score to
the scRNA-Seq dataset expectedly demonstrated that SR101high PDGCs
co-localized with high scoring PDGCs in the Uniform Manifold
Approximation and Projection (UMAP, Fig. 2a and Supplementary
Fig. 3a–c). Furthermore, a clear distinction of highly connected
(SR101high) and lowly connected (SR101low) PDGCs with a strong dif-
ference in connectivity signature scores was given in all PDGCLs
(Fig. 2b, c).

Recent single-cell studies have identified distinct GB cell states3:
astrocyte-like (AC), mesenchymal-like (MES), oligodendrocyte-
progenitor-like (OPC), and neural-progenitor-like (NPC). In our SR101
xenograft scRNA-Seq dataset highly connected SR101high PDGCs were
predominantly assigned to the AC andMES1 cell states while NPC1 and
OPC cell states were enriched in lowly connected SR101low PDGCs
(Fig. 2d–f). Of note, higher connectivity signature scores of SR101high

than SR101low PDGCs were found in each cell state (Supplementary
Fig. 3d), rendering the connectivity signature to be a cell state-
independent surrogate marker for connectivity.

Most of the 40upregulatedDEGs in highly connectedPDGCswere
primarily expressed in PDGCs of the AC or/and MES cell states, while
the 31 downregulated DEGs mainly correlated with OPC or/and NPC
cell states (Fig. 2g). We also found a high overlap between the con-
nectivity signature genes and cell state-defining genes, in particular in
the AC,MES1 andNPC1 cell states (AC 10/40, 25%;MES1 7/51, 14%;NPC1
12/51, 24%, Fig. 2h). Further highlighting a correlation of connectivity
and cell states, several proven TM associated genes part of the con-
nectivity signature, like APOE9, or independent of it, like connexin 43
(GJA1)4 and tweety-homolog 1 (TTYH1)12, are also AC and MES1 cell
state-defining genes3.

To understand the fates of SR101high and SR101low PDGCs we per-
formed RNA velocity analysis (Fig. 2i, j and Supplementary Fig. 3e, f).
SR101high PDGCs had a transition potential towards AC. This suggested
an ongoing fostering of the connected network with AC being the
terminal cell state of ultimately connected PDGCs. In contrast, SR101low

PDGCs had transition potentials toward various cell states. This might
reflect their hybrid role in GB malignancy: They first invade the brain,
settle in the network niche and finally serve as a seed of a multicellular
network10,14.

In summary, the SR101 xenograft scRNA-Seq data allowed us to
link highly connected and lowly connected PDGCs to distinct GB cell
states and provide a broad map of their transcriptomic properties.
Through our interactive web app (https://connectivity-glioma.dkfz.de)
we have made these data available (Supplementary Fig. 4).

The connectivity signature score reflects cell-to-cell connections
To exclude any model-based bias, we used further methods to corre-
late the SR101 xenograft model-derived connectivity signature with
several proven parameters of tumor cell connectivity4,9,12,16.

Of these parameters, some are based on the ability of connected
PDGCs to transfer Ca2+ transients via TMs4,17 (Fig. 3a and Supplemen-
tary Movie 1). Notably, the number of Ca2+ peaks per PDGC increased
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with the number of both morphological and functional (Ca2+ coactiv-
ity-based) cell-to-cell connections (Fig. 3b, c and Supplementary
Fig. 5a, b). Based on this, we hypothesized that the accumulated Ca2+

level can serve as a reliable surrogate marker for PDGC connectivity
and utilized to further assess the transcriptional underpinnings of
differentially connected PDGCs.

To assess this hypothesis, we took advantage of Caprola6. This
fluorescent molecular recorder of calcium transients18 enabled us to
sort PDGCs in three groups based on their calcium history (i.e. low,
medium, and high labeling intensities) and to perform transcriptional
analysis. The same approach was conducted with PDGCs expressing a
constitutively active control construct, Caprolaon, to eliminate genes
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that might have solely contributed to differential dye uptake. Of the
obtainedDEGsbetween the threeCaprola6 groups and threeCaprolaon
groupswe excluded the fewoverlapping genes to establish a diffusion-
corrected 171-gene calcium signature (Supplementary Fig. 5c, d and
Supplementary Data 3–5).

Six genes of the calcium signature, including CHI3L1, DLL1, and
DLL3, overlapped with the 71 genes comprising the connectivity sig-
nature (p < 9.16 × 10−6, Fig. 3d).

The calcium signature was enriched in the Neurogenesis GO
term (Supplementary Fig. 5e) as was the connectivity signature
(Fig. 1h). We observed a high correlation between the calcium and
connectivity signature scores (R = 0.68, Fig. 3e) and the calcium sig-
nature scores distinguished SR101high and SR101low groups (Fig. 3f).
MES1 and AC cell states, enriched in the SR101high group, were also
enriched in higher calcium signature score groups, while OPC, NPC1
and NPC2 cell states predominantly occurred in the low calcium
signature score group (Fig. 3g).

Of note, similar findingswereobtained for the Caprola6 signature,
but not for the Caprolaon signature (Supplementary Fig. 5f–k). Con-
firmingly, a strong positive correlation of the connectivity signature
scores and labeling intensities was only found with Caprola6 (Fig. 3h),
but not with Caprolaon groups (Supplementary Fig. 5l). Moreover, the
connectivity signature excluded from overlapping genes with the
Caprolaon signature still showed a good distinction between SR101high

and SR101low groups (Supplementary Fig. 5m). This all implied that
both connectivity and calcium signature indicate TM-connectivity and
Ca2+ activity rather than unspecific dye uptake.

Negativemodulation of PDGC interconnectivity in TM-networks
is accompanied by lower connectivity signature scores
Next, we utilized BTP2 (YM-58483), a pharmacologic antagonist of the
stromal interaction molecule 1 (STIM1)-regulated store operated Ca2+

entry, to substantiate the interrelation of morphological connectivity,
functional connectivity, and connectivity signature. Treatment with
BTP2 resulted in lower Ca2+ dependent labeling intensities in Caprola6
expressing PDGCs (Fig. 4a and Supplementary Fig. 5n), decreased the
number of TMs per live cell (Fig. 4b, c) without affecting the cell via-
bility (Fig. 4d) and led to a reduction of the connectivity signature
score (Fig. 4e).

We also demonstrated the robustness of the connectivity score in
dye-independent setups. In a denseGBnetwork19–21 (Fig. 4f) PDGCs had
moremorphological connections per cell (Fig. 4g) and reached higher
connectivity signature scores compared to a sparse in vitro condition
(Fig. 4h). Additionally, an alternative serum-based induction of 2D TM
networks (Supplementary Fig. 6a, b) also caused an increase of the
connectivity signature score (Supplementary Fig. 6c).

Together, these dye-free and dye-dependent but SR101-
independent methods demonstrate a meaningful interrelation of

cellular connectivity and SR101 method-derived, connectivity sig-
nature score-determined molecular connectivity.

The connectivity signature in GB patient samples
To test the performance of the connectivity signature in patient
GB cells (GCs), 21 GB tumor samples were collected and subjected
to single nucleus (sn)RNA-Seq (Supplementary Table 4). A median
of 11,192 cells per sample and 995 genes per cell passed quality
control, totaling in 213,444 single cells (Fig. 5a and Supplementary
Table 4).

We classified malignant and non-malignant cells using copy
number variation (CNV) analysis and previously defined marker
genes3,22,23 (Fig. 5a, b, Supplementary Fig. 7a–f and Supplementary
Data 6). Within themalignant cells, the AC cells were predominant in
most tumors although a high degree of heterogeneity in the cell
states was observed between the tumors (Fig. 5c). The connectivity
signature score was also heterogeneous between tumors (Fig. 5d),
but consistently higher in patient GCs in AC and MES1 cell states and
lower in cells in OPC and NPC cell states (Fig. 5e–g). The scoring
intensities of cells in a specific cell state were retained when applying
the calcium signature to our snRNA-Seq patient dataset (Supple-
mentary Fig. 7g). This further underlined the correlation of both
signatures (R = 0.55, Supplementary Fig. 7h) and corroborated the
results from the xenograft mouse models. Most importantly, these
results were substantiated in an independent cohort of 110 GBs24

(Supplementary Fig. 7i–n).
It is the ultimate goal to utilize the connectivity signature for

connectivity grading of clinical samples to allow for a biological start-
and endpoints in clinical trials investigating anti-TM strategies.
Therefore, we assessed the TM length in histological sections of
tumors subjected to RNA-Seq for correlation with the connectivity
signature score. Longer TMs were found in samples with high con-
nectivity signature scores (Fig. 5h–j, Supplementary Fig. 8).

Taken together, we validated in humanGB samples that particular
patient GCs in AC and MES1 cell states have a high cell-to-cell con-
nectivity. Application of the connectivity signature onto human GB
specimens is feasible and could be used for reliable assessment of TM
networks.

Higher connectivity is found in tumors of the mesenchymal
expression subtype and with the NF1 mutation
After substantiating the connectivity signature in preclinical models
and clinical cases, we investigated the associations between con-
nectivity signature scores, gene mutations and expression subtypes25

in the TCGA and Chinese Glioma Genome Atlas (CGGA) GB patient
cohorts. Tumors of the mesenchymal (MS) subtype were associated
with the highest connectivity signature score, while the lowest scores
were observed in proneural (PN) subtype GBs (Fig. 6a). MS subtype

Fig. 1 | Development of the connectivity signature. a Experimental design of the
connectivity signature development. Partly created with BioRender.com.
b Intravital two-photon microscopy images of the xenografted tGFP over-
expressing patient derived glioblastoma cell lines (PDGCLs) used for scRNA-seq,
images representative of n = 3 mice. Bottom right; Representative confocal
microscopy 3D rendering of a patient GB visualized with anti-nestin immuno-
fluorescence. Arrowheads showing TMs. Scale bars depict 20 µm. c Two-photon
microscopy images of xenografted S24 PDGCs with differential SR101 uptake (red)
and constitutive tGFP expression (green), images representative of n = 3 mice.
Arrow marks showing highly connected PDGCs and arrowheads showing lowly
connected PDGCs. Scale bar depicts 20 µm. d Normalized SR101 intensity in highly
and lowly connected xenografted S24 PDGCs. Boxes show 25th to 75th percentile,
its middle line the median, whiskers the 5th to 95th percentile and individually
plotted data points the outliers. n = 287 PDGCs (TM-connected) vs. n = 228 PDGCs
(TM-unconnected) from n = 5 regions of interest (ROIs) of n = 3 mice. Two-tailed
Mann-Whitney U test. e Development of the connectivity signatures. 13

differentially expressed genes (DEGs) between SR101high and SR101low PDGCs over-
lapped. See methods. f Heat map showing average expression levels of 71 scRNA-
Seq-derived connectivity genes in SR101high and SR101low PDGCs from three xeno-
grafted PDGCLs. g Scatter plot showing the log2 fold changes of overlapping DEGs
in scRNA-Seq and RNA-Seq datasets. Upregulated genes in red, downregulated
genes inblue. Two-sidedSpearmancorrelation test.h Enrichmentmapshowing the
most enriched GO biological processes in the scRNA-Seq-derived and RNA-Seq-
derived gene sets. The pie chart size indicates the number of overlapping genes
between gene sets. Lines connect GOs with overlapping genes. i, j Scatter plots
showing connectivity signature scores based on connectivity genes derived from
scRNA-Seq and RNA-Seq. Two-sided Pearson correlation test. i, SR101 xenograft
scRNA-seq dataset. n = 35,822 PDGCs j TCGA IDH wt GB RNA-Seq dataset.
n = 230 samples. f, i, j Values were Z-score scaled and centered across samples/
PDGCs and winsorized to −3 and 3. Exact p-values are shown in the figure. Source
data are provided as a Source Data file.
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tumors correlated mainly with MES1 and AC cell states, whereas clas-
sical (CL) tumors were almost exclusively associated with the AC cell
state and PN tumors showed a high frequency of OPC and NPC cell
states (Fig. 6b).

Amongst the genes recurrently mutated in at least 5% of the GB
patients NF1 mutations, which are enriched in the MS TCGA

subtype26, correlated with higher connectivity signature scores
(Supplementary Fig. 9a). This association was not only valid in the
whole cohort but was also observed in tumors of only the MS TCGA
expression subtype (Supplementary Fig. 9a), suggesting an inde-
pendence of NF1 mutations and the MS subtype. Additionally,
mutations in phosphatase and tensin homolog (PTEN) and tumor
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Fig. 2 | Highly and lowly connected single PDGCs correlate with distinct cell
states in 35,822 single PDGCs of the SR101 xenograft scRNA-Seq dataset.
a Uniform manifold approximation and projections (UMAPs). Left, colored by the
xenografted PDGCL. Middle, colored by SR101 intensity-based sorting. Right,
colored by connectivity signature scores. b Connectivity signature scores in
SR101high and SR101low groups of each PDGCL. n = 11,190 PDGCs (S24, SR101high) vs
n = 4439 PDGCs (S24, SR101low), n = 10,245 PDGCs (T269, SR101high) vs n = 6933
PDGCs (T269, SR101low) and n = 2725 PDGCs (P3XX, SR101high) vs n = 290 PDGCs
(P3XX, SR101low), respectively, from n = 3mice per group. Two-sidedMann-Whitney
U test. c Density plot of connectivity signature scores in SR101high and SR101low

groups. Dotted lines depict medians. d UMAP of single PDGCs colored by cell
states. e Distribution of cell states in SR101high and SR101low groups. f Connectivity
signature scores in each cell state. g Dot plot of average expression levels of each
connectivity gene in each cell state. Dot size indicates the frequency of cells that

express the respective gene. Top, 40 upregulated connectivity genes in SR101high

group. Bottom, 31 downregulated connectivity genes in SR101high group. h Venn
diagram showing the number of overlapping genes between 71-gene connectivity
signature and cell-state-defining genes. i RNA velocities projected on principal
component analysis (PCA) embedding of xenografted S24 PDGCs. Streamline
indicates the directional flow. Each dot is a single PDGC colored by cell state.
j Directed partition-based graph abstraction (PAGA) graphs based on RNA velocity
analysis in i. Each dot represents one cell state with the dot size indicating the
number of PDGCs in the cell state. The width of the arrow indicates the transition
possibility between cell states. a–c, f Connectivity signature scores were Z-score
scaled and centered across PDGCs andwinsorized to −3 and 3.b, f Boxes show25th
to 75th percentile, its middle line the median, whiskers the 5th to 95th percentile
and individually plotted data points the outliers. Exact p-values are shown in the
figure. Source data are provided as a Source Data file.

Fig. 3 | The connectivity signature score reflects functional cell-to-cell con-
nections. a Time lapse micrographs of Ca2+ transients traveling between two S24
PDGCs pairs along a TM in vitro, images representative of n = 3 independent
experiments. Dotted lines indicate somata of TM-connected PDGCs pairs. Arrow-
heads indicate intercellular Ca2+ transient traveling through TMs. Scale bars depict
50 µm. b, c Connections per S24-PDGC in low, medium and high Ca2+ activity
groups. The three groupswere the PDGCs of bottom 5% (n = 159 PDGCs),middle 5%
(n = 100 PDGCs) and top 5% (n = 72 PDGCs). n = 3 recordings. Two-sided Mann-
Whitney U test. b Number of functional connections. c Number of morphological
connections. d Heatmap of 171 gene calcium signature in low, medium and high
labeling intensity groups of S24-Caprola6 PDGCs. Genes overlapping with the
connectivity signature are highlighted in orange (also upregulated in connectivity
signature) and blue (also downregulated in connectivity signature). e–g Calcium
signature score in SR101 xenograft scRNA-Seq dataset. e Scatter plot showing

correlationof calcium signature score and connectivity signature scores. n = 35,822
PDGCs. Two-sided Pearson correlation test. f Density plot of calcium signature
scores in SR101high and SR101low groups. Dotted lines depict medians. g Distribution
of cell states in three groups of calcium signature score separated by first quartile
(Q1), two middle quartiles (Q2-Q3) and last quartile (Q4). h Connectivity signature
scores in RNA-Seq data of S24-Caprola6 groups with low,medium and high labeling
intensities. Shown is the mean and standard error of the mean (SEM, error bars).
n = 2 replicates (low) vs n = 3 replicates (medium) vs n = 3 replicates (high). Two-
sided Kruskal-Wallis test. e–g Connectivity signature scores or gene expression
were Z-score scaled and centered across PDGCs/samples and winsorized to −3 and
3. b, c Boxes show 25th to 75th percentile, its middle line the median, whiskers the
5th to 95th percentile and individually plotted data points the outliers. Exact p-
values are shown in the figure. Source data are provided as a Source Data file.
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protein p53 (TP53) were associated with the connectivity signature in
the TCGA cohort (Supplementary Fig. 9a).

Monitoring the spatiotemporal evolution of TM networks
As sampling of tumor tissue for sequencing is mainly performed in
one spot per tumor in routine analysis, we estimated how different
locations in the same tumor impact the connectivity signature score.
Both the connectivity signature score and CHI3L1 expression was
lower in the infiltration zone of tumors compared to the tumor core27

(Fig. 6c). This is in line with the known higher anatomical and func-
tional tumor cell connectivity in more solid established glioma
areas4,10,12.

To further understand longitudinal TM-network development
we analyzed temporal GB specimen pairs collected from up to three
re-surgeries28 and found similar connectivity signature scores (Sup-
plementary Fig. 9b). In general, it is recommended that specimens
have a minimum tumor content of 75% for reliable molecular-based
clinical GB connectivity grading using bulk methods (Supplementary

Fig. 9c). This enhances data accountability through minimizing the
contribution of healthy brain cells and especially astrocytes (Supple-
mentary Fig. 9d–f). Due to the high correlation of connectivity sig-
nature genes´ RNA and protein expression both RNA and protein-
based readouts are feasible (Supplementary Fig. 9g).

Cell-to-cell connectivity is associatedwithworse patient survival
The connectivity signature score proved to be higher in GB compared
to astrocytic (1p/19q intact) and tooligodendroglial (1p/19q codeleted)
IDH mutant (mut) gliomas (Fig. 6d). This reflects previous histology-
based morphological TM data4 and eventually glioma subtype patient
survival29.

We next clarified the impact of tumor cell connectivity, deter-
mined in primary GB specimens, on GB patient survival. The shortest
survival was found for patients with the highest quartile of con-
nectivity signature score (Fig. 6e). A constant increase in the risk
of death correlated with the increase of the continuous connectivity
signature score in a cox proportional hazards regression model

Fig. 4 | Influences of pharmacologic perturbation and cellular density on TM-
networks are reflected by connectivity signature score changes. a Labeling
intensities of FACS analyzed S24-Caprola6 PDGCs after Ctrl or BTP2 treatment.
n = 21,792 PDGCs (Ctrl) vs n = 20,662 PDGCs (BTP2) of n = 2 replicates. Two-sided
Mann-WhitneyU test. b Fluorescencemicrographs of S24 PDGCs after Ctrl or BTP2
treatment, images representative of n = 3 independent experiments. Scale bars
depict 100 µm. cTMnumberper live cell in S24 PDGCsafter Ctrl or BTP2 treatment.
n = 19 ROIs from n = 2 independent experiments. Two-sided Mann–Whitney U test.
d Percentage of death after Ctrl and BTP2 treatment. n = 19 ROIs from n = 2 inde-
pendent experiments. Two-sided Mann-Whitney U test. e Connectivity signature
scores normalized to Ctrl in RNA-Seq of S24 PDGCs after Ctrl or BTP2 treatment.
Shown is the mean and standard error of the mean (SEM, error bars). n = 3 repli-
cates. Two-sided t-test. f–h S24 and T269 PDGCs grown in vitro under stem-like
conditions indense networks or sparse single clones. fPhase-contrastmicrographs,

representative of n = 2 independent experiments. Scale bars depict 100 µm.
g Number of morphological connections per live cell. n = 50 PDGCs in n = 10 ROIs
from n = 2 independent experiments per seeding condition and PDGCL. Arrows
depict connections. Two-sided Mann–Whitney U test. h Connectivity signature
scores in scRNA-Seq data of two conditions and two PDGCLs. n = 1150 PDGCs (S24,
dense) vs n = 1541 PDGCs (S24, sparse) and n = 1347 PDGCs (T269, dense) vs 1350
PDGCs (T269, sparse) respectively, from n = 2 independent experiments
per seeding condition and PDGCL. Two-sided Mann-Whitney U test. Connectivity
signature scores or gene expression were Z-score scaled and centered across
PDGCs/samples and winsorized to −3 and 3. a, c, d, g, h Boxes show 25th to 75th
percentile, its middle line the median, whiskers the 5th to 95th percentile and
individually plotted data points the outliers. Exact p-values are shown in the figure.
Source data are provided as a Source Data file.
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(CoxPH, Fig. 6f, g). This association remained significant after
adjusting for age, gender and expression subtype in a multivariate
CoxPH analysis (Fig. 6f, g). Corroborating the prognostic value of the
connectivity signature, scores were also correlated with progression
intervals (Fig. 6g). Likewise, these findings were similar in the
recurrent setting (Supplementary Fig. 9h, i).

Together, taking advantage of the established connectivity sig-
nature, we here prove a prognostic significance for tumor cell con-
nectivity in glioma and demonstrate its plausible link to gene
expression subtypes, mutation profiles, disease subtypes and tumor
localization. We show that these tools and insights can be used to
discover molecular markers for this crucial hallmark of the disease.
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CHI3L1 plays a pivotal role in GB and correlates with survival
The analyzes outlined above suggested a particular relevant role for
CHI3L1 in our connectivity signature (Figs. 1g, 3d). Therefore, we
investigated the expression pattern and functional impact of CHI3L1
more deeply.

High CHI3L1 RNA expression was found to be specific for GB
compared to 30 other tumor types and related normal tissues
(Fig. 7a). Remarkably, due to the high correlation betweenmRNA and
protein levels (R = 0.85, Supplementary Fig. 10a) and its nature to be
a secreted protein, we recently identified CHI3L1 also as a key cere-
brospinal fluid (CSF) protein biomarker for GB30. High CHI3L1 RNA
expression proved to be prognostic for worse overall survival
(Fig. 7b) and this effect was retained in a multivariate CoxPH analysis
adjusting for age and gender (Fig. 7c). There was a trend towards
worse survival in 45 GB patients with high CHI3L1 protein expression
in the CSF (Fig. 7d).

CHI3L1 is a robust marker for TM network connectivity in GB
CHI3L1 RNA expression levels were highly correlated with the con-
nectivity signature scores. This was observed in both TCGA
and CGGA datasets (R = 0.74 and R = 0.73, Fig. 8a, b). In our snRNA-
Seq data of patient samples CHI3L1 expression was high in the
high connectivity score-associated MES1 and AC tumor cell popula-
tions, but low in low connectivity score-associated NPC1 and
OPC tumor cell populations as well as non-malignant cell types
(Fig. 8c). CHI3L1, that associates with the MS TCGA expression
subtype26, was highly expressed in SR101high compared to SR101low

cells, particularly in MES1 but also all other cell states (Fig. 8d). This
argued that CHI3L1 is a marker for connectivity independent of
the mesenchymal cell state. Moreover, CHI3L1 expression levels
positively correlated with the labeling intensity of Caprola6 but
not Caprolaon groups (Fig. 8e). To test whether CHI3L1 expressed
areas are directly associated with cell-to-cell connected areas,
we used high or low connectivity signature score tumors with parti-
cularly long or short TM protrusions, respectively (Fig. 8f–i). Even in
heterogenous tumors, there was a positive correlation of CHI3L1
protein staining intensity and TM length (Fig. 8g–i and Supplemen-
tary Figs. 8, 10b).

CHI3L1 drives TM network formation
To address high CHI3L1 levels found in TM-connected malignant GB
cells, we added a blocking antibody against CHI3L1 to PDGCs, which
resulted in decreased TM lengths (Fig. 9a, b).

Encouraged by this, we also overexpressed CHI3L1 in PDGCs
(Supplementary Fig. 10c, d) and found increased TM lengths per
cell in CHI3L1 overexpression (OE) PDGCs in vitro (Fig. 9c, d). In vivo
CHI3L1OE PDGCs retained higherCHI3L1 expression levels compared
to Ctrl PDGCs (Fig. 9e, f and Supplementary Fig. 10e), whereby the
CHI3L1 signal co-localized with somata and also TMs (Fig. 9e). Within
areas of equivalent GB cell density, TMs of CHI3L1 OE PDGCs were
longer, higher in number and more connected (Fig. 9g–l).

Higher phenotypic TM-connectivity of CHI3L1 OE PDGCs is
accompanied by elevated molecular connectivity
To investigate pathways involved in CHI3L1 driven connectivity, we
conduced RNA-Seq along with proteomic and phosphoproteomic
mass spectrometry of Ctrl and CHI3L1 OE PDGCLs.

Comparative analysis revealed 23 mutual DEGs (Fig. 10a, Supple-
mentary Data 7, 8) and differentially expressed proteins (DEPs,
Fig. 10b, Supplementary Fig. 10f, g, Supplementary Data 9, 10) as well
as a high correlation of their fold changes (R =0.77, Fig. 10b). CST3,
SPARC and SPARCL1, additionally to the artificially overexpressed
CHI3L1, were even part of the connectivity signature and their
expression was found higher in RNA-Seq of both SR101high PDGCs
(Fig. 1f) and CHI3L1 OE PDGCs (Fig. 10a). This and the fact that these
DEGs/DEPs are AC cell state defining3 suggested their particular
importance for driving TM-connectivity. Further, the CHI3L1 regulated
DEGs and DEPs increased the connectivity signature score, after
exclusion of the artificially altered CHI3L1 (Fig. 10c), and drove cell
states towards AC and away from NPC1 (Supplementary Fig. 10h, i).

Among the 152 differentially phosphorylated sites of proteins
(DPPs, Supplementary Data 11, 12), pSer41 and pSer154 of the known
TM driver GAP43 were found elevated (Fig. 10d, Supplementary
Fig. 11a, b). Interestingly, highGAP43(pSer41) levels were shownbefore
to induce neurite branching and outgrowth31–36 by stabilizing long
actin filaments32.

To generate a holistic overview about the mechanism of CHI3L1-
driven TM network induction, we sought to attribute the identified
DPP fingerprint to specific kinases. In line with several reports37–39,
MEK/ERK and AKT signaling were found upregulated in CHI3L1 OE
PDGCs (Supplementary Fig. 11c).We next focused on differences in the
total gene expression. STAT3 was predicted to be activated and to
serve as a signaling hub inCHI3L1OEPDGCLs (Supplementary Fig. 11d),
whichmatchedprevious studies31,40. Interestingly, STAT3 signalingwas
previously associatedwith elevatedGAP43(pS41) levels41 –pinpointing
towards a potential link between the findings made in this study.

Ultimately, the DEG, DEP and DPP-based predictions of biological
functionsmatched theobservedmore connectedphenotype ofCHI3L1
OE PDGCs relative to Ctrl PDGCs: Neurogenesis, Cytoskeleton orga-
nization andCellmorphogenesis related GO termswere enriched in all
of the omic datasets (Supplementary Fig. 11e–g).

Together, these data identify a functional and upstream role of
CHI3L1 in governing tumor cell connectivity, CHI3L1 RNA and protein
expression as an alternative way to determine overall tumor (cell)
connectivity in GB, and finally a therapeutic target for tumor network-
disrupting strategies.

Discussion
While the discovery of communicating, self-repairing and resistant
TM-connected tumor cell networks has changed our understanding of
incurable gliomas42, a deeper understanding of the molecular under-
pinnings of TM-connected GCs has remained elusive and the assess-
ment of tumor cell connectivity in patient samples challenging4. Here,

Fig. 5 | Connectivity signature scores and cell states in snRNA-Seq of patient
samples and connectivity signature validation in GB patient sections. a UMAP
of 213,444 single cells from 21 GB patient samples. Left, colored by samples. Right,
colored by cell types. b Frequency of malignant and non-malignant cell types in
each sample. c Frequency of malignant cell states in each sample. d Frequency of
connectivity signature score groups in each sample. A connectivity signature score
is calculated for each cell and thenassigned to one of the four score quartile groups
(lower score quartile [Q1] - highest score quartile [Q4]). e Heat map showing con-
nectivity signature scores and cell state signature scores in patient GCs. Each row
represents one GC. f UMAPs of patient GCs. Top, colored by cell states. Bottom,
colored by connectivity signature scores. g Two-dimensional representation of
patient GCs according to cell state signature scores. Top, colored by cell states.
Bottom, colored by connectivity signature scores. h Connectivity signature scores

from RNA-Seq of six patients of the N2M2 pilot cohort selected for assessment of
morphological tumor cell connectivity. n = 3 GB patients per group. One-sided t-
test i Immunohistochemistry (IHC) staining of TMs with anti-nestin in GB patients
with high (H1, H2, and H3) or low (L1, L2 and L3) connectivity signature scores,
images representative of n = 9 ROIs from n = 3 patients per group. Arrows indicate
TMs. Scale bars depict 20 µm. j Box plot of TM lengths (µm) in patients. Left, Per
group. Right, Median TM lengths per ROI in each patient. n = 454 TMs (high) vs
n = 444 TMs (low) of n = 9 ROIs in n = 3 patients per group. Two-sided Mann-
Whitney U test. e, g, h Signature scores were Z-score scaled and centered across
cells and winsorized to −3 and 3. h, j Boxes show 25th to 75th percentile, its middle
line the median, whiskers the 5th to 95th percentile and individually plotted data
points the outliers. Exact p-values are shown in the figure. Source data are provided
as a Source Data file.
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we established a gene expression-based connectivity signature for GB
TM-networks to address these limitations.

The connectivity signature revealed yet unrelated putative TM
connectivity-associated genes and also included several known neu-
rogenesis, glioma progression and TM connectivity-associated genes,

validating its biological plausibility. High connectivity signature scores
were associated with the AC and MES1 cell states and MS TCGA
expression subtype, which reflects the long agomade observation that
“mesenchymal development” is characterized by “cells connected via
long cellular processes to a functional syncytium”43. However,we show

Fig. 6 | Connectivity signature scores in TCGA and CGGA GB cohorts.
a Connectivity signature scores in TCGA expression subtypes. Left: TCGA cohort
tumors of MS (n = 90), CL (n = 76) and (PN, n = 61) subtypes. Right: CGGA cohort
tumors of MS (n = 57), CL (n = 42) and PN (n = 42) subtypes. Two-sided Mann-
Whitney U test. b Frequency of dominant cell states in each expression subtype.
Left: TCGA. Right: CGGA. c Connectivity signature scores (Top) and normalized
CHI3L1 expression levels (Bottom) in cells of tumor core (n = 3259) and invasion
zone (n = 687) from GB scRNA-Seq dataset27. Two-sided Mann–Whitney U test.
d Connectivity signature scores in GB (n = 230), astrocytoma (n = 241) and oligo-
dendroglioma (n = 176) from TCGA glioma samples. Two-sided Mann–Whitney U
test. e Kaplan-Meier survival analysis in primary GB cohorts (Left, TCGA; Middle,

CGGA; Right, GLASS) stratified into three quartile-based score groups of con-
nectivity signature scores (lower score quartile [Q1] - highest score quartile [Q4]).
Log-rank test. f, g CoxPH regression survival analysis in primary GB cohorts. Uni-
variate analysis with continuous connectivity signature scores and multivariate
analysis with connectivity signature scores adjusted for ages, genders and TCGA
expression subtypes. f TCGA and CCGAdatasets. gGLASS dataset. Surgical interval
turned out to be prognostic. a, c, d Connectivity signature scores were Z-score
scaled and centered across samples per cohort and winsorized to −3 and 3.
a, c, d Boxes show 25th to 75th percentile, its middle line the median, whiskers the
5th to 95th percentile and individually plotted data points the outliers. Exact p-
values are shown in the figure. Source data are provided as a Source Data file.
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that the connectivity signature provides a further way to classify GBs
and is independent from theMESTCGAexpression subtype in termsof
impacting survival and NF1 mutations, and, on single cell level, from
each cell state, including MES1 and MES2.

CHI3L1 expression levels were highly correlated with connectivity
signature scores. CHI3L1 is upregulated in TM-connected GCs in the
SR101- and Caprola6 models as well as in GB patient sections. Thus, we
suggest CHI3L1 as a robust TM network marker. CHI3L1 even func-
tionally influences TM shape, length and number by regulating several
connectivity signature genes and inducing cell state shifts towards AC
andMES1. Importantly, we proved that therapeutic targeting of CHI3L1
reduces TM length.

Survival analysis showed a clear associationof the tumorswith the
highest connectivity signature scores and worst patient outcome. This
is in line with our previous preclinical findings that tumor cell con-
nectivity is a resistance factor to all standard glioma therapies4,6,8,42.
The connectivity signature can be applied on RNA-Seq, scRNA-Seq and
proteomics datasets of various gliomas, enables the rapid and less
invasive assessment of the degree of TM connectivity and, thus, serves
as a prognostic biomarker in GB.

The SR101 dye transfer model has limitations9–11. It does not allow
a strict dichotomic discrimination of existing or non-existing cellular
connectivity and stress responses or even seizure-like activity in vivo
might be caused when SR101 is applied topically44. To minimize these
effects, we applied SR101 i.v. and confirmingly did not find relevant
changes in cell cycling or induction of the stress-related MES2 cell
state3 in the SR101high group. The connectivity signature links the TM-
connectivity extent and transcriptional features of all GCs, irrespective

of their spatial distribution. Thus, extremely rare cell populations with
similar SR101 intensities but transcriptionally specific profiles, such as
pacemaking hub GCs17 and perivascular GCs14, might not be accurately
represented. However, the provided single-cell resolution might allow
the identification of principally any cell type with the known tran-
scriptional profile.

In addition, we implemented several orthogonal methods to
assure that changes in the connectivity signature score are accom-
panied by anatomical and functional changes of TM networks. Most
importantly, we confirmed the main connectivity signature genes
including CHI3L1 with a separate Ca2+ level-dependent method that
serves as a surrogate marker for functional TM-network communica-
tion. Additionally, respective controls proved that dye uptake had a
neglectable impact on both calcium and connectivity signatures. Of
note, in this manuscript we focused on TMs and have not correlated
the connectivity signature or underlying readout parameters with
features of tunneling nanotubes (TNTs)15.

Other limitations of this study are related to the tumor hetero-
geneity which is not accounted for when samples for (sc)RNA
sequencing are only collected at one part of the tumor. Experimentally
unveiling this aspect, lower connectivity results in the outer part of
tumors compared to the core.

The discovered association of connectivity signature expression
and specific mutations is exciting and paves the way for follow-up
analyzes to shed further light on the functional consequences and
relative impact of each of thesemutations. Likewise, further functional
experiments are warranted to shed light on the suggested key players
being mechanistically involved in CHI3L1-driven connectivity.

Fig. 7 | CHI3L1 plays a pivotal role in GB and correlates with survival. aMedian
CHI3L1 expression levels in 31 tumor types and normal tissues from GEPIA.
b Kaplan–Meier survival analysis in cohorts stratified into three score groups of
CHI3L1 gene expression (lower score quartile [Q1] - highest score quartile [Q4]).
Left, TCGA. n = 230. Right, CGGA. n = 141. Log-rank test. c CoxPH analysis in
cohorts. Top, TCGA. Bottom, CGGA. Univariate analysis with CHI3L1 expression

levels (log2[FPKM+ 1]) and multivariate analysis adjusted for ages, genders and
TCGA expression subtype. d Kaplan–Meier survival analysis in CSF proteomics
dataset according to upper and lower median-stratified half groups of CHI3L1
protein intensity. Log-rank test. Exact p-values are shown in the figure. Source data
are provided as a Source Data file.
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In conclusion, we developed a connectivity signature with a
respective score calculation for GBs and identified biologically plau-
sible markers for further investigation. CHI3L1 has emerged as an easy
to assess marker of the signature with a functional relevance for TM-
formation that can even be determined in standard paraffin sections
and has promise to be potentially targetable in GB. This allows to
translate the recent fundamental insights into key elements of tumor
biology in GB into clinical trials and ultimately into clinical practice.

Methods
Ethics statement
This research complies with all relevant ethical regulations.

All animal research experiments conducted in this study were
approved by the local authorities (Regierungspräsidium Karlsruhe,
Germany, #G110/21, #G132/16, #G210/16) and compliant with the
institutional laboratory animal research guidelines. All efforts were
made to minimize animal suffering and to reduce the number of ani-
mals used according to the 3R’s principles. Mice were maintained in a
specific-pathogen-free, standardized environment with 22 ± 2 °C
temperature, 55 ± 10% humidity, 12 h light/dark cycles and fed with a

standard diet according to the German Cancer Research Center
guidelines. Tumors were grown until the mice showed first symptoms
or ≥ 20%weight loss weremet. In none of the experiments these limits
were exceeded.

All patients from which FFT and FFPE preserved GB specimens
were used in this study gave informed consent in written form either
prior to inclusion to the NCT NeuroMaster Match (N²M²) pilot study45

or exploratory molecular analyzes. The research is conducted in con-
cordance with the declaration of Helsinki and was approved by the
Ethics Committee at the University of Heidelberg, Germany (applica-
tions 206/2005 and AFmu-207/2017). The N²M² pilot study included
patients with MGMT promoter unmethylated tumors, leading to an
enrichment ofMGMT promoter unmethylated samples in our analysis
(18/21, 86%, median age is 61 years). Patient selection was solely based
on tissue andmetadata availability as well as quality parameters of the
related tumor specimens.

Definition for morphological TMs and quantification methods
TM:Cellularprotrusions of lengths^ 500nmand thicknesses between
0.5–2.5 μm were defined as TMs as described before4,46.

Fig. 8 | CHI3L1 is a robust marker for connectivity. a, b Scatter plots showing
correlation between CHI3L1 expression level and connectivity signature scores.
Connectivity signature scoreswereZ-score scaledand centered across samples and
winsorized to −3 and 3. Two-sided Pearson correlation test. a TCGA b CGGA
c CHI3L1 expression levels in malignant cell states and non-malignant cell types
fromour snRNA-Seqdataset of 21GBpatient samples.dAveragenormalizedCHI3L1
expression per cell state in SR101high and SR101low xenografted PDGCs. n = 12,955
(AC, SR101high) vs n = 3542 (AC, SR101low), n = 4,234 (MES1, SR101high) vs 348 (MES1,
SR101low), n = 1038 (MES2, SR101high) vs n = 689 (MES2, SR101low), n = 421 (OPC,
SR101high) vs n = 873 (OPC, SR101low), n = 1370 (NPC1, SR101high) vs n = 4212 (NPC1,
SR101low), n = 127 (NPC2, SR101high) vs n = 195 (NPC2, SR101low), n = 2587 (G1_S,
SR101high) vs n = 936 (G1_S, SR101low), n = 1428 (G2_M, SR101low), n = 867 (G2_M,
SR101high) vs n = 936 (G2_M, SR101low) PDGCs from n = 3 mice per group. Two-sided

Mann-Whitney U test. e CHI3L1 expression levels in different labeling intensity
groups of S24-Caprola6 and S24-CaProLaon. Shown is the mean and standard error
of the mean (SEM, error bars). n = 2 (Caprola6, low) vs n = 3 (Caprola6, medium) vs
n = 3 (Caprola6, high) replicates. n = 3 replicates (Caprolaon). Two-sided Kruskal-
Wallis test. f IHC stainingwith anti-CHI3L1 in patientswith high (H1, H2, andH3) and
low (L1, L2, and L3) connectivity signature scores, images representative of n = 9
ROIs from n = 3 patients per group. Scale bars depict 20 µm. g, h CHI3L1 staining
intensities. g Per group. Box plot of weighted histoscores. Boxes show 25th to 75th
percentile, its middle line the median, whiskers the 5th to 95th percentile, and
individually plotted data points the outliers. n = 3 patients per group. One-sided
t-test. h Frequency of CHI3L1 staining intensity of cells. Exact p-values are shown in
the figure. Source data are provided as a Source Data file.
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Cell-to-cell connection: Tumorcells extendingTMswithat leastone
terminal end at the bodies or TMs of other tumor cells were classified as
connected, and cells without any connection as unconnected4,12.

Sample preparation for IHC and confocal microscopy of
human tissue
Human biopsy tissue was chemically immersion fixed with 4% paraf-
ormaldehyde (PFA; #sc-281692, SantaCruz, SantaCruz, California, USA)
overnight. Afterwards, the tissue was washed in PBS and cut to 100 μm-
thick tissue sections using a VT000S vibratome (Leica, Wetzlar,
Germany). Afterwards, sections were stored in PBS (#D8537-500ML,
Sigma, part of Merck, Darmstadt, Germany). To visualize tumor cells an
antibody tandem panel consisting of a 1:500 diluted mouse anti-nestin

primary (#ab22035, clone 10C2, RRID:AB_446723, Abcam, Cambridge,
United Kingdom) and Alexa Fluor™488-conjugated anti-mouse
secondary (#A11001, RRID:AB_2534069, Thermo Fisher Scientific, Wal-
tham, Massachusetts, USA) antibody was used. Sections were counter-
stained with DAPI (#6335.1, Roth, Karlsruhe, Germany). Images were
acquired on a TCS SP8 confocal laser-scanning microscope (Leica,
Wetzlar, Germany) using a 63x (NA 1.4) oil objective. Images were
acquired with a pixel size of 141 nm and 300-nm z steps.

Cell culture of PDGCLs
PDGCLs S24 and T269 were established from freshly dissected GB
tissue from adult patients after informed consent47 and kindly pro-
vided by Dieter Lemke, German Cancer Research Center, Heidelberg

Fig. 9 | CHI3L1 is a driver gene of TM connectivity. a Fluorescence micrograph of
S24 PDGCs treated with IgG or anti-CHI3L1 antibodies in vitro. tGFP (green) for TM
visualization, Hoechst33342 (blue) for nuclei normalization and quantified objects
(multicolor). The scale bar depicts 50 µm. b TM length per live cell after adminis-
tration of IgG or anti-CHI3L1 antibodies. n = 12 ROIs of n = 2 independent experi-
ments. Two-sidedMann-Whitney U test. c Fluorescencemicrographof S24 Ctrl and
CHI3L1 OE PDGCs in vitro. Lipilight (green) for TM visualization, Hoechst33342
(blue) for nuclei normalization, and quantified objects (multicolor). Scalebar
depicts 50 µm. d TM Length per S24 Ctrl and CHI3L1 OE PDGCs in vitro. n = 9 ROIs
(Ctrl) vs n = 11 ROIs (CHI3L1 OE) of n = 2 independent experiments. Two-sided
Mann-Whitney U test. e Immunofluorescence micrograph of xenografted S24 Ctrl
and CHI3L1 OE PDGCs with anti-CHI3L1 (red), anti-nestin (green, TM marker) and
anti-Ku-80 (blue, nuclear marker). f Weighted histoscores of xenografted S24 Ctrl

and CHI3L1 OE PDGCs. n = 6 ROIs in n = 3 mice. Two-sided Mann-Whitney U test.
g 3D micrographs of nestin-stained TMs of xenografted S24 Ctrl or CHI3L1 OE
PDGCs. Scalebars depict 100 µm. h–j TM-network parameters of S24 Ctrl and
CHI3L1OExenografted PDGCs. n = 38 PDGCs in n = 16 ROIs in n = 4mice. Two-sided
Mann-Whitney U test. h TM Number. n = 38 PDGCs. i Number of TM connections.
n = 38 PDGCs. j TMLength. n = 16 ROIs. k 3Dmicrographs of Ku80-stained nuclei of
xenografted S24 Ctrl or CHI3L1 OE PDGCs. Scalebars depict 100 µm. l Number of
nuclei per ROI. n = 16 ROIs in n = 4 mice. Two-sided Mann–Whitney U test.
a, c, e, g, k Representative micrographs and the quantifications derived from the
images match in terms of the number of independently performed experiments.
b,d, f,h–j, lBoxes show25th to 75thpercentile, itsmiddle line themedian,whiskers
the 5th to 95th percentile and individually plotted data points the outliers. Exact p-
values are shown in the figure. Source data are provided as a Source Data file.
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University. PDGCLs P3XX and BG5 were kindly provided by Hrvoje
Miletic, K. G. Jebsen Brain Tumour Research Centre, University of
Bergen48. All four tumors have been diagnosed as GB, IDH wt.

All PDGCLswere cultured asneurospheres under serum-free, non-
adherent, stem-like conditions in PDGCL media, consisting of DMEM/
F-12 (#11330-032, Life Technologies, part of Thermo Fisher Scientific,
Waltham, Massachusetts, USA), B27 supplement (#17504044, Life
Technologies, part of Thermo Fisher Scientific, Waltham, Massachu-
setts, USA), 5μg/ml insulin (#I9278, Sigma, part of Merck, Darmstadt,
Germany), 5μg/ml heparin (#H4784, Sigma, part ofMerck, Darmstadt,
Germany) 20 ng/ml epidermal growth factor (EGF; #PHG0311, Life
Technologies, part of Thermo Fisher Scientific, Waltham, Massachu-
setts, USA) and 20ng/ml fibroblast growth factor (FGF; #PHG0021,
Life Technologies part from Thermo Fisher Scientific, Waltham,
Massachusetts, USA).

Methylation profiling with the methylation EPIC array (#WG-317-
1003, Illumina, San Diego, California, USA) was employed to confirm
GB origin and the brain_classifier_v12.8 workflow (https://www.
molecularneuropathology.org/) used for further data analysis.
Briefly, S24 is characterized by a GB receptor tyrosine kinase (RTK) I,
whereas BG5, P3XX, and T269 exhibit a GB RTK II methylation subtype
(Supplementary Table 149). Mutational fingerprints derived from
whole-exome sequencing (Supplementary Fig. 1b) as well as the high-
est scoring TCGA expression subtype25 and cell state3 derived from
RNA-Seq differed between PDGCLs (Supplementary Table 1).

In order to allow identification and re-isolation after tumor
resection, PDGCswere lentiviral transducedwith theMISSION® shRNA

pLKO.1-puro-CMV-tGFP_shnon-target (#SHC016, Sigma, part ofMerck,
Darmstadt, Germany) vector for cytosolic tGFP expression.

HEK293FT cells (#R70007, Thermo Fisher Scientific, Waltham,
Massachusetts, USA)were co-transfectedwith tGFP lentiviral expression
constructs and 2nd generation viral packaging plasmids VSV.G (kind gift
fromTannishthaReya, Addgeneplasmid# 14888, RRID:Addgene_14888,
http://n2t.net/addgene:14888) and psPAX2 (kind gift fromDidier Trono,
Addgene plasmid #12260, RRID:Addgene_12260, http://n2t.net/
addgene:12260). 48 h after transfection, virus-containing supernatant
was removed and cleared by centrifugation (5min/500g). The super-
natantwaspassed through a0.45μmfilter (#760517, Ahlstrom,Helsinki,
Finland). PDGCLs were transduced with lentiviral particles at 70% con-
fluency in the presence of 10μg/ml polybrene (TR-1003-G, Merck,
Darmstadt, Germany). 24 h after transduction successfully transduced
PDGCs were selected with 1 µg/ml puromycin (#A2856.0100, Appli-
chem, Darmstadt, Germany) and subjected to FACS sorting.

All PDGCLs were regularly checked for authenticity and absence
of infections, such asmycoplasms and non-human cell contamination,
as part of the multiplex cell contamination test (Multiplexion GmbH,
Heidelberg, Germany).

RNA-Seq
For RNA isolation, cells were washed with ice-cold PBS (#D8537-
500ML, Sigma, part of Merck, Darmstadt, Germany) and lysed in the
dish by addition of 1% beta-Mercaptoethanol (#M3148-100ml, Sigma,
part ofMerck, Darmstadt, Germany)-supplemented RLT lysis buffer as
part of the QIAGEN RNeasy Mini Kit (#74004, Qiagen, Hilden,

Fig. 10 | Omics-based molecular fingerprinting of CHI3L1 OE PDGCLs.
a Heatmap showing DEG average expression levels of Ctrl and CHI3L1 OE PDGCLs.
Data were Z-score scaled and centered across samples, and winsorized to −3 and 3.
Colors: Purple, downregulated overlapping genes with connectivity signature
score; orange, upregulated overlapping genes with connectivity signature score;
grey, overlapping genes with DEPs. b Scatter plot showing the log2 fold changes of
DEGs and DEPs in RNA-Seq and proteome datasets. 23 overlapping genes were
found. Overlapping gens with the connectivity signature are depicted red. Two-
sidedSpearmancorrelation test. cConnectivity signature scoresderived fromRNA-

Seq and proteomics datasets of Ctrl and CHI3L1 OE PDGCLs. Lines indicate the
average in each PDGCL. n = 4 independent replicates per PDGCL in RNA-Seq. n = 2
independent replicates (S24 and T269) and n = 1 independent replicate (P3XX) in
proteomics. Two-sided paired t-test. d Volcano plot comparing DPPs of Ctrl and
CHI3L1OE in PDGCLs P3XX, S24 and T269. Phosphosites shown in orange or purple
have adj. p-value < 0.05. Phosphorylation sites of GAP43 are depicted. Padj is the
adjusted value statistically corrected for multiple testing. Exact p-values are shown
in the figure. Source data are provided as a Source Data file.
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Germany). All downstream steps for RNA isolation were conducted
according to themanufacturer´s recommendation. On-columnDNAse
digestion was performed with the RNAse free DNAse set (#79254,
Qiagen, Hilden, Germany). RNA was eluted into RNAse-free water
(#4387936, Thermo Fisher Scientific, Waltham, Massachusetts, USA)
and RNA integrity validated using the RNA Screen Tape System
(#5067-5576, #5067-5577, #5067-5581, Agilent, Santa Clara, California,
USA) and the 4150 Tapestation System (#G2992AA, Agilent, Santa
Clara, California, USA) according to the provider´s recommendations.
Library preparation and RNA sequencing on a NovaSeq6000 device
(Illumina) was carried out by the GPCF at the DKFZ.

Whole exome sequencing of PDGCLs
DNA and RNA extraction. Genomic DNA was extracted using the DNA/
RNA/ProteinMini Kit (#80004,Qiagen, Hilden, Germany) according to
themanufacturer’s instructions. 4150Tapestation (#G2992AA, Agilent,
Santa Clara, California, USA) was used to determine DNA integrity
numbers.

Whole exome sequencing (WES). WES was carried out by the
GPCF. Briefly, Exome capture was performed with the Agilent Sur-
eSelect XT HS + Human All Exon V7 kit (#5191-4028, Agilent, Santa
Clara, California, USA) and the libraries were paired-end sequenced on
a NovaSeq6000 device (Illumina, Santa Clara, California, USA).

Data processing. The WES data from cell lines were aligned using
BWA (v.0.7.15) against the human genome (1KGRef_PhiX). Reads
duplication was marked using Sambamba (v.0.6.5). The parameter
settings were based on the DKFZ ODCF workflow (https://github.com/
DKFZ-ODCF/AlignmentAndQCWorkflows). Somatic short variants
(SNVs + Indels) were identified using the GATK (v.4.2.0.0) pipeline:
Variants were called using Mutect2, with the omission of variants in
germline and a panel of normals (germline resource and panel of
normals were downloaded from gatk-best-practices/somatic-b37).
Cross-sample contamination was estimated using GetPileupSumm-
aries and CalculateContamination. Orientation bias artifacts were
learned using LearnReadOrientationModel. Then, variants were fil-
tered using FilterMutectCalls and annotated using Funcotator. Non-
silent somatic variants in neuro-oncology relevant genes50 were
retained.

Two-photon microscopy of astrocytes, PDGCLs and correlation
of SR101 staining with tumor cell connections
For the preparation of two-photon microscopy experiments, a
chronic cranial window was implanted into 8–10 week old male
Crl:NMRI-Foxn1nu nude (RRID:MGI:5653040; Charles River, Wilming-
ton, Massachusetts, USA) mice as described4,9. At least 10 days after
implantation of the chronic cranial window, the glass was tempora-
rily removed to cortically inject 5 × 104 viable PDGCs and establish-
ment of solid tumors allowed. n = 3 mice were used per PDGCL and
injections were performed independently. For correlation of SR101
intensities with PDGC connections (Fig. 1c, d) SR101 (#S359, Invitro-
gen, part of Thermo Fisher Scientific, Waltham, Massachusetts, USA)
was dissolved in sterile saline solution (#2350748, B. Braun Melsun-
gen AG, Melsungen, Germany) and intravenous injected to reach
0.12mg /g body weight. Alternatively, no SR101 was administered for
morphological assessment of PDGCL tumors (Fig. 1b). Repetitive
intravital two-photon microscopy was performed 4–10 h after SR101
injection during which the body temperature of the mice was
kept constant using a heat pad with a fixed temperature of 37 °C.
A Zeiss 7MP microscope (Zeiss, Oberkochen, Germany), equipped
with a Ti:Sapphire Chameleon UltraII laser (Coherent, Santa Clara,
California, USA) and Zeiss Zen 2012 black edition software
(Zeiss, Oberkochen, Germany) for excitation of SR101 (900 nm) and
tGFP (950 nm), and band-pass 500–550 and 575–610 nm filters
was used for imaging. A 20x (NA 1.0) water immersion objective
(Zeiss, Oberkochen, Germany) was used.

Astrocytes and PDGCs were analyzed in n = 5 regions in n = 3
animals on D64+/−9 days, whereby tGFPlow, SR101high cells were defined
as astrocytes13 and tGFPhigh cells as PDGCs. Mean SR101 signal inten-
sities of individual PDGCs were measured in the cell bodies. To com-
pensate for different signal intensities in different tumor areas and
depths the SR101 signal intensity of each PDGC was normalized by the
mean value of the highest 10% of intensities of all PDGCs in the
respective region. Connected cells were defined by a direct cell-cell
connection via a TM. The number of astrocytes and PDGCs in different
tumor areas was counted manually after segmentation with Aivia
(Leica, Wetzlar, Germany).

Separation of SR101high and SR101low PDGCL xenograft groups
Animal work. PDGCL spheroids were dissociated into a single cell
suspension using Stem-Pro Accutase™ (#1110501, Thermo Fisher Sci-
entific, Waltham, Massachusetts, USA). 5 × 104 viable PDGCs were
slowly injected into the right striatumof 8–10week oldmale Crl:NMRI-
Foxn1nu nude mice (RRID:MGI:5653040; Charles River, Wilmington,
Massachusetts, USA) using a 10 µl micro-syringe (#80308, Hamilton,
Reno, Nevada, USA) driven by a stereotactic device (Stoelting, Wood
Dale, Illinois, USA). n = 3 mice were used per PDGCL and injections
were performed independently. Mice were intraperitoneally injected
with SR101 (#S359, Invitrogen, S359, Invitrogen, part of Thermo Fisher
Scientific, Waltham, Massachusetts, USA) in sterilized saline solution
(#2350748, B. BraunMelsungen AG,Melsungen, Germany) at a dose of
0.12mg per g body weight. After an incubation period of 8 h to ensure
maximum SR101 uptake from PDGCs, mice were deeply anesthetized
with ketamine/Ketaset® (#794-523, Zoetis, Berlin, Germany) and xyla-
zine/Rompun® (#770-081, Bayer, Leverkusen, Germany) and trans-
cardially perfused with sterilized phosphate buffer saline (PBS,
#D8537, Sigma, part of Merck, Darmstadt, Germany). Single cell sus-
pensions were generated from the whole brains utilizing a combina-
tion of gentleMACSTM Dissociator (#130-093-235, Miltenyi Biotec,
Bergisch Gladbach, Germany) and brain tumor dissociation kit (#130-
095-942, Miltenyi Biotec, Bergisch Gladbach, Germany) according to
the manufacturer´s recommendations. The obtained suspension was
passed through 100 µm (#542000, Greiner Bio-one, Kremsmünster,
Austria) and 70 µm (542070, Greiner Bio-one, Kremsmünster, Austria)
strainer meshes. After subsequent centrifugation at 500 g for 5min,
the cell pellet was resuspended in FACS buffer, consisting of 1%
fetal calf serum (FCS; #S0615, Sigma, part of Merck, Darmstadt,
Germany) in PBS.

FACS. The single cell suspension was incubated with
eBioscienceTM Calcein Violet 450 AM (#65-0854-39, Invitrogen, part of
Thermo Fisher Scientific, Waltham, Massachusetts, USA) and TO-
PROTM-3 Iodide (#T3605, Invitrogen, part of Thermo Fisher Scientific,
Waltham, Massachusetts, USA) for 10min on ice prior to sorting.
Standard gating techniques were used to discriminate doublets and
dead cells. The viable fraction was defined by TO-PROTM-3 Iodide
negativity and Calcein Violet 450 AM positivity. To further allow dis-
crimination of the non-malignant cells, the tGFPhigh population was
selected for separation of highly connected tumor cells (SR101high) and
lowly connected tumor cells (SR101low) using the FACSAria™ cell sorter
(BD Biosystems, Franklin Lakes, New Jersey, USA) and FACSDiva®
v.8.0.2 software (RRID:SCR_001456, BD Biosystems, Franklin Lakes,
New Jersey, USA). The following excitations and filters were used:
V405-450/50 (Calcein Violet), B488-530/30 (tGFP), YG561-586/15
(SR101) and R640-650/17 (TO-PROTM-3).

RNA-Seq data generation and preprocessing from SR101
xenograft models
Sorted PDGCs from at least 3 mice per replicate were resuspended in
lysis buffer included as a part of the RNeasy® Micro Kit (#74004, Qia-
gen, Hilden, Germany). mRNA was then isolated and purified in accor-
dance with the manufacturer’s instructions. The conversion of RNA to
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DNA was done with the SMARTer® Ultra® Low Input RNA for Illumina
Sequencing (#634940, TakaraBio, Kusatsu, Japan). The libraries
were then prepared using NEBNext® ChIP-Seq Library Prep Master Mix
Set for Illumina (#E6240, New England Biolabs, Ipswich,Massachusetts,
USA) and sequenced on an Illumina HiSeq 2000 sequencer
(RRID:SCR_020132, v.4, Illumina, San Diego, California, USA) in 50bp
single-end mode by the Genomics and Proteomics Core facility, DKFZ.
The bioinformatics tools for gene expression quantification from RNA-
Seq were used with default parameters: The quality of bases was eval-
uated and controlled using FASTX-Toolkit (RRID:SCR_005534). HOMER
(RRID:SCR_010881, v.4.7) was applied for PolyA-tail trimming; reads
with a length of < 17 bp were removed. The filtered reads were mapped
with STAR (RRID:SCR_004463, v.2.3) against the human reference
genome (GRCh38) and Picard (RRID:SCR_006525, v.1.78) with Col-
lectRNASeqMetrics were used for quality checking. Count data was
generated by htseq-count (RRID:SCR_011867, v.0.9.1) using the GEN-
CODE (RRID:SCR_014966, v.26) for annotation.Geneswith less than 10a
total counts in all samples were discarded.

scRNA-Seq data generation from SR101 xenograft models
A total of 5 × 104 tGFPhigh, SR101high and tGFPhigh, SR101low PDGCs from at
least 3 mice/replicates per PDGCL were sorted into 10% bovine serum
albumin (BSA; #8076.4, Roth, Karlsruhe, Germany) coated tubes con-
taining 500 ul PBS (#D8537, Sigma, part ofMerck, Darmstadt, Germany)
supplemented with 10% PDGCL media, 3mM ethylenediaminete-
traacetic acid (EDTA, #AM9260G, Invitrogen, part of Thermo Fisher
Scientific, Waltham, Massachusetts, USA) and 0.1% BSA. Cells were
centrifuged at 400g for 5min and the volume adjusted to allow loading
of the maximum number of cells for scRNA-Seq. scRNA-Seq was done
using theChromiumNextGEMSingleCell 3’GEM, Library&Gel BeadKit
v2 (PN-120237, 10x Genomic, Pleasonton, California, USA) according to
the manufacturer´s instructions and sequencing carried out on a HiSeq
4000 sequencer (SY-401-4001, Illumina, San Diego, California, USA) or
on a NovaSeq 6000 sequencer (20012850, Illumina, San Diego, Cali-
fornia, USA) to obtain approximately 2 × 350 million reads per sample.

Single cell data preprocessing and quality control
Gene expression count matrices of scRNA-Seq data from SR101 xeno-
graft models were generated using Cell Ranger (RRID:SCR_017344,
v.2.1.1, 10X Genomics, Pleasanton, California, USA) with default para-
meters, against the pre-built hg19 human reference genome (Cell
Ranger reference, v.1.2.0). We discarded PDGCs by uniform exclusion
criteria: (1) cells which had fewer than 200 or more than 8000 genes
detected. (2) cells which had fewer than 500 or more than 80,000
counts detected. (3) cells which had more than 10% of counts that
came from mitochondrial genes.

After the uniform exclusion, sample-wise outlier cells were detec-
ted and removed if thenumberof genesor countsweremore than three
median absolute deviations (MADs) above the median using the isO-
utliers function in the scater package (RRID:SCR_015954, v.1.10.1). In
each sample, per-cell doublet scores and per-sample doublet score
thresholds were estimated by Scrublet (RRID:SCR_018098, v.0.2.1) with
default parameters. If one doublet score thresholdwas located between
two peaks of a doublet score histogram, this threshold was accepted
and the cells with a doublet score higher than this threshold were
removed. Shared nearest neighbor unsupervised clusters were identi-
fied and visualized in UMAP with Seurat (RRID:SCR_007322, v.3.1.5) to
further detect clusters located exclusively far away from themajority of
clusters. In the end, we obtained 35,822 cells from six samples of three
PDGCL xenografted mouse models.

Single cell data processing and integration
Data processing. After data preprocessing and quality control,
scRNA-Seq data of SR101 xenograft models were further processed
using Seurat (RRID:SCR_007322, v.3.1.5) with default parameters: The

gene expression counts were normalized using the NormalizeData
function. Then 2000 highly variable genes were identified using the
FindVariableFeatures function. The variation of number of counts
among cells was regressed out, and the resulting residuals were
scaled and centered by the ScaleData function. Next, we reduced
dimensionality of the data by principal component analysis using the
RunPCA function. The number of principal components (PCs) used
for further analyzes was determined using the ElbowPlot function.
The data was visualized in UMAP using RunUMAP function with
determined PCs.

Data integration. To remove the differences of individuals and
perform batch correction, an integration method based on identifi-
cation of shared anchors between pairs of samples was applied using
Seurat (RRID:SCR_007322, v.3.1.5) with default parameters: The gene
expression count of each PDGCL was normalized and highly variable
genes were selected using the NormalizeData and FindVaria-
bleFeatures functions. Then the normalized data was integrated with
the FindIntegrationAnchors function (dims = 1:30) and the Inte-
grateData function (dims = 1:30). The integrated data was then further
processed using the ScaleData, RunPCA, ElbowPlot, RunUMAP func-
tions as described before.

Development of the connectivity signatures
The computational development of connectivity signatures is illu-
strated in Fig. 1e. In scRNA-Seq data of SR101 xenograft models, DEGs
between SR101high and SR101low groups were identified in each PDGCL
xenografted model using the FindMarkers function with default
parameters in Seurat (RRID:SCR_007322, v.3.1.5). We then aggre-
gated the significant DEGs (adjusted p value < 0.05) from all three
PDGCLs. Among the aggregated DEGs, the DEGs with the same
direction of regulation and large fold change (absolute log fold-
change ≥ 0.4) in two PDGCLs, or DEGs with the same direction of
regulation in all three PDGCLs were kept. In total, 71 DEGs were
derived from the scRNA-Seq dataset and served as the connectivity
signature.

In RNA-Seq of SR101 xenograft models, DEGs between SR101high

and SR101low groups were identified using DESeq2 (RRID:SCR_015687,
v.1.22.2): To obtain consistent DEGs across two PDGCL xenografted
models, ~ PDGCL + Group was included in the design formula of
the DESeqDataSet function. Differential expression analysis was per-
formed using the DESeq function. Then the log fold changes were
shrunken using the apeglm method in the lfcShrink function. Other
parameters were by default. The significant DEGs (adjusted p value <
0.05) with an absolute log2 fold-change ≥1 were kept. Finally, 245 DEGs
were derived from the RNA-Seq dataset.

Heatmap visualization of the connectivity signatures
For each connectivity gene derived from scRNA-Seq, the gene
expression level of the gene in cells of each sample were averaged
using the AverageExpression function in Seurat (RRID:SCR_007322,
v.3.1.5). The average expression levels were Z-score scaled, centered,
winsorized at −3 and 3, and then visualized as heatmap using Com-
plexHeatmap (RRID:SCR_017270, v.2.5.4).

The bulk count matrix was transformed with variance stabilizing
transformation using the vst function in DESeq2 (RRID:SCR_015687,
v.1.22.2), and the batch effects between the PDGCL xenografted
models were corrected with the removeBatchEffect function of the
LIMMA package (RRID:SCR_010943, v.3.36.5). Finally, the expression
levels of connectivity genes derived from RNA-Seq were Z-score
scaled, centered, winsorized at −3 and 3, and then visualized as heat-
map using ComplexHeatmap (RRID:SCR_017270, v.2.5.4).

GO enrichment analysis
GO enrichment analysis of the 71-gene connectivity signature derived
from scRNA-Seqor 245-gene connectivity signature derived fromRNA-
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Seq was performed by the compareCluster function using cluster-
Profiler (RRID:SCR_016884, v.3.18.1) against GO Biological Process,
whichwas obtainedwith the settings fun = enrichGO and ont = BP. The
most enriched GOs were visualized with the emapplot function using
enrichplot (v.1.10.2).

There are 16,759 genes commonly expressed in both scRNA-seq
and RNA-Seq datasets of SR101 xenograftmodels. GSEA of these genes
preranked by the fold change between highly and lowly connected
groups in the scRNA-Seq dataset or RNA-Seq dataset was calculated by
gene set enrichment analysis (RRID:SCR_003199, v.4.1.0, Broad Insti-
tute, Boston, Massachusetts, USA) against the neurogenesis gene set.

GO enrichment analysis of 123 DEPs, 152 DPPs or 184 calcium
signature genes was performed by ShinyGO (RRID:SCR_019213,
v.0.741) against the GO Biological Process gene set of ShinyGO.

Connectivity signature score
The connectivity signature derived from scRNA-Seq data contains 71
genes, among which, 40 genes are upregulated in highly connected
cells and 31 genes are downregulated. The 40 upregulated genes were
used as a gene set to calculate a score (connectivity-upregulated sig-
nature score) in each cell using the AddModuleScore function in
Seurat (RRID:SCR_007322, v.3.1.5). The score represents the relative
expression of a gene set. Similarly, a second score (connectivity-
downregulated signature score) based on the 31 downregulated genes
was calculated. Finally, the connectivity signature scorewas defined as
the connectivity-upregulated signature score minus the connectivity-
downregulated signature score. Another connectivity signature score
based on 245 genes (57 upregulated genes and 188 downregulated
genes) derived from the RNA-Seq data was generated accordingly.

The performance of the connectivity signatures for prediction
of SR101-sorted labels
In each cell of the scRNA-Seq data from SR101 xenograft models,
the connectivity-upregulated signature score based on 40 scRNA-
Seq-derived upregulated connectivity genes and the connectivity-
downregulated signature score based on 31 scRNA-Seq-derived
downregulated connectivity genes were calculated. If the connectivity-
upregulated signature score was higher than the connectivity-
downregulated signature score, the cell was predicted as highly
connected, otherwise, the cell was predicted as lowly connected.
Confusion matrix and prediction metrics (i.e accuracy, sensitivity, spe-
cificity, positive predictive value and negative predictive value) were
obtained between the number of cells predicted as highly connected or
lowly connected based on the calculated scores and the number of cells
labeled as highly connected or lowly connected after SR101-based cell
sorting, using theR package caret (RRID:SCR_021138, v.6.0-80). Another
prediction based on 57 RNA-Seq-derived upregulated connectivity
genes and 188 RNA-Seq-derived downregulated connectivity genes was
calculated in the same way.

Negative control. 100 random gene sets, each gene set including
71 randomly selected genes (40 gene as an upregulated gene set and 31
as a downregulated gene set, same size as the scRNA-Seq-derived
connectivity signature), were utilized to calculate scores and obtained
the average prediction metrics. Another 100 random gene sets, each
gene set including 245 randomly selected genes (57 gene as an upre-
gulated gene set and 188 as a downregulated gene set, the same as
RNA-Seq-derived connectivity signature), were utilized to calculate
scores and obtained the average prediction metrics.

Malignant cell state assignment
Cell state-defining markers from a GB scRNA-Seq study3 were utilized
to calculate cell state signature scores in each malignant cell in
our SR101 xenograft scRNA-Seq dataset using the AddModuleScore
function in Seurat (RRID:SCR_007322, v.3.1.5). Malignant cells were

assigned to this cell state that gained the highest signature score
among all cell state signature scores.

RNA velocity in scRNA-Seq data of PDGCL xenografted
mouse models
The pre-mature and mature mRNA count matrices were obtained by
velocyto (RRID:SCR_018167, v.0.17.15) with default setting for 10X
scRNA-Seq. Then the count matrices were processed by scVelo
(RRID:SCR_018168, v.0.2.4): the data was filtered, normalized, reduced
in PCA space, andnearest neighbors obtainedusing default parameters.
Then the RNA velocities were estimated and projected in PCA embed-
ding as streamlines. Directed PAGA graphs were calculated based on
cell state transition possibilities inferred from velocities. The PAGA
graphs were visualized by Cytoscape (RRID:SCR_003032, v.3.9.0).

In vitro Ca2+ imaging assay
S24PDGCswere cultured in vitro onMatrigel® inhigh-glucosemedium
(HGM) under serum-free stem-like conditions. These conditions pre-
serve both gene expression and biological properties, such as the
diffuse growth and network formation of the original tumor51, and are
referred to as Matrigel® monolayer assay in the following.

Experimentally, HGMwas produced by supplementingDMEM-F12
medium (#11330-032, Invitrogen) with glucose to 50mM final con-
centration (G7021-1KG, Sigma, part of Merck, Darmstadt, Germany),
B27 supplement (#12587-010, Invitrogen, part of Thermo Fisher Sci-
entific, Waltham,Massachusetts, USA), 5μg/ml insulin (#I9278, Sigma,
part of Merck, Darmstadt, Germany) and 5μg/ml heparin (#H4784,
Sigma, part of Merck, Darmstadt, Germany). After dilution, HGM was
sterile filtered. A 96-well plate (#655090, Greiner Bio-One, Krems-
münster, Austria) was coated with growth-factor reduced Matrigel®
(#G356231, Corning Inc., Corning, New York, USA) diluted 1:50 in
DMEM-F12 medium and allowed to solidify at 37 °C for 1 h. S24 PDGCL
was singularized using Accutase (#1110501, Thermo Fisher Scientific,
Waltham,Massachusetts, USA), washed with PBS (#D8537, Sigma, part
of Merck, Darmstadt, Germany), resuspended in HGM and 30,000
cells seeded per well.

After 7 days incubation at 37 °C, 5% CO2 the Ca2+-sensitive
fluorescent Rhod-2AM (#R1244, Thermo Fisher Scientific, Waltham,
Massachusetts, USA) was added to 1 μM final concentration and
incubation at 37 °C for 30min allowed. Ca2+-Imaging was performed
in medium at 37 °C and 5% CO2 in a heat-controlled chamber using a
Zeiss LSM 710 ConfoCor 3 confocal microscope with Zeiss Zen 2012
black edition v.8.1.0.484 software (Zeiss, Oberkochen, Germany) at
561 nm ex. with a 20x (NA 0.8) dry objective. For time series a scan-
ning speed of 1.52 seconds per frame was used. Every time series was
recorded over 30min. At least 3 recordings of S24 PDGCs were
conducted.

Analysis of Ca2+ communication
Ca2+ activity and cross-correlation analysis was performed on n = 1357
cells from3 recordings à 30min using a customized pipeline. Using Fiji
2.0.052 (RRID:SCR_002285), single-cell mean-intensity traces over time
were acquired. In MATLAB (#R2020b, RRID:SCR_001622., MathWorks
Inc., Natick, Massachusetts, USA) single-cell traces were smoothed
using the gaussian filter (sigma = 10 seconds) and peaks were detected
using the peak finder function.

Cross-correlation analysis was performed using the following
functions implemented in MATLAB53,54:

To determine the coactivity between active cells (≥4 Ca2+ peaks),
pairs of single-cell traces a and b were shifted forwards and backwards
in time relative to one another to adjust for the timeneededby theCa2+

transient traveling from one cell to the other. For every pair of traces
the best correlation over a total segment length of 10min was found
using the Pearson’s correlation rho(a, b) and defined as the coactivity
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where n is the length of each single-cell trace measured in number of
frames.

Following data was excluded from analysis as a predefined cri-
terion to avoid random correlations: Cells with less than four peaks,
cell pairs thatweremore than 100μmapart and correlationswhere the
signal would have traveled <4 μm/s or >25 μm/s. The distance cut-off
was chosen as the maximum value at which the detected functional
connections optimally corresponded to the visually observed Ca2+

transients traveling between two cells. Higher distance cut-off values
resulted in decreasing concordance as increasingly more functional
connections were found randomly. The range in speed was deter-
mined by manually measuring the speed of several Ca2+ signals tra-
veling between two cells and was defined by calculating two standard
deviations below and above the mean for all groups and choosing the
lowest and highest values, respectively. The distance cut-off and the
range in speed limited the range of possible time shifts of the
respective trace to a maximum of 25 s (= 100 µm / 4 µm/s).

A pair of cells was defined as coactive if the maximum correlation
coefficient (rho(a, b)max)wasabove0.49 for S24 in vitrocorresponding
to the 95th percentile of the null control54. As the null control, a dataset
was generated using the linear shift method55. Here, the same calcu-
lations as described above were performed, but when calculating the
best correlation between pairs of single-cell traces a and b over a total
segment length of 10min, the paired 10-min-long segment was ran-
domly chosen from trace bwith a linear time shiftΔT > 5min to ensure
that the segments of trace a and b cannot contain biologically mean-
ingful correlations (For the empirical data, the paired 10-min-long
segment would have been chosen from trace b with ΔT =0). All sub-
sequent calculations were then performed identically to the empirical
data. Thereby, the same traces and the samenumber of segmentswere
correlated but without the possibility of detecting true Ca2+ commu-
nication, while preserving the temporal autocorrelation of each trace.

Quantification of anatomical connections in in vitro Ca2+

imaging data
Anatomical cell-cell-connections were determined manually using
Fiji 2.0.0.

Recording of cellular calcium epochs using Caprola
The concept behind the Caprola constructs and experimental proce-
dure was previously described18. Briefly, Caprola6 consists of the self-
labeling HaloTag7 protein whose labeling reaction was rendered
strictly dependent to the presence of calcium. An additional control
construct, CaProLaon, consists of a constitutively active Caprola whose
labeling reaction is calcium-independent. We harnessed this feature of
Caprolaon to eliminate the dye permeability contribution in the con-
ducted experiment, therefore ensuring the calcium-specificity of the
observations.

Generation of stable cell lines. Plasmids encoding for Caprola6
and Caprolaon were provided by M.C.H and J.H. Caprola encoding
lentiviruses were produced as described in the section Cell culture of
PDGCLs. Clones co-overexpressing EGFP and Caprola were enriched
by exposure to Puromycin (#A2856.0100, Applichem, Darmstadt,
Germany) for 72 h and, after 7 days, by subsequent separation based
on their EGFP intensity using FACS (FACSAria™, BD Biosystems,
Franklin Lakes, New Jersey, USA).

RNA-Seq. Technically, Caprola6 or Caprolaon expressing PDGCs
were cultured under Matrigel® monolayer assay conditions in T75

flasks. After 48 h, chemical labeling was performed by the addition of
CPY-CA dye to reach 125 nM final concentration. After an incubation at
37 °C, unbound excess dye was quenched through the exposure to 1
uM recombinant HaloTag protein for 5min. PDGCs were subsequently
rinsed with ice-coldmedia and subsequently PBS (#D8537, Sigma, part
of Merck, Darmstadt, Germany), singularized using Accutase
(#A1110501, Thermo Fisher Scientific, Waltham, Massachusetts, USA)
and recovered in PBS. Next, PDGCs were subjected to FACS sorting in
order to separate groups based on their labeling intensity. Briefly, the
single cell population was defined using standard gating techniques
and the viable fraction was characterized by high EGFP signals. This
population was further selected for separation of high, medium and
low CPY-CA/EGFP (aka labeling intensity) ratios, whereas the EGFP
signal was similar between these groups, using the FACSAria™ cell
sorter (BD Biosystems, Franklin Lakes, New Jersey, USA) and FACS-
Diva® v.8.0.2 software (RRID:SCR_001456, BD Biosystems, Franklin
Lakes, New Jersey, USA). The following excitations and filters were
used: B488-530/30 (EGFP) and RL640-670/14 (CPY-CA). RNA from the
collected PDGCs was isolated with the Arcturus Pico Pure Kit
(#Kit0204, Thermo Fisher Scientific, Waltham, Massachusetts, USA).
Library preparation and RNA sequencing on a NovaSeq6000 device
(Illumina) was carried out by the GPCF at the DKFZ.

BTP2 treatment of S24-Caprola cells
S24-Caprola6 PDGCs were seeded, cultured and analyzed by FACS as
described before, but in 96-well plate format. 10μM BTP2 (#Y4895,
Sigma, part ofMerck, Darmstadt, Germany) or DMSO as a control were
added 24 h after cell seeding and cells cultured for another 48 h under
37 °C, 5% CO2 and atmospheric pressure. Flow cytometry analysis was
performed with FlowJo™ v.10.8.1 (RRID:SCR_008520, BD Biosystems,
Franklin Lakes, New Jersey, USA).

BTP2 treatment of S24 PDGCL cells
Cell culture. S24-tGFP PDGCs were cultured under Matrigel® mono-
layer assay conditions either in 96-well plates (#655090, Greiner Bio
One, Kremsmünster, Austria) for image acquisition or 6-well plates
(#92006, TPP, Trasadingen, Switzerland) for RNA isolation. 10μM
DMSO as a control or BTP2 (#Y4895, Sigma, part ofMerck, Darmstadt,
Germany) were added 24 h after the cell seeding and cells cultured for
another 48 h under 37 °C, 5% CO2 and atmospheric pressure.

Cells were sequentiallywashedwith eachHGMand PBSonce and
incubated for 1 h with Hoechst33342 (#H3570, Invitrogen, part
of Thermo Fisher Scientific, Waltham, Massachusetts, USA) and
EthD-2 (#E3599, Thermo Fisher Scientific, Waltham, Massachusetts,
USA) in HGM.

Image acquisition and analysis. Images were acquired on a
LSM710 confocal microscope using 405 nm (Hoechst33342) and
514 nm excitation (EthD-2) with a 20× (NA 0.8) dry objective. The
percentage of dead cells was assessed based on nuclei (Hoechst33342)
and dead cell (EthD2) counts using Fiji 2.0.0. TMs per cell were
manually counted in Fiji 2.0.0.

RNA-Seq. RNA-Seq was carried out similar to as described for the
wt PDGCLs.

RNA-Seq data processing of wt and BTP2 treated PDGCL as well
as Caprola6, CaProLaon PDGCL datasets
The sequencing quality of sampleswas assessed by a standard quality
control. One sample (Caprola6, low labeling intensity group, replicate
2) was excluded from further analysis due to a low quality as indi-
cated by a low number of reads. Sequencing reads were aligned
using STAR (RRID:SCR_004463, v.2.5.3a) against the human refer-
ence genome GRCh38, and gene counts were generated and anno-
tated using GENCODE (RRID:SCR_014966, v.32) by featureCounts
function of Subread package (RRID:SCR_009803, v.1.5.3). Gene
counts were normalized to fragments per kilobase million (FPKM)

Article https://doi.org/10.1038/s41467-024-45067-8

Nature Communications |          (2024) 15:968 18



values and log2 transformed. Then, the connectivity signature scores
were calculated.

Caprola6 and Caprolaon signatures were generated with the same
methods illustrated in Supplementary Fig. 5c. The genes expressed in
only one sample were excluded. DEGs were identified using edgeR
(RRID:SCR_012802, v.3.34.1). Data was normalized using calcNorm-
Factors function and estimated dispersions using estimateDisp func-
tion. Then data was fitted to negative binomial GLM using glmQLFit
function. DEGs in pairwise groups (three comparisons, i.e., High vs.
Medium, Medium vs. Low and High vs. Low) were identified by quasi-
likelihood (QL) F-test using glmQLFTest function. The DEGs of three
comparisons were merged and the following filters applied: (1) DEGs
with adjusted p value (FDR) > 0.05 were removed; (2) DEGs only
detected in one comparison were removed; (3) DEGs with no con-
sistent direction of regulation among comparisons were removed; (4)
DEGs with low expression that log count-per-million (CPM) < 2 were
removed; (5) ordering the remaining DEGs according to fold change,
the DEGs not located in the top 50 or bottom 50most regulated genes
in each comparison were removed. At last, 184-gene Caprola6 sig-
nature and 57-gene Caprolaon signature were obtained.

scRNA-Seq from a stem-like culture in vitro model of
connectivity
Cell seeding and culture. S24-tGFP and T269-tGFP PDGCs were cul-
tured adherently under stem-like conditions in neural stem cell media.
Solely the seeding density dictated if the cells formed either a highly
connected network or remained mainly unconnected.

In brief, T25 cell culture flasks (#690175, Greiner Bio-one,
Kremsmünster, Austria) were coated at 4 °C overnight with 10 ug/ml
Poly-ornithin (#P3655, Sigma, part of Merck, Darmstadt, Germany) in
ddH2O and washed twice with ice-cold PBS (#D8537, Sigma, part of
Merck, Darmstadt, Germany). Subsequently, laminin coating using a 10
ug/ml solution in PBS (#L2020 1mg, Sigma, part of Merck, Darmstadt,
Germany) was performed for 3 h. S24 and T269 PDGCs were singu-
larized with Accutase (#A1110501, Thermo Fisher Scientific, Waltham,
Massachusetts, USA), washed twice with PBS and resuspended in
neural stem cell media consisting of a 1:1 mixture of Neurobasal-A
media (#21103-049, Thermo Fisher Scientific, Waltham, Massachu-
setts, USA) and DMEM/F-12, GlutaMAX (#31331-093, Thermo Fisher
Scientific, Waltham, Massachusetts, USA), supplemented with B27 w/o
vit. A (#12587-010, Thermo Fisher Scientific, Waltham, Massachusetts,
USA), N2 supplement (#17502-048, ThermoFisher Scientific,Waltham,
Massachusetts, USA), 20 ng/ml EGF (#PHG0311, Life Technologies,
part of Thermo Fisher Scientific, Waltham, Massachusetts, USA) and
20ng/ml FGF (FGF; #PHG0021, Life Technologies, part of Thermo
Fisher Scientific, Waltham, Massachusetts, USA). 36,000 and 862,000
S24 PDGCs or 50,000 and 978,000 T269 PDGCs, respectively, were
planted per flask and growth allowed for 3 days under 37 °C, 5% CO2

standard culture conditions.
Image acquisition and quantification of TMs per cell. After 3 days,

phase contrast images were acquired using a 20x (NA, 0.4) dry
objective (#MRP46202, Nikon, Miyato, Japan) on an Eclipse Ts2-FL
(Nikon, Miyato, Japan) microscope equipped with a 1920×1200 pixel
monochromatic camera (#IS-DMK33UX174, Nikon, Miyato, Japan). Fiji
2.0.0 was used for manual quantification of the TM-number per cell. A
total of n = 50 cells from n = 10 ROIs from n = 2 independent experi-
ments were quantified per condition and PDGCL.

Single cell sequencing. Cells were detached using Accutase,
washed twice with PBS and labeled with cholesterol modified oligos
(CMO,56). Briefly, 500,000 PDGCs per line and condition were resus-
pended in PBS and incubated with CMO solution (Integrated DNA
technologies, Coralville, Iowa,USA). After 3wash cycles using 0.1%BSA
(#0163.4, Roth, Karlsruhe, Germany) in PBS and 300 g, 3min, 4 °C
centrifugation, DAPI was added to 100ng/ul final concentration. Using
standard gating strategies to discriminate multiplets and dead cells,

around 8000 live cells per condition were sorted on a FACSAria™
Fusion Special Order System (BD Biosystems, Franklin Lakes, New
Jersey, USA) with FACSDiva® v.8.0.2 software (RRID:SCR_001456, BD
Biosystems, Franklin Lakes, New Jersey, USA) using the following
excitation and filter settings: V405-450/50 (DAPI) and B488-530/30
(tGFP). PDGCs were collected in a 10% BSA coated 1.5ml reaction tube
and further processed according to the manufacturer´s instructions
with theChromiumNextGEMSingleCell 3’GEM,Library&Gel BeadKit
v3.1 (#PN-1000121, 10x Genomics, Pleasanton, California, USA).
Sequencing was carried out on a NovaSeq 6000 (#20012850, Illumina,
San Diego, California, USA).

Bioinformatic preprocessing. The procedure of the bioinformatic
preprocessing was similar to the one for SR101 xenograft dataset with
the following exceptions: Countmatrices of stem-like in vitromodel of
connectivity scRNA-Seq were generated using “cellranger multi”
function in Cell Ranger software with default parameters, against the
pre-built hg19 human reference genome (Cell Ranger reference,
v.1.2.0, 10x Genomics, Pleasanton, California, USA).

In the end, we obtained 5388 PDGCs from two stem-like in vitro
models of connectivity.

Assessing TM parameters from a serum-based in vitro model of
connectivity
Quantification of TMs. Cytosolic tGFP-overexpressing PDGCLs BG5-
tGFP, S24-tGFP, and T269-tGFP were cultured under two different
culture conditions. For neurosphere conditions, referred to as TM-,
cellswere cultured in PDGCLmedia as described in sectionCell culture
of PDGCLs. In order to induce the formation of TMs, referred to as
TM+ , cells were kept in DMEM (#11965-118, Life Technologies, part of
Thermo Fisher Scientific, Waltham, Massachusetts, USA) supple-
mented with 10% FCS (#S12595H, R&D Systems, Minneapolis, Minne-
sota, USA) and 6-well plates.

PDGCs were seeded in a density of 2 × 105 cells per well. Tissue
culture-treated 6-well plates were used for the TM+ condition
(#353224, Corning Inc., Corning, New York, USA) in contrast to the
6-well plates used for TM- conditions (#83.3920.500, Sarstedt, Nüm-
brecht, Germany). On day 20 cultures were prepared for imaging.

Preparation, image acquisition and Ilastik-based TM-length
quantification. Wells were rinsed once with PBS to get rid of floating
dead cells. Media containing 1.25 µM Ethidium-homodimer 2 (EthD2,
#E3599, Invitrogen, part of Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA) and 1 µg/ml Hoechst33342 (#H3570, Invitrogen, part
of Thermo Fisher Scientific, Waltham, Massachusetts, USA) were
added to allowdead and total cell quantification. Dyes were allowed to
bind for 30min at 37 °C, 5%CO2 before imaging. Images were acquired
either on a LSM710 or LSM780 confocal microscope (Zeiss, Oberko-
chen, Germany) and a EC plan Neofluar® 10x (NA 0.3) dry DICI or 20x
(NA 0.8) dry objective (Zeiss, Oberkochen, Germany) and Zeiss Zen
2012 black edition v.8.1.0.484 software (Zeiss, Oberkochen, Germany).
The following excitation wavelengths were used: 405 (Hoechst33342),
488 (tGFP) and 561 (EthD2). Z intervals of 5 µm and gains between 620
and 750 were used. Laser power and maximum imaging time were
tuned as low as possible to avoid phototoxicity. Images with a pixel
size of 0.89 µm and an imaging frequency of 0.3 Hz were used for
quantification.

Image processing and Ilastik-based quantification. Images were
transferred to Fiji 2.0.0 for channel splitting and generating of ortho-
gonal projections. Machine-learning-based semi-automatic image
analysis of TM lengths and nuclei numbers was performed with the
open-source software Ilastik57,58 (RRID:SCR_015246) after appropriate
training, using a previously validated pipeline59. TMs/cell were calcu-
lated based on the sum of all objects lengths per ROI divided by the
number of cells per ROI. Only ROIs with a comparable number of cells
were selected for analysis. Mann-Whitney U test was used for com-
parison of groups. Figures show maximum intensity projections with
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Hoechst and tGFP signal being oversaturated to allow better visibility
of nuclei and TMs.

scRNA-Seq from a serum-based in vitro model of connectivity
Cell lines and cell culture. PDGCLs BG5, S24, and T269were cultured
under TM- and TM+ conditions as described in section Assessing TM
parameters from a serum-based in vitro model of connectivity, with
the only exception of using a comparable North America approved
FCS from the same manufacturer (#S1155OH, R&DSystems, Minnea-
polis, Minnesota, USA) and T25 flasks instead of 6-well plates.

FACS. After cultivation under both culture conditions, cells were
blocked with 1% BSA in PBS. PDGCs were washed with PBS and sub-
sequently resuspended in 1.5ml of PBS/1%BSA containing 1 µM calcein
AM (#C1430, Life Technologies, part of Thermo Fisher Scientific,
Waltham, Massachusetts, USA) and 0.33 µM TO-PRO™-3 (#T3605,
Invitrogen, part of Thermo Fisher Scientific, Waltham, Massachusetts,
USA) to co-stain before sorting. Sorting was performed with FAC-
SAria™ Fusion Special Order System (BD Biosystems, Franklin Lakes,
New Jersey, USA) with FACSDiva® v.8.0.2 software (RRID:SCR_001456,
BD Biosystems, Franklin Lakes, New Jersey, USA) using B488-530/
30 nm (Calcein AM) andR640-670/14 nm (TO-PRO-3™) excitations and
filters. An unstained control was includedwith every sample. Standard,
strict forward scatter height versus area criteria were applied to dis-
criminate doublets. Viable cells were detected as staining positive for
calcein AM and negative for TO-PRO™-3.

scRNA-Seq. PDGCs were sorted into 96 well plates (#0030128.648,
Eppendorf, Hamburg, Germany) containing cold TCL Buffer
(#1070498, Qiagen, part of Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA) including 1% beta-mercaptoethanol (#M7522, Sigma,
part ofMerck, Darmstadt, Germany), snap frozenondry ice and stored
at −80 °C. Whole transcriptome amplification, library preparation and
sequencing were performed according to the SmartSeq2 protocol60

with the following modifications as previously published3: RNA pur-
ification from single cells was performedwith Agencourt RNACleanXP
beads (#A63987, Beckmann Coulter, Brea, California, USA) prior to
olio-dT primed reverse transcription with Maxima reverse tran-
scriptase (#EP0753, Life Technologies, part of Thermo Fisher Scien-
tific, Waltham, Massachusetts, USA) and locked template switch
oligonucleotide (#339413, Qiagen, part of Thermo Fisher Scientific,
Waltham, Massachusetts, USA). This was followed by 20 cycles of
polymerase chain reaction (PCR) amplification using KAPA HiFi Hot-
Start ReadyMix (#KK2602, Roche, Basel, Switzerland) and subsequent
purification with Agencourt AMPure XP beads. Library construction
was performed using the Nextera XT Library Prep kit (#FC-131-1024,
Illumina, San Diego, California, USA) and custom barcode adapters
(sequences available upon request). Libraries from 864 cells with
unique barcodes were combined and sequenced with a NextSeq
500 sequencer (#SY-415-1001, Illumina, San Diego, California, USA).

scRNA-Seq data processing of a serum-based PDGCL in vitro
model of connectivity
Sequencing readswere alignedusingSTAR (RRID:SCR_004463, v.2.5.3a)
against the human reference genome hg19, and gene counts were
generated and annotated using GENCODE (RRID:SCR_014966, v.19) by
featureCounts function of Subread package (RRID:SCR_009803,
v.1.5.3). Gene counts were normalized to FPKM values and log2 trans-
formed. We identified low quality cells by the number of expressed
genes lower than 2000 or higher than 8000. We obtained 566 cells
from three PDCGLs.

Single nuclei (sn)RNA-Seq data generation frompatient samples
Frozen resected tumormaterial was retrieved from the Department of
Neuropathology in Heidelberg and reviewed by a board-certified

neuropathologist. Diagnosesweremolecularly confirmed according to
the recentWHOclassification andmethylation profileswere confirmed
with methylation EPIC array (#WG-317-1003, Illumina, San Diego,
California, USA).

Due to the frozen nature of the obtained tissue, we needed to
employ snRNA-Seq instead of scRNA-Seq. For single nuclei isolation,
resected tumormaterial underwent the following quality control. Only
material with a tumor content ≥ 70% and a low percentage of necrosis,
as determined on hematoxylin and eosin-stained sections by a board-
certified neuropathologist (Department of Neuropathology, Uni-
versity Hospital Heidelberg, Germany) was considered for further
processing. Clinical and pathological characterization of patients are
summarized in Supplementary Table 4. Human patient samples were
manually anonymized.

Single nuclei preparation
Nuclei isolation was accomplished as described61. Briefly, 10–20mg
of the tumor sections were roughly chopped on ice and resuspended
in 1.5ml lysis buffer consisting of 320mM sucrose (#84097, Sigma,
part of Merck, Darmstadt, Germany), 5mM CaCl2 (#21115, Sigma,
part of Merck, Darmstadt, Germany), 3mM Mg(CH3COO)2
(#63052, Sigma, part of Merck, Darmstadt, Germany), 2mM EDTA
(#AM9260G, Invitrogen, part of Thermo Fisher Scientific, Waltham,
Massachusetts, USA), 0.5mM ethylene glycol tetraacetic acid (EGTA,
#J61721, Alfa Aesar, part of Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA), 1mM dithiothreitol (DTT; #43816, Sigma, part of
Merck, Darmstadt, Germany), 0.1% Triton X-100 (#A4975, Appli-
Chem, Darmstadt, Germany) and 10mM Tris(hydroxymethyl)ami-
nomethan (Tris) pH 8.0 (#15568025, Life Technologies, part of
Thermo Fisher Scientific, Waltham, Massachusetts, USA). The sus-
pension was transferred to a dounce homogenizer (#9651617, Th.
Geyer, Renningen, Germany) that was pre-coated with 0.1% Triton
X-100 and nuclei were isolated applying 10 strokes with each pestle A
and B. Large debris was removed by 100 µm (#542000, Greiner Bio-
one, Kremsmünster, Austria) and 70 µm (#542070, Greiner Bio-one,
Kremsmünster, Austria) strainer meshes and the suspension col-
lected in separate 50ml tubes (#227261, Greiner Bio-one, Krems-
münster, Austria). After each transfer, tubes were rinsed with 1ml
washing buffer (lysis buffer without DTT and Triton X-100) that was
pooled with the collected suspension. Next, nuclei were subjected to
three repeatedwash cycles consisting of centrifugation (550 g, 5min,
4 °C), supernatant removal and resuspension in 1.5ml washing buf-
fer. After the first cycle, suspension was transferred to micro-
centrifuge tubes (#0030.120.086, Eppendorf, Hamburg, Germany).
Adaptions for the last cycle included addition of 500 µl homo-
genization buffer (320mM Sucrose, 30mM CaCl2, 18mM Mg(Ac)2,
0.1mM EDTA, 0.1% Nonidet P40 [#APA1694.0250, Applichem,
Darmstadt, Germany], 0.1mM phenylmethylsulfonyl fluoride [PMSF,
#6367.2, Roth, Karlsruhe, Germany], 1mM beta-Mercaptoethanol
[#M7522, Sigma, part ofMerck, Darmstadt, Germany], 60mMTris pH
8.0) to the nuclei pellet and a resting time of 5min before resus-
pension in another 1ml homogenization buffer. In rare cases (<10%),
we opted for further purification using a iodixanol (#07820,
Stem Cell Technologies, Vancouver, Canada) gradient. Briefly,
the pellet was resuspended in 200 µl gradient buffer consisting of
30mM CaCl2, 18mM Mg(CH3COO)2, 0.1mM PMSF, 1mM beta-
Mercaptoethanol and 60mM Tris pH 8.0. After transfer to a new
microcentrifuge tube, 200 µl of 50% iodixanol in gradient buffer was
used to generate a final concentration of 25% iodixanol. The nuclei
suspension was carefully layered onto a gradient consisting of equi-
voluminous 300 µl layers of 29% and 35% iodixanol in gradient buffer
supplemented with 160mM sucrose. Separation was performed on a
swinging-bucket centrifuge HereusTM MultifugeTM 40 (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) at 4 °C for 20min with
3000g. 200 µl of the nuclei-containing interphase was collected and
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passed through a 20 µm filter (#130-101-812,Miltenyi Biotec, Bergisch
Gladbach, Germany). Partially, trituration using wide-bore tips
(#10089010, Thermo Fisher Scientific, Waltham, Massachusetts,
USA) was necessary to facilitate disaggregation of the nuclei.

All aforementioned steps were performed on ice and all plastic
consumables having contact with nuclei were pre-coated with 0.1%
Triton X-100 prior to use to prevent sample loss.

Finally, integrity and purity of the nuclei was confirmed using
Trypan Blue (#15250-061, LifeTechnologies, part of Thermo Fisher
Scientific, Waltham, Massachusetts, USA) staining and the nuclei
sequenced according to the 10x Genomics protocol (see section
scRNA-Seq data generation from PDGCL xenografted models).

Bioinformatic preprocessing, processing and integration and
malignant cell state assignment
The count matrices of patient sample snRNA-Seq were generated using
Cell Ranger software with standard parameters, against a custom pre-
mRNA hg19 human reference genome generated by mkref function fol-
lowing the official guideline (https://support.10xgenomics.com/single-
cell-gene-expression/software/pipelines/3.1/advanced/references). Sin-
gle cell data processing and integration as well as malignant cell state
assignment was accomplished the same way as for the SR101 xenograft
datasets. In snRNA-Seq dataset, one unsupervised cluster that expressed
markers of two different cell types was further removed. In the end, we
obtained 213,444 cells from 21 patient samples.

Identification of malignant and non-malignant cell types in
snRNA-Seq of patient samples
Cell type marker collections. The top 100 upregulated markers per
cell types (i.e., malignant cells, macrophages, T-cells and oligoden-
drocytes) were identified from a GB snRNA-Seq dataset3 using the
FindAllMarkers function with default parameters in Seurat
(RRID:SCR_007322, v.3.1.5). The top 100 upregulated markers of
endothelial cells were obtained from a healthy brain RNA-Seq
dataset22. The top 100 enriched markers in pericytes were obtained
from brain mural cells RNA-Seq dataset23. The upregulated markers of
healthy astrocytes compared to malignant astrocytes were obtained
from a human brain RNA-Seq dataset22.

Cell type signature scores. In the patient integrated snRNA-Seq
dataset, cell type signature scores (i.e., malignant signature score,
macrophage signature score, T-cell signature score, oligodendrocyte
signature score, endothelial signature score, pericyte signature score,
and astrocyte signature score) based on cell type markers were cal-
culated in each cell using the AddModuleScore function in Seurat
(RRID:SCR_007322, v.3.1.5).

Cell type assignment. In the patient integrated dataset SNN unsu-
pervised clustering was performed using the FindNeighbors function
and the FindClusters function (resolution = 0.7), and 24 clusters were
obtained. In each cluster, the medians of each cell type signature
scorewere calculated and represented as Sij, with ibeing one cell type
and j being one cluster. Then the non-malignant scores NMSij were
defined as Sij minus malignant signature score Smj (m indicates
malignant cells): NMSij = Sij � Smj . The clusters were assigned to non-
malignant cell types if NMSij more than MAD above the median of all
NMSij: cluster 8, 9, and 23 as macrophages, cluster 5 as oligoden-
drocytes, cluster 19 as T-cells, cluster 22 as pericytes and cluster 17 as
endothelial cells. The remaining clusters were assigned as malignant
clusters and were validated based on CNV estimation using the
infercnv (RRID:SCR_021140, v.1.2.1) with recommended parameters
for 10x Genomics data (cutoff = 0.1, cluster_by_groups = TRUE,
denoise = TRUE, HMM=TRUE). The assigned macrophages, oligo-
dendrocytes, T-cells, pericytes and endothelial cells were used as
reference non-malignant cells. Each non-malignant cell type and

malignant clusters were downsampled to 500 cells. We found that
the malignant clusters contained large-scale CNVs except cluster 21.
Cluster 21 showed the highest astrocyte signature score and,
accordingly, cluster 21 was reassigned as astrocyte cluster.

Two-dimensional projection of patient malignant cells by
cell state
Similar to3, we obtained signature scores for each cell state in single
cells and projected the cells according to the cell state signature
scores. Y axis values represent themaximum score from the AC/MES1/
MES2 states from which the maximum score from the OPC/NPC1/
NPC2 states have been subtracted. If Y > 0, the X axis values represent
AC minus the maximum of MES1 and MES2. If Y ≤ 0, the X axis values
represent OPC minus the maximum of NPC1 and NPC2. Cells
were colored by connectivity scores and plotted by ggplot2
(RRID:SCR_014601, v.3.3.2).

Y = max SAC , SMES1,SMES2

� ��max SOPC , SNPC1, SNPC2
� �

if Y >0,X = SAC �max SMES1, SMES2

� �

if Y ≤0,X = SOPC �max SNPC1, SNPC2
� � ð2Þ

Interactive web app
The interactive web app (https://connectivity-glioma.dkfz.de/) was
implemented using R. The graphical user interface of the web
app was constructed using the Shiny framework. It integrates meta-
data and normalized gene expression matrices from the SR101
scRNA-Seq dataset and the patient tumor scRNA-Seq dataset. UMAPs
were generated utilizing the ggplot2 package (RRID:SCR_014601,
v.3.3.2). Additionally, boxplots including statistical tests were
created using the ggpubr package (RRID:SCR_021139, v.0.4.0) and
scatterplots with correlation coefficients were created using the
ggpubr package.

Quantification of TMs in FFPE patient samples
Making use of the fact that tumors of patients enrolled in the N2M2

pilot study had been previously characterized with RNA-Seq45 we
selected the three patients with highest and lowest connectivity
scores, respectively and available FFPE tissue.Manual quantification of
TM number and length was done on nestin-stained FFPE sections as
described before4.

General preparation of slides
FFPE blocks containing fresh fixed paraffin embedded patient
resection specimens were obtained from the Department of Neuro-
pathology in accordance with local ethical approval. 3 µm sections
were generated using the HM 355 S automated microtom (#905200,
Thermo Fisher Scientific, Waltham, Massachusetts, USA) and moun-
ted on Superfrost® slides (#J1800AMNZ, Thermo Fisher Scientific,
Waltham, Massachusetts, USA). Subsequent drying was allowed for
30min on a 37 °C hot plate followed by baking for 10min in a
75 °C oven.

Nestin staining. Nestin protein levels was detected using the ultraView
DAB protocol on the automated VENTANA® BenchMark ULTRA plat-
form (Roche, Basel, Switzerland).

To detect nestin expression slides were incubated with 1:200
diluted anti-nestin antibody, clone 10C2 (#MAB5326, RRID:AB_11211837,
MerckMillipore, Burlington, Massachusetts, USA), for 32min. VEN-
TANA® standard signal amplification and ultra-wash was followed by
counterstaining with Hematoxylin II (#790-2208, Roche, Basel, Swit-
zerland) andblueing reagent (#760-2037, Roche, Basel, Switzerland) for

Article https://doi.org/10.1038/s41467-024-45067-8

Nature Communications |          (2024) 15:968 21

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/3.1/advanced/references
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/3.1/advanced/references
https://connectivity-glioma.dkfz.de/


4min each. Slides were removed from the staining platform, washed
with tap water containing a drop of dishwashing detergent and rinsed
with deionized water. After staining, all specimens were immersed in a
series of ethanol (EtOH) solutions (#20821.330, VWR, part of Aventor,
Radnor, Pennsylvania, USA)of increasing concentrationsuntil 100%and
Xylol (#534056-4L, Sigma, part of Merck, Darmstadt, Germany). Eukitt®
(#6.00.01.0001.06.01.01, ORSAtec GmbH, Bobingen, Germany) was
used for mounting.

Hematoxylin-Eosin (HE) staining. For dewaxing and rehydration
sections were passed through xylol (#9713.3, Roth, Karlsruhe, Ger-
many) and decreasing concentrations of EtOH (#200-678-6; Fisher
Scientific, Waltham, Massachusetts, USA) until the solution evenly
flowed across the slide. Staining with Mayer´s hematoxylin solution
consisting of 0.1% hematoxylin (#1.04302.0100, Merck, Darmstadt,
Germany), 0.02% sodium iodate (#6525; Merck, Darmstadt, Germany),
5% potassium aluminum sulfate (#8896.1; Roth, Karlsruhe, Germany),
5% chloralhydrate (#K318.1; Roth, Karlsruhe, Germany) and 0.1% citric
acid (#3958.1; Roth, Karlsruhe, Germany) for 1min was followed by
blueing in running tap water for 3min. Slides were incubated in eosin
solution consisting of 10% Eosin G (#7089.2, Roth, Karlsruhe, Ger-
many) and 2 drops of glacial acetic acid (#3738.1; Roth, Karlsruhe,
Germany) in 70% EtOH (#200-678-6, Fisher Scientific, Waltham, Mas-
sachusetts, USA) for 30 s and subsequently rinsed in ddH2O before
mounting.

Image analysis of patient tissue. All slides were scanned at 20x
resolution using an Axioscan Z1 slide scanner (RRID:SCR_020927,
Zeiss, Jena, Germany). Zen 2.6 Blue Edition® software (RRID:SCR_
013672, Zeiss, Jena, Germany) was used to globally adjust the copies
of original photomicrographs for white and black balance. Photo-
micrographs were additionally cropped, rotated and resampled to
allow alignment with other stainings. For image analysis three 500 ×
500 pixel regions in each patient sample were selected based on
number of nuclei (100 ± 20), nestin positivity and adjacency to den-
ser tumor tissue. Then TMsweremeasuredmanually in these regions
using Fiji 2.0.0. There were 20–84 TMs measured per image with a
total of n = 898.

Alignment of nestin andHE staining. Zen 2.6 Blue Editionwas used to
globally adjust the copies of original photomicrographs for white and
black balance. Photomicrographs were additionally cropped, rotated
and resampled to allow alignment with other stainings. Subsequent
removal of background shadows at the tile edges of no-sample con-
taining tiles was done using Zen 2.6 Blue Edition.

Target staining and TM quantification in patient tumor tissues
CHI3L1 staining. Detection of CHI3L1 protein expression in sections
adjacent to the ones used for nestin andHE stainingswas carried out as
described in section Quantification of TMs in FFPE patient samples,
with the exception of an additional heat induced epitope retrieval step
with CC1 solution (#05279801001, Roche, Basel, Switzerland) for
32min. Slides were subsequently incubated with 1:1250 diluted anti-
CHI3L1 antibody (#ab77528, RRID: AB_2040911, Abcam, Cambridge,
United Kingdom), for 32min.

Histoscoring of CHI3L1. A histoscore was used to assess the
quantity of the CHI3L1 staining intensities of both global tumor tissue
level but also of 500 × 500 pixel CHI3L1 ROIs aligned with the nestin
ROIs, which had been independently selected before by a blinded
person.

Histoscoring is awidely used semiquantitative classification of the
staining intensity of heterogeneously stained tissues. Technically, the
staining intensity of each individual cell is assigned to a scaled rating: 0
(negative), 1 (low), 2 (moderate), and 3 (high). A weighted histoscore is

calculated by the formula:

Weighted histoscore=
X3

r =0

SIr*Pr ð3Þ

where r represents the rating of staining intensity; SIr represents the
staining intensity of cell with r; Pr represents the percentage of cells
with r in the whole sample.

Based on this, the maximum score being reached is 300 (if 100%
of cells have a high intensity) and the minimum score is 0 (if 100% of
cells do not stain). All ratings were performed by a board-certified
neuropathologist (Department of Neuropathology, University Hospi-
tal Heidelberg, Germany).

Patient cohorts for validation of connectivity signature
TCGA62 cohort (RRID:SCR_003193, https://www.cancer.gov/tcga). The
RNA-Seq gene expression matrix, somatic mutation information, CNV
information and clinical data of TCGA diffuse glioma samples were
downloaded from UCSC Xena (RRID:SCR_018938, http://xena.ucsc.
edu).We obtained 146 samples fromTCGAGBcohort and 502 samples
from TCGA lower grade glioma cohort. We further investigated IDH
mutation status and chromosome 1p/19q co-deletion status in all
samples. Finally, we obtained 230 IDHwt samples, 176 IDHmutwith 1p/
19q co-deletion samples, 241 IDH mut without 1p/19q co-deletion
samples and one sample without clear classification. The 230 IDH wt
samples were derived from 90 female, 139 male und 1 unclear donor
and subjected for connectivity signature validation and survival
analysis.

CGGA63 cohort (RRID:SCR_018802, http://www.cgga.org.cn). We
downloaded clinical data and RNA-Seq gene expression matrix of 325
GB samples from the CGGAwebpage, of which 141 samples had IDHwt
and intact 1p/19q status. These 141 samples were subjected for con-
nectivity signature validation and survival analysis.

Gene Expression Profiling Interactive Analysis (GEPIA64,
RRID:SCR_018294, http://gepia.cancer-pku.cn). We downloaded the
medianCHI3L1 gene expression level (transcripts permillion [TPM]) of
RNA-Seq data from GEPIA, which contains 31 tumor types from TCGA
and related normal tissue samples from the genotype-tissue expres-
sion (GTEx, RRID:SCR_013042, https://www.gtexportal.org/home/).

The glioma longitudinal analysis28 (GLASS cohort). We down-
loaded clinical information and RNA-Seq gene expression matrix of
425 primary and recurrent samples from Synapse (RRID:SCR_005918,
https://www.synapse.org/glass). These 425 samples were subjected for
connectivity signature validation and survival analysis. 161 primary GB
specimen and 133 specimen collected at first recurrence were
analyzed.

The GBMap harmonized GB scRNA-Seq dataset23: The Seurat
object containing the gene count matrix of 338,564 cells from 110 GB
patients and the cell annotation metadata was retrieved from
the CELLxGENE data portal (RRID:SCR_021059, https://cellxgene.
cziscience.com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c).
125,486malignant cells from 74 donors were analyzed. Donors that had
less than 20 malignant cells and/or 20 nonmalignant cells were
removed.

GB proteogenomic65 cohort. Of the 93 GB patients, derived from
42 female and 51 male donors, we downloaded proteomics data from
the CPTAC Assay Portal (https://cptac-data-portal.georgetown.edu/
cptac/s/S048) and paired RNA-Seq data from the GDC Cancer Portal
(RRID:SCR_014514, https://portal.gdc.cancer.gov/projects/CPTAC-3).
These data were subjected for the correlation analysis between RNA
and protein expression levels of CHI3L1 and connectivity signature
scores.
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Molecular classification of TCGA RNA-Seq
The TCGA and CGGA IDH wt GB samples were classified into three
expression subtypes (i.e., MS, CL and PN) by single sample GSEA
analysis-based classification as described in25 (ssGSEA, R codes from25).
The FPKMexpressionmatrix was used as input for ssGSEA and 100,000
permutations was performed to obtain p values for each subtype. Each
sample was assigned to the subtype with the smallest p value.

Patient survival analyzes
Patient survival analyzes were performed by the survival (RRID:SCR_
021137, v.3.1-12) and survminer (RRID:SCR_021094, v.0.4.2): Kaplan-
Meier survival analysis was performed in the category groups (e.g.
three patient groups basing on quartiles of connectivity signature
scores, or three patient groups basing on quartiles of gene expression
levels) with overall survival times. CoxPHwasperformed in continuous
values (e.g. connectivity signature scores, or gene expression levels)
with age, gender, overall survival times and surgical interval times.
TCGA expression subtype was further considered. Exponents of the
coefficients (Exp. coef.) with 95% confidence intervals (CI, 95% int.)
indicated the hazard ratio of higher connectivity signature scores and
CHI3L1 gene expression levels.

Antibody and recombinant blocking in vitro experiments
15,000 S24-tGFP PDGCs per well were cultured inMatrigel®monolayer
assay conditions as described in section In vitro Ca2+ imaging assay.
Either an anti-CHI3L1 blocking antibody (#MABC196, clone mAY,
RRID:AB_2891310, Merck, Darmstadt, Germany) or IgG1 antibody
(#401402, clone MG1-45, RRID:AB_2801451, Biolegend, San Diego,
California, USA) was added to reach 19 nM final concentration. Pre-
paration of cells, image acquisition and analysis was carried out as
described in section In vitro Ca2+ imaging assay. n ≥ 15 ROIs were ana-
lyzed per condition in each of n = 2 independent experiments.

CHI3L1 OE
Cloning. For functional characterization ofCHI3L1overexpression, the
gene was placed under control of a human phosphoglycerate kinase 1
promoter (PGK1) promotor. For detection of the overexpressing cells a
N-terminal monomeric green fluorescent protein Tag (TagGFP) fol-
lowedbe a 2 A self-cleavingpeptidewas added. For unlabeled cell lines,
the N-terminal GFP-tag was replaced by a noncoding adapter
sequence. The mRNA expression was stabilized by the addition of a
C-terminal SV40 polyadenylation sequence. For virus generation the
complete expression cassette was inserted in a lentiviral expression
vector (rwpLENTI-PGK-R4-GW-R3-SV40-Puro/Core Facility Cellular
Tools DKFZ, Heidelberg, Germany) by gateway multisite recombina-
tion technology (Thermo Fisher Scientific, Waltham, Massachusetts,
USA). The expression vector contains a resistance maker for positive
selection with puromycin.

Virus production and infection. S24wt, T269wt and P3XXwt were
transduced with the Ctrl or CHI3L1 overexpression plasmids as
described in Section Cell Culture of PDGCLs, and 24 h after transduc-
tion virus containing medium was replaced by 1 µg/ml Puromycin
(#A2856.0100, Applichem, Darmstadt, Germany) containing selection
media. FACS was additionally used to select positive clones.

Quantitative real-time polymerase chain reaction (qPCR)
RNA extraction and cDNA synthesis. Harvested PDGCs were washed
with ice-cold PBS (#D8537-500ML, Sigma, part of Merck, Darmstadt,
Germany). Afterwards, PDGCs were resuspended in 1% beta-
Mercaptoethanol (#M3148-100ml, Sigma, part of Merck, Darmstadt,
Germany)-supplemented RLT lysis buffer, which is part of the QIAGEN
RNeasyMicroKit (#79216, Qiagen, Hilden, Germany) or QIAGENRNeasy
Mini Kit (#74004, Qiagen, Hilden, Germany). Lysate was homogenized
with QiaShredder columns (#79654, Qiagen, Hilden, Germany).

The kit type for subsequent RNA extraction was tailored to the
absolute cell numbers. Lysates containing up to 500,000 cells were
processed with the QIAGEN RNeasy® Micro Kit whereas samples with
500,000 to onemillion cellswere processedwith theQIAGENRNeasy®
Mini Kit. All steps were carried out according to the manual. On-
column DNAse digestion was performed with the RNAse free DNAse
set (#79254, Qiagen, Hilden, Germany). RNA was eluted in RNAse-free
water (#4387936, Thermo Fisher Scientific, Waltham, Massachusetts,
USA). Reverse transcription was performed according to the manu-
facturer´s recommendations using the High-Capacity cDNA Reverse
TranscriptionKitwithRNAse Inhibitor (#4374967, AppliedBiosciences
Applied Biosciences, Foster City, California, USA) and a total of 1 µg
RNA per 20 µl reaction.

Amplification. qPCR was performed with 9 ng cDNA, Taqman™
Gene Expression Master Mix (#4369016, Thermo Fisher Scientific,
Waltham, Massachusetts, USA) and the respective TaqMan™ probes
(Applied Biosystems, Foster City, California, USA). The following
probes were used: Hypoxanthine Phosphoribosyltransferase 1 (HPRT1;
Hs002800695_m1) and CHI3L1 (Hs01072228_m1). All reactions were
carried out in a 96-well reaction plate (#N8010560, Applied Bios-
ciences), covered with MicroAmp™ optical adhesion film (#4311971,
Applied Biosciences, Foster City, California, USA) and analyzed on a
QuantStudio™ 3 Real TimePCRSystemoperatedwith theQuantStudio
Design & Analysis software v1.5.2 (RRID:SCR_018712, Thermo Fisher
Scientific, Waltham, Massachusetts, USA).

n ≥ 2 independent experiments with each having ≥ 2 technical
replicates were performed. Standard curves were generated for each
gene and the amplification was 85–115% efficient. Relative quantifica-
tion of gene expression was determined by the delta-delta CT method
and included normalization to GAPDH, HPRT1 and TBP using the
Bestkeeper© software66.

Western blot
Cell lysis was performed with ice-cold RIPA buffer consisting of 50mM
Tris, pH 7.4 (#A1086,1000, AppliChem Panreac, Darmstadt, Germany),
150mMNaCl (#31434-1KG, Sigma, part ofMerck, Darmstadt, Germany),
1% Triton X-100 (#A4975, AppliChem Panreac, Darmstadt, Germany),
0.5% sodium deoxycholate (#A1531-0100, AppliChem Panreac, Darm-
stadt, Germany), 1mM EDTA (#AM9260G, Thermo Fisher Scientific,
Waltham,Massachusetts, USA), 1mMEGTA (#15425795, Alfa Aesar, part
of Thermo Fisher Scientific, Waltham, Massachusetts, USA), 0.5mM
PMSF (#6367.2, Roth, Karlsruhe, Germany), Complete protease inhi-
bitor (#4693132001, Roche, Risch, Switzerland) and HALT Phosphatase
inhibitor (#78420, Thermo Fisher Scientific, Waltham, Massachusetts,
USA). Protein concentrationsweremeasured using the BCA kit (#23225,
Thermo Fisher Scientific, Waltham, Massachusetts, USA). 10 µg protein
diluted with NuPAGE LDS 4x sample buffer (#NP007, Thermo Fisher
Scientific, Waltham, Massachusetts, USA) and NuPAGE 10x sample
reducing agent (#NP004, Thermo Fisher Scientific, Waltham, Massa-
chusetts, USA) was denatured and electrophoretically separated on
NuPAGE 4–12% Bis-Tris Mini Gel (#NP0321BOX, Thermo Fisher Scien-
tific, Waltham, Massachusetts, USA) in Novex™ NuPAGE™ MOPS SDS
running buffer (#NP001, Thermo Fisher Scientific, Waltham, Massa-
chusetts, USA) with NuPAGE antioxidant (#NP005, Thermo Fisher Sci-
entific, Waltham, Massachusetts, USA). Proteins were blotted onto a
PVDF membrane (#IPVH00010, Merck, Darmstadt, Germany) and
blocked for 1 h with 5% milk (#T145.2, Roth, Karlsruhe, Germany) or 5%
BSA in TBS-T (5mM Tris [#A1086,1000, AppliChem Panreac, Darm-
stadt, Germany], 16mM Tris-HCl [#9090.3, Roth, Karlsruhe, Germany],
150mM NaCl [#3134-1KG-M, Sigma, part of Merck, Darmstadt, Ger-
many], 0.15% Tween 20 [#500-018-3. MPBio, Santa Ana, California,
USA]). The following antibodies were used for subsequent probing
overnight: anti-CHI3L1, 1:2000 (#MABC196, clone mAY, RRI-
D:AB_2891310, Merck, Darmstadt, Germany), anti-GAP43, 1:1000
(#8945 S, clone D9C8, RRID:AB_10860076, Cell signaling technologies,
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Danvers, Massachusetts, USA), anti-GAP43(pS41) 1:1000 (#ab167162,
clone EPR1854(2), Abcam, Cambridge, United Kingdom) and anti-
GAPDH, 1:1000 (#97166 S, clone D4C6R, RRID:AB_2756824, Cell sig-
naling technologies, Danvers, Massachusetts, USA) as loading control.
After three wash steps with TBS-T, 1 h incubation with 1:10,000 diluted
HRP-coupled anti-mouse (NA931V, RRID:AB_772210, GE Healthcare,
Chicago, Illinois, USA), anti-rabbit (NA9340V, GE Healthcare, Chicago,
Illinois, USA) or Dy800-conjugated anti-mouse (#SA5-10172, RRI-
D:AB_2556752, 1:10,000 dilution, Thermo-Fisher Scientific, Waltham,
Massachusetts, USA) secondary antibody in 5% BSA ormilk and another
three wash steps with TBS-T, chemiluminescent signal induced by
Clarity Western ECL Substrate (#170-5060, Bio-Rad, Hercules, Cali-
fornia, USA) was visualized on a ChemiDoc MP Imaging System equip-
ped with the Image Lab Touch Software v.2.0.0.27 (Bio-Rad, Hercules,
California, USA). Image analysis was performed with Image Lab
v.6.0.0 software (Bio-Rad, Hercules, California, USA).

In vitro Matrigel® monolayer assay of CHI3L1 OE cells
A total of 15,000 S24-Ctrl or S24-CHI3L1 OE PDGCs were seeded per
well in a 96-well plate and cultured underMatrigel®monolayer assay as
described in section In vitro Ca2+ imaging assay. Preparation, image
acquisition and Ilastik-based TM-length quantification was done as
described in section In vitro Ca2+ imaging assay, with the only excep-
tion of addition of 4 nM MemGlow488/Lipilight (#MG01-02, Cytoske-
leton Inc., Denver, Colorado, USA) before imaging to facilitate TM
visibility. Representative images are maximum intensity projections,
GaussianfilterwithKernel size 3 applied andobjects detected in Ilastik.

In vivo examination of CHI3L1 OE cells
PDGC implantation and tumor harvest. A total of 50,000 S24-Ctrl or
S24 CHI3L1 OE PDGCs were injected into the striatum of 8-12 week old
female Crl:CD1-Foxn1nu nudemice (RRID:IMSR_CRL:086, Charles River,
Wilmington, Massachusetts, USA) as previously described in section
Separation of SR101high and SR101low PDGCL xenograft groups. n = 4
mice per groupwere injected in n = 2 independent experiments. Brains
were harvested after a solid tumor had manifested, post-fixed in 4%
PFA (#sc-281692, SantaCruz, SantaCruz, California, USA), incubated in
20% sucrose (#S0389-500G; Sigma, part of Merck, Darmstadt, Ger-
many) for 24 h and embedded into Tissue Tek O.C.T compound
(#4583, Sakura Finetek, Alphen aan den Rijn, Netherlands).

Histologicalprocessing. Serial sectionsof 50 µmweregeneratedusing
a cryostat (#CM3050S, Leica,Wetzlar, Germany) and transferred to PBS
(#PBS-1A, Capricorn Scientific, Ebsdorfergrund, Germany) to allow free
floating immune stainings. Sections were rinsed twice with each TBS
and TBS-T consisting of 11,5mM Tris (#A1086,1000, AppliChem Pan-
reac, Darmstadt, Germany), 38,45mM Tris-HCl (#9090.3, Roth, Karls-
ruhe, Germany), 0.9% (w/v) NaCl (#3134-1KG-M, Sigma, part of Merck,
Darmstadt, Germany) and, in the latter case, addition of 0.5% Triton
X-100 (#X100-1L, Sigma, part of Merck, Darmstadt, Germany). After
90min of blocking in 0.25% BSA (#0163.4, Roth, Karlsruhe, Germany)
and 10% donkey or normal goat serum (#5425, Cell signaling technol-
ogies, Danvers, Massachusetts, USA) in TBS-T, the following primary
antibodies were added for 72 h: Nestin, 1:500 (#ab6320, clone 196908,
RRID:AB_308832, Abcam, Cambridge, United Kingdom), to allow TM
visualization, CD31, 1:100 (#AF3628, RRID:AB_2161028, R&D Systems,
Minneapolis, Minnesota, USA) to allow vessel visualization, and Ku-80,
1:400 (#2180S, clone C48E7, RRID:AB_2218736, Cell signaling technol-
ogies, Danvers, Massachusetts, USA) to allow normalization for S24
PDGCL cell number. Four washes with TBS-T were followed by a 12 h
incubation with 1:500 diluted goat anti-mouse and anti-rabbit second-
ary antibodies conjugated to Alexa Fluor 546 and AlexaFluor 633,
respectively (#A11010, RRID:AB_2534077; #A11003, RRID:AB_141370;
#A21070, RRID:AB_2535731; #A21050, RRID:AB_141431; Thermo Fisher
Scientific, Waltham, Massachusetts, USA). After two consecutive 15min

washes with TBS-T and one with TBS, sections were stained with DAPI
(10 ug/ml; #6335.1, Roth, Karlsruhe, Germany) for 15min followed by
one 15min wash cycle with TBS and three cycles with TB. Sections were
mounted onto standard microscope slides (#AA00000112E01MNZ10,
Epredia, Portsmouth, New Hampshire, USA) and covered in Aqua Poly-
Mount (#F4680-25ML, Sigma, part of Merck, Darmstadt, Germany).

Image acquisition and quantification. All ROIs selected for TM
quantification were located in the caudoputamen and had a similar
PDGCL density. Images from at least 4 mice per group were acquired
on a LSM780 confocal microscope (Zeiss, Oberkochen, Germany)
equipped with a 63x (NA1.4) Oil DICIII objective (Zeiss, Oberkochen,
Germany) and Zeiss Zen 2012 black edition v.8.1.0.484 software (Zeiss,
Oberkochen, Germany). The following excitations and detection
wavelengths were used for sequential image acquisition: 405/410-585
(DAPI), 561/569-631 (AlexaFluor546) and 633/638-747 (AlexaFluor633).
Imagedimensionswere set to 285x285x32 µmwith a z-stackdistanceof
400nm and a pixel size of 72 nm.

Quantification of cell number and TM length/cell within a ROI
(n = 4 ROIs per mouse, n = 4 mice per group) was accomplished using
Aivia (Leica, Wetzlar, Germany). A customized training set was used to
threshold the pixel probabilities of two classes (nuclei and TM) and
allow automatic segmentation. Features such as number and length of
the detected nuclei and TMs were exported for further analysis. For
performance quality control of the algorithm TM length/cell and
number of nuclei were also assessedmanually in Fiji 2.0.0based on the
raw images and confirmed the results obtained with Aivia. Number of
nuclei per ROI and TM length/cell per ROI were validated manually
from raw images using Fiji 2.0.0. Moreover, Fiji was used for the
assessment of the number of TMs/cell and number of connections/cell
(n = 40 cells, 4mice per group). Perivascular cells were defined as such
if cell bodies had contact with vessels.

A histoscore from S24 cells in n = 16 ROIs of n = 4 mice per con-
dition was calculated to quantify CHI3L1 intensity in situ. The same
methodology as for CHI3L1 in situ quantification in human patient
samples was used.

RNA-Seq of CHI3L1 OE cell lines
RNA-Seq. RNA isolation and RNA-Seq were conducted as described
before.

Bioinformatic processing. RNA-Seq data was aligned using STAR
(v.2.5.3a) against the humangenome (1KGRef_PhiX). Reads duplication
was marked using Sambamba (v.0.6.5). A gene-count matrix was gen-
erated using Featurecounts (Subread v.1.6.5). The parameter settings
wer based on the DKFZ ODCF workflow (https://github.com/DKFZ-
ODCF/RNAseqWorkflow). Differential expression analysis was per-
formed between the CHI3L1 OE and Ctrl groups in each cell line, uti-
lizing DESeq2 (v.1.32.0). Genes with adjusted p-values < 0.05,
normalized count levels >10, and absolute fold-change ≥3 were
retained as DEGs. The remaining DEGs that were identified in at least
two cell lines and ranked within the top 100 upregulated or top 100
downregulated genes in each cell line were merged. Ultimately, a total
of 353 DEGs were derived from the RNA-Seq dataset.

Proteomics and phosphoproteomics of CHI3L1 OE cell lines
Mass spectrometry sample processing and data analysis. Three
PDGCL experiments with S24 (n = 2), T269 (n = 1) and P3XX (n = 2)
overexpressing CHI3L1 were compared with their empty vector coun-
terparts, resulting in 10 samples for label free relative protein mass
spectrometry (MS) quantification and 10 samples for phosphopeptide
quantification.

Protein extraction. For label free proteome and phosphoproteome
analysis, cell pellets containing 500 µg protein were lysed with 200 µl
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8M urea lysis buffer containing: Tetraethylammonium bromide (TEAB)
50mMpH 8.5, 8M urea, 1mM NaCl, 1% Benzonase (Sigma), one Pro-
tease inhibitor tablet (Complete TabletsMini, EDTA-free EASYpack) and
PhosSTOP protease inhibitor buffer (Sigma-Aldrich) per 10mL urea
buffer. Residual cell debris was removed by centrifugation at 14,000g
for 10min at 4 °C. The protein concentration was determined by the
microBCAprotein assay kit (#23235, ThermoFisher Scientific,Waltham,
Massachusetts, USA) according to the manufacturer’s instructions.

Protein digestion. Protein reduction and alkylation was performed
with 10mMDTT at 27 °C and 30mM IAA for 1 h at RT. AWessel-Flügge
protein cleanup was conducted according to67. Protein lysates were
diluted 1:5 with 50mM TEAB (pH 8.5). 500 µg protein were digested
with Trypsin/Lys-C (Promega) at 1:50 enzyme:protein ratio overnight
at 37 °C. To stop the reaction, 10% formic acid (FA) was added to a final
concentration of 2% FA.

Peptide desalting and enrichment. Prior to phosphopeptide enrich-
ment, samplesweredesalted using SepPak tC18 100mg 1cc solid Phase
extraction cartridges (Waters) following the manufacturer’s instruc-
tions. In brief, protein digests were equilibrated on-column washed
with 2.5% FA and eluted with 80%/0.6% acetonitrile (MeCN)/FA in
water. Peptide yields were quantified by nanoESI-LC-MS/MS. Desalted
peptide samples were directed to speed vac to dryness.

Sequential phosphopeptide enrichment. A consecutive phospho-
peptide SMOAC enrichment protocol based on metal affinity chro-
matography using High-Select™ TiO2 combined with High-Select Fe-
NTA phosphopeptide enrichment kits (Thermo Fisher Scientific Wal-
tham,Massachusetts, USA)were applied to peptide samples according
to the manufacturer’s instructions. For SMOAC, the wash fractions of
the HiSelect TiO2 phosphopeptide enrichment were combined and
applied to the Fe-NTA FT enrichment. After eluting the phosphopep-
tides fromTiO2 and Fe-NTA, both eluateswere combined and analyzed
by nanoLC-MS/MS.

nanoLC MS/MS analysis. Peptide samples prepared for global pro-
teome and phosphoproteome analysis were separated and analyzed
by nanoflow LC-MS/MS using a Dionex 3000 nanoUHPLC (Thermo
Fisher Scientific, Waltham, Massachusetts, USA) attached to an Orbi-
trap Exploris (Thermo Fisher Scientific, Waltham,Massachusetts, USA)
mass spectrometer. Samples for the proteome or phosphoproteome
analysis were resuspended in MS loading buffer containing 2.5%
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), 0.1% trifluoroacetic acid (TFA)
in water. Peptide loading and washing was performed for 3min with
0.1% TFA in water at a flow rate of 30μl/min. using a trapping cartridge
Acclaim PepMap300 C18, 5μm, 300Å (Thermo Fisher Scientific Wal-
tham,Massachusetts, USA). Peptideswere separatedon ananoEase, 1.7
μm, 300Å, 75 μm x 200mm analytical column (Waters) at a flow rate
of 300nl/min. For whole proteome analysis a three step 150min gra-
dient was applied for chromatography: 2–4% solvent B (99.9 % MeCN,
0.1% FA) in 4min, 4−30% in 132min and 30–80% in 3min followed by a
washing and an equilibration step with solvent A being 0.1% FA in
water. For phosphopeptide separation, the nanoUHPLC method was
adjusted as follows: 2–4% solvent B in 4min, 4–28% in 132min and
28–78% in 3min followed by a washing and an equilibration step. The
spray voltage was 2.2 kV for nanoESI ionization and the ion transfer
tube temperaturewas set to 275 °C. TheMS instrument operated in the
data-dependent (DDA) mode. Full scan MS spectra (m/z 375–1400)
were acquired with a maximum injection time of 45ms at 60,000
resolution for full proteome and 120,000 for phosphoproteome ana-
lysis. The automatic gain control (AGC) target value was set to 200%
and the isolation window was set to 1.2m/z. The normalized MS col-
lision energy was set to 28. MS/MS scans cycles were triggered for
2 sec. A maximum injection time of 54ms at 15,000 resolution was set

for high-resolution MSMS spectra. Dynamic exclusion was set to
10 sec. Undetermined charge states and single charged signals were
excluded from fragmentation.

Protein and phosphopeptide identification and quantification. MS
raw data was processed by MaxQuant v.2.0.1.0 (RRID:SCR_014485)
software package including Perseus v.1.6.15.0 (RRID:SCR_015753) for
statistical analysis. Protein as well as phosphopeptides were identified
applying the UniProt database UP000000589 (Homo sapiens; 01,
2020; 20367 sequences, RRID:SCR_002380). Carbamidomethylation
of cysteines was set as fixed modification. Phosphorylation of serine,
threonine or tyrosine as well as oxidation of methionine, N-terminal
acetylation, glutamine and asparagine deamidation were set as vari-
ablemodifications. The ‘match-between-runs’ function and LFQoption
was enabled for label free quantification. Identification FDR cutoffs
were0.01 on theprotein level andpeptide level. Phosphopeptideswith
phosphosite localization probabilities x ≥0.75 were selected for fur-
ther analysis. The proteins or phosphosites only detected in one
sample were removed for further processing. 5022 proteins were kept
and a median of 4286 proteins per sample were obtained in pro-
teomics dataset. 12,799 phosphosites were kept and a median of 8520
phosphosites per sample were obtained in the phosphoproteomics
dataset.

DEP and DPP identification. The LFQ data was normalized by ‘vsn’
method using DEP (v.1.14.0). The intensity distribution and cumulative
fraction of proteins in the proteomics and phosphoproteomics data-
sets indicated that proteins with missing values had lower intensities.
This observation suggests that the proteins with missing values were
below the detection limit. To handle the missing values, we employed
the deterministic minimum (MinDet) method for imputation. This
method replaced each missing value with the smallest detectable
intensity (0.01 quantile) observed within each sample. 152 DPPs were
identified in CHI3L1 OE samples against control samples with adjust p
value < 0.05 and absolute log2 fold change >1.5 by test_diff function
using DEP (v.1.14.0). Due to high differences among cell lines in pro-
teomics dataset, we further corrected the normalized and imputed
proteomics data by removeBatchEffect function using limma
(RRID:SCR_010943, v.3.36.5). Then, the corrected data was fitted to
linear model using lmFit function, and calculated the empirical Bayes
statistics using eBayes function. 123 DEPs were identified in CHI3L1 OE
samples against control samples with adjust p value < 0.05 and abso-
lute log2 fold change >0.5.

Pathway analysis of Ctrl and CHI3L1 OE PDGCLs
Ingenuity Pathway analysis (Qiagen, Hilden, Germany, RRID:SCR_
008653) was used to predict pathways activated in CHI3L1OE PDGCLs
based on DEGs. Kinase enrichment analysis was conducted with KEA3
as described68.

Statistics & reproducibility
All in vitro and in vivo experiments were performed in a randomized
fashion and conducted independently at least two times unless other-
wise specified. No statistical method was used to predetermine sample
size in all experiments. Our sample sizes were selected based on those
reported to generate statistically meaningful data in similar studies
from our group. No data were excluded from the analyzes except spe-
cified otherwise in the respective methods sections. The exact number
of independent replicate samples (n) and statistical parameters are
provided in the legends corresponding to the specific experiments.

The investigators were blinded to allocation during experiments
andoutcomeassessmentwheneverpossible. Further information canbe
found in the respective methods sections and the Reporting Summary.

For normally distributed data and/or datasets with n ≥ 5 data points
the statistical significance was assessed by t-test and one-way ANOVA,
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respectively. Among the recurrent non-synonymous mutated genes in
at least 5%TCGAGBpatients (27genes), the connectivity signature score
related mutated genes were identified using wilcox.test function in R.

Mean comparisons between two groups without an equal dis-
tribution and/or n ≥ 5 was obtained byMann-Whitney U test or among
three groups by Kruskal-Wallis test. All statistical tests were two-sided
if not stated otherwise and conducted with ggpubr (RRID:SCR_021139,
v.0.4.0). Error bars show standard error of the mean (SEM) and all
boxplots are according to Tukey. Boxes show 25th to 75th percentile,
its middle line the median, whiskers the 5th to 95th percentile and
individually plotted data points the outliers.

Multiple testing was adjusted and obtained FDR using p.adjust
function in R. Pearson or Spearman correlation coefficients were cal-
culated using ggpubr (RRID:SCR_021139, v.0.4.0). Statistical sig-
nificance for the overlap between two gene sets was calculated by
hypergeometricprobability via http://nemates.org/MA/progs/overlap_
stats.html. Multivariate analysis was conducted to correct for age and
gender. A p value of p <0.05 was generally considered significant.

Visual illustration
Parts of the illustrations were drawn by using pictures from Servier
Medical Art. Servier Medical Art by Servier is licensed under a Creative
Commons Attribution 3.0 Unported License (https://creativecommons.
org/licenses/by/3.0/).

Additionally, BioRender.com was used for the creation of the
illustrations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawdata files of allWES, bulk RNA-Seq and scRNA-Seq data generated in
this study have been deposited in the European Genome-Phenome
Archive database (EGA) under accession number EGAS00001007611
[https://ega-archive.org/studies/EGAS00001007611, RRID:SCR_004944].
These patients´ sensitive genetic data, including raw and processed data
files, are available in linewith the EGApolicy and access controlled by the
Data Access Committee to ensure patient privacy. All of WES, bulk RNA-
Seq and scRNA-Seq data generated and analyzed in this study are pro-
vided in the Supplementary Information, Supplementary Data and
SourceData. RawMSdata generated in this study havebeendeposited in
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org, RRID:SCR_004055) via the PRIDE partner reposi-
tory (RRID:SCR_003411) with the dataset identifier PXD044001 [https://
proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD044001]. The MS data generated in this study are provided in the
Supplementary Information, Supplementary Data and Source Data.
scRNA-Seq data from the SR101 dataset can be additionally explored by
an interactive web app (https://connectivity-glioma.dkfz.de). RNA-Seq
data of the TCGA cohort was obtained from the UCSC Xena platform
[https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lower%
20Grade%20Glioma%20(LGG)&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443, https://xenabrowser.net/datapages/?
cohort=GDC%20TCGA%20Glioblastoma%20(GBM)&removeHub=https%
3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443, RRID:SCR_018938,
https://www.cancer.gov/tcga]. RNA-Seq data of the CGGA cohort was
obtained from the CGGA webpage [http://www.cgga.org.cn/download.
jsp, RRID:SCR_018802]. RNA-Seq data from 31 tumor types and related
healthy tissues was obtained from the GEPIA server [http://gepia.cancer-
pku.cn/detail.php?gene=chi3l1, RRID:SCR_018294]. RNA-Seq data from
theGLASS cohortwas obtained from the Synapse platform [https://www.
synapse.org/glass, RRID:SCR_005918]. scRNA-Seq data from GBmap was
obtained from the CELLxGENE data portal [https://cellxgene.cziscience.
com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c,

RRID:SCR_021059]. GB proteogenomic cohort was obtained from the
CPTAC Assay Portal [https://cptac-data-portal.georgetown.edu/cptac/s/
S048] and the GDC Cancer Portal [https://portal.gdc.cancer.gov/
projects/CPTAC-3, RRID:SCR_014514]. Gene sets for GSEA were
obtained from gsea-msigdb.org (RRID:SCR_003199, v.4.1.0, Broad Insti-
tute). All of thesedatasetswere accessiblewithout any restriction. Source
data is available. Source data are provided with this paper.

Code availability
All codes supporting the current study, including the ones underlying
the interactiveweb app (http://connectivity-glioma.dkfz.de) have been
deposited in Zenodo under https://zenodo.org/records/10481241.
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