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The fission of a string connecting two charges is an astounding phenomenon in confining gauge theories.
The dynamics of this process have been studied intensively in recent years, with plenty of numerical results
yielding a dichotomy: the confining string can decay relatively fast or persist up to extremely long times.
Here, we put forward a dynamical localization transition as the mechanism underlying this dichotomy. To
this end, we derive an effective string breaking description in the light-meson sector of a confined spin
chain and show that the problem can be regarded as a dynamical localization transition in Fock space. Fast
and suppressed string breaking dynamics are identified with delocalized and localized behavior,
respectively. We then provide a further reduction of the dynamical string breaking problem onto a
quantum impurity model, where the string is represented as an “impurity” immersed in a meson bath. It is
shown that this model features a localization-delocalization transition, giving a general and simple physical
basis to understand the qualitatively distinct string breaking regimes. These findings are directly relevant
for a wider class of confining lattice models in any dimension and could be realized on present-day
Rydberg quantum simulators.
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Introduction.—The efficient implementation of gauge
theories is a central target in quantum simulation [1–6], with
some remarkable experimental realizations achieved in
recent years [7–18]. However, the intrinsic structure of
gauge theory still poses formidable technical challenges.
Simultaneously, quantum spin chains, which are more
amenable to quantum simulation, have been shown to be
a versatile platform to emulate lattice gauge theory phenom-
enology. This has led to recent intensive efforts to investigate
the structure of the gauge vacuum and out-of-equilibrium
transport properties under the influence of confinement in
this setting [19–40]. Yet, various aspects of such phenomena
remain to be elucidated. In particular, numerical studies of
dynamical string breaking—where a string connecting two
charges decays due to pair production [41,42]—suggest a
dichotomy for the fate of the confining string: its fission can
occur relatively fast or be substantially delayed.
In this Letter, we discuss how these observations can be

interpreted in terms of an underlying dynamical localiza-
tion transition. In this picture, the localized phase corre-
sponds to a regime with a long-lived (prethermal) string,

while the delocalized phase to fast string breaking. First,
we show via exact diagonalization in quantum Ising chains
that two qualitatively different string dynamics are sepa-
rated by a sharp threshold in the long-time behavior of
dynamical quantities. In particular, we study the survival
probability and the half-chain entanglement entropy, with
the former quantity serving as a direct diagnostics of string
breaking. We then derive an effective model for the
breaking of a short string by projecting onto a reduced
subspace that captures resonant decay channels in the limit
of vanishing transverse field. Within this effective descrip-
tion, string breaking can be understood as a dynamical
localization problem in Fock space. Next, this description is
heuristically generalized to a quantum impurity model,
where the string is effectively represented by a few-level
system coupled to a meson bath. We show that this model
features a dynamical localization-delocalization transition,
with both sides of the transition explaining the observed
string breaking regimes. This description, independent of
microscopic details, provides a general and simple physical
basis to understand dynamical string breaking. Finally, we
discuss how our results can be applied to a wider class of
confining lattice models in any dimension, and potential
implementations with Rydberg quantum simulators.
String dynamics in quantum Ising chains.—We consider

the quantum Ising model in both transverse (hx) and
longitudinal (hz) fields, whose Hamiltonian for L spins
on the ring reads
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Ĥ ¼ −J
XL

i¼1

σ̂zi σ̂
z
iþ1 − hx

XL

i¼1

σ̂xi − hz
XL

i¼1

σ̂zi ; ð1Þ

where σ̂x=zi are the Pauli matrices at site i, and J > 0 is the
strength of a ferromagnetic coupling. The model (1) is of
paramount importance in various fields—from statistical
mechanics and condensed matter [43,44] to high-energy
physics [45–47]. Further, it can be naturally realized in
present-day Rydberg quantum simulators [48–53], and
solid-state materials [54]. Both integrability and Z2 sym-
metry are broken by a finite hz, which induces a confining
potential between pairs of domain wall (DW) excitations
(provided that hx < J). In this scenario, pairs of DWs
form bound, mesonlike states. String breaking dynamics
can then be probed by studying the stability of one such
object under the unitary evolution generated by the
Hamiltonian (1). Below, we review the main aspects of
this process (see also Ref. [24]), in the confining regime
with controlled quantum fluctuations hx ≪ J.
A dichotomy between distinct string breaking dynamics

is revealed in a simple experimentally feasible quantum
quench protocol. The system is initially prepared in a state
with an Ising electric-field string of l↓ spins (in the σz

basis) that connects two DWs, on top of the vacuum, i.e.,
jψ stringðlÞi≡ j � � �↑↓i0↓ � � �↓↓ði0þl−1Þ↑ � � �i. Next, the
real-time evolution of the system in Eq. (1) is studied at
finite hx=J and hz=J. Two qualitatively different dynamical
string breaking scenarios are illustrated in Figs. 1(a)
and 1(b), for an initial string of length l ¼ 4. The dynamics
are shown in terms of the local DW density, νiðtÞ ¼
1
2
hÎ − σ̂zi ðtÞσ̂ziþ1ðtÞi, defined on the bonds between con-

secutive lattice sites. In Fig. 1(a), a rapid production of new
DW pairs occurs inside the string, eventually leading to its
decay and emission of lighter mesons. A subsequent
proliferation of DW pairs throughout the whole chain
eventually restores translation invariance, in agreement
with the fact that the system (1) is ergodic and thermalizing
at late times [55]. This fast string breaking dynamics can be
understood as a consequence of underlying resonances that
arise for commensurable ðJ; hzÞ [24,56]. In sharp contrast,
the rapid string breaking dynamics is surprisingly absent in
Fig. 1(b), up to the accessed long timeOð102J−1Þ, which is
also beyond the timescale for light meson kinetics
t ≫ J=h2x. Based on general thermalization arguments
(as mentioned above), the latter regime must be understood
only as a prethermal phenomenon [34].
The scenarios above have been observed in both quan-

tum spin models [21,24,25] and low-dimensional lattice
gauge theories [57–62]. However, a general picture of how
these systems cross from one regime over to the other
remains to be provided. As a first step in this quest, we
study the long-time behavior of the string survival prob-
ability

PðtÞ ¼ jhψ stringjψðtÞij2; ð2Þ

and the half-chain entanglement entropy

SðtÞ ¼ S½ρ̂AðtÞ� ¼ −TrA½ρ̂AðtÞ ln ρ̂AðtÞ�; ð3Þ

where jψðtÞi is the time-evolved many-body wave function
and ρ̂AðtÞ ¼ TrB½jψðtÞihψðtÞj� is the reduced density matrix
computed on one half of the chain (cutting through
the middle of the string and the opposite point on the
periodic chain). We compute long-time averages as
O ¼ ð1=tf − tiÞ

R tf
ti OðtÞdt. In our calculations we take

Jtf ¼ 104, and Jti ¼ 3Jtsb, where Jtsb ≡ ½π=2ðhx=JÞ2� is
a typical timescale for string breaking [24]. The long-time
averages of the quantities in Eqs. (2) and (3) are shown in
Figs. 1(c) and 1(d), for various values of hz=J and hx=J. We
observe a sharp threshold—defined by the point where
P̄ ¼ 0.5—which roughly scales linearly with ðhx=JÞ2
[inset in Fig. 1(c)], and separates a regime where the string
breaks (P̄ ∼ 0) from one in which it persists (P̄ ∼ 1) up to
the accessed timescales. The behavior of S̄ shows that
string breaking is characterized by a significant amount of
entanglement, while in suppressed string breaking dynam-
ics entanglement production is strongly diminished.
String breaking as a localization problem in Fock

space.—We now derive an effective description of the
above phenomenology. Let us fix l ¼ 4, as before. For the
considered parameter regime hx ≪ hz ∼ J, one can sys-
tematically project out sectors of the Hilbert space that do

FIG. 1. String breaking dynamics in quantum Ising chains.
(a) [hz ¼ J] Fast and (b) [hz ¼ 1.1J] suppressed string breaking
dynamics in quantum Ising chains [Eq. (1)], in terms of the
spatiotemporally resolved domain wall density νiðtÞ. In both
cases, L ¼ 24, hx ¼ 0.2J, and l ¼ 4 (initial string length). Long-
time behavior of (c) the survival probability [Eq. (2)] and (d) half-
chain entanglement entropy [Eq. (3)], for various values of the
magnetic fields and L ¼ 16;l ¼ 4. A sharp threshold, defined by
the point h⋆z =J where P̄ ¼ 0.5 [dotted lines and inset in (c)],
separates the two string breaking regimes. Results obtained via
exact diagonalization.
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not participate in resonant decay channels, by applying
a Schrieffer-Wolff transformation [63,64] to (1), see
Ref. [65] for details. Here, the relevant physical subspace
is formed by the direct sum of the “string” sector and
the “one-meson pair” sector, see Fig. 2(a). The former
sector is spanned by the kets jSji ¼ j � � �↑↑↓j↓↓↓↑↑ � � �i,
with a string of size l ¼ 4, labeled by the site index j
of the first ↓ spin. The second sector comprises configu-
rations with exactly two one-meson particles: jj;di¼
j� � �↑↑↓j↑ � � �↑↓ðjþdÞ↑↑ � � �i, where 2 ≤ d ≤ L=2 (L even),
is the relative distance between the two ↓ spins.
The resulting effective model reads

Ĥeff ¼ Ĥstring þ Ĥmesons þ Ĥλ; ð4Þ

where Ĥstring gives the string rest mass [Es ≡m4 ¼ 12J];
Ĥmesons contains terms for hopping [v ¼ h2x=ð3JÞ], mass
[2m1 ¼ Es − 2v], and repulsive contact interaction
[U ¼ 9v=2] of the one-meson particles; and Ĥλ couples
the two relevant sectors with amplitude λ ¼ −3v; see Fig. 2
(a) and Ref. [65] for details. The latter term is responsible
for the processes of pair creation and recombination, and
therefore, crucial for string breaking.
The energy spectrum of this model is shown in Figs. 2(b)

and 2(c), for different choices of parameters. In Fig. 2(b) all
bands are close in energy, while in Fig. 2(c) a large gap
separates an isolated band (associated to string modes)
from the rest. In the latter case, string modes are strongly
localized. This is quantified by the color bar in Figs. 2(b)
and 2(c), which shows the value of the inverse participation
ratio (IPR) of individual energy eigenstates:

IPRðnÞ ¼
X

a

jhajnij4; ð5Þ

where fjnig are eigenstates of Ĥeff and fjaig preferential
basis states. Localized behavior of jni occurs when
IPRðnÞ ≃ 1, while IPRðnÞ vanishes as 1=D in the max-
imally delocalized case, where D is the Hilbert space
dimension [66].
The evolution of the survival probability [Eq. (2)],

corresponding to the two cases above, is shown in
Figs. 2(d) and 2(e). While in the former case, the string
eventually breaks (P ∼ 0), in the latter it survives (P ∼ 1) up
to long times. The spectra in Figs. 2(b) and 2(c) are hence
identified with fast and suppressed string breaking dynam-
ics, respectively. String breaking can thus be seen as a
dynamical localization problem in the Fock-space graph in
Fig. 2(a), where the string localizes if it is not resonantly
coupled to the continuum of one-meson pairs. Quantitative
agreement with the dynamics in the full Ising model is also
observed in Figs. 2(d) and 2(e), which can be systemati-
cally improved by decreasing hx=J [65].
Quantum impurity model picture.—The above picture

resembles localization phenomena in quantum impurity
models (QIMs) [67–69]. This is the basis for a further
reduction of the string breaking problem. Let us con-
sider an elementary string breaking (fusion) process:
ð� � � ↑↑↓↓↓↓↓↑↑ � � �Þi ↔ ð� � � ↑↑↓↓↓↑↓↑↑ � � �Þii ↔
ð� � � ↑↑↓↓↓↑↑ � � � ↑↓↑ � � �Þiii, where a string (i) gets cut
near its edges via pair creation, yielding a metastable
configuration (ii), and eventually, a shorter string plus a one
meson (iii) [58,62]. We encode the different configurations

FIG. 2. Effective graph model for string breaking dynamics. (a) Schematic of the effective model for a short string (l ¼ 4). Spin
configurations in yellow represent string states (rest mass m4 ¼ 12J), whereas configurations in blue represent one-meson pairs with
energy 2m1 and hopping amplitude v ¼ h2x=3J (red bonds). These are the configurations involved, to leading order, in the resonant
decay of the string (green bonds). For illustration, confined DW pairs are depicted in some configurations as red dots joined by a wiggly
line. String breaking can thus be thought of as a diffusion problem in the Fock-space graph. (b),(c) Energy spectrum of the effective
model for hz ¼ J and hz ¼ 1.02J, respectively. In (b) all bands have a similar energy, while in (c) there is a gap between the “string”
band and the continuum of one-meson pairs. Color bar shows the IPR of individual eigenstates [Eq. (5)], exhibiting a strong localization
of the string modes in the latter case. (d),(e) Time evolution of the survival probability [Eq. (2)], for the respective parameters, both in the
effective and full Ising model. Note the log scale in the horizontal axis and the time in units of v. Parameters: L ¼ 16; hx ¼ 0.1J.
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of this basic process in the internal states of a spin-1 system
(“impurity”). Concretely, we map the symmetric and
antisymmetric string states ð1= ffiffiffi

2
p Þ½jψ stringi � jψmetai�,

onto the impurity states jSz ¼ �1i, respectively, and the
state where the string has been cut and a lighter meson
radiated onto jSz ¼ 0i. The impurity is also locally coupled
to a meson bath in analogy to the picture in Fig. 2(a). This
motivates a QIM with Hamiltonian

ĤQIM ¼ Ĥimp þ Ĥbath þ Ĥcoup; ð6Þ

where Ĥimp ¼ ðM − μÞðŜzÞ2 þ ΛŜz, contains the string
mass term M, a chemical potential μ accounting for
higher-order corrections, and a Λ > 0 term, directly related
to string breaking (fusion); Ĥbath ¼

P
N
j¼1½−Tðb̂†j b̂jþ1 þ

H:c:Þ þ ðM − 2TÞb̂†j b̂j�, describes a bath of light mesons
represented by hard-core bosons with creation (annihila-
tion) operators b̂†j (b̂j), on a chain with N sites, with
hopping amplitude −T and maximal kinetic energy
M − 2T; and Ĥcoup ¼ −T½ð1 − ðŜzÞ2ÞŜxb̂†1 þ H:c:�, cou-
ples the impurity with the bath such that if jSz ¼ 0i a
meson at site 1 is created, and whenever jSz ¼ �1i a meson
at that site is annihilated [70].
A schematic of this mapping is shown in Fig. 3(a) for a

short string that can decay into two shorter strings. The
latter can be emitted into a meson bath, if the impurity-bath
coupling is resonant, leaving the impurity in its “vacuum”
state. Otherwise, the shorter strings can recombine back
into a longer string, avoiding its decay. This QIM picture
thus offers a distilled abstraction of the effective graph
model in Fig. 2(a). We note, however, that the mapping
between these two models is not exact. Yet, as shown
below, both models have significant similarities both in the
behavior of their eigenstates as well as in the dynamics of
the impurity and the string.
The QIM in Eq. (6) features a localization-delocalization

transition, explicitly shown in the single-meson limit. In
this limit the spin can be replaced by two hard-core bosons,
and due to particle number conservation, exact diagonal-
ization is possible for large system sizes [65]. Focusing on
the IPR of individual eigenstates, we see that the impurity
mode can abruptly localize when varying Λ=T above a
critical Λc=T, see Fig. 3(b), while the IPR of bulk
eigenstates always vanishes (not shown). A standard
finite-size scaling analysis [72], see Fig. 3(c), yields
Λc=T ¼ 1.41ð1Þ and critical exponents ζ ¼ −1.02ð5Þ,
ν ¼ 1.00ð5Þ, for the considered parameters.
Such localization-delocalization transition underlies and

governs two qualitatively different spin dynamics, see
Fig. 3(d). Here we plot the long-time averaged spin autocor-
relation functionMðΛÞ¼ limt→∞ð1=tÞ

R
t
0dt

0hŜzðt0ÞŜzð0ÞiΛ,
where h� � �iΛ denotes the expectation value at a given Λ=T.
This quantity plays an equivalent role to the survival
probability for the spin chain [Eq. (2)], and likewise, it

vanishes on the delocalized side of the transition, while it
approaches unity as we ramp upΛ=T, above the localization
transition point.
Our conclusions are restricted to the lattice as we have

only considered a bounded spectrum of excitations. We
expect our observations to hold beyond the limit hx ≪ J, as
long as there exist values of hz=J for which certain decay
channels lead to faster dynamics than in other regimes. We
note that our effective descriptions are valid only within the
prethermal timescale of the localized regime. Also, further
localization transitions may occur around other resonance
points of the spin chain, which could involve longer decay
paths [24,32], and hence, would require us to consider an
impurity with more internal levels. Regarding the Fock-
space graph model, we note that adding higher-order
corrections could reshape the transition path and change
the criticality. Nevertheless, as the effect of such higher-
order terms is just a renormalization of hopping amp-
litudes [25], we expect the physics to remain qualitatively
unaltered far from the localization transition point and deep
in the two phases.
Discussion and outlook.—We expect our main results to

be relevant for a wider class of confining theories in one
and higher dimensions. In effect, what seems to be crucial

FIG. 3. Localization-delocalization transition in the QIM.
(a) Minimal string breaking (fusion) as a three-level system
(impurity), coupled to a bath. The impurity-bath coupling may or
may not be resonant, yielding hybridization (as depicted here)—
corresponding to string decay—or localization, respectively.
(b) IPR of the impurity mode as a function of Λ=T, for various
system sizes, displaying a localization-delocalization transition.
(c) Data collapse of the data in (b) using a standard finite-size
scaling ansatz within the package PYFSSA [71], yielding Λc=T ¼
1.41ð1Þ and critical exponents ζ ¼ 1.02ð5Þ, ν ¼ 1.00ð5Þ.
(d) Long-time average of the spin autocorrelation function
MðΛÞ, as a function of Λ=T with N ¼ 800. The dashed
line indicates the transition point Λc=T ≈ 1.41. Parameters:
M=T ¼ 10, μ=T ¼ 2.
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in the applicability of the QIM picture is that the system
retains rotational symmetry, with the radial coordinate
effectively defining a one-dimensional problem, when
integrating out the rotation degree of freedom [68].
Fermionic bound states (e.g., baryons) could also be
accounted for by changing the statistics of the bath [68,69].
Finally, our observations can be experimentally realized
with current quantum technologies. In particular, Rydberg
atoms offer a well suited platform, in which both the initial
string states and the target unitary dynamics can be
implemented in a highly controllable way [48–53].

The data shown in the figures is available on Zenodo [73].
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