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We show that certain lattice gauge theories exhibiting disorder-free localization have a characteristic
response in spatially averaged spectral functions: a few sharp peaks combined with vanishing response in
the zero frequency limit. This reflects the discrete spectra of small clusters of kinetically active regions
formed in such gauge theories when they fragment into spatially finite clusters in the localized phase due to
the presence of static charges. We obtain the transverse component of the dynamic structure factor, which is
probed by neutron scattering experiments, deep in this phase from a combination of analytical estimates
and a numerical cluster expansion. We also show that local spectral functions of large finite clusters host
discrete peaks whose positions agree with our analytical estimates. Further, information spreading,
diagnosed by an unequal time commutator, halts due to real space fragmentation. Our results can be used to
distinguish the disorder-free localized phase from conventional paramagnetic counterparts in those
frustrated magnets which might realize such an emergent gauge theory.
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Lattice gauge theories emerge as low-energy effective
theories in a large class of models relevant to quantum
many-body physics, especially in frustrated magnets [1,2].
For example, in quantum spin ice and hardcore dimer
models, local constraints (such as the ice rule of two spins
pointing in and two pointing out locally) yield a 3þ 1
dimensional compact U(1) lattice gauge theory [3,4]. The
resulting algebraic spin correlations are, strictly speaking,
only present at zero temperature, in the absence of charges
(i.e., violations of the constraints). However, perhaps
somewhat counterintuitively, one can also find new phases
by creating a high density of such charges, provided that
these are static. The concomitant sectors of the lattice gauge
theories have been shown to exhibit disorder-free locali-
zation in one [5,6] and two dimensions [7,8]. It thus
becomes necessary to distinguish disorder-free localization
from a paramagnet, the “standard” disordered phase,
leading to the twin questions of to what extent one can
access novel phases at a finite density of static charges, and
above all, what are the distinguishing characteristics of the
localized phases?
Here, we present a spectral response dominated by

discrete sharp peaks, combined with vanishing weight in

the zero frequency limit, as a characteristic signature of
the disorder-free localized phase. We show that such a
response arises due to formation of local motifs with
discrete spectra in such lattice gauge theories, a feature
absent in conventional paramagnets which behave diffu-
sively at high temperatures [9]. We numerically obtain the
spectral functions by calculating quantum dynamics of the
2þ 1D U(1) quantum link model (QLM) via a controlled
cluster expansion method which allows us to access the
dynamics deep in the localized phase. Our conclusions are
applicable to a large class of lattice gauge theories with
discrete degrees of freedom and static charges, of which the
U(1) QLM is a prototypical example.
Besides the main result we also show that (i) disorder-

free localized lattice gauge theories show information
freezing due to real-space fragmentation in 2D. (ii) In
different regimes of the U(1) QLM, local and global
response of spatially averaged spectral functions differ
and such a difference could be measured via local
spectroscopy, serving as additional evidence for such
physics. There has also been a recent surge in proposals
for disorder-free localization [10–13], and stabilizing
disorder-free localization on quantum simulators [14].
Hence, distinct experimental signatures are of great current
relevance.
Quantum link model and percolation.—The QLM is a

discrete version of Wilsonian lattice gauge theories also
occurring in gauge magnets [15–18]. Several models in
condensed matter, for example, the toric code [19] and
quantum dimer and ice models [20–22], can be cast as
QLMs. We use the 2þ 1D U(1) QLM
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Ĥ ¼ J
X
□
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−
r;ŷ flips all spins on a pla-

quette if they satisfy a certain orientation (clockwise or
anticlockwise in Fig. 1). Here, Ŝþ=−

r;μ denotes the spin raising
and lowering operators for the spin joining sites r and
rþ μ̂, where μ̂ ¼ x̂=ŷ is a lattice vector. The first term in
Eq. (1) is a kinetic energy term, whereas the second is a
potential energy term [20]. Spin configurations are charac-
terized by the set of static charges on all sites and the charge
on each site qr is determined by the eigenvalue equation of
the generator of gauge transformations (which evaluates the
difference in incoming and outgoing arrows from a site, see
Fig. 1),Grjψi¼ qrjψi [6] [see Supplemental Material (SM)
[23] for expressions of Gr]. The gauge invariance is a
statement of charge conservation in this analogy, flipping all
spins connected to a site rwill not change qr. For spin-1=2,
qr ∈ f−2;−1; 0; 1; 2g. Thismodel has been shown to exhibit
disorder-free localization [7,8]. Crucially, the charges are
static in our model, and correspond to violations of the ice
rule. States belonging to such charged sectors are akin to
configurations with defects in frustrated magnets. However,
there is no real disorder in the problem, it arises dynamically
when considering combinations of sectors with different
charge configurations.
We consider the problem with Eq. (1) as the effective

Hamiltonian. Without any static background charges we get
square ice, i.e., two in and two out spins on every vertex. On
increasing the charge density beyond a criticalCdcr, there is a
disorder-free localized phase [7,8]. If these charges are
thermally activated, the disorder-free localized phase would
correspond to a high temperature phase (proposed in a
different context for 1D [27]). Temperature-dependent
dynamics for gauge theories has also been studied in the
Kitaev model [28].

Our disorder-free localization can be studied using a
percolation model, where one starts from a classical
random spin configuration, a random state from the infinite
temperature thermal ensemble (drawn from the superposi-
tion of all possible sectors, see SM), which fixes the initial
charge configuration, and then tracks all possible spin
configurations induced by single plaquette flips [first term
in Eq. (1)] (see SM for discussion). Plaquette dynamics in
such a model is constrained by the static charge environ-
ment and certain charge configurations will render a subset
of plaquettes permanently frozen. If the initial state hosts a
sufficient density of background charges to fragment the
lattice into disconnected finite clusters of kinetically active
plaquettes, localization ensues (see SM for details on
disorder-free localization and percolation).
Effective exact diagonalization using cluster expansion

in the localized phase.—We employ an effective exact
diagonalization (ED) procedure to calculate the quantum
dynamics of our 2D interacting system deep in the localized
phase. The percolation model gives us the real-space cluster
structure, which in the localized phase comprises only finite
disconnected clusters. In contrast, in the delocalized phase
there is an infinite percolating cluster coexisting with the
finite clusters.
The decomposition of the lattice into only finite clusters

in the localized phase due to kinetic constraints, allows us
to calculate quantum dynamics for all times using a cluster
expansion approach [8]. To calculate spatially averaged
expectation values of time-dependent correlation functions
for the whole lattice, we start by calculating the quantum
dynamics individually for each cluster using exact diago-
nalization. We then sum the results for all clusters up to a
certain size after which we find that including larger
clusters adds negligible weight to our observables.
Allowed plaquette configurations in a cluster are connected
via subsequent single plaquette flips, whereas plaquettes
belonging to different clusters (disjoint in real space) are

FIG. 1. Accessing novel phases by increasing charge density Cd (colored circles: red, purple, and black for qr ¼ −1, 1, and −2, the
arrows → and ↓ represent spin j↑i, whereas ← and ↑ represent j↓i). In the presence of a sufficient density of static charges, one can
access the disorder-free localized (DFL) phase (Cd > Cdcr). Rightmost panel: sharp spectral response in spatially averaged spectral
functions (in this case, the transverse component of the dynamical structure factor for jλ=Jj ¼ 0.2) with Szzðq;ωÞ → 0 as ω → 0, in the
disorder-free localized phase.
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uncorrelated. Since we calculate dynamical expectation
values of two point correlators, the only nonzero contri-
butions come from pairs of spins belonging to the same
cluster. Note that our cutoff procedure works well away
from the critical regime, in the localized phase, where mean
cluster size of the corresponding nonpercolating phase is
not too large (see Ref. [23] which includes [24–26]). On
approaching the transition, the mean cluster size increases
significantly and contributions from finite but large clusters
become important and the problem goes beyond our ED.
Frozen spins also contribute a delta function response

exactly at zero frequency. However, our results pertain to
dynamical spins and since one cannot measure strictly zero
frequency, we ignore this contribution and frozen spins are
only included in the averaging for calculating global
spectral functions. Besides global response, we also cal-
culate local spectral functions, spatially averaged over a
finite cluster by averaging over all spins belonging to all
clusters of a particular size, obtained from multiple initial
random spin configurations.
Information freezing due to fragmentation.—We use our

method to first calculate unequal time commutators which
are related to the susceptibility via the Kubo formula. Such
commutators (also their relatives, the out-of-time-ordered
correlators) quantify information spreading, a quantity
related to entanglement growth, and have been a measure
of chaos and Hilbert-space fragmentation in quantum
many-body systems [29–32]. We calculate

CGðd; tÞ ¼
1

N

X
ri;rj∈L

A

hψ j½dSzri;μðtÞ; bSz rj;μ0 ð0Þ�jψi

¼ 1

Nd

X
jclj<¼Pc

X
r0i;j∈cl

A0

hψ clj½dSzr0 i;μðtÞ; bSz r0j;μ0 ð0Þ�jψ cli

CLðd; tÞ ¼
1

N0
d

X
jclj¼P

X
r0i;j∈cl

A0

hψ clj½dSzr0 i;μðtÞ; bSz r0j;μ0 ð0Þ�jψ cli ð2Þ

where μ ¼ x̂=ŷ, A≡ jri þ μ=2 − rj − μ0=2j ¼ d, jψ cli is a
Haar random state drawn from the Hilbert space spanned
by all possible configuration states of the cluster cl and Nd
is the number of pairs of spins in the lattice L separated by
distance d, excluding the pairs of spins that belong to all
clusters of size jclj > Pc as per our method (Pc ¼ 18 for
this Letter, see SM for details). N0

d is the number of pairs
of spins separated by distance d in all clusters with P
plaquettes.
We analyze global information spreading represented by

CGðd; tÞ in Eq. (2), related to entanglement growth in the
full system as well as local information spreading CLðd; tÞ,
related to the same in a finite size cluster. Figures 2(a)
and 2(b) display a stark difference between the two cases in
the jλ=Jj ≪ 1 regime. There is a signal up to large distances

with a light conelike structure for information spread within
a cluster, affirming the ergodic nature of large finite size
clusters in this regime [8]. We choose P ¼ 18 in this Letter,
but similar results for CL will hold for all large clusters.
However, for the whole lattice, there is an exponential
decay with a correlation length of around three to four
lattice spacings, i.e., next-nearest-neighbor plaquettes,
implying information freezing and saturation of entangle-
ment growth. Such a qualitative difference is even more
apparent in the long-time average of the commutators with
distance in Fig. 2(c). Note that such information freezing is
present for all values of jλ=Jj and is a generic feature of all
disorder-free localized lattice gauge theories, where kinetic
constraints induced by static charges, cause real-space
fragmentation.
High temperature spectral functions.—We also calculate

high-temperature (T ≫ maxðjλj; jJjÞ) spectral functions,

FIG. 2. Local and global information spreading quantified by
J2=λ2jCL=GðtÞj for jλ=Jj ¼ 0.2. (a) Information spreading within
an 18 plaquette cluster. (b) Information freezing in the full
system. (c) Long time average vs distance for (a) and (b).
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which are relevant for neutron scattering experiments on
frustrated magnets that might realize a U(1) QLM-type
effective theory. To do so, one employs arguments from
dynamical quantum typicality (DQT) [33,34] which state
that a pure state drawn from a Haar-random distribution
gives the same expectation values as the entire statistical
ensemble. One can then define correlation functions as

Szzðd; t;TÞ ¼ 1

N

X
ri;rj∈L

A

hΦβðtÞjdSzri;μjφβðtÞi
hΦβð0ÞjΦβð0Þi

þ ϵ

¼ 1

N0
d

X
jclj

<¼Pc

X
ri;rj∈cl

A

hΦβclðtÞjdSzri;μjφβclðtÞi
hΦβclð0ÞjΦβclð0Þi

þ ϵ ð3Þ

where jΦβclðtÞi ¼ e−iHclt−βHcl=2jψ cli, jφβpðtÞi ¼
e−iHclt dSzrj;μ0e−βHcl=2jψ cli, β ¼ 1=T, Hcl is the Hamiltonian

in Eq. (1) but with the sum over all plaquettes belonging to
cluster cl, and ϵ denotes the error which is exponentially
small in the number of thermally occupied eigenstates. The
typicality approach also works very well in a localized
phase for large Hilbert spaces [35].
Taking the space-time Fourier transform of Eq. (3), gives

the transverse component of the dynamical structure factor.
As shown in Figs. 1 and 3(a), there are dominant delta-
function-like peaks at low frequencies amidst a background
of featureless response and a vanishing response as
ω → 0. This is the hallmark of disorder-free localization
and distinguishes it from paramagnetic response [9]. Such
response remains robust on increasing system size and for
all values of λ and J since the dominant peaks arise from
the formation of small clusters (see next section) deep
in the localized phase due to fragmentation induced by the
static charges. The density of such clusters saturates at a
constant value as a function of background charge density
deep in the localized phase, smoothly decays across the
localization transition, and then vanishes as a polynomial
deep in the delocalized phase, as in standard percolation.
Crucially, on crossing the localization transition, an infinite
ergodic cluster emerges which has a continuous spectral
response [8]. Hence, on crossing the transition from the
localized side, there is a shift in weight from the discrete
peaks to the continuous response.
However, the infinite cluster exhibits long-time hydro-

dynamic behaviorwithU(1) charge conservation.Assuming
diffusion in 2D, i.e., a temporal decay of t−d=2 ¼ 1=t, one
would expect a logarithmic divergence of the spectral
response as ω → 0. The localized phase, however, has no
such contribution. Moreover, since the localization physics
is dictated by the small clusters, there is a vanishing spectral
response as ω → 0 due to their discrete and nondegenerate
spectra.

Besides the above global signatures, local spectral
functions like the temporal Fourier transform of onsite
correlators, Szz0 ðωÞ, spatially averaged over spins belonging
to all clusters of a particular size, evolve from a smooth
curve with short bumps in the jλ=Jj ≪ 1 regime to a
discrete set of peaks in the jλ=Jj≫ 1 regime, as in Fig. 3(b).
Such a difference indicates ergodic to nonergodic crossover
within large but finite clusters [8].
Analytic estimate of dominant peaks.—The position of

the peaks observed above can be accurately estimated from
local physics of clusters of few plaquettes which form two
and three level systems. Consider a two level system, for
example a single flippable plaquette, the eigenvalues of
such a system will be −λþ J and −λ − J. Such a system
should have a discrete peak at ω ¼ J=π. Similarly, for
a two-plaquette system with three states (11=10=01;
1-flippable and 0-unflippable), the transition between the
closest spaced pair is given by a discrete peak at ω ¼
J2=ðλπÞ in the jλ=Jj ≫ 1 regime. The dominance of these
peaks arising from such local physics implies (i) on the
global scale the dominant response deep in the localized
phase is from the small clusters and (ii) in the jλ=Jj ≫ 1
regime, for the local spectral functions the physics of larger

FIG. 3. Evidence of disorder-free localization from high tem-
perature [T ¼ 5maxðjλj; jJjÞ] spatially averaged spectral func-
tions. (a) The q ¼ 0 component of the transverse component of
the dynamic structure factor, A ¼ max (jλj,jJj) and B ¼ min
(jλj,jJj), cutoff size Pc ¼ 18 and jλ=Jj ¼ 5.0; (inset) same
quantity as main plot, but for jλ=Jj ¼ 0.2. (b) On-site spectral
function averaged over all spins belonging to all 18 plaquette
clusters for jλ=Jj ¼ 5.0 and (inset) jλ=Jj ¼ 0.2.
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clusters is effectively dominated by local motifs which
form two- or three-level systems. Since within a cluster
there is no real-space fragmentation, the local motifs arise
purely due to interference effects. However, the nonergodic
response in the local spectral functions averaged over
connected clusters is a finite-size effect with dominant
discrete peaks over a wide range of large finite-size clusters,
which we call the disorder-free localization regime, similar
to the many-body localization regime [36]. Their spectral
weight eventually decreases on increasing size giving way
to a continuous spectrum in the infinite-size limit [8].
However, the former contribution, due to fragmented
clusters in typical sectors, remains discrete as the presence
of a finite density of charges will always induce real-space
fragmentation and form small clusters. These clusters have
the same spectra irrespective of their position; hence even
after spatial averaging a sharp response remains in all
regimes of the Hamiltonian.
Discussion and outlook.—In this Letter we have pre-

sented numerical results for spatially averaged spectral
functions in 2D as characteristic evidence for disorder-free
localization. Local spectroscopic signatures have also been
proposed for conventional disordered MBL, as a way to
distinguish between strong and weak MBL [37,38].
However, most sharp spectral features are blurred out on
spatial averaging, with a soft spectral gap at zero frequency
being the only distinct consequence of both kinds of MBL.
For the disorder-free localized phase, there are dominant
sharp peaks in the dynamical structure factor as well as
a vanishing response as ω → 0; both of these can, in
principle, be observed in spectroscopic experiments. Our
Letter can be translated to higher dimensions and could
serve as evidence for quantum spin ice materials, where the
analog of the charges would be orphan spins or dopants,
and could be an alternate route to verifying the underlying
gauge theory structure of such materials.
Simulating gauge theories in quantum simulators has been

an area of current experimental effort, where mechanisms
have been proposed to protect the gauge symmetry [39–43].
Our spectral features,which result in persistent oscillations of
any gauge invariant observable at certain frequencies,
provide a concrete probe to verify that the simulator does
indeed realize a gauge theory. Moreover, our results on the
unequal-time commutators further motivate lattice gauge
theories as a fertile platform to probe information spreading
and chaos. Futher, lattice gauge theory with mobile matter
adds a dynamic charge to the problem and is an interesting
future direction.

The data for the figures are openly available on Zenodo
at [44].
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