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Interpolation Assisted Deep Reinforcement Learning

by Wenzel Baron PILAR VON PILCHAU

Reinforcement Learning is a field of Machine Learning that, in contrast to the
other prominent representatives, generates its training data during runtime in direct
interaction with an environment. A sample of this training data is called experience
and represents a state-transition that is caused by an action together with the cor-
responding reward signal. Experiences can be seen as a form of knowledge about
the underlying dynamics of the environment and a common technique in the field
of Reinforcement Learning is the so-called Experience Replay which stores and re-
plays experiences that have been observed at some point in training. By doing so,
sample efficiency can be increased as experiences are used many times for training
instead of throwing them away after one update. As experiences are generated dur-
ing runtime, the learner has to explore the state-space and it is only able to learn the
dynamics of specific areas when it has been there sometime in the past. As men-
tioned earlier, experiences can be seen as knowledge about the underlying problem
and it is possible to generate synthetic experiences of states that have not been vis-
ited yet based on stored real experiences of neighbouring states. Such synthetic ex-
periences can be generated by means of interpolation and can further on be used
to assist the learner with exploration. Also, sample efficiency can be increased even
further as real experiences are used to generate synthetic ones. In this work, two
different techniques are presented that make use of synthetic experiences to assist
the learner. The first approach stores generated synthetic experiences in the buffer
alongside real experiences and during training real, as well as synthetic experiences
are drawn at random from the buffer. This mechanism is called Interpolated Experi-
ence Replay. The second approach leverages on the architectural design of the Deep
Q-Network and uses synthetic experiences to enable training updates that take the
full action-space into account. This second algorithm is called Full-Update DQN. As
methods that combine interpolation with a replay buffer and model-free learning
algorithms fit neither the definition of model-free, nor model-based, the new class
Semi-Model-Based is introduced to cover them.
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Chapter 1

Introduction

Artificial Intelligence has attracted great attention recently as ChatGPT [Ope23] (a
chatbot that is able to conduct a conversation on a human level) showed great suc-
cess even beyond the scientific world. ChatGPT is a mixture of several known con-
cepts from the domain of Machine Learning (ML) [Mit97] that includes Supervised
Learning [CCD08], which is training with huge amounts of labeled data, and Rein-
forcement Learning (RL) [SB18], which is learning based on a feedback signal.

A general definition of ML was provided by Mitchel, and states:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.” [Mit97]

Following this definition, a key component of ML is some form of experience. In
Supervised Learning, this experience is manifested through labeled data provided
to the learner. RL on the other hand, takes another route and generates experience
based on interactions with an environment. While the generation of labeled data
is an elaborate process, this is not necessary for RL as required data is generated
during the learning process. Unfortunately, there are other problems like the design
of meaningful and supportive reward functions for instance. However, RL repre-
sents a powerful way of learning that is inspired by nature, to be precise, by the way
mammals learn when they interact with the world and adapt behaviour based on
feedback signals such as pain or pleasure [BO10]. Moreover, RL has achieved re-
markable success in playing (video) games such as Go [Sil+17], StarCraft II [Vin+19]
and Dota 2 [Ber+19] at a level surpassing human capabilities. These examples high-
light the considerable relevance of RL, which still holds vast untapped potential.

RL has been applied to real world scenarios as well, and examples range from the
energy sector over healthcare to robotics [Li19]. Outside of simulations, aspects be-
come important that have been negligible before, and one such thing is the amount
of performed exploration. In RL, a so-called agent learns by interacting with the
world it is situated in, but to gather knowledge about the dynamics of that world
it needs to explore it first. By doing so it builds up a behaviour policy that maps
concrete actions or a probability distribution over all possible actions to concrete sit-
uations. If the agent would only explore the environment by trying random actions
for the whole time, that behaviour policy would not learn anything useful. Thus, the
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agent also exploits its knowledge base to intensify it. As both is required to evolve a
good behaviour policy, RL agents typically implement some solution for the explore-
exploit-dilemma. In other words, a trade-off needs to be found between exploring
the environment with random actions and performing meaningful actions based on
the behaviour policy. In real world scenarios, exploration can be costly of course, as
it might break a robot if it decides to try out what happens when it runs full speed
into a wall. Another important thing that can be of relevance is the execution time.
A simulation can perform thousands of operations in no time, while a heavy robot is
only able to conduct a handful of operations per minute. Both of the aforementioned
points are related to the amount of generated experiences and would benefit from a
low required number. One possible approach to reduce that number is to exploit the
potential of already generated experiences, which is, in other words, the increase of
the sample efficiency.

Experience Replay (ER) [Lin92; Lin93] describes a method that stores observed
experiences in a buffer and replays them to the agent to increase sample efficiency
and speed up learning. It has been extended in several ways (cf. section 3.1), and, for
some approaches (like DQN [Mni+15; Mni+16] cf. section 2.4) it is even mandatory to
learn at all. The classical method and most of its extensions are restricted to the usage
of real experiences that have been generated by interaction with the environment,
but there also exist some advancements that use synthetic data in the one or the
other way. Experiences are stored as they are used for training, and it might be
beneficial to make use of this stored information even beyond the replay mechanic.
Experiences et are defined as a quin-tuple of state St, action At, reward Rt, next state
St+1 and a terminal tag d. Such an experience describes a transition of one state
into another when a concrete action was executed and stores the received reward
together with the information if the state St+1 was a terminal one.

To look at an experience from another perspective, a concept that describes the
relation of data, information, knowledge and wisdom is consulted and can be found
in Figure 1.1. It shows the well known concept of the data–information–knowledge–
wisdom hierarchy (DIKW) [Row07]. One key assumption of this hierarchy is that
higher elements can be explained in terms of the lower elements by identifying an
appropriate transformation. Starting at the bottom, data is described in [Row07]
as something that has no meaning/value because of its missing context, or respec-
tively as unorganized/unprocessed discrete objective facts or observations. The
main thing defining data is the lack of meaning or value and that is exactly what
the definition of information adds. Information is often defined in terms of data
and some definitions claim it to be formatted data, data which adds value to the
understanding of a subject or data that has been shaped into a meaningful form.
The key concept of information is the transformation of data into a contextualized
form that has value. In other words, information can be described as organized or
structured data. Definitions of knowledge are much more complex, but to keep it
simple, they can be reduced to describing knowledge as the combination of data
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and information to which expert opinion, skills and experience is added, such that
it can be used to aid decision making, and/or convey understanding, experience,
accumulated learning and expertise if applied to a problem or activity. At the top
of the DIKW hierarchy stands wisdom, which is defined as accumulated knowledge
that helps with understanding of how to apply concepts from one domain to new
situations or problems. [Row07]

Data raw signals

Information states–actions–rewards

Knowledge experiences

Wisdom policy

FIGURE 1.1: The DIKW hierarchy, adapted from [Row07]

If a RL method is analyzed with respect to the DIKW hierarchy, then, first of all,
raw measurements of signals can be described as data. In the moment when these
signals are combined with context, they form a state observation, a reward and an
action and emerge from data to information. Just these contextualized data on its
own can not be used further on, because it lacks an meaningful combination that
takes the temporal dependencies of them into account. By doing so, an experience
is generated and consequently, a pool of experiences can be described as knowledge
about the underlying problem. Experiences are used to train a policy that is able to
solve this problem and, depending of the utilized estimation method (e.g. a neural
network), can generalize the learned behaviour to new situations. Thus, a policy fits
the definition of wisdom.

As mentioned above, stored experiences resemble gathered knowledge of the
underlying problem which is to be solved. The assumption here is that this knowl-
edge, that is stored either way, can be exploited to resemble knowledge (experiences)
in yet unexplored areas of the problem space. Further on, it is assumed that the
problem’s dynamics are at least similar in local neighbourhoods and, therefore, ex-
periences hold knowledge of neighbouring dynamics. A technique that uses data
points in a local neighbourhood to generate estimates of points that are unknown is
interpolation. Consequently, the assumption is that stored experiences can be used
as sampling points to generate synthetic experiences by means of interpolation.

A concrete overview of the investigated problem and the implemented solutions
alongside a definition of several research questions is given in the subsequent sec-
tion.
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1.1 Scientific Contribution

Based on the presented thoughts in the former section, the following hypothesis can
be formulated that will be in the main focus of the rest of the work:

Hypothesis 1. Stored samples in the Experience Replay buffer can be used as sampling
points for the interpolation of synthetic experiences. These synthetic experiences can be used
to assist the learner to speed up learning and increase sample efficiency.

In order to establish the validity of hypothesis 1, it becomes crucial to identify
pertinent research questions that can be explored to examine various aspects of the
hypothesis. The subsequent research questions are highly specific and will serve as
a guide for scientific contributions that have attempted to address one or more of
these questions. By addressing all of these questions, it becomes possible to provide
a well-founded and scientific response to the inquiry regarding the truthfulness of
hypothesis 1.

Q 1. How can gathered knowledge in form of experiences be exploited to generate meaningful
synthetic experiences?

Q 2. Which parts of an experience et = (St, At, Rt+1, St+1, dt+1) can be interpolated, and
what needs to be considered by doing so?

Q 3. How can synthetic experiences be used to assist a Deep Q-Network with learning?

Q 4. Does the usage of synthetic experiences in combination with a Deep Q-Network result
in faster convergence and consequently in an increased sample efficiency?

Q 5. Is the combination of model-free Reinforcement Learning methods that make use of
Experience Replay with synthetic experiences that have been generated by means of interpo-
lation classifiable as model-free or model-based Reinforcement Learning?

Two main concepts will be presented in this work that have been designed with
the above questions in mind. The first one is called Interpolated Experience Replay
(IER) and represents an advancement of the original ER mechanic in combination
with an interpolation component that generates synthetic experiences based on stored
samples that have been generated by interaction with the environment. As an initial
proof of concept and with Q 2 in mind, the first version of the IER only interpolates
rewards and uses observed follow-up states of discrete environments.

The next approach interpolates complete synthetic experiences and makes the
IER ready for continuous problems with continuous state spaces.

The last presented method changes the focus from the ER to the update mechan-
ics of a DQN. While for standard DQNs a loss is computed only for that actions that
have been chosen in corresponding experiences, it is actually possible to compute a
loss for the whole action space. This is not done in standard DQN because the re-
quired values of the rewards and the follow-up states are simply not available at the
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time of the update. Full-Update DQN (FU-DQN) generates these missing values by
means of interpolation based on stored experiences as sampling points and is able
to perform updates that cover the whole action space.

Q 1 to Q 4 are all part of IER and FU-DQN and will be answered accordingly. Q
5 is addressed separately with an in-depth analysis of methods that combine inter-
polation with ER and how they fit the definition of model-based respectively model-
free RL. As a result the new class Semi-Model-Based is introduced.

1.2 Relation to Organic Computing

Organic Computing [MT17; TSM17] describes the design of “life-like” technical sys-
tems with so-called self-* properties. An OC system therefore has the ability to act
based on its own decisions. A related topic is Autonomic Computing, which uses
the biological principle of the autonomic nervous system as paradigm. Each OC
system is equipped with sensors and actuators and is located above a system that
should be controlled. Such a supervised system is typically called System under
Observation and Control (SuOC) in the OC domain [MSU11]. Sensors deliver an
observation of the actual system state and actuators can be used to change this state.
The system can adapt autonomously to the received observation, and the reaction
has to be in a way that the system remains functional. To fulfill this requirement,
even in, yet unseen states and unanticipated conditions, an OC system is typically
based on (machine) learning.

Another key concept of OC systems is that they are robust to changing world
dynamics. Environments that do so are called non-stationary environments and real
world scenarios are typically such. OC systems are designed to be applied to real
world use cases and beyond the possibility of (constantly) changing conditions and
dynamics such environments come with several other problems. While measure-
ments can be trusted in a simulation, they suffer from at least some uncertainty in
the real world and this uncertainty may even increase over time when sensors are
not recalibrated. RL as a learning technique is able to learn online which describes
the process of learning constantly, even after deployment. While Supervised Learn-
ing is also capable of learning new things after the system was deployed, this is
typically realized by retraining at fixed intervals. As RL generates its experiences on
the fly it is much better prepared for lifelong learning. Consequently, RL is a good
choice for OC systems. The fact that measurements come with uncertainty in real
world scenarios results in less reliable experiences that are generated by interaction
with the environment. These real experiences are typically the most reliable ones in
a simulation that can be trusted. However, this changes of course when they suf-
fer from uncertainty. Synthetic experiences that are generated by interpolation can
be more reliable as they take all the noisy real samples as input. By doing so, such
synthetic experiences are capable of reducing the noise that is induced by the mea-
surement uncertainty. Following this argumentation, synthetic experiences that are
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generated by interpolation can be of great benefit for OC systems applied to the real
world. As discussed above, RL requires at least some exploration and this can be
costly in real world scenarios. An increased sample efficiency and corresponding
reduced exploration would be a good thing to have in OC systems operating out
there.

In summary, it can be stated that interpolation assisted deep RL shows an obvi-
ous relation to OC and OC systems. Furthermore, it can be said that it even is of
high relevance for this domain.

1.3 Structure

The structure of the following thesis is as follows: First, there will be an extensive
overview of relevant fundamental knowledge such as finite Markov Decision Pro-
cesses and the basics of Reinforcement Learning. This is covered in chapter 2, to-
gether with the presentation of model-free RL algorithms like Q-Learning and DQN
and basics about interpolation and nearest neighbour searches. In chapter 3, a sum-
mary of some related work is provided. Afterwards, the main part of the thesis
covers two different ways of how to make use of synthetic experiences that have
been generated by means of interpolation in combination with a DQN. The first
approach is the Interpolated Experience Replay that is split into a version that is
designed towards discrete and non-deterministic environments (chapter 4) and a
version that is ready for continuous environments (chapter 5). The second approach
is the Full-Update DQN that enables updates for the whole action space which is
presented in chapter 6. The class semi-model-based is introduced in chapter 7 to
classify approaches that combine model-free RL algorithms with synthetic experi-
ences and replay buffers. The thesis is concluded in chapter 8 with a final evaluation
of the identified research questions and and answer to hypothesis 1.

1.4 Integration of the Authors Published Works

The doctoral thesis incorporates previously published scientific contributions, where
the author of the thesis played a leading role. The subsequent paragraphs briefly
outline the integration of these publications into specific chapters of the thesis.

In chapter 4 an initial proof of concept implementation of Interpolated Experi-
ence Replay, limited to discrete and non-deterministic environments is introduced.
First ideas and a small evaluation study were presented at a doctoral symposium
[Pil19]. Subsequently, a conference contribution [PSH20] provided a more in-depth
evaluation using a more difficult version of the investigated problem, employing
small neural networks and linear regression. A journal paper [PSH21] concluded
the proof of concept evaluation, encompassing a comprehensive assessment of vari-
ous state-encodings and deep neural networks.
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In chapter 5, the focus is set on extending the Interpolated Experience Replay
for continuous state-spaces. It introduces a solution involving the interpolation of
the state-transition delta instead of raw values. The final version of Interpolated
Experience Replay is presented in this chapter. An evaluation of this technique,
along with other minor extensions, took place in the context of the MOUNTAINCAR

environment, and the findings were published as a conference paper [PSH22b].
While the aforementioned publications concentrate on the usage of interpolated

experiences in the replay buffer, an alternative approach leverages the architectural
design of Deep Q-Networks. This approach employs synthetic experiences to facil-
itate training updates that consider the entire action space. This algorithm is intro-
duced in chapter 6, referred to as Full Update-DQN, and its details were presented
in a conference paper [Pil+23].

A theoretical discussion on approaches combining synthetic experiences gener-
ated through interpolation with a replay buffer, and how they align with the defini-
tions of model-based and model-free Reinforcement Learning is provided in chap-
ter 7. It becomes apparent that these methods do not fit strictly into either category,
but rather occupy a space in between. As a result, the new class Semi-Model-Based
is introduced, and this classification was presented in a conference paper [PSH22a].
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Chapter 2

Fundamentals

In this section, some fundamental knowledge is provided. At first, Markov De-
cision Processes are introduced and put into relation to Reinforcement Learning.
Next, temporal-difference learning is discussed in detail alongside Q-Learning as
a prominent algorithm from that field. Afterwards the definitions of model-based
and model-free RL is provided and followed by the introduction of the deep Q-
network algorithm which is the main used algorithm of this thesis. In the end, a
short presentation of the term interpolation is provided as well as an overview of
some nearest-neighbor search algorithms.

2.1 Finite Markov Decision Processes

In this section, that is mainly based on Sutton and Bartos standard literature for
Reinforcement Learning [SB18], Finite Markov Decision Processes (MDPs) are in-
troduced. MDPs can be used to formalize sequential decision making problems
and most of the problems solved by Reinforcement Learning (RL) follow this struc-
ture. MDPs are mathematically idealized and can be used to make precise theoretical
statements.

The following sections will introduce key elements like returns, value functions,
and Bellman equations.

2.1.1 The Agent–Environment Interface

In general, MDPs can be seen as a straightforward framing of the problem of learn-
ing from interaction to achieve a goal. The entity that learns and is responsible for
the decision making process is called agent. It is situated in the so-called environment
which concludes everything outside of it. In a continually way, both elements inter-
act with each other. The agent selects actions and the environment responds to them
by presenting new situations. An important metric that is also returned from the
environment in reaction to a selected action is the so-called reward. The reward can
be described as a special numerical value that the agent seeks to maximize over time
through its choice of actions. The agent–environment interaction cycle, also known
as the classic RL cycle can be observed in Figure 2.1.
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Agent

Environment

state St reward Rt action At

St+1

Rt+1

FIGURE 2.1: The agent–environment interaction in a MDP.

In more detail, it can be said that agent and environment interact with each other
at discrete time steps t = 0, 1, 2, 3, . . . of a (finite) sequence. At each time step t, the
agent receives a representation of the environment’s state, St ∈ S , and selects an
action At ∈ A(s) as reaction. The action-space A(s) can be shortened to A when it
is the same for every state. One iteration after, in t = t + 1, as a consequence to the
action, the agent receives a numerical reward, Rt+1 ∈ R ⊂ R, and is relocated to
a new state, St+1. Repeatedly execution of this cycle generates a so-called trajectory
that is of the following form:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (2.1)

A finite MDP is defined by a finite number of elements assigned to the state-
, action- and reward-space (S , A and R). The random variables Rt and St have
well defined discrete probability distributions in this case, that only depend on the
preceding state and action. For particular values of these random variables s′ ∈ S
and r ∈ R a probability exists that they occur at time t, given particular values of
the preceding state and action:

p(s′, r|s, a) .
= Pr{St = s′, Rt = r|St−1 = s, At−1 = a}, (2.2)

for all s′, s ∈ S , r ∈ R and a ∈ A(s). The function p : S × R × S × A → [0, 1]
defines the dynamics of the MDP and is an ordinary deterministic function of four
arguments. It specifies a probability distribution for each choice of s and a that sums
to 1:

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, for all s ∈ S , a ∈ A(s). (2.3)

The dynamics of a Markov Decision Process are completely characterized by the
probabilities given by p. Therefore, the probability of each possible value for St and
Rt depends only on the immediate preceding state and action, St−1 and At−1. This
can be seen as a restriction on the state, and it must include all relevant information
of the past agent–environment interaction that make a difference for the future. If
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this is fulfilled, then the state is said to have the Markov Property.
With the four-argument dynamics function p as a basis it is possible to compute

any important information of the environment. Those are:

1. The state-transition-probabilities, denoted as a three-argument function
p : S × S ×A → [0, 1]:

p(s′|s, a) .
= Pr{St = s′|St−1 = s, At−1 = a} = ∑

r∈R
p(s′, r|s, a), (2.4)

2. the expected rewards for state-action pairs, denoted as a two-argument func-
tion r : S ×A → R:

r(s, a) .
= E

[
Rt|St−1 = s, At−1 = a

]
= ∑

r∈R
∑

s′∈S
p(s′, r|s, a), (2.5)

3. and the expected rewards for state-action-next-state triples, denoted as a three-
argument function r : S ×A× S → R:

r(s, a, s′) .
= E

[
Rt|St−1 = s, At−1 = a, St = s′

]
= ∑

r∈R
r

p(s′, r|s, a)
p(s′|s, a)

. (2.6)

2.1.2 Rewards, Returns and Episodes

As already briefly introduced above, the goal of an agent is formalized in terms of
the reward signal. The reward is a scalar value received in each time step Rt ∈ R.
Informally speaking, it can be stated that the agent’s goal is to maximize the total
amount of receiving rewards. This means that it needs to maximize cumulative
rewards in the long run. Sutton and Barto state this informal idea as the reward
hypothesis:

“That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of a
received scalar signal (called reward).” [SB18, p. 53]

In a more formal way, the agent seeks to maximize the expected return, where the
return, denoted as Gt, is defined as some specific function of the reward sequence,
and is described as the sum of the rewards in the simplest case:

Gt
.
= Rt+1 + Rt+2 + Rt+3 + . . . RT, (2.7)

where T is a final step. A natural notion of the final time step is required for this
approach, and that is the case when the agent–environment interaction breaks nat-
urally into subsequences called episodes. The final state of such an episode is called
terminal state which is followed by a reset of the environment to a starting state or to
a sample from a standard distribution of starting states. A new episode starts inde-
pendently of the outcome of the last episode. Even if the rewards of the final states
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may be different, all episodes can be considered to end in the same terminal state.
Tasks with episodes of this kind are called episodic tasks. The time of termination T,
is considered to be a random variable that normally varies from episode to episode.

However, many problems are of continuous nature, with the agent-environment
interaction not breaking naturally into identifiable episodes. These tasks are called
continuing tasks. The formulation of the return from above (i.e., Equation 2.7) is prob-
lematic for such tasks, as the final time step would be T = ∞, and the return it-
self (which is the optimization target) could easily be infinite. To counteract this,
a slightly more complex conceptually but much simpler mathematically definition
of the return is used instead. Therefore, the concept of discounting is introduced.
Instead of the sum of rewards, the sum of discounted rewards is maximized. In par-
ticular, the agent chooses At such, that the expected discounted return is maximized:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞

∑
k=0

γkRt+k+1, (2.8)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate.
The discount rate determines the present value of future rewards: a reward re-

ceived k time steps in the future is worth only γk−1 times what it would be worth
if it were received immediately. As long as {Rk} is bounded, the infinite sum of
Equation 2.8 has a finite value for γ < 1. Whereas, the agent is “myopic” in being
concerned only with maximizing immediate rewards for γ = 0. In this case, the
agent’s objective is to choose At in a way that maximizes only Rt+1. A myopic agent
could maximize Equation 2.8 by separately maximizing each immediate reward, but
in general, this approach can reduce access to future rewards so that the return is re-
duced. Overall, the agent becomes more farsighted as γ approaches 1, as the return
objective takes future rewards into account more strongly.

Returns at successive time steps are related to each other in a way that is impor-
tant for the theory and algorithms of RL:

Gt
.
= Rt+1 + γRt+1 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ
(

Rt+2 + γRt+3 + γ2Rt+4 + . . .
)

= Rt+1 + γGt+1

(2.9)

If the return for the final state is defined as GT = 0, then this works for all time steps
t < T, even if termination occurs at t + 1.

To obtain a notation that covers both, episodic as well as continuing tasks, the
following convention is introduced. Episode termination is considered as the enter-
ing of a special absorbing state that transitions only to itself and generates rewards of
zero. The following state transition diagram sketches the idea:



2.1. Finite Markov Decision Processes 13

S0 S1 S2
R1 = +1 R2 = +1 R3 = +1

R4 = 0
R5 = 0

...

The special absorbing state is represented by the solid square to the end of an episode.
A reward sequence of the following form is produced by the depicted trajectory:
+1,+1,+1, 0, 0, 0, . . . , and the sum remains the same for the first T rewards (here
T = 3) or the full infinite sequence. This holds true, even if discounting is intro-
duced. Thus, the return is defined in general according to Equation 2.8. Alterna-
tively it can be written

Gt
.
=

T

∑
k=t+1

γk−t−1Rk, (2.10)

including the possibility that T = ∞ or γ = 1 (but not both).

2.1.3 Policies and Value Functions

An important component of almost all RL algorithms are so called value functions –
functions of states (or of state-action pairs) that estimate how good it is for the agent to
be in a given state (or how good it is to perform a given action in a given state). The
quality thereby, is measured in terms of expected future rewards, or, to be precise,
in terms of expected return. As the rewards that can be expected from an agent in
the future directly depend on the chosen actions, value functions are defined with
respect to particular ways of acting, called policies.

A policy can formally be described as a mapping from states to probabilities of
selecting each possible action. Therefore, π(a|s) is the probability that At = a if
St = s, if the agent is following policy π at time t. RL methods specify how the
agent’s policy is changed as a result of its experience.

The value function of a state s under a policy π, denoted vπ(s), is the expected re-
turn when starting in s and following π thereafter. For MDPs, vπ is formally defined
by

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for alls ∈ S , (2.11)

where Eπ[·] denotes the expected value of a random variable given that the agent
follows policy π, and t is any time step. The function vπ is called the state-value-
function for policy π.

Another, more concrete, form of value function is known as the action-value func-
tion for policy π. This function is defined as qπ(s, a) and assigns a value to the execu-
tion of an action a in a state s under a policy π. The assigned value is defined as the
expected return starting from s, taking the action a, and thereafter following policy
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π.

qπ(s, a) .
= E[Gt|St = s, At = a] = Eπ

[
∞

∑
K=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
(2.12)

The value functions vπ and qπ can be estimated from experience. Therefore, an
agent traverses the state-space according to a policy π and simultaneously, for each
state, stores the encountered immediate rewards that follow that state and computes
the average of that rewards. By doing so, these averages will converge to the states
values vπ(s), as the number of times that the states are encountered approaches in-
finity. The same thing holds for the action-values qπ(s, a), if separate averages are
kept for each action taken in each state. Estimation methods of this kind are called
Monte Carlo methods because they involve averaging over many random samples of
actual returns. In fact, it may not be practical to keep separate averages for each state
individually, if there are very many states. Alternatively, the agent could maintain
vπ and qπ as parameterized functions (with fewer parameters than states) and adjust
the parameters to better match observed returns. This approach can be used to pro-
duce accurate estimates, although much depends on the nature of the parameterized
function approximator.

Similar to the return in Equation 2.9, a fundamental property of value functions
used in the context of RL is that they satisfy recursive relationships. For any policy
π and any state s, the following consistency condition holds between the value of s
and the value of its possible successor states:

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= ∑
a

π(a|s)∑
s′

∑
r

p(s′, r|s, a)
[

r + γEπ[Gt+1

∣∣∣∣St+1 = s′]
]

= ∑
a

π(s|a)∑
s′,r

p(s′, r|s, a)
[

r + γvπ(s′)
]

, for all s ∈ S ,

(2.13)

where it is implicit that the actions, a, are taken from the set A(s), that the next
states, s′, are taken from the set S , and that the rewards, r, are taken from the set
R. The final expression can be read easily as an expected value, as it is really a
sum over all values of the three variables, a, s′ and r. For each triple, its probability
π(a|s)p(s′, r|s, a) is computed, the quantity in brackets is weighted by that probabil-
ity, and the sum over all possibilities is calculated to get an expected value.

Equation 2.13 is known as the Bellman equation for vπ, and expresses a relation-
ship between the value of a state and the values of its successor states. A graphical
illustration of this relationship is depicted in Figure 2.2a. States are encoded in open
circles and state-action pairs in solid ones. In general, its about the concept of look-
ing ahead from a state to its possible successor states. Starting at the top, at the root
node which is the state s, the agent has the possibility to choose one of the actions
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from the set A(s)—three are shown in the diagram—based on the policy π. Each
action would trigger the environment to respond with one of several next states, s′

(two are shown in the figure), along with a reward, r, depending on its dynamics
given by the function p. The Bellman equation (Equation 2.13) averages over all the
possibilities, weighting each by its probability of occurring. It states that the value
of the start state must equal the (discounted) value of the expected next state, plus
the reward expected along the way.

The value function vπ is the unique solution to its Bellman equation, and this
equation forms the basis of a number of ways to compute, approximate, and learn
vπ. Diagrams like that in Figure 2.2 are called backup diagrams, and that is because
they diagram relationships that form the basis of the update or backup operations that
are at the heart of RL methods. Operations of such kind transfer value information
back to a state (or a state-action pair) from its successor states (or state-action pairs).

All of the above deduced behavior for vπ also holds for the action-value function
qπ, whereas the corresponding backup diagram is shown in Figure 2.2b.

s

π

a

p

s′

r

(A) Backup diagram for vπ

s, a

p

s′

π

a′

r

(B) Backup diagram for qπ

FIGURE 2.2: Backup diagrams for value functions

2.1.4 Optimal Policies and Optimal Value Functions

Roughly speaking, solving a RL problem can be described as finding a policy that
achieves a lot of reward over the long run. To be more precise, for finite MDPs, an
optimal policy can be defined as follows. First of all, value functions define a partial
ordering over policies. Therefore, a policy π is defined to be better than or equal to
a policy π′ if its expected return is greater than or equal to that of π′ for all states.
Formally, this can be expressed with π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for all
s ∈ S . There is always at least one policy that is better than or equal to all other
policies. This policy is called an optimal policy. Even if there might be more than
one of these policies, all of them are denoted by π∗. They share the same state-value
function, called the optimal state-value function, denoted v∗, and defined as

v∗(s)
.
= max

π
vπ(s), (2.14)
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for all s ∈ S . And similarly, they share the same optimal action-value function, denoted
q∗, and defined as

q∗(s, a) .
= max

π
qπ(s, a), (2.15)

for all s ∈ S and a ∈ A(s). As the optimal action-value function is defined to be
the expected return for taking action a in state s and thereafter following an optimal
policy, q∗ can be written in terms of v∗:

q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a]. (2.16)

As v∗ is the value function for a policy, the self-consistency condition given by the
Bellman equation for state values (Equation 2.13) still holds. However, because it is
the optimal value function, it’s consistency condition can be written in a special form
without reference to any specific policy. This Bellman equation for v∗ is known as the
Bellman optimality equation. Intuitively, the Bellman optimality equation expresses
the fact that the value of a state under an optimal policy must equal the expected
return for the best action from that state:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a ∑

s′,r
p(s′, r|s, a)[r + γv∗(s′)].

(2.17)

The equations in the last two lines are two forms of the Bellman optimality equation
for v∗. Similar, the Bellman optimality equation for q∗ is

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗(St+1, a′)

∣∣St = s, At = a
]

= ∑
s′,r

p(s′, r|s, a)
[
r + γ max

a′
q∗(s′, a′)

]
.

(2.18)

Figure 2.3 shows the spans of future states and actions considered in the Bellman
optimality equation for v∗ and q∗. Arcs have been added at the agent’s choice points
to indicate that the maximum over that choice is taken rather than the expected value
given by some policy. Thus, Figure 2.3a represents Equation 2.17 and Figure 2.3b
represents Equation 2.18.

For finite MDPs, the Bellman optimality equation for v∗ (Equation 2.17) has a
unique solution independent of the policy. Actually, it is a system of equations, one
for each state, so, for n states, there are n equations in n unknowns. In principle,
given the dynamics p of the environment, it is possible to solve this system of equa-
tions for v∗ using anyone of a variety of methods for solving systems of nonlinear
equations. This also holds for a system of equations for q∗.
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(A) Backup diagram for v∗

s, a

s′

a′

r

max

(B) Backup diagram for q∗

FIGURE 2.3: Backup diagrams for optimal value functions

In fact, it is relatively easy to determine an optimal policy if v∗ is known. For
each state s, there will be one or more actions at which the maximum is obtained in
the Bellman optimality equation. Therefore, any policy that assigns nonzero prob-
ability only to those actions is an optimal one. This can be imagined as a one-step
search. So, given v∗, the best actions after a one-step search will be the optimal ones.
In other words, any policy that is greedy with respect to v∗ is an optimal policy. The
term greedy is used in the context of computer science to describe any search or
decision procedure that selects alternatives based only on local or immediate con-
siderations, without considering the possibility that such a selection may prevent
future access to even better alternatives. In terms of policies, a policy is then greedy,
if it selects actions based only on their short-term consequences. However, if v∗ is
used to evaluate the short-term consequences of actions—specifically, the one-step
consequences—then a greedy policy is actually optimal in the long-term sense, be-
cause v∗ already takes the reward consequences of all possible future behavior into
account. This means that the optimal expected long-term return is turned into a
quantity that is locally and immediately available for each state. Hence, a one-step
ahead search yields the long-term optimal actions.

Choosing optimal actions based on q∗ is even easier. The agent can skip the one-
step ahead search, as for any state s, it can simply find any action that maximizes
q∗(s, a). In fact, the results of all one-step-ahead searches are cached in the action-
value function, which provides them as the optimal expected long-term return as a
value that is locally and immediately available for each state-action pair. Hence, at
the cost of representing a function of state-action pairs, instead of just of states, the
optimal action-value function allows optimal actions to be selected without having
to know anything about possible successor states and their values, that is, without
having to know anything about the environment’s dynamics.

Even if solving the Bellman optimality equation provides a route to finding an
optimal policy, and therefore a solution to the RL problem, it is rarely directly use-
ful. The reason for that is the nature of this solution which is akin to an exhaustive
search. Consequently, RL problems are typically solved by approximate solutions,
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and many RL methods can be clearly understood as approximately solving the Bell-
man optimality equation, using actual experienced transitions in place of knowledge
of the expected transitions. Moreover, the online nature of RL makes it possible to
approximate frequently encountered states, at the expense of less effort for infre-
quently encountered states, and this is one key property that distinguished RL from
other approaches to approximately solving MDPs.

2.2 Temporal-Difference Learning

An idea that can be described as central and novel to RL, is the so called temporal-
difference (TD) learning. It combines ideas from the domain of Monte Carlo and
dynamic programming (DP). Similar to Monte Carlo methods, TD approaches can
learn directly from raw experience without the need of a model of the environment’s
dynamics. Similar to DP, they bootstrap, which describes the process of updating
estimates based in part on other learned estimates, without waiting for a final out-
come. The relationship between TD, DP, and Monte Carlo methods is a recurring
theme in the theory of RL, and these ideas and methods blend into each other and
can be combined in may ways.

The following sections, that are mainly based on [SB18], will give a theoretical
overview of the policy evaluation or prediction problem—how to estimate vπ for a
given policy π—and the control problem—how to find an optimal policy.

2.2.1 Reminder: Dynamic Programming and Monte Carlo

As the terms dynamic programming and Monte Carlo are of some relevance for the
following sections, here is a small overview of the corresponding ideas.

Dynamic Programming

The term dynamic programming refers to a collection of algorithms that can be used
to compute optimal policies given a perfect model of the environment as a MDP.
In general, such methods are of limited utility in RL, but still important theoreti-
cally. As stated above, a key concept is the usage of a perfect model. With such
a model at hand (as discussed in subsection 2.1.4) it is possible to develop optimal
value functions and based on them an optimal policy. DP algorithms are obtained by
turning Bellman equations into assignments, that is, into update rules for improving
approximations of the desired value functions.

Monte Carlo Methods

In contrast to DP, Monte Carlo methods do not assume complete knowledge of the
environment. The term Monte Carlo is strongly correlated with the idea of sampling.
In the context of RL, this means that sequences of states, actions, and rewards from
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actual or simulated interaction with an environment are sampled. In other words,
Monte Carlo methods learn from experience. Learning from experience is striking
because it requires no prior knowledge of the environment’s dynamics, yet can still
attain optimal behavior. As mentioned above, the key concept that differs from DP is
that no perfect model is required anymore. In terms of methods, the main concepts
stay the same, and therefore, ideas from DP can be extended to the Monte Carlo case
with only experience at hand.

In a bit more detail, Monte Carlo methods are ways of solving the RL problem
based on averaging sample returns. Therefore, experience is divided into episodes
that end at some point in time. The actual learning (the update of value functions
and policies) happens when an episode has come to its end. Generally, the term
Monte Carlo is often used more broadly for any estimation method whose operation
involves a significant random component. In terms of RL, it describes methods that
are based on averaging complete returns.

2.2.2 TD Prediction

As mentioned before, TD learning combines ideas from DP and Monte Carlo, and
similar to the latter, TD methods use experience to solve prediction problems. Both,
TD, as well as Monte Carlo methods, update their estimate V of vπ for the nontermi-
nal state St occurring in some given experience following a policy π. As Monte Carlo
methods rely on sampled sequences of transitions, they have to wait until the return
that follows the visit is known, until they can use that return as a target for V(St). A
simple every-visit Monte Carlo method suitable for nonstationary environments is

V(St)← V(St) + α
[
Gt −V(St)

]
, (2.19)

where Gt is the actual return following time t, and α is a constant step-size param-
eter (also called learning rate). As mentioned above, Monte Carlo methods have to
wait until the episode is terminated, and that is because only then the value of Gt is
known. In contrast, TD methods only need to wait for exactly one time step. At time
t + 1 they immediately form a target and make a useful update using the observed
reward Rt+1 and the estimate V(St+1). The simplest TD method makes the update

V(St)← V(St) + α
[
Rt+1 + γV(St+1)−V(St)

]
(2.20)

immediately on transition to St+1 and receiving Rt+1. Thus, the target from the
Monte Carlo approach is Gt, whereas the target for the TD update is Rt+1 +γV(St+1).
This TD method is known as TD(0), and because its update is based in part on an
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existing estimate, its said that it is a bootstrapping method, like DP. Following Equa-
tion 2.9 vπ is defined as follows:

vπ(s)
.
= Eπ

[
Gt

∣∣St = s
]

= Eπ

[
Rt+1 + γGt+1

∣∣St = s
]

= Eπ

[
Rt+1 + γvπ(St+1

∣∣St = s)
]
.

(2.21)

Roughly speaking, Monte Carlo methods use an estimate of the first line in Equa-
tion 2.21 as a target, whereas DP methods use an estimate of the last line in Equa-
tion 2.21 as a target. The target of the Monte Carlo methods is considered an estimate
because the expected value is not known, and a sample return is used in place of the
expected return. The target of the DP is considered an estimate because vπ(St+1) is
not known and the current estimate , V(St+1), is used instead. Consequently, the TD
target is an estimate because of both reasons: it samples the expected values and it
uses the current estimate of V instead of the true vπ. It can be seen, that TD methods
combine the sampling of Monte Carlo with the bootstrapping of DP.

Figure 2.4 illustrates the backup diagram for tabular TD(0). Based on one sample
transition from the state node at the top to the immediate following state, the value
estimate of that state is updated. TD (and Monte Carlo) updates are referred to as
sample updates, because they update the value of the original state (or state-action
pair) after looking ahead to a sample successor state (or state-action pair), and using
the value of the successor and the reward along the way to compute a backed-up
value. Sample updates differ from the expected updates of DP methods in that they
are based on a single sample successor rather than on a complete distribution of all
possible successors.

FIGURE 2.4: Backup diagram for TD(0)

The quantity in brackets in Equation 2.20 is some sort of error that measures the
difference between the estimate of the state-value of St, in form of Rt+1 + γV(St+1)

and the actual estimate of this value V(St). This quantity is known as TD error, and
is an important concept in RL:

δt
.
= Rt+1 + γV(St+1)−V(St). (2.22)

The TD error at each time t is the error in the estimate made at that time. Moreover,



2.2. Temporal-Difference Learning 21

because it depends on the next state and the next reward, the TD error is not actually
available until one time step later. Thus, δt is the error in V(St), available at t + 1. If
the array V does not change during the episode (which is the case for Monte Carlo
methods), then the Monte Carlo error can be written as a sum of TD errors:

Gt −V(St) = Rt+1 + γGt+1 −V(St) + γV(St+1)− γV(St+1)

= δt + γ
(
Gt+1 −V(St+1)

)
= δt + γδt+1 + γ2(Gt+2 −V(St+2)

)
= δt + γδt+1 + γ2δt+2 + · · ·+ γT−t−1δT−1 + γT−t(GT −V(ST)

)
= δt + γδt+1 + γ2δt+2 + · · ·+ γT−t−1δT−1 + γT−t(0− 0

)
=

T−1

∑
k=t

γk−tδk.

(2.23)

In TD(0), V is updated during the episode and the above identity therefore is not
exact. However, if the step size is small then it may still hold approximately.

2.2.3 Exploration vs. Exploitation

When it comes to learning from experience instead of the utilization of a perfect
model of the environment’s dynamics, then a crucial question to solve is how this
experience is generated. As mentioned in subsection 2.1.4, an advantage of (online)
RL is the focus on frequently encountered states, at the expense of less effort for in-
frequently encountered states. In the best case, it should be ensured that all relevant
or important states are under the more frequently encountered ones.

If an estimate of the action-values is maintained, then at any time step there is at
least one action whose estimated value is greatest, and such actions are called greedy
actions. By selecting one of these actions, it is said that the current knowledge of the
values of the actions is exploited. In contrast, the selection of one of the nongreedy
actions is called exploring, and that is because this enables the improvement of the
estimation of a nongreedy action-value. On the one hand, exploitation is the right
thing to do to maximize the expected reward based on actual knowledge, but on
the other hand, exploration may produce the greater total reward in the long run.
In general, reward is lower in the short run, during exploration, but higher in the
long run because after better actions have been discovered, they can be exploited.
In multi-step problems, this mechanism is also crucial to overcome local optima.
Because it is not possible to do both, explore and exploit, at the same time, this is
generally known as the explore-exploit-dilemma.

The question of how to balance the two parts, and consequently find an answer
to the explore-exploit-dilemma is a distinctive challenge in RL and dozens of ap-
proaches exist that try to answer this question (e.g. random exploration, Boltzmann
exploration [Sut90] and noisy nets [For+17] to name a few). The present work relies
on a very simple approach called ϵ-greedy. This exploration strategy introduces the
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parameter ϵ which is a probability, and in every step the agent explores with that
probability or exploits with the probability 1− ϵ. The parameter ϵ generally starts
with a high value 0 ≤ ϵ ≤ 1 and decreases over time to either zero or a very small
amount that ensures at least small exploration during the whole training.

2.2.4 Q-Learning: Off-policy TD Control

TD(0) offers a solution for the problem of how to estimate vπ for a given policy, but
does not tackle the control problem (find an optimal policy). However, TD predic-
tion methods provide a solid basis that is necessary for TD control methods. As moti-
vated in subsection 2.2.3, exploration and exploitation need to be balanced. Further-
more, TD control approaches can be distinguished into two main classes: on-policy
and off-policy. An example for off-policy TD control is SARSA [SB18].

An important breakthrough in RL was the development of an off-policy TD con-
trol algorithm which is known as Q-Learning [WD92]. This algorithm makes use of
the concepts introduced above and is defined by

Q(St, At)← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
, (2.24)

with α being a constant step-size parameter α ∈ (0, 1] that is also widely known as
learning rate. The special feature of this algorithm is that the learned action-value
function Q, directly approximates q∗, which is the optimal action-value function, in-
dependent of the policy being followed. This characteristic dramatically simplifies
the analysis of the algorithm and enabled early convergence proofs. The policy is
still important, as it determines the distribution of the visited state-action pairs that
are updated. However, the one thing that is required for correct convergence is that
all pairs continue to be updated, and this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation condi-
tions on the sequence of step-use parameters, Q has been shown to converge with a
probability 1 to q∗.

Figure 2.5 shows the backup diagram for the Q-Learning algorithm. The update
for the state-action pair at the top is computed from the maximum of all actions that
are possible in the corresponding next state.

FIGURE 2.5: Backup diagram for Q-Learning
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In its simplest form, the action-value function of the Q-learning algorithm is ap-
proximated by a table which is then called the Q-table. During training, entries in
that table, that represent action-values of concrete state-action pairs, are updated one
per time step.

2.2.5 Double Q-Learning

An important concept of the Q-Learning algorithm is that it uses maximization in
the construction of its target policy. This target policy is the greedy policy given the
current action values, which is defined with a max operator. A maximum over es-
timated action-values is used implicitly as an estimate of the maximal action-value,
and this procedure can lead to significant overestimation (positive bias). In a sim-
ple example a single state s has many actions a whose true values q(s, a) are all zero.
The estimated values Q(s, a) however are uncertain and thus distributed some above
and some below zero. The maximum of the true values is zero, but the maximum of
the estimates is positive, a positive bias, which is called maximization bias.

The problem can be viewed in the way that it is due to using the same samples
both to determine the maximizing action and to estimate its value. A possible so-
lution is to divide the samples (transitions) in two sets and use them to learn two
individual estimates. The two estimates are called Q1(s, a) and Q2(s, a) and are both
an estimate of the true value q(s, a). One estimate, say Q1, can be used to deter-
mine the maximizing action A∗ = arg maxa Q1(s, a), and the other, Q2, to provide
the estimate of its value, Q2(s, A∗) = Q2(arg maxa Q1(s, a)). It is possible to receive
an unbiased estimate that way, so that E

[
Q2(s, A∗)

]
= q(s, A∗). If this process is

alternating both estimates, then two unbiased estimates can be obtained. This idea
is called double learning and the double Q-Learning algorithm is defined such that in
every step there is a 50 % possibility of the following update:

Q1(St, At)← Q1(St, At) + α

[
Rt+1 + γQ2

(
St+1, arg max

a
Q1(St, a)

)
−Q1(St, At)

]
,

(2.25)
and the same probability for the estimates being swapped.

2.2.6 Experience Replay

TD control methods, especially Q-Learning, make use of experience, and the way
they generate this experience is, due to the explore-exploit-dilemma, a trial-and-
error approach. As mentioned in subsection 2.2.4, transitions (in the rest of the work
referred to as experiences) are generated by traversing the problem space and then
used once for a training update after which they are thrown away. This procedure
is wasteful, since some experiences may be rare and some (such as those involv-
ing damages) costly to obtain. A biological inspired [MMO95; ONe+10] technique
that stores and reuses experiences to counteract this issue is the so called Experience
Replay (ER) [Lin92; Lin93].
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An experience et of the transition at time step t is defined as the following quin-
tuple:

et = (St, At, Rt+1, St+1, d), (2.26)

where St denotes the starting state, At the chosen action, Rt+1 the reward that was re-
ceived in the next state St+1 and d denoting if St+1 was a terminal state. In contrast to
using experiences once and then throw them away, generated experiences are stored
in the so called replay buffer, that is denoted as the data set Dt = {e1, . . . , et}. Those
stored experiences are repeatedly presented to the learning algorithm, mimicking
over and over experiencing the same transitions. This results in a speedup of the
credit/blame propagation and consequently in a faster convergence. One restriction
of the ER technique is that the dynamics of the environment must stay the same (or
at least not change rapidly). That is because past experiences may become irrelevant
or even harmful otherwise. Overall, only recent experiences need to be stored and
replayed, and as a matter of fact, it is not only unnecessary but also harmful to replay
an experience as many times as possible, because the learner would overfit that ex-
perience, which usually harms generalization. Moreover, in a non-episodic/infinite
environment (and also in an episodic one after enough time has gone by) the storage
represents a limitation. To prevent overfitting and running into storage limitations,
the ER buffer typically is realized in a first in, first out (FIFO) manner.

Stored experiences are represented for training in a later point in time, and then,
typically, the policy has evolved and differs from the policy that generated that tran-
sition which is stored in the experience. Because of this effect, using ER always
makes the corresponding algorithm off-policy.

Stored experiences can be utilized for training either online or in a specific train-
ing phase. The technique is easy to implement, and the cost of using it is mainly
determined by the required storage space.

2.3 Types of Reinforcement Learning

RL methods can generally be distinguished into model-based and model-free methods.
While model-based approaches make use of a model of the environment’s dynamics
in some form and rely on planning as their primary component, model-free methods
primary rely on learning.

Parts of the following text were published in a similar but extensive form in
[PSH22a], and another important reference is [SB18].

2.3.1 The Model

To understand the concepts of model-free and model-based RL, it is necessary to
define the term model. The model in RL is defined as a model of the environment (or,
to be precise, of the dynamics of the environment) and therefore should be able to



2.3. Types of Reinforcement Learning 25

fulfil the tasks of the environment. These are the calculation of a follow-up state and
a reward based on a given state-action pair.

Based on the formalization in section 2.1, the model can be described as the
combination of the state-transition function (Equation 2.4) and the reward function
(Equation 2.6).

Generally speaking, the model is anything that an agent can use to predict how
the environment will respond to its actions. A stochastic model (several possible
states and actions, coupled with a probability of occurring) can either produce a
description of all possibilities and their probabilities (so-called distribution model)
or return just one of them, sampled by its probability (so-called sample model).

2.3.2 Model-Free Reinforcement Learning

The term model-free RL is generally describing all RL techniques that learn with
the absent of a model of the environment. Learning in this context describes the
estimation of a value function like introduced in section 2.2. Instead of computing
the value functions based on the actual distribution p(s′, r|s, a) (cf. Equation 2.2), in
model-free RL this distribution is approximated by traversing the state space.

To determine how the agent should behave in a given state, it can simply choose
that action that maximizes the value. A basic RL approach that does so is Q-Learning
[WD92]. But there are of course more sophisticated approaches like DQN [Mni+13;
Mni+15] and its extensions [vGS16; Wan+16; Hes+17]. The category of these meth-
ods, that learn a value function and derive a policy from it is called value-based. An-
other category that takes a different route is called policy-based, and methods from
this field directly parametrize the policy and try to optimize it according to the ex-
pected return. An example is the REINFORCE algorithm [Sut+99]. A third category
of RL methods aims to bring the former mentioned approaches together and such
algorithms are known as actor-critic methods. These approaches parametrize both, a
value function and a policy, and try to optimize them together. Examples of actor-
critic algorithms are A3C [Mni+16], DDPG [Lil+16] and PPO [Sch+17].

2.3.3 Model-Based Reinforcement Learning

Model-based RL was defined by Moerland et al. [Moe+20] as:

Definition 2.3.1. Model-based reinforcement learning is a class of MDP algorithms
that (1) use a model, and (2) store a global solution.

Thereby, a global solution is either a value function or a policy. Furthermore,
they found two subcategories:

1. Model-based RL with a learned model. Here, both, a model and a global solution
is learned. An example is Dyna [Sut91].

2. Model-based RL with a known model. A model of the environment is known up
front and used to learn the global solution. An example is AlphaZero [Sil+18].
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The idea behind having a model is to use it for planning. If a model is at hand,
it can be used to simulate experience, this describes the process of feeding an in-
put (state-action-pair) to the model and receiving an output (reward and follow-up
state). Given a starting state and a policy, it is possible to receive a whole episode by
a sample model and all possible episodes from a distribution model. In both cases
the environment is simulated with the model and creates simulated experiences. The
term planning is used for every computational process that produces or improves a
policy for interacting with the modeled environment, given a model as input:

model policy
planning

Two distinct planning approaches can be determined: (1) State-space planning
searches the state space for an optimal policy or path to the goal and (2) plan-space
planning searches the space of plans. While in (1) actions are used to traverse the state
space and value functions are computed over states, in (2) plans are transformed in
other plans and value functions, if present, are defined over the space of plans.

As state-space planning is more common, the present work will focus on these
approaches from now on. State-space planning methods share a common structure
that is based on two basic ideas: (1) they involve computing value functions as a key
intermediate step towards improving the policy or learn the policy directly, and (2)
they compute value functions/policies by updates or backup operations applied to
simulated experiences:

model
simulated
experience

value policy
backups

backups

Referring to the learning process mentioned in subsection 2.3.2 it can be seen that
both, learning and planning focus on the estimation of value functions or policies
by backing-up update operations. They do in fact differ in the utilized experiences.
Planning uses simulated experiences that are generated by a model whereas learning
methods make use of real experiences generated by the environment. This means
nevertheless, that they share a common structure and algorithms can be transferred
between them.

According to Moerland et al. [Moe+20] model-based methods can be distin-
guished into the following categories addressing the three main considerations: what
type of model is learnt, what type of estimation method is used and in what region should
the model be valid?

Type of model

Moerland et al. set their focus here on dynamics models (learning the state-transition
function). As mentioned above, the reward function is also part of the model, but as
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it is usually easier to learn, it can be ignored for the classification into the following
three categories:

• Forward model: (St, At) → St+1. Predicting the follow-up state given a current
state and chosen action. Most of the (modern) model-based RL techniques
follows this path, and an example is Deep Dyna-Q [Pen+18].

• Backward/reverse model: St+1 → (St, At). Predicting the start state and chosen
action to end up in a given state. Prioritized sweeping [MA93] uses this ap-
proach.

• Inverse model: (St, St+1) → At. Predicting the action that needs to be executed
to traverse from a given state into another. This technique is for example used
in RRT planning [LaV+98].

Estimation method

The method of approximating a model is often a form of supervised learning and
can be distinguished into the following categories:

• Parametric: this is the most common approach for model approximation. There
are two main subgroups:

– Exact: This concludes tabular methods, containing a separate entry for
every possible transition.

– Approximate: Function approximation can reduce the required number of
parameters and enable generalization. Nowadays, most of the time neu-
ral networks are used for this purpose [GBC16].

• Non-parametric: Methods from this category directly store and use data to rep-
resent the model.

– Exact: Replay buffers [Lin93] could be considered non-parametric ver-
sions of tabular transition models, but even if the line between model-
based RL and replay buffer methods is very thin, this is a discussable
statement [VS15] and for the course of this work they are not considered
as model-based RL.

– Approximate: Non-parametric methods (e.g. Gaussian processes [DR11])
could be used to generalize information to similar states.

Region in which the Model is Valid

The following categories specify the area of the state space where the model is valid:

• Global: This is the main approach for most of the methods and means the ap-
proximation of the dynamics of the entire state space.
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• Local: In contrast to the global approach, local methods only approximate local
dynamics and discard the local model afterwards. This approach is often used
in the control community [LA14].

2.4 Deep Q-Network

Even if the original Q-Learning method has been an important breakthrough in RL
at its time, it is limited to rather simple problems. An advancement of the original al-
gorithm that replaces the tabular parameterization of the action-value function with
a deep neural network (DNN) is known as deep Q-network (DQN).

The following sections are mainly based on [Mni+13; Mni+15] and provide a
detailed overview of the DQN algorithm, its functionalities and some extensions.

2.4.1 Limitations of Original Q-Learning

The original Q-Learning algorithm introduced in subsection 2.2.4 parameterizes the
action-value function estimate Q(s, a) in form of a table that holds entries for the
action-values of all state-action pairs for s ∈ S and a ∈ A. This representation
method faces some limitations when confronted with more complex problems that
have large state- and/or action-spaces. The most obvious one is the need of storage
that grows (in the worst case) exponentially with increasing state- and/or action-
spaces. At some point, the table (or tables, when double learning is used) is just
too big to be stored. As touched in subsection 2.2.4, during training, one entry is
updated per step, but all entries (or at least the relevant ones) need to be updated
a lot of times to ensure the approximates of the corresponding action-values to be
good enough, and consequently for the algorithm to converge. Larger tables require
more training, and at some point it just gets inefficient. That is because the tabular
representation in combination with this update mechanism does not generalize well.
Besides the limitation of the size of the state- and action-space, the tabular represen-
tation is also not able to handle continuous state- and/or action-spaces. Such states
and/or actions need to be discretised, and by doing so information and precision
get lost.

2.4.2 Deep Q-Network Algorithm

Similar to original Q-Learning being an important breakthrough in RL for provid-
ing a TD method that enabled convergence proofs, DQN marks an important break-
through in RL as well, this time for combining RL with deep neural networks. In
general, an artificial neural network [MRG+87] is considered a DNN when it has
more than two hidden layers.

As DQN is an advancement of Q-Learning, it shares the same functionality in
terms of approximating the optimal action-value function q∗(s, a) (cf. Equation 2.16)
with an estimate Q(s, a). This estimate is chosen as function approximator with
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parameters θ such that Q(s, a; θ) ≈ q∗(s, a). However, a DNN represents a nonlinear
function approximator, and Tsitsiklis et al. [TR97] showed that such approximators,
when used to represent the action-value function, can lead to unstable learning or
even divergence. This is because of the following three reasons:

1. There are a strong correlations present in the sequence of observations.

2. Small updates to Q may significantly change the policy and therefore change
the data distribution.

3. The action-values (Q) and the target values Rt+1 +γ maxa′ Q(St+1, a′) are strongly
correlated as well.

In a bit more detail, the first two points refer to the fact that current parameters
determine the next data sample that these parameters are trained on. In a simple
example that means, if the maximizing action is “move to the left”, then the train-
ing samples will be dominated by samples from the left-hand side. It can be seen
that consecutive experiences are strongly correlated and even conditioned by each
other. If, at some point, the maximizing action switches to “move to the right”, then
the training distribution will switch as well, which might have been triggered by
a small increase of the action-value of that action. This behaviour can induce un-
wanted feedback loops and consequently, parameters could get stuck in a poor local
minimum, or even diverge catastrophically. Moreover, if a DNN is presented train-
ing data that is focused on a specific area of the problem space (which is the case in
the simple example above), then it will learn the dynamics of this region but is likely
to forget them when the data distribution will shift to a new region. This effect is
widely known as catastrophic forgetting [Kir+17].

The last of the three points is reasoned in the TD error (Equation 2.20) that is
used for the loss function of the DNN and that takes advantage of the recursive
relationship of the Bellman equation. For supervised learning [Mit97], the targets of
the loss function are fixed before the learning begins, which is a condition that can
not be satisfied in RL. As already mentioned above, the target values for the DQN
loss are defined by

yt = Rt+1 + γ max
a′

Q(St+1, a), (2.27)

and, as can be noticed, an estimate of the action-value function—which is parame-
terized by the DNN—is part of the target. An update that increases Q(St, At) often
also increases Q(St+1, a) for all a hence also increases the target yt, and this effect
possibly leads to oscillations or divergence of the policy.

Two concrete techniques have been proposed to counteract the problems from
above. The first one is Experience Replay (cf. subsection 2.2.6), but with some ex-
tended behaviour. Instead of replaying one experience at a time, learning updates
are applied to the samples of a whole minibatch of experiences (s, a, r, s′) ∼ U (D)

drawn uniformly at random from the buffer. A minibatch B is defined as a multiset
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of experiences:
B = {e} = {(s, a, r, s′)} (2.28)

This approach comes with several advantages. The randomization of the presented
training samples breaks the correlations between them and reduces the variance of
the updates. Because each experience has the chance to be used in many weight
updates the sample efficiency is increased. And at last, ER averages the behaviour
distribution over many of its previous states and thereby smooths out learning and
avoids oscillations or divergence in the parameters. Moreover, as mentioned in
subsection 2.2.6, when using ER, the algorithm will become off-policy and as Q-
Learning already is an off-policy method the two fit well together.

To break the correlations present in the TD error and improve stability, a second
network that is responsible for the generation of the target values yt was introduced.
This network, which is called target network Q̂, is a clone of the network Q. In the
original version Q̂ is updated (by cloning the parameters θ from Q) every C train-
ing steps and used in this form to generate yt for the next C updates to Q. The
parameters of Q̂ are denoted θ−, and following this notation Equation 2.27 can be
concretized to

yDQN
t ≡ Rt+1 + γ max

a′
Q̂(St+1, a; θ−t ). (2.29)

Generating the targets using an older set of parameters adds a delay between the
time an update to Q is made and the time the update affects the targets, making
divergence or oscillations much more unlikely. When the target network is updated
in fixed intervals by completely cloning Q, then this is called hard target update. A
more sophisticated approach updates the weights in every update to Q, but instead
of directly copying the parameters, they are smoothly adjusted: θ− ← τθ + (1 −
τ)θ− with τ ≪ 1. Generating θ− in this way is called soft target update, and makes
the target Q-values change slowly, greatly improving the stability of learning.

The training of a DQN is performed by adjusting the parameters θi at iteration
i to reduce the mean-squared error of the TD error, where the optimal target val-
ues r + γ maxa′ Q∗(s′, a′) are substituted with approximate target values yDQN =

r + γ maxa′ Q̂(s′, a′; θ−) using parameters θ− from Q̂. Therefore, a sequence of loss
functions Li(θi) that changes at each iteration i can be defined as

Li(θi) = Es,a,r

[(
Es′ [yDQN|s, a]−Q(s, a; θi)

)2
]

= Es,a,r,s′

[(
yDQN −Q(s, a; θi)

)2
]
+ Es,a,r

[
Vs′

[
yDQN]],

(2.30)

with Es,a,r

[
Vs′

[
y
]]

denoting the variance of the targets. As this variance is indepen-
dent of the currently optimized parameters θi, it may be ignored. The usage of fixed
parameters θ− from previous iterations for the optimization of the ith loss function
Li(θi) results in a sequence of well defined optimization problems. Differentiation
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of the loss function with respect to the weights results in the following gradient:

∇θi = Es,a,r,s′

[(
r + γ max

a′
Q̂(s′, a′; θ−i )−Q(s, a; θi)

)
∇θi Q(s, a; θi)

]
. (2.31)

Similar to original Q-Learning, the behaviour policy is derived from the action-
values by greedily choosing that action that maximizes the expected action-value
for the current state. Thus, for the action selection, the action-values for all possible
actions are required. Motivated by this fact, a DQN follows the architecture depicted
in Figure 2.6. The input layer takes a current state as input and is followed by a block
of hidden layers defined by the type of DNN and tuned as hyperpatameter for the
corresponding problem. The output layer has one node for every action inA, which
represents the action-value for the current state and one concrete action. Following
this architecture, only one forward pass is required to compute all action-values for
a given state and, based on them, choose an action.

St input hidden layers ...

output 2

output 1

output |A| − 1

output |A|

Q(St, a1)

Q(St, a2)

Q(St, a|A|−1)

Q(St, a|A|)

FIGURE 2.6: Architecture of a deep Q-network

2.4.3 Extensions of the Deep Q-Network

The DQN concept as a whole has been modified and extended may times, this sec-
tion introduces two prominent extensions.

Double Deep Q-Network

The double Q-Learning algorithm (cf. subsection 2.2.5) makes use of a second esti-
mate Q2 and decomposes the max operation in the target into action selection and
action evaluation. As van Hasselt et al. pointed out in [vGS16], a DQN already has
two estimates of the action-value function and therefore, the target network pro-
vides a natural candidate for the second estimate. A major difference to the original
approach is of course the fact that the target network is somewhat coupled to the
main network. But as a trade-off for not being forced to introduce and train another
network Q̂ seems fine to use. In consequence, the update process of the target net-
work remains the same (hard or soft target update), but, according to original double
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learning, the target is replaced by:

yDDQN
t ≡ Rt+1 + γQ

(
St+1, arg max

a
Q̂(St+1, a; θ−t ); θt

)
. (2.32)

This approach is called double DQN, and, in comparison with the original approach,
Q2 is replaced with Q̂ to evaluate the current greedy policy. To get most of the benefit
from double Q-Learning, while keeping the remaining parts of the DQN algorithm
intact, the presented version of double DQN represents the minimal possible change.

Van Hasselt et al. were able to show that (similar to double Q-Learning) overes-
timation can be reduced, and, additionally, performance can be increased in some
cases.

Dueling Deep Q-Network

Wang et al. [Wan+16] proposed an architecture for neural networks that is specif-
ically designed for model-free RL. This architecture in combination with DQN is
known as dueling DQN.

To express the relationship of the state-value and the action-value beyond Equa-
tion 2.17, a new quantity, the so called advantage, is defined as:

advπ(s, a) = qπ(s, a)− vπ(s), (2.33)

so that ∑a advπ(s, a) = 0. As discussed in section 2.1, the state-value gives an intu-
ition of how good it is to be in a particular state s, and the action-value measures the
value of choosing a concrete action a in this state. As the state-value is subtracted
from the action-value, the advantage computes a relative measure of the importance
of each action. This differentiation of the action-value into two components can be
exploited, as for many states, it is of no interest to estimate the value of each ac-
tion choice. Moreover, in some states, it is of paramount importance to know which
action to choose, but in many other states this choice has no impact at all. The es-
timation of the state-value, however, is of great importance for every state in boot-
strapping based methods. An architecture that is able to implement the insights
from above in a beneficial way is shown in Figure 2.7. This, so called dueling architec-
ture, inserts a new layer behind the hidden layer block from the original DQN. The
new layer splits into a node for each advantage (colored in blue) and one node for
the state-value (colored in red). The advantage nodes are combined with the value
node to compute the action-value in the end.

The combination of the advantages with the value to produce the action-values,
however, is a crucial part in the architecture and there are some things that need to
be considered here. As mentioned above, ∑a advπ(s, a) = 0, and, following Equa-
tion 2.17, for a deterministic policy, a∗ = arg maxa′ qπ(s, a′), it holds that qπ(s, a∗) =
vπ(s) and hence advπ(s, a∗) = 0.
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FIGURE 2.7: Architecture of a dueling deep Q-network. Nodes that
represent advantages are colored in blue and the node that represents

the state-value is colored in red.

The naive approach would be simply adding the state-value to an advantage
to compute the corresponding action-value. Thus, the aggregation in the network
would look like this:

Q(s, a; θ) = V(s; θ) + Adv(s, a, ; θ), (2.34)

with the scalar, V(s; θ), been replicated |A| times to express the equation in matrix
form and been appliable to all (s, a). However, it is not possible to recover V and
Adv uniquely from a given Q. Equation 2.34 is therefore unidentifiable in this sense.
To overcome this issue, the estimate for the advantage function can be forced to
have zero advantage at the chosen action. The corresponding aggregation of the
advantages with the state-value is then defined as:

Q(s, a, ; θ) = V(s; θ) +
(

Adv(s, a; θ)−max
a′∈A

Adv(s, a′, ; θ)
)

. (2.35)

Equation 2.35 fulfills the conditions from above. Alternatively, the max operator
could be replaced with an average:

Q(s, a, ; θ) = V(s; θ) +
(

Adv(s, a; θ)− 1
|A|Adv(s, a, ; θ)

)
. (2.36)

Even if the second approach is not able to map the original semantics of vπ(s) and
advπ(s, a) because they are off-target by a constant, it increases stability. That is
because the advantages only need to change as fast as the mean, instead of having
to compensate any change to the optimal action’s advantage.
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2.5 Interpolation

An overview of interpolation and approximation and the relationship of both is pre-
sented in the following section. One concrete interpolation technique is introduced
afterwards.

Parts of the following text have already been published in a similar form in
[PSH22b; PSH22a].

2.5.1 Interpolation vs. Approximation

The task of finding a function g(x) that fits either a real valued function f (x) of the
real valued variable x or a given table of data (xi, yi) can be solved by interpolation
or approximation. [SK11]

Approximation is thereby defined as finding a function g(x) that minimizes a
norm of the difference of the values for the searched function g(xi) and the given
table ||g − y|| with vectors g = {g(xi)} and y = {yi}. Or rather, in case of f (x),
minimizes a norm of the difference of the values for the searched and the given
function ||g(x)− f (x)||. Interpolation on the other hand tries to find a function g(x)
that fits the given function or data in specific points, such that holds: g(xi) = f (xi)

or g(xi) = yi. [SK11]
Both approaches are in fact quite similar and only differ in the estimated values

for the given points. Given data points are also called sampling points Pi, and for
them applies: Pi = (xi, yi) = (xi, f (xi)). Nevertheless, there are some benefits that
determine the cases when to use which method. Given a table of data (xi, yi), i =

0, 1, . . . , n there are two main differences:

1. If the amount of given data is (very) high—n is (very) high—interpolation
turns out to be not practical. This effect even grows with the amount of noise in
the data. The given data should be approximated with a smooth line through
the “datacloud” like in Figure 2.8 on the left.

2. If there is only a small amount of data available and it is reasonable or even
necessary that g(x) fits the values yi at xi or f (xi) perfectly, then interpolation
turns out to be better than approximation. This can be observed in Figure 2.8
on the right. [SK11]

2.5.2 Inverse Distance Weighting

A concrete way of interpolation that is still rather simple and utilizes a weighted
average is known as Inverse Distance Weighting (IDW) [She68]. IDW strives to create
an interpolation using a weighted average, where sampling points that are located in
closer distance to the query point have bigger impact than sampling points located
farther away. IDW is defined as follows:
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FIGURE 2.8: Intuition of approximation vs. interpolation

g(x) =


∑n

i=1 wi(x)yi
∑n

i=1 wi(x) , if d(x, xi) ̸= 0 for all i,

Pi if d(x, xi) = 0 for some i,
(2.37)

with

wi(x) =
1

d(x, xi)pidw
. (2.38)

The interpolation function tries to find an interpolated value y at a given point x
based on the value of sampling points yi = g(xi) for i = 1, 2, . . . , n. To increase the
impact of closer values a weight wi is used that includes a distance metric d together
with a variable pidw called the power parameter controlling the impact of yi.

2.6 Nearest Neighbor Search

In order to collect relevant sampling points for interpolation a form of nearest neigh-
bor (NN) search is required. The approaches presented in this work use the replay
buffer as pool of possible sampling points and given a query point xq = (Sq, Aq) all
points Pi that lie within a given distance are to be returned. This section gives an
overview of possible solutions to that task while taking required computation time
into account.

A naive approach would take xq and iterate through the whole buffer while com-
puting a distance metric for each entry. Such an exhaustive search has a runtime
complexity of O(n) and, therefore, is not practical for large sized buffers.

2.6.1 K-D Tree

One technique that offers reduced computational overhead is the so called k-d tree
[FBF77]. This approach is a generalization of the simple binary tree in which each
node represents a k-dimensional point. Every non-leaf splits the space into two parts
by generating a splitting hyperplane. The two resulting spaces are known as half-
spaces. Points to the one side of the hyperplane are represented by one subtree and
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nodes on the other side by the other subtree. Every node is associated with one of
the k dimensions and the hyperplane is created perpendicular to that dimension’s
axis.

A search in the tree aims for the point that has the smallest distance to a given
query point xq. Thereby, the properties of the tree can be used to quickly eliminate
large portions of the search space. Starting at the root node, the algorithm traverses
the tree downwards recursively, choosing a subtree based on the comparison of the
node’s position and the value of xq in the split dimension. Upon reaching a leaf
node, that node is checked against the current best solution and replaces it when
then distance is closer. Afterwards, a check is performed if any points on the other
side of the splitting plane could be closer to xq as the current best solution. This
is done by intersecting the splitting hyperplane with a hypersphere around xq that
has a radius equal to the current nearest distance. Taking advantage of the fact that
all hyperplanes are axis-aligned this can be achieved by a simple comparison of the
distance of the splitting coordinate of xq and the current node against the overall
distance from xq to the current best. The possibility of nearer points is indicated by
the hypersphere crossing the plane, and, if so, the other branch needs to be traversed
from the current node. If the hypersphere does not intersect the splitting plane, the
entire other branch can be excluded and the algorithm moves upwards. By com-
pleting this process for the root node the algorithm terminates. Since the range of a
domain is divided in half at each level, k-d tree structures performs well in searches
for all points that lie within a given range (range search).

A search in such a k-d tree architecture has a runtime complexity of O(k log n).
Moreover, a range search has a worst case runtime complexity of O(k ∗ n1− 1

k ). How-
ever, as this structure is inflexible and can not be altered during runtime, for online
settings it needs to be rebuild in a constant interval L with a runtime complexity of
O(n log n).

2.6.2 Ball Tree

Another approach is the so called balltree [Omo89], which is able to tune itself to
the structure of the represented data, has good average-case efficiency and deals
well with high-dimensional entities. A region bounded by a hyper-sphere in an k-
dimensional Euclidean space is referred to as ball, and balls are represented by the
k + 1 floating point values that specify the coordinates of its center and the length
of its radius. A balltree however, is a complete binary tree of balls in the sense
that a node is associated with a ball such that a non-leaf node’s ball is the smallest
which contains the balls of its children. Leaf nodes hold relevant information for the
application and non-leaf nodes are used only to guide efficiently through the leaf
structure. In comparison to k-d trees, the space does not need to be partitioned and
intersections are allowed. A two-dimensional balltree is shown in Figure 2.9.
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FIGURE 2.9: (A) A set of balls in the plane. (B) A binary tree over
these balls. (C) The balls in the resulting balltree. Reprinted from

[Omo89].

A search for a query ball is expected to return a list of all leaf balls that con-
tain that ball. Similar to the k-d tree, a recursive search starting at the root node
is executed that cancels out branches (balls) that do not contain the query ball. As
branches are balls here, it is impossible that a query ball lies within any leaf ball of a
non leaf ball that does not contain that query ball.

More complex queries search for concrete points (m nearest neighbours of xq).
The search starts in the root node and traverses the balltree downwards while can-
celing out irrelevant branches. Therefore, the smallest ball, centered at xq, that con-
tains the m nearest points that have been seen so far, is remembered, and non leaf
balls that do not intersect that ball are canceled out. To do this most efficiently, at
any non leaf ball, that child that is closer to xq is searched before the other one.

A search in a balltree has a runtime complexity of O(k log n), and the construc-
tion of such an architecture has a runtime complexity of O(n log n).
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Chapter 3

Related Work

The following section provides an overview of scientific work that has been pub-
lished in the domain of (deep) RL and has some similarities with the approaches
presented in this work and/or share at least some related ideas.

Parts of the following text have already been published in a similar form in
[PSH21].

3.1 Experience Replay

The concept of the ER has been subject to a lot of research and the simple basic
concept was extended in many ways. As this work presents an advancement of ER
as well, this has some relevance.

3.1.1 Prioritized Experience Replay

Probably the most famous extension to ER is known as Prioritized Experience Replay
[Sch+15]. The original ER samples experiences uniformly at random from the buffer
and trains on minibatches that are generated this way. On average, every expe-
rience is presented to the learner equally often. However, some experiences hold
more valuable information than the rest and it would be beneficial to use them for
training more frequently. A metric that provides an estimate of the potential gain
in learning is the TD error. That is because it expresses how good the actual esti-
mate of the action-value function is at a given state-action pair. Therefore, a learning
update from an experience with a big TD error results in a reduced TD error and
consequently in a better estimate at this point. The Prioritized ER extends the stored
information of an experience with the last observed TD error and replaces the uni-
form sampling with a weighted sampling in favour of experiences with a high TD
error. To overcome the problem of never sampling an experience that once produced
a TD error of zero, every experience in the buffer has a probability to get sampled
greater than zero. This approach modifies the data distribution that is generated
by following a policy, and therefore induces bias. To account for that, importance
sampling has to be used. In early learning phases, the impact of importance sam-
pling is reduced as the increased sampling of experiences with high TD errors is
intended, but as the learner comes near convergence importance sampling is used
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to compensate this effect. Even if the Prioritized ER is an extension to ER, all stored
and used experiences are generated by interaction with the environment and no syn-
thetic experiences are in use. This clearly differs from our approach that is focused
on synthetic experiences.

3.1.2 Hindsight Experience Replay

An extension to ER that makes use of synthetic experiences in some form is the Hind-
sight Experience Replay [And+17]. This approach is designed for multi-objective RL
and addresses the problem of understanding and interpreting a given goal. In such
a setting, an agent is provided with a goal that it is intended to reach. In complex
environments it is highly unlikely that the agent reaches such a goal overall and,
therefore, it is not able to understand what it should do with that information. The
Hindsight ER method uses whole trajectories as experiences that are stored together
with the current goal. As mentioned above, an agent might never reach one of the
goals and, by doing so, it can not understand what it should do with that provided
information. To account for that and help the learner to understand the concept
behind a presented goal, synthetic experiences are stored alongside the real ones.
These synthetic experiences replace the given goal with the last state of the trajec-
tory. By replaying experiences that were actually able to reach a goal, the learner can
understand what this concept is and utilize that knowledge to reach the current goal
state. In contrast to the presented approaches in this work, the Hindsight ER treats
whole trajectories as experiences instead of transitions. Moreover, the method is
designed for multi-objective RL settings and does not use interpolation whatsoever.

3.1.3 Experience Composition

The authors of [De +15] investigated the composition of experience samples in the
ER. They discovered that for some tasks it is important, that transitions, made in an
early phase, when exploration is high, are important to prevent overfitting. There-
fore they split the ER in two parts, one with samples from the beginning and one
with actual samples. They also show that the composition of the data in an ER is
vital for the stability of the learning process and at all times diverse samples should
be included. The insides of de Bruin et al. dealt as an inspiration for some design
choices later on.

3.1.4 Episodic Backward Update

Episodic Backward Update [LSC19] is based on sampling whole episodes from the
ER buffer instead of individual experiences. Minibatches in the Episodic Backward
Update therefore have different lengths (the length of the episode). The main con-
tribution is the recursive target generation that traverses the sampled episode back-
wards and computes TD targets such that reward propagation is accelerated. The
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authors are able to show that sample efficiency improves as less episodes are re-
quired to solve the investigated problems. Even if the targeted outcome (an increase
in sample efficiency) equals the one from FU-DQN, no synthetic experiences are
used in the process.

3.2 Interpolation in Experience Replay

Storing observed experiences in a buffer gives access to data of the problem space
by design and to use this data for interpolation seems like an attractive thing to do.

3.2.1 Mixup Sampling in RL

Mixup Sampling was originally designed for supervised and self-supervised ML,
but has also been applied successfully to RL. In general, Mixup Sampling is a data-
augmentation strategy that uses pairs of training samples and their modeling targets
to generate synthetic samples by linear interpolation. In the context of RL, synthetic
experiences are generated by Mixup Sampling. The authors of [Lin+20] generate so
called Continuous Transitions based on pairs of consecutive discrete transitions in a
temporal fashion. Whereas, current and corresponding followup states are used as
sampling points to interpolate synthetic experiences in [SMG21]. A main difference
to the approaches presented in this work is that exactly two sampling points are
used for an interpolation. Moreover, proximity between points is calculated based
on their temporal relations instead of local distance.

3.2.2 Interpolated Experience Replay for Continuous Action-Spaces

An approach that uses interpolation in combination with ER was presented by Sander
[San21]. In contrast to original ER that replays stored experiences, synthetic experi-
ences are generated by means of interpolation and presented to the learner. Batches
of experiences are drawn uniformly at random from the buffer and for every sample
a new synthetic sample is interpolated. Based on the start state and the action a NN
search in the batch is used to find the K nearest neighbours. A set of one-dimensional
Gaussian Process Regression models are fit for each output dimension given by the
state-transition delta and the reward. Afterwards, one experience is sampled uni-
formly from the set of neighbours and in combination with the original experience
a state-action-pair is generated by means of Mixup Sampling. This state-action-pair
is fed to all of the Gaussian Process Regression models to predict the corresponding
mean and variance of the state-transition delta and reward. The state-action-pair in
combination with the predicted means form a synthetic experience that is added to
the training batch. In the end, a likelihood weight based on the variances is com-
puted and stored in a separate buffer. This procedure is repeated for all experiences
and the training batch is presented to the learner in combination with the calculated
likelihood weights.
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This approach has a lot of similarities to the presented methods in this work,
but does in fact also differ in some relevant points. First of all, interpolated expe-
riences are generated and used for learning immediately and thrown away after-
wards, while the Interpolated Experience Replay presented in this work stores them
in the ER buffer where they can be presented to the learner many times. Subse-
quent to the last point, only interpolated experiences are used for training, while a
mix of both is used in the approaches of this work. Another difference is located
in the utilized interpolation techniques, Sander uses Gaussian Process Regression in
combination with Mixup Sampling while the focus on this work is set on IDW. As
interpolation can be very costly, the choice for the interpolation technique in the ap-
proaches later on fell to a rather cheap in computation alternative. However, Sander
performs NN searches only on a small set of sampled experiences while in this work
the whole buffer needs to be searched. As a NN search in the whole buffer is quite
costly with increasing length, the bottleneck of the approaches in this work is the
NN search which motivates the usage of less computational expensive interpolation
techniques. A different focus on components that can require high computational
effort becomes apparent.

3.3 Interpolation in Reinforcement Learning

Interpolation has not only been combined with ER, as demonstrated earlier, but there
has also been research exploring the use of interpolation within the context of RL.

3.3.1 Interpolation in Learning Classifier Systems

Learning Classifier Systems [Hei+23] are a family of rule-based learning systems
that construct a finite collection of if-then rules. The functionality can be split in
two parts, the individual conditions (the if-part) is optimized by a metaheuristic
(typically an evolutionary method), whereas the conclusions (the then-part) of each
rule is based on a problem-dependent local submodel (e.g. linear regression). Stein
[Ste19] investigated how interpolation can be used to counter knowledge gaps in
an XCS Classifier System [BW01]. To do so, raw experiences are incorporated in
a transductive manner to improve the exploitation of already acquired knowledge
elements. Thereby, transductive describes the process of immediately leveraging
already made and remembered experiences instead of inducing a model first and
deducing to new situations afterwards. Already existing but not directly matching
knowledge elements in a currently queried problem space niche are used for inter-
polation. XCS has also been combined with ER [Ste+20]. The focus however was set
on single-step problems instead of truly sequential decision problems.
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3.3.2 Interpolated Policy Gradient

Gu et al. [Gu+17] presented an interpolation of on-policy and off-policy model-free
deep RL techniques. In their publication an approach of interpolation between on-
and off-policy gradient mixes likelihood ratio gradient with Q-Learning which pro-
vides unbiased but high-variance gradient estimations. This approach does not use
ER and therefore differs from our work.
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Chapter 4

Linear Reward Interpolation in
Discrete and Non-Deterministic
Environments

The following chapter is focused on the question of how synthetic experiences can be
generated by means of interpolation. To find an answer to this question, an analysis
of all components of an experience is conducted with respect to their individual
suitability for interpolation. With the results of this analysis at hand, an initial proof
of concept of the Interpolated Experience Replay is presented that performs linear
interpolation for rewards only and is designed for discrete and non-deterministic
environments. An in-depth evaluation on different versions of the FROZENLAKE

problem concludes the chapter.
Parts of the following text have already been published in a similar form in [Pil19;

PSH20; PSH21; PSH22b; Pil+23].

4.1 Interpolation of Synthetic Experiences

Experiences represent knowledge of the environment that produced them (cf. chap-
ter 1). As already discussed before, the idea is to exploit this knowledge in a way that
can be used to assist the agent with learning. Experiences include a state-transition
and a received reward that correspond to a chosen action in a concrete state. As
introduced in subsection 2.3.3, the model of an environment is defined by its state-
transition function and its reward function, and this also describes the dynamics of
the environment. Consequently, an experience encodes knowledge about the dy-
namics of the environment. Dependent of the form of the two functions the dy-
namics of neighboring state-action-pairs can be similar, while closer pairs should
be more similar than pairs that are located further away. Based on this intuition,
and with Q 1 in mind, a technique that could be capable of exploiting knowledge
to generate meaningful synthetic experiences is sketched in Algorithm 1. This basic
algorithm describes the process of finding a query state-action-pair (Sq, Aq) based
on a not further defined query function F and using it to search for a set of nearest
neighbors NNq in the replay buffer Dt. With that set at hand, a synthetic experience
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Algorithm 1 Generation of Synthetic Experiences

1: while Training do
2: Find State-Action-Pair (Sq, Aq) based on a Query Function F
3: Find Nearest Neighbors NNq of (Sq, Aq) in Dt
4: Generate Synthetic Experience esyn based on NNq

esyn is then generated. This algorithm serves as a formalization of the general idea
with no concrete proposals for the different steps so far. Also no concrete usage of
these synthetic experiences is proposed.

A naive solution for finding (Sq, Aq), which is also denoted as the query point
xq, would be to sample it from the state-/action-space and nearest neighbors could
be searched either by a radius around that point or a method that finds the k-nearest
points. Following the main line of this work, esyn could be generated by means of
interpolation.

Algorithm 1 provides an initial response to Q 1 by outlining a method for gen-
erating synthetic experiences using stored samples in the ER buffer. However, the
meaningfulness of these experiences cannot be determined at present. It necessi-
tates a concrete implementation coupled with a scientific evaluation to address this
question.

4.1.1 Experience Analysis with Respect to Interpolation Possibility

To develop a method for the interpolation of esyn based on NNq it is required that
the single parts of an experience are analyzed with respect to their possibility of be-
ing interpolated first. This section is targeted to Q 2 and tries to provide an initial
answer to the question of what parts of an experience can be interpolated and what
needs to be considered by doing so. As introduced in subsection 2.2.6 an experience
is defined as a quintuple of state, action, reward, follow-up state and terminal tag.
All of these components will be investigated for their role in esyn and their suitabil-
ity for interpolation. First of all, the state and the action are generated by the query
function and therefore Sq and Aq can be used as they are as the state and the action
of esyn. The rest of the components need to be generated such that they reflect the
dynamics of the environment with an error as small as possible. To make further as-
sumptions and continue with the analysis, an investigation of the role of the different
components in a learning update is required. As a reminder, an update is based on
the TD-error (cf. Equation 2.20), which is the the part in brackets of the update rule
for Q-Learning (cf. Equation 2.24):

Q(St, At)← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
. (2.24)

It can be seen that the reward has direct impact, whereas the follow-up state is used
to estimate the maximal action-value of that state. As a reminder, a value expresses
the expected return based on a policy, which is the sum of all the rewards that can
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be expected by starting in a given state and following a policy thereafter. In other
words, it estimates all following states and actions as they produce the rewards. The
follow-up state impacts the estimation of a whole chain of future events, and, based
on the current policy, this chain can differ big times dependent of the state that is
used as a starting point. In consequence, it can be stated that an error of the synthetic
reward is less tragic than an error of the synthetic follow-up state. However, both
components can be interpolated as long as the reward function and the state transi-
tion function are interpolable. In environments that include a movement of the agent
in a k-dimensional space it can be expected that the same action performed in two
states that have a spacial proximity to each other results in two follow-up states that
share a similar spacial proximity to each other. As rewards are typically awarded
for reaching some points in the k-dimensional space, state-action-pairs that share
similar state-transition properties usually also share similar rewards. Synthetic gen-
erated rewards and follow-up states (e.g. generated by interpolation) are denoted as
Rsyn and Ssyn. The last component to analyze is the terminal tag that indicates if an
episode is over. This information is required for the update rule of Q-Learning, as
no estimation of the action-value of the follow-up state is required in this case. This
needs to be classified as critical as the follow-up state, as an update that includes
the estimated expected return of a whole trajectory when actually none should be
considered is on the same level as estimating a wrong trajectory. It is able to be inter-
polated however, as long as the same spatial conditions hold that are required for the
reward and the state transition. A synthetic done tag is denoted as dsyn. Following
the analysis from above, a synthetic experience is defined as follows:

esyn = (Sq, Aq, Rsyn, Ssyn, dsyn), (4.1)

whereas the last three components are interpolable but the interpolation is coupled
to different risks that is reasoned by the potential impact of the interpolation error.

4.1.2 Discrete and Non-deterministic Environments

Upon analyzing the potential for interpolating different parts of an experience, it
was discovered that two components, namely the follow-up state and the terminal
tag, pose a higher risk due to the potential harm caused by errors. Based on this
insight, an initial proof of concept was developed, exclusively interpolating the re-
wards and employing exact matches of observed follow-up states and terminal tags.
This approach is obviously limited to very specific classes of problems that require
two concrete properties. The first one is that follow-up states and terminal tags need
to be accessible such that for any synthetic experience that is to be generated a pair
of them exists. As continuous state-spaces do not fulfill this requirement, they are
ruled out. That is because a state-space of this form inherits an infinite number of
possible states and it is not very likely that a state-action pair that equals the queried
one has been observed before. However, discrete state-spaces meet the requirement
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as there exist a limited number of possible states, and, consequently, with a buffer
large enough, it is possible that a state-action pair can be found that equals the query
point. The second property that is required is that the interpolation of the reward
is beneficial in some way, while having several experiences at hand that equal the
query point. This is the case for non-deterministic environments as the execution of
a concrete action in a given state does not always result in the same reward, follow-
up state and terminal tag. The initial proof of concept is therefore developed for
discrete and non-deterministic environments.

FROZENLAKE is one example of a non-deterministic world in which an action
At ∈ A realized in a state St ∈ S may not lead consistently to the same follow-up
state St+1 ∈ S . FROZENLAKE is basically a grid world consisting of an initial state I,
a final state G and frozen, as well as unfrozen tiles. The unfrozen tiles equal holes H
in the lake and if the agent falls into one of such, he has to start from the initial state
again. If the agent reaches G he receives a reward of 1. The set of possible actions
A consists of the four cardinal directions A = {N, E, S, W}. Executing a concrete
action (e.g. N) only results with a probability of 1

3 in the corresponding field, but it
is also possible that the agent instead performs one of the orthogonal actions (in the
example: W or E) with the same probability of 1

3 for each case. This behavior makes
the environment non-deterministic. Because there is a discrete number of states the
agent can reach, the problem can be denoted as discrete. The environment used for
evaluation is the “FrozenLake8x8-v1” environment from OpenAI Gym [Bro+16a]
depicted in Figure 4.1.

In addition to the described version, the reward function is changed to return a
reward of -1 in case of falling into a hole and 5 for reaching the goal. As the first
adaption is crucial for the presented approach (see below), the second change helps
the learner to solve the environment. Both changes intensify the received rewards
and therefore the experienced transitions. Assigning a negative reward to the end
of an episode (hole) makes it possible to calculate an average reward containing
additional value (see below). By testing different final rewards (goal) it could be
observed that the agent performs best with a reward of 5.

The decision to focus on the presented environment was taken because: (1) it is
a relatively well-known problem in the RL community (OpenAI Gym) and (2) the
presented approach is designed for discrete and non-deterministic environments.

The non-deterministic character of the problem is coupled with some difficulties
that are described in the following paragraph: If an action is chosen that leads the
agent in the direction of the goal, but because of the slippery factor it is falling into a
hole, it additionally receives a negative reward and creates the following experience:
et = (St, At,−1, St+1). If this experience is used for a Q update, it misleadingly
shifts the action-value away from a positive value. The slippery factor for executing
a neighboring action be denoted as cslip, the resulting rewards for executing the two
neighboring actions as Rright

t+1 and Rleft
t+1 and the reward for executing the intended

action as Rint
t+1. This formalization enables the definition of the true expected reward
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FIGURE 4.1: The FROZENLAKE8x8 environment from OpenAI Gym
[Bro+16a].

for executing At in St as follows:

Rexp
t+1 =

cslip

2
× Rright

t+1 +
cslip

2
× Rleft

t+1 + (1− cslip)× Rint
t+1. (4.2)

Following Equation 4.2 the experience that takes the state-transition function into
account and that does not confuse the learner is defined as the expected experience
eexp

t :
eexp

t = (St, At, Rexp
t+1, St+1, dt). (4.3)

The learner will converge its estimate of the action value Q(St, At) after seeing
enough experiences to:

Q(St, At) = q∗(St, At) = Rexp
t+1 + γ max

a′
q∗(St+1, a′). (4.4)

Incorporating received (misleading) experiences into a Q update introduces the
challenge of oscillation, caused by the non-deterministic nature of the environment.
This non-determinism can result in rewards and follow-up states that lead the agent
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in completely opposite directions, such as moving closer to the goal or terminating
the episode in an unfavorable state, like a hole. In the original environment (reward
of 0 for falling into a hole), this effect would still occur due to the identical infor-
mation present in the different follow-up states. However, if the learner exclusively
receives experiences in the form of eexp

t , the time required to converge to q∗ could be
reduced.

4.1.3 Linear Interpolation of Rewards

The intention of the presented solution is to reduce the amount of training by the
generation of synthetic experiences that are as similar as possible to eexp

t . As a cur-
rent limitation, the focus is set on estimating Rexp

t+1 while actual observed follow-up
states St+1 and terminal tags dt are used. As all considerations for St+1 also hold for
the terminal tag, dt is neglected in the following. The presented approach is possi-
ble because the environment is discrete (this represents a mandatory precondition
of the algorithm). Discrete environments provide a limited number of states, and,
more importantly, a limited number of corresponding follow-up states. Thus, it is
possible to observe and remember both the states and their follow-ups. Continuous
environments, would also require to predict the follow-up state in addition to the
reward and for this first investigation of the concept of interpolated experiences a
simple approach was chosen. To compute an accurate estimation of eexp

t , an estima-
tion of Rexp

t+1 is required first. As introduced in Algorithm 1, the general task is to
generate a synthetic experience for a query point xq = (Sq, Aq) that has been drawn
by a query function. Thus, instead of computing eexp

t and Rexp
t+1, an experience and a

reward for xq have to be found, which are denoted as eexp
q and Rexp

q .
The set of all rewards that belong to the experiences that start in the same state

Sq and execute the same action Aq of a drawn query point xq be defined as:

Rq :=
{

rn ∈ {r|(s, a, r, s′) ∈ Dt ∧ a = Aq ∧ s = Sq}
}

. (4.5)

The set of experiences that equals xq in its state-action pairs is basically the set of
nearest neighbors NNq, but with a NN distance of zero. In other words a set of exact
matches in terms of xq.

The rewards in Rq are used to perform a linear interpolation of Rsyn (which cor-
relates with the computation of a simple average in this case), and is denoted as Ravg

q .
This value holds as a good estimation of Rexp

q .

Ravg
q =

∑r∈Rq
r

|Rq|
(4.6)

Based on this definition, it is possible to define eavg
q as the estimation of eexp

q in the
following form:

eavg
q = (Sq, Aq, Ravg

q , Sq+1), (4.7)
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with
eavg

q ≈ eexp
q . (4.8)

The accuracy of this interpolation correlates with the number of transitions stored
in the replay buffer that match the query point xq. This comes from the fact that
the effect of outliers can be mitigated with enough normal distributed samples. To
achieve this, an algorithm was defined that triggers an interpolation after every step
the agent takes. A query point xq is drawn via a query function F from the state
space, and all matching experiences:

Dmatch := {et ∈ Dt|St = Sq}, (4.9)

for that hold that their starting point St is equal to the query state Sq, are collected
from the replay buffer. Then for every action a ∈ A all experiences that satisfy
At = a are selected from Dmatch:

Da
match := {et|et ∈ Dmatch ∧ At = a}. (4.10)

The different actions a are the query actions Aq, and in this concrete example all
actions from the action-space are used. however, what actions are used is decided
by the query function and can differ from this example. The resulting transitions are
used to compute an average reward value Ravg

q . Utilizing this estimation, a synthetic
experience eavg

q for every distinct next state:

St+1 ∈ {s′|(s, a, r, s′) ∈ Da
match}, (4.11)

is created. This results in a minimum of 0 and a maximum of 3 synthetic experiences
per action and sums up to a maximum of 12 synthetic transitions per interpolation
depending on the amount of stored transitions in the replay buffer. As with the
amount of stored real transitions, that can be seen as the combined knowledge of
the model, the quality of the interpolated experiences may get better, a parameter
cstart_inter is introduced, that determines the minimum amount of stored experiences
before the first interpolation is performed. The associated pseudocode, which pro-
vides a concrete implementation of Algorithm 1, is depicted in Algorithm 2. Syn-
thetic experiences that have been generated that way are stored in a separate buffer
and can be used for training from that moment on. The concrete architecture of this
buffer is explained in the next section.

4.2 Interpolated Experience Replay

Q 3 raises the question of how synthetic experiences, once generated, can be used
to assist a DQN with learning. In the former section, a way of how to generate
(meaningful) synthetic experiences for discrete and non-deterministic environments
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Algorithm 2 Reward averaging in IER

1: Initialize D
2: Initialize Dinter

3: while Training do
4: Store Experience e in D
5: if |D| ≥ cstart_inter then
6: Find Sq based on Query Function F
7: Select all et that match St = Sq from D
8: Store Results in Dmatch
9: for all a = Aq ∈ A do

10: Select all et that match At = Aq from Dmatch
11: Store Results in Da

match
12: Compute Ravg

t
13: for all distinct Sq+1 in Da

match do
14: Generate eavg

q = (Sq, Aq, Ravg
q , Sq+1)

15: Add eavg
q to Dinter

was presented. In the following section, the so-called Interpolated Experience Replay
(IER) is introduced that provides a mechanism for how to use them.

4.2.1 Interpolation Component

Stein et al. introduce their Interpolation Component (IC) in [Ste+17]. This architec-
ture is used as an underlying basic structure for the interpolation tasks and will be
presented in the following chapter.

The IC, depicted in Figure 4.2, serves as an abstract pattern and inherits a Ma-
chine Learning Interface (MLI), an Interpolant, an Adjustment Component, an Evalua-
tion Component and the Sampling Points (SP). The MLI acts as interface to attached
ML components as well as a controller for the IC. When a sample is received, it
is handed to the Adjustment Component, there, following a decision function, it is
added to or removed from SP. If an interpolation is required, the Interpolation Com-
ponent fetches required sampling points from SP and computes, depending on an
interpolation technique, an output. The Evaluation Component provides a so-called
trust-level as a metric of interpolation accuracy.

For the approaches presented in the current work, the SP was replaced with a re-
play buffer and basically the whole functionality of ER. It is realized by a FiFo queue
with a maximum length. This queue represents the classic replay buffer and is filled
only with real experiences that have been generated by interaction with the environ-
ment. To store synthetic experiences, another queue, a so-called ShrinkingMemory, is
introduced. This second storage is characterized by its decreasing size. Starting at a
predefined maximum it gets smaller depending on the length of the real experience
queue. The Interpolated Experience Replay (IER) has a total size, comprising the sum of
the lengths of both queues as shown in Figure 4.3. If this size is reached, the length of
the ShrinkingMemory is decreased and the oldest items are removed. This process
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FIGURE 4.2: Schematic of the Interpolation Component from Stein et
al. [Ste+17].

continues until either the real-valued queue reaches its maximum length and there
is space available for interpolated experiences, or the IER becomes filled with real
experiences. As interpolation involves a significant amount of extra work, it might
seem counterproductive to discard interpolated experiences. However, this decision
was made based on two reasons:

1. When the learner comes near convergence, experiences whose distribution is
determined by a query function might harm the real distribution that is de-
rived by following the actual policy. Based on this thought, it can be assumed
that the learner benefits more from real experiences as time goes by.

2. The quality of the interpolated experiences is uncertain and a poorly performed
interpolation could potentially harm the learner more than a misleading real
experience. By discarding interpolated experiences and regularly replacing
them with new ones, attempts are made to mitigate this potential effect.
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Additionally, a minimum length for the interpolated storage is introduced, that is
never fallen below. This results in a differing behavior to the above explained pro-
cedure. If the ShrinkingMemory is instructed to reduce its length, it does this only
until it reaches this threshold. The maximum length of the IER therefore consists of
the real experience buffers maximum length ser_max and the minimum length of the
synthetic part ssyn_min.

Interpolated Experience Replay

real experiences synthetic experiences

sier

ser ssyn

ssyn_min

FIGURE 4.3: Intuition of Interpolated Experience Replay memory.

The IER algorithm as described in subsection 4.1.3 is located in the Interpolant,
and, as stated above, executed in every step. An exhaustive search would require a
computation time of O(n) and therefore is not practical for large sized IERs, because
this operation is executed in every single step. A possible solution for this problem
is to employ a k-d tree, which represents a multidimensional data structure (cf. sec-
tion 2.6). By using such a tree, the computation time could be decreased to O(log n).
As the examined problem is very small, and consists out of |S| = 64 discrete states,
another approach is used to reduce the computation time further on to O(1). To
achieve this a dictionary dict : K → V of size |S| ∗ 3 = 192 is used that has the
following keys:

K := {(St, At)|St ∈ S , At ∈ A}, (4.12)

and corresponding values:
V :=

{
Ravg

t ,St+1

}
, (4.13)

with:
St+1 =

{
St+1 ∈ {S′|(St, At, Rt, S′) ∈ Da

match}|At = a
}

. (4.14)

This equals an entry for every state-action pair with associated average rewards and
distinct next states of all observed transitions. The dictionary is updated after every
step of the agent.

To evaluate the quality of computed interpolations an appropriate metric could
be used in the Evaluation part. This is not implemented yet and left for future work.
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4.2.2 Modifications and Query Functions

The general architecture of the IER presented above provides a basic functionality
but is limited in terms of the synthetic buffer, as a minimum size, if set, can only be
a constant value. As previously discussed, the decision to implement the shrinking
design was motivated by two specific reasons, one of which relates to the potential
harm caused by interpolated experiences that are affected by noise when the learner
approaches convergence. A fixed minimum size will never reach zero, whereas a
minimum size of zero might get reached too early and small amounts of synthetic
experiences could help the learner even after the real valued buffer filled up. To
address the described problematic, the parameter ζ is introduced, allowing for fine-
tuning. This parameter enables finer adjustment of the minimum size in later stages
and is defined as follows:

ζi = max

[
ζinit −

[
ζinit

M
× i

]
, 0

]
, (4.15)

for every episode i. ζinit is the initial value that is assigned to ζ and a value of 1
serves as a good initialization. The overarching concept of the presented parameter
is to linearly decrease the minimum size of the synthetic buffer. Thus, ζi decreases
until the episode M is reached and has a range of 0 ≤ ζi ≤ ζinit. To bring ζ into play,
the minimum size of the synthetic buffer per episode is defined as:

ssyn_min,i = ⌊ssyn_min × ζi⌋, (4.16)

with ssyn_min being the minimum size that is set as a parameter in the beginning,
and ssyn_min,i being the allowed minimum size at episode i. As can be observed in
Equation 4.16, the choice of ζinit manipulates the parameter ssyn_min and a value of
1 keeps the original value. The minimum size while using ζ can be understood as a
linear decreasing value starting at ssyn_min × ζinit that reaches zero at episode M.

Even if Algorithm 2 provides a concrete way of how to generate synthetic ex-
periences based on knowledge stored in the replay buffer, it still owes an answer
to the question of how xq is queried and consequently how F is defined. An naive
approach would be to sample Sq and Aq uniformly from the state- and action-space,
provided that they are known. However, an in-depth evaluation of different query
functions in [PSH21] revealed that the naive approach is not very efficient. This
might come from the fact that synthetic experiences are added to the buffer dis-
tributed in a completely different way (uniformly random) than the real experiences
that are generated by following the policy π. Even if the amount of exploration in-
creases big times as even states get queried that the agent did not visit before or at
least rarely, it turned out that it is way more beneficial to stick to the policy distribu-
tion is some form. Additionally, if the state- and/or action-space grows big, a naive
random sampling would generate query points with no accessible sampling points
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in the majority of times.
Based on the insights from [PSH21] three concrete query function have been de-

fined and the query function F can be concertized to F(Dt) which takes the replay
buffer as input. As the replay buffer stores the real experiences that have been gen-
erated by following the policy, it inherits this distribution which can be exploited.

The query functions that are used in this work are the following:

1. Policy Distribution (PD): To query a state-action pair xq, a previously ob-
served experience is drawn uniformly at random form the replay buffer Dt.
As the distribution present in the replay buffer was generated by following an
emerging policy π, this can be seen as drawing query points off-policy from the
behavior policy π:

FPD(Dt) = (s, a, _, _, _) ∼ U(Dt). (4.17)

2. Last State (LS): The returned query point xq is st state-action-pair from the last
observed experience et that has been stored in the replay buffer Dt. As this
mechanism returns the state-action-pairs in the same order as the agent faces
them, this can be seen as drawing query points on-policy from the behavior
policy π:

FLS(Dt) = (s, a, _, _, _)← Dt[−1]. (4.18)

3. *-Area (*-area): This query function is an advancement to an arbitrary other
query function and shifts a drawn query point to a location that is somewhere
in the local neighborhood. The * indicates that it can be used on top of e.g. PD
or LS (or any other query function) by performing a transformation operation
T(xq):

F*-area
(

F∗(Dt)
)
= T

(
F∗(Dt)

)
, (4.19)

whereas T(xq) needs to be defined for each specific problem individually.

When the linear reward interpolation approach was introduced above, a syn-
thetic experience was generated for each action inA and each unique follow-up state
that has been observed so far. As discussed above, this results in a huge amount
of synthetic experiences for the FROZENLAKE problem. To enable a finer tuning
of this inflationary generation, different action-selections are introduced, which are
presented in the following:

1. On-Policy (OnPol): Instead of the generation of a synthetic experience for ev-
ery action in A the query state Sq is presented to the actual policy and a syn-
thetic experience is generated for the action the is chosen by it and for every
corresponding unique follow-up state.

2. One Next state (ONS): Independently of the choice of Aq, for every Aq exactly
one synthetic experience is generated. The corresponding follow-up state is
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drawn uniformly at random from the set of all follow-up states that have been
observed after xq was executed. Mention that the follow-up state is drawn
from the set of all observed follow-up states (not the set of unique follow-up
states), which maps the observed distribution of the environments dynamics.

3. On-Policy & One Next State (OnPolONS): This action-selection function com-
bines OnPol and ONS and generates exactly one synthetic experience per in-
terpolation step.

4.3 Evaluation

The former sections introduced the functionality and the general concept of the IER
and presented a concrete implementation for linear interpolation of rewards for dis-
crete and non-deterministic environments. Even if the research questions Q 1 - Q 3
have been answered part wise and in a conceptual way, the final proof that the pre-
sented ideas correlate with reality still remains to be provided. The following section
performs an evaluation with the goal of showing that IER does actually work and is
able to assist the learner such that the sample efficiency and the overall performance
can be increased (Q 4).

4.3.1 FrozenLake Environment

As mentioned above, the FROZENLAKE problem serves as a good environment to
evaluate the linear reward interpolation IER on. To gain deeper insights and make
the evaluation results more impactful, three different state-encodings have been
evaluated. These are introduced in the following:

1. State Vector Encoding (VE): The state vector encoding is realized with an array
of the length of the state-space (|S| = 64). The whole vector is filled with zeros
and the entry that corresponds to the actual state is set to 1. This results in an
input layer of size 64.

2. Coordinates Encoding (CE): The coordinates state encoding is realized via
a vector with two entries that hold the value for the normalized x- and y-
coordinate. An input layer of size two is used here.

3. Local Knowledge Encoding (LKE): In the local knowledge state encoding the
agent receives a vector with 8 entries that corresponds to the surrounding
fields of the actual state. The different state types are shown in Table 4.1.

An input layer of size 8 was utilized. In this encoding the problem of percep-
tual aliasing [WB91] is faced, as some states have the exact same encoding but
in fact are different. The complexity of the problem increases because of these
states.
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TABLE 4.1: Overview of the values for the different types of tiles in
the LKE state-encoding.

tile type Value

initial state 0
final state 1

frozen 2
hole 3

out of state space 4

A graphical illustration of the different encodings can be observed in Figure 4.4.
With these different state-encodings at hand, the *-area query function needs to

be defined for each one individually:

1. VE & CE: As for VE and CE a unique position in the grid is given, it is possible
to calculate a set of potential points that consists of the original point Sq and
all legal surrounding points. To do so, independently of the actual encoding,
the coordinates of xq are identified at first. Afterwards, a random number is
drawn for every dimension from the set {−1, 0, 1} and added to the coordinate
of original Sq. Values below zero and above 7 are clipped to 0 zero and 7.. By
doing so, the *-area query function draws a state from the set of xq and its
neighbors and consequently explores the state-space in a corridor around the
behavior policy.

2. LKE: Unfortunately, the same approach is not applicable to LKE. That is, be-
cause no information about the actual position in the grid is provided and, as
mentioned above, similar encoded states exists that are actually different from
each other (perceptual aliasing). To enable some sort of additional exploration
nevertheless, the following approach was found: At first, one of the 8 posi-
tions in the state-encoding is chosen. Afterwards, the corresponding entry is
replaced with a random integer between 2 and 4 (frozen, hole, out of space).
To prevent the generation of states that are not present in the environment, a
check in the state-dictionary (cf. subsection 4.2.1) is performed and if the new
generated state has not been observed before, then it is discarded.

4.3.2 Experiments

To perform an in-depth evaluation of the linear reward interpolation approach the
following configurations were tested against a DQN baseline with standard ER:

1. Def: This configuration represents the original idea of an interpolated buffer
that has the same maximum size as the real valued buffer which decreases
to zero as the amount of true experiences grows. Synthetic experiences are
generated in every step for the whole action-space and every observed follow-
up state.
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FIGURE 4.4: A graphical illustration of the three different state en-
codings. Every tile is represented by an index for the VE encoding. A
coordinate system is used for the CE encoding and the surrounding 8
tiles represent the LKE encoding. An example for the state A is given

for every encoding in the bottom.

2. Def-OnPol: Same as Def configuration, but synthetic experiences are gener-
ated for the action that the current policy predicts for the query state and all
corresponding observed follow-up states.

3. Def-ONS: Same as Def configuration, but exactly one synthetic experience is
generated for every action in the action-space. For those experiences follow-up
states are drawn at random from the collection of all corresponding observed
follow-up states.

4. Del-area: Same as Def configuration, but the query points are drawn according
to the *-area query function (cf. subsection 4.2.2).

5. Def-area-OnPol: Same as Def-OnPol, but the query points are drawn accord-
ing to the *-area query function.
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6. Del-area-ONS: Same as Def-ONS, but the query points are drawn according
to the *-area query function.

7. Full: This configuration has set the minimum size of the synthetic buffer to
the same value as the real valued buffer. This corresponds to an equal amount
of synthetic and real experiences as soon as both buffers filled up. Synthetic
experiences are generated in every step for the whole action-space and every
observed follow-up state.

8. Full-area: Same as Full configuration, but the query points are drawn accord-
ing to the *-area query function.

9. Zeta-OnPolONS: This configuration has set the minimum size of the synthetic
buffer to half of the size of the real valued buffer. Additionally, ζ is used to
reduce the minimum size of the synthetic buffer to zero over a long period.
Exactly one synthetic experience is generated per step for the action that is
predicted by the current policy and one follow-up state drawn at random from
the collection of all corresponding observed follow-up states.

10. Zeta-area-OnPolONS: Same as Zeta-OnPolONS configuration, but the query
points are drawn according to the *-area query function.

All configurations have been tested for the three different state-encodings (VE,
CE and LKE) and different exploration phases (texpl = {250, 500, 750, 1000}). Both,
the configurations as well as the baseline, were repeated 40 times with different ran-
dom seeds. An ϵ-greedy exploration was used to explore the state-space. A complete
overview of the used hyperparamets is given in the next section.

4.3.3 Hyperparameters

The hyperparameters that have been used for both, the baseline as well as the differ-
ent IER configurations, have been tuned by a hyperparameter search. Most hyper-
parameters are shared between all configurations and the baseline to ensure com-
parability. Table 4.2 provides a complete overview of the hyperparameters that are
shared by all experiments:

As only the IER configurations make use of a synthetic buffer, ssyn_min is of no
relevance for the baseline or rather set to zero. The same thing holds for the point in
time when interpolation starts. Both hyperparameters are shared for all IER config-
urations however. The chosen values can be observed in Table 4.3.

Different architectures of the DNNs are used for each state-encoding and shared
for all IER configurations and the baseline. Table 4.4 provides an overview of the
architectures.

The minimum size of the synthetic buffer ssyn_min differs for the following three
configurations: Def, Full, Zeta. All configurations that are combinations of them
(*-OnPol, *-ONS, etc.) share these values. The Zeta configurations use ζ while for
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TABLE 4.2: An overview of the hyperparameters that are shared by
all configurations and the baseline.

Parameter Values

Learning rate α 0.0005
Gamma γ 0.99
Epsilon start 1
Epsilon min 0
Tau τ 0.25
Soft target update True
Double DQN True
Dueling Architecture True
Real valued buffer size ser_max 50,000
Start learning at size of buffer 300
Minibatch size 32

TABLE 4.3: An overview of the hyperparameters that are shared by
all configurations.

Parameters Values

Synthetic buffer size ssyn_max 50,000
Start interpolation at size of buffer 100

TABLE 4.4: An overview of the neural network architectures that are
shared by all configurations and the baseline of a state-encoding.

State-encoding Input Hidden Layer Output

VE 64 [32, 32] 8
CE 2 [128, 256] 8
LKE 8 [64, 64] 8

all other configurations no ζ was used. Table 4.5 provides an overview of the used
parameters.

TABLE 4.5: An overview of the different hyperparameters for the dif-
ferent IER configurations.

Configuration ssyn_min ζ M

Def 0 - -
Full 50,000 - -
Zeta 25,000 1 1500

4.3.4 Statistical Analysis

For all experiments, a minimum average reward over 100 consecutive episodes (MAR)
was identified that, when achieved by the agent, indicates that the problem is solved.
The number of episodes until that criterion is fulfilled for the first time is called the



62
Chapter 4. Linear Reward Interpolation in Discrete and Non-Deterministic

Environments

time to solution (TTS). Furthermore, after a maximum of 4000 episodes, if the solution
criterion was not achieved, runs are aborted and the task subsequently considered
as not solved in time.

The main interest of the evaluation is on the required iterations until a problem
is solved, the sample efficiency and if IER outperforms original ER (in the following
referred to as ER) in this aspects (Q 4). To be able to provide a scientific answer to
that research question, the following evaluation questions (E-Qs) have been defined
for each learning task T based on the data collected in the conducted experiments:

E-Q1 If task T was not solved in time by some of the runs for at least one of IER
or ER, the solution rates are the first metric to be regarded: How do the two
approaches compare with respect to the rate of runs that did solve the task in
time? This entails: Should it be believed that IER’s solution rate on task T is
greater than the one of ER or vice versa? How confident can one be about this
given the data that has been collected?

E-Q2 Based on only the subset of runs that did solve the task in time the question
that is tried to be answered is: How does IER’s TTS compare to the one of ER?
This entails: Should one believe that IER solves task T faster than ER? If so,
then by how much? How confident can one be given the data that has been
collected?

E-Q3 What are likely values of the TTS for FU-DQN and DQN for a task T ?

In order to be able to make statistical statements like these, the data from the
experiments is analyzed using two Bayesian models1 which provide posterior dis-
tributions that can be queried flexibly. At that, both models are provided by the
cmpbayes Python library [Pät22].

Statistical model for the solution rates

In order to compare two solution rates pi, i ∈ {IER, ER} on a task T (E-Q1), a sim-
ple beta-binomial model is employed. This model consists of a binomial model for
nsolved,i, the number of times that T was solved by method i out of the number of
runs performed n (the latter being the distribution’s number of trials parameter which
is fixed to a value of 40), and a beta distribution prior on the binomial distribution’s
trial success probability parameter which corresponds to the solution rate pi. The prior
belief of all values of pi is encoded as being equally likely by choosing the beta prior
parameters such that a uniform distribution is received.

1Null-hypothesis significance tests are deliberately not used due to their many flaws, an overview
of which are given in [Ben+17].
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The overall model for a pair of solution rates pi (i. e. i ∈ {IER, ER}) looks like
this:

nsolved,i ∼ Binomial(n, pi) (4.20)

pi ∼ Beta(a, b) (4.21)

a = 1, b = 1 (4.22)

The beta-binomial model provides the posterior distribution of the parameters
pi which can then be queried. Since the most interesting fact is whether the solu-
tion rate of IER is greater than the one of ER, the probability p (pFU-DQN > pDQN) is
computed which can be done straightforwardly by drawing large-enough samples
from the two distributions of the pi, pairing them at random, and then counting how
many of these pairs fulfill the predicate.

Statistical model for the TTS units

The model used for comparing two sets of TTS units (one set for IER and one for
ER; used for answering E-Q2 as well as E-Q3) for a task T is inspired by the model
described by Kruschke [Kru13] but differs in that it is based on two gamma dis-
tributions2 (one for each set of TTS units denoted as random variables TTSi, i ∈
{IER, ER}, in the following), which are reparametrized for a mean and shape pa-
rameter. The shape parameter corresponds to the usual gamma distribution rate
parameter βi whereas the mean parameter is defined as µi = α

γ
i /βi (where α

γ
i is

the usual shape parameter). As a prior for the mean parameter, a broad exponential
distribution is used—parametrized such that 90 % of means lie in [0, 8000] where the
upper bound stems from multiplying the maximum number of episodes by two (it
can be stated quite confidentially that the real mean TTS is smaller than 8000 for the
tasks analyzed using this model). Since a mean TTS of 0 can be ruled out a priori,
this exponential distribution is further shifted by one hundredth of the minimum of
the measured units. The prior on the shape parameter βi is a uniform distribution
chosen such that the variance of the distribution is at least l times the variance of
the data and at most u times the variance of the data (note that βi does not directly
correspond to the variance of the distribution but its bounds can be derived given
the mean µi). Just like Kruschke in [Kru13], these are chosen rather noncommittally
as one-thousandth and a thousand.

2Note that since TTS values can never be negative, other common distributions like normal or
student’s t distributions can not be expected to model the data well.



64
Chapter 4. Linear Reward Interpolation in Discrete and Non-Deterministic

Environments

The full model for a pair of TTS units TTSi (i. e. i ∈ {IER, ER}) looks like this3:

TTSi ∼ Gammma(µi, βi) (4.23)

µi −
min(TTSi)

100
∼ Exp(λi) (4.24)

βi | µi ∼ U
(

µi

uVar(TTSi)
,

µi

lVar(TTSi)

)
(4.25)

λi = −
ln(i− 0.9)

uµ
(4.26)

l = 1000−1, u = 1000, uµ = 8000 (4.27)

The parameters of interest in this model are the µi (i. e. the means of the distri-
bution of the TTSs) and even more so their difference as the goal is to estimate not
only their ordering but also the magnitude of any effects. Since the model provides
a posterior distribution for the µi, they can be sampled, paired at random and then
subtracted to obtain a sample of the distribution of µER − µIER. Provided that the
samples are large enough, it is possible to reason about the underlying distribution
itself and, for example, compute probabilities of this difference being positive or neg-
ative (E-Q2). Also, the individual distributions of means µi, contain the information
required to answer (E-Q3).

Note that the cmpbayes library [Pät22] uses Markov Chain Monte Carlo (MCMC)
sampling to obtain the samples for this model (four independent chains of 10000
samples each are sampled after a warm-up phase of 1000) and that the usual checks
were performed to detect whether the sampler behaved well and converged (trace
plots, posterior predictive checks, R̂ values, effective sample size).

Practical equivalence

Since differences of the TTS that do not have practical significance are not of interest,
a region of practical equivalence (rope) is defined around a TTS difference of 0. Since
practical equivalence in terms of the TTS can be expected to differ between tasks
(some are harder and thus the agent naturally requires more training episodes), the
rope was chosen task-dependently as 1% of ER’s median performance mT on the
task T:

ROPET = [−0.01mT, 0.01mT] (4.28)

4.3.5 Results

For the sake of space, only the best performing configurations for the three state-
encodings and the four different exploration lengths will be presented in this section.

3This is slightly simplified for the sake of space. The actual model used also factors in the runs that
were aborted after episode 4000 as censored data. See the cmpbayes library [Pät22] for details.



4.3. Evaluation 65

A complete overview of the results of the conducted experiments is provided in
Appendix A.

The MAR for the FROZENLAKE problem (all state-encodings) was set to a value
that indicates that the agent was able to solve the problem 85 times out of 100 con-
secutive episodes. Such a value was chosen because of the non-deterministic nature
of the problem. Even following a good policy could lead the agent into a whole and
therefore, a success rate of 100 % is very hard to achieve.

Analysis of the results for the VE state-encoding

The VE state-encoding is considered to be the easiest problem (for DQN in general)
because there exists one input node for every possible state and only one of them
provides a signal. On the other hand, less generalization might be possible as inputs
do not align to each other in a numerical way.

However, as can be seen in Table 4.6, for all exploration lengths without 750 there
was found a configuration that is expected to solve the problem in less episodes
than ER with a probability greater than 90 %. Only for an exploration length of 750,
the best found configuration (Def-OnPol) is expected to perform better (at least as
good) as ER with a probability of 41.08 % (47,2 %) which is both below a probability
of 50 %. This might be attributed to the fact that an exploration length of 750 is a
highly effective parameterization for ER. Consequently, IER may not be particularly
useful in this case. While Zeta-OnPolONS appears two times in the best performing
configurations, also other configurations such as Def-area-ONS performed well. The
only configuration that performed badly (but still good for an exploration length of
1000) was Full-area. For the choice of the query function, no definitive statement can
be made regarding whether LS or PD is clearly better, as both performed similarly
well. Overall there is strong evidence towards IER outperforming ER for texpl =

[250, 500, 100] in terms of TTS.

TABLE 4.6: Probabilities (in %, rounded to two decimal places) for
the best performing configurations in the VE state-encoding of IER
performing better or worse in terms of TTS than ER—or practically
equivalent (with respect to a rope). Only taken into account runs that

finished within 4000 episodes.

Config texpl
Query ER practical IER

Function better equivalent better

Def 250 LS 8.51 0.15 91.35
Zeta-OnPolONS 500 PD 0.00 0.00 100.00
Def-OnPol 750 LS 52.81 6.12 41.08
Zeta-OnPolONS 1000 PD 0.57 0.52 98.92

A look at Table 4.7 shows the results of the comparison of the solution rates using
the beta-binomial model. The results align with the findings of the TTS comparison,
indicating that configurations with high probabilities of outperforming ER in terms



66
Chapter 4. Linear Reward Interpolation in Discrete and Non-Deterministic

Environments

of TTS also tend to have higher probabilities of achieving a greater solution rate.
Overall there can be observed a definite tendency towards the solution rate of IER
exceeding the one of ER for texpl = [250, 500, 100] for the VE state-encoding.

TABLE 4.7: Probability (in %) for the best performing IER configura-
tions in the VE state-encoding that the solution rate of IER is greater

than the solution rate of ER.

Config texpl Query Function p (pIER > pER)

Def 250 LS 91
Zeta-OnPolONS 500 PD 100
Def-OnPol 750 LS 50
Zeta-OnPolONS 1000 PD 94

Figure 4.5 displays the distributions of the means of the TTS distribution for the
four best performing configurations for the VE state-encoding. The graphs are vi-
sualizations of the results from Table 4.6. The plot for texpl = 750 shows that the
probability mass is distributed around the rope which indicates practical equivalent
behavior. Moreover, the majority is located slightly to the left which aligns with a
higher probability of ER outperforming IER in that case. For the other three distri-
butions, it is visible that the majority of the probability mass is located to the right
of the rope. Figure 4.5 also shows the central 95 % HDPI which indicates that for
texpl = 500 there is very high confidence to state the true value of the mean differ-
ence lies between 792 and 2654 episodes.

Table 4.8 gives summary statistics of the distributions over the TTS means (the
distributions of µi for i ∈ {ER, IER}). The most likely values are reported (mode of
the distribution over mean values µi) as well as a measure of uncertainty (once more,
95 % HPDIs). It can be observed, that ER requires less time when texpl decreases
while 750 being the best configuration. IER on the other hand has smaller mean
TTSs for most of the exploration lengths and converges at around 1100 mean TTS
beginning with a texpl of 500. The differences of the mean TTSs align with the peaks
of the probability distributions of the corresponding plots in Figure 4.5.

TABLE 4.8: Most likely values and uncertainties for the mean TTS of
IER and ER for the best performing configurations of the VE state-
encoding given as the modes and 95 % HDPIs of the estimated distri-

butions of µER and µIER.

Config texpl
IER mean TTS ER mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Def 250 3046 [2122, 4737] 4229 [3404, 7483]
Zeta-OnPolONS 500 1071 [937, 1323] 2442 [1930, 3795]
Def-OnPol 750 1057 [943, 1213] 1055 [933, 1192]
Zeta-OnPolONS 1000 1169 [1127, 1214] 1394 [1244, 1563]
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FIGURE 4.5: Density plots of the posterior distribution of µDQN −
µFU-DQN for best performing IER configurations of the VE state-
encoding. Orange colors indicate the central 95 % HPDI (also known
as the 95 % credible interval; 95 % of central probability mass lies within
these bounds). The green area indicates the rope in which a difference

is treated as practical equivalent.

Analysis of the results for the CE state-encoding

The CE state-encoding reduces the amount of input nodes and increases the signals
at the same time. Furthermore, signals describe coordinates and neighboring coor-
dinates have spatial dependencies that are present in the inputs.

In general, IER demonstrated excellent performance on the CE encoding, with
both the Def-area and Def-area-onPol configurations consistently showing proba-
bilities of 100 % in favor of IER in terms of TTS for almost all configurations and
exploration lengths. Table 4.9 shows the results for Def-area and the LS query func-
tion, but PD performed equally well. Overall, LS performed better on this state-
encodings for the configurations that did not reach a probability of 100 %. The worst
performing configurations have been Zeta-* and Zeta-area-*. All other configura-
tions performed well when using the LS query function.

Table 4.10 shows that the solution rate is favored for IER as well.
Figure 4.6 confirms the results from above with the probability masses being

to the right of the rope for all exploration lengths. It can be stated with very high
confidence that IER outperforms ER in the CE state-encoding in terms of TTS as well
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TABLE 4.9: Probabilities (in %, rounded to two decimal places) for
the best performing configurations in the CE state-encoding of IER
performing better or worse in terms of TTS than ER—or practically
equivalent (with respect to a rope). Only taken into account runs that

finished within 4000 episodes.

Config texpl
Query ER practical IER

Function better equivalent better

Def-area 250 LS 0.00 0.00 100.00
Def-area 500 LS 0.00 0.00 100.00
Def-area 750 LS 0.00 0.00 100.00
Def-area 1000 LS 0.00 0.00 100.00

TABLE 4.10: Probability (in %) for the best performing IER configura-
tions in the CE state-encoding that the solution rate of IER is greater

than the solution rate of ER.

Config texpl Query Function p (pIER > pER)

Def-area 250 LS 75
Def-area 500 LS 100
Def-area 750 LS 100
Def-area 1000 LS 100

as the solution rate.
While Table 4.11 confirms the previously mentioned results, it also reveals a dis-

tinct behavior of the state encoding compared to the VE state encoding used earlier.
Contrary to the expected decrease, the mean TTS shows an increase with higher
values of texpl. This effect is more pronounced in ER but is also noticeable in IER.

TABLE 4.11: Most likely values and uncertainties for the mean TTS
of IER and ER for the best performing configurations of the CE state-
encoding given as the modes and 95 % HDPIs of the estimated distri-

butions of µER and µIER.

Config texpl
IER mean TTS ER mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Def-area 250 649 [601, 699] 1038 [941, 1234]
Def-area 500 980 [921, 1053] 2518 [2112, 3250]
Def-area 750 1463 [1377, 1568] 3549 [3022, 4715]
Def-area 1000 1738 [1605, 1867] 4885 [4098, 6889]

Analysis of the results for the LKE state-encoding

The LKE state-encoding is the most complex one as the global knowledge that was
present in the former two encodings is replaced with a local knowledge and no spa-
tial dependency is present between neighbouring states.
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FIGURE 4.6: Density plots of the posterior distribution of µDQN −
µFU-DQN for best performing IER configurations of the CE state-
encoding. Orange colors indicate the central 95 % HPDI (also known
as the 95 % credible interval; 95 % of central probability mass lies within
these bounds). The green area indicates the rope in which a difference

is treated as practical equivalent.

While for all exploration lengths a configuration could be found that outperforms
ER in terms of TTS with a probability of at least 64 %, the majority of configurations
performed poorly and had a 100 % probability of being worse than ER. For the Full-
area configuration and the Full configuration for texpl = 1000 LS not a single run
was able to solve the problem in time and consequently no statistical model was
computable. However, the configurations that have shown acceptable to good per-
formance are: Def-ONS, Def-area-ONS, Zeta-OnPolONS and Zeta-area-OnPolONS.
Table 4.12 shows the best configurations and overall it can be observed that ONS and
Zeta-* are preferred configurations for the LKE encoding. Furthermore, LS appears
to outperform the PD query function, although the difference is not substantial.

In terms of solution rates, Table 4.13 reveals that the found configurations can
be expected to outperform ER. This mirrors the observed results from the former
state-encodings.

Figure 4.7 displays the probability distribution of the means of the differences in
TTS and, once more, confirms the results from Table 4.12. Even if the majority of
the probability mass is to the right of the rope, it is not as obvious as with the CE
encoding. Furthermore, the span of the HDPI is much smaller when compared with
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TABLE 4.12: Probabilities (in %, rounded to two decimal places) for
the best performing configurations in the LKE state-encoding of IER
performing better or worse in terms of TTS than ER—or practically
equivalent (with respect to a rope). Only taken into account runs that

finished within 4000 episodes.

Config texpl
Query ER practical IER

Function better equivalent better

Zeta-area-OnPolONS 250 LS 29.88 5.83 64.29
Zeta-OnPolONS 500 LS 12.91 3.68 83.41
Def-ONS 750 PD 16.60 4.50 78.90
Zeta-OnPolONS 1000 LS 5.32 2.40 92.28

TABLE 4.13: Probability (in %) for the best performing IER configura-
tions in the LKE state-encoding that the solution rate of IER is greater

than the solution rate of ER.

Config texpl Query Function p (pIER > pER)

Zeta-area-OnPolONS 250 LS 60
Zeta-OnPolONS 500 LS 94
Def-ONS 750 PD 86
Zeta-OnPolONS 1000 LS 78

the CE plots.
The raw mean values of the TTSs reveal, that an increase of texpl does not have

any remarkable influence on the TTS. The time that is needed to solve the LKE en-
coding on average is at around 3000 episodes for ER and a few hundred episodes
below for the best performing IER configurations.

TABLE 4.14: Most likely values and uncertainties for the mean TTS of
IER and ER for the best performing configurations of the LKE state-
encoding given as the modes and 95 % HDPIs of the estimated distri-

butions of µER and µIER.

Config texpl
IER mean TTS ER mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Zeta-area-OnPolONS 250 2860 [2556, 3219] 3043 [2654, 3406]
Zeta-OnPolONS 500 2910 [2645, 3198] 3183 [2832, 3721]
Def-ONS 750 2739 [2528, 3051] 2983 [2676, 3443]
Zeta-OnPolONS 1000 2854 [2619, 3258] 3240 [3033, 3695]

4.4 Discussion

The evaluation results of the Linear Reward Interpolation for discrete and non-
deterministic environments on three different state-encodings of the FROZENLAKE8x8
problem showed that the general concept of IER does work. It was possible to find
an IER configuration for all encodings and almost all exploration lengths that has a
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FIGURE 4.7: Density plots of the posterior distribution of µDQN −
µFU-DQN for best performing IER configurations of the LKE state-
encoding. Orange colors indicate the central 95 % HPDI (also known
as the 95 % credible interval; 95 % of central probability mass lies within
these bounds). The green area indicates the rope in which a difference

is treated as practical equivalent.

positive probability (> 50 %) towards solving the problem in less episodes than the
ER baseline. Most of the configurations even have a very high probability (> 80 %)
towards outperforming ER in terms of TTS. It was however, not possible to identify
a superior configuration and query function that performed best in all investigated
problems. In fact, IER with linear reward interpolation is an algorithm that comes
with a high number of hyperparameters that need to be tuned individually for ev-
ery problem. The three investigated state-encodings represent different challenges
and difficulties and the proof-of-concept approach was able to solve all of them in
a satisfying way. It was possible to show that the right IER configuration is able
to increase the solution rate of a problem when compared with a baseline ER. This
can be interpreted such that IER with linear reward interpolation is able to help the
learner to solve a problem more consistently. This might be reasoned by an increased
exploration that is able to guide the policy out of local maxima.

In general it can be said that IER with linear reward interpolation provides a
solution for exploiting gathered knowledge to generate meaningful synthetic expe-
riences (Q 1), an initial answer to the question of what parts of an experience can be
interpolated (Q 2) and how synthetic experiences can be used to assist a DQN with
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learning (Q 3).
As the presented IER approach was able to solve the problems in less TTS than

ER, it can be stated quite confidently that the usage of synthetic experiences in combina-
tion with a DQN results in faster convergence (Q 4) or at least in a solution of the defined
problem in less episodes. If less episodes are required to solve a problem, then ob-
served samples (i.e. experiences) have more impact and consequently the sample
efficiency is increased (Q 4). Furthermore, as the usage of synthetic experiences is
beneficial and true experiences are used to generate them, the sample efficiency is
increased even further.

However, the IER approach with linear reward interpolation is a proof-of-concept
that is designed for discrete and non-deterministic environments and will only work
in such. This is of course a restriction that prevents the IER approach from being
used in most of the problems out there. The main restriction is that follow-up states
are not interpolated in this initial version of IER, and the reason behind this decision
was discussed in section 4.1. However, if this restriction could be lifted, then IER
would be ready for continuous environments as well.
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Interpolated Experience Replay

The former chapter introduced an initial proof-of-concept IER that performed well
and showed that the concept of using synthetic experiences in a replay buffer can be
beneficial. However, only the reward of the synthetic experience was interpolated
and the follow-up state, as well as the done tag have been copied from observed ex-
periences. This is a major restriction and makes the algorithm only usable in discrete
and non-deterministic environments. To enable IER for continuous environments as
well, this restriction has to be lifted. The following chapter will take a close look
at the problem of the follow-up state interpolation and try to find a method to gen-
erate synthetic follow-up states so that synthetic experiences can be generated for
any position in a continuous state-space. With such a solution at hand, IER is de-
veloped to a state that is usable in a wide range of problems and beyond a proof-of-
concept. Continuous environments require sophisticated nearest neighbor searches
and consequently methods that can do that. Furthermore, as the buffer is changing
constantly, solutions for fixed datasets can not be used or need to be adapted. An
in-depth evaluation proofs that IER works in continuous environments.

Parts of the following text have already been published in a similar form in
[PSH22b].

5.1 Interpolation of the Follow-up State

The analysis of the individual components of an experience, regarding their inter-
polability (cf. subsection 4.1.1), revealed that certain elements, such as the follow-up
state and the terminal tag, pose higher risks when interpolated compared to others,
such as the reward. If one is willing to take the risk of interpolating the follow-up
state (and the terminal tag), then the interpolation error should be as small as possi-
ble.

5.1.1 Problem Description

A naive approach to interpolate a follow-up state (and a terminal tag) would be the
usage of the raw values of the observed follow-up states of NNq as sampling points.
In a very simple environment, a state is a position on a line and the action-space is
defined as A = {move-left, move-right}. Figure 5.1 depicts a situation that might
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occur and that the naive interpolation of raw follow-up states is not able to solve in
a satisfying way. The situation is such that a query point xq is drawn with a query
action Aq == move-right. All available experiences however, that are stored in the
replay buffer and located within a given distance (NNq) start to the left (S∗) and also
all corresponding follow-up states (S′∗) are located to the left of xq as well. When
the raw values of S′∗ hold as sampling points, then the corresponding interpolated
follow-up state would be somewhere in between them, as can be seen in the example
as the violet point. However, as the action is move-right, the true follow-up state that
corresponds to xq should be somewhere to the right (orange point). The displayed
example is in fact a case of extrapolation instead of interpolation as the searched
point is located outside of the sampling points. Unfortunately, there is no way to
detect such cases in a reliable way without using domain knowledge that is not
available to the agent. Furthermore, extrapolation is a much more complex problem
than interpolation and comes with a lot of other difficulties that rather complicate
the main task of generating a synthetic follow-up state instead of reducing risk and
interpolation errors. Of course, such a case will not appear too frequently and one
might argue, that such cases could be ignored if most of the follow-up state inter-
polations are exact enough, but as discussed in subsection 4.1.1 the follow-up state
is a crucial part of the learning update and thus the experience itself. As the goal is
to reduce risk and not to increase it (even in eventually small amounts of cases) the
naive approach of the interpolation of raw follow-up states is not suitable for IER.

FIGURE 5.1: Illustration of the follow-up state interpolation dilemma.

S1 S′1 S2 S′2 S3 S′3

sampling points

query point
interpolated follow-up state

true follow-up state

If the terminal tag is interpolated by using observed tags from NNq, it might
appear a problematic situation as well. In the simple environment from above, the
goal is defined at some position, and reaching some point to the right of that point
terminates a run. Dependent on NNq, it might appear the case when an experience
would not reach that point, but the interpolated terminal tag is set to true. Such an
experience could irritate the learner as (depending on the reward function) no (pos-
itive) reward is received and the expected positive action-value of the next action
that reaches the goal is missing. The other case would be that an experience would
reach the goal but because of the sampling points, the terminal tag is set to false
and thus, the TD-error would inherit an action-value of a state that has never been
visited as it is impossible to do so. Of course such a synthetic experience would
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irritate the learner as well. In contrast to the extrapolation dilemma from above,
the problematic cases for the terminal tag can only appear near the goal state. This
reduces the likelihood of occurrence, making it small enough to be acceptable. Fur-
thermore, as the agent is guided towards the goal state, it visits states close to the
goal state more frequently; this reduces the likelihood of occurrence even further.
Even if some interpolations of the terminal tag might be misleading, it can be stated
quite confidentially that the amount of them will be small enough to be neglected.

5.1.2 Transition-Delta Interpolation

As presented above, using raw observed follow-up states as sampling points can
produce unrecognized extrapolation cases that can not be handled sufficiently. To
nevertheless be able to generate interpolations of the follow-up state, another so-
lution is required. Figure 5.2 shows the same situation as before, but the state-
transition-deltas are used as sampling points instead. As a state-transition always
directly correlates with the corresponding start state the state-transition-delta holds
as a good value to interpolate. An action chosen in a given state leads to a concrete
follow-up state, and thus, some form of dependency can be assumed here. Further-
more, extrapolation cases can not appear, no matter of how NNq is distributed. An
interpolated state-transition-delta can be added to Sq and as it was interpolated by
sampling points that executed Aq, the produced synthetic follow-up state Ssyn can
be expected to be within a neglectable distance of the true value. This also holds
for more complex environments (higher dimensional) as long as St+1 is directly de-
pendent from St and At. State-transition-deltas interpolated for more complex state-
spaces might not match the true value exactly, but, as mentioned above, the error is
expected to be small.

FIGURE 5.2: Illustration of the interpolation of the state-transition-
delta to generate stable follow-up state interpolations.
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The state transition delta is computed as follows:

δt = St+1 − St, (5.1)
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and with an interpolation of the state-transition-delta δq at hand, the synthetic follow-
up state Ssyn can be defined as:

Ssyn = Sq + δq. (5.2)

Research question Q 2 asks what parts of an experience can be interpolated and
what needs to be considered by doing so. As discussed above, it is possible to in-
terpolate the reward and the terminal tag straight ahead. The follow-up state itself
can be generated by interpolating the state-transition-delta, and thus, all parts of an
experience can be generated by means of interpolation. If these interpolations are
good enough to assist the learner in a positive way however, is a question that still
remains to be answered by an evaluation.

5.2 Interpolated Experience Replay for Continuous Environ-
ments

Having a solution available for interpolating the follow-up states and terminal tags,
IER can be effectively prepared for continuous state-spaces. Nevertheless, further
adjustments are necessary and will be presented in the subsequent sections.

5.2.1 Nearest Neighbor Search

While in discrete state-spaces a simple exact match query was enough to generate
NNq, this is not sufficient enough for continuous state-spaces any more. The state-
space is infinite and thus much bigger than a limited discrete one. An exact match
query would result in zero matches most of the time, as even a very small difference
in one dimension of the state-space could exclude a potential neighbor. Sophisti-
cated NN algorithms as introduced in section 2.6 are required.

As already mentioned in section 2.6, the presented algorithms are designed for
fixed datasets and are therefore inflexible and not ready for constantly changing
data. The solution that was used in this work was to rebuild the tree in a constant
interval L. To ensure a behavior that is as close as possible to a naive approach that
is a simple list, the whole IER buffer was split into the following parts:

1. A list of real experiences that holds only true experiences that have been gen-
erated by interaction with the environment. This list is used for minibatch
queries.

2. A tree-structure of real experiences that is used for NN searches to interpolate
synthetic experiences.

3. A shrinking memory of synthetic experiences that is a list.

To have access to all true samples at all times, and store true experiences that are not
part of the tree structure yet, a list of the true experiences is maintained at all times.
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The size of that list is exactly L bigger than the size of the tree. When the tree is
rebuild, then the list holds all experiences that are in the tree plus L experiences that
are not part of the tree yet. The new tree will be build out of all experiences from
the list without the first L experiences. When a minibatch needs to be retrieved, then
samples are drawn at random from the combined list of real and synthetic experi-
ences.

An in-depth analysis of the rebuild functionality will discuss the benefits and
disadvantages: First of all, rebuilding is costly and should be kept to a minimum. On
the other hand, accurate interpolations require a buffer that is as actual as possible
to have access to relevant sampling points. Thus, a compromise is required and the
hyperparameter L needs to be tuned depending on the problem and the size of the
buffer. Observed experiences in between two build operations are not part of the
tree and can also not appear in a NN search during that time. However, experiences
are stored in the tree-structure as soon as the rebuild happens and are (dependent of
the time of occurring in relation to the last rebuild) longer/shorter part of the buffer
as they would be in the naive case. In the best case, an experience is added to the
buffer at the time it was observed because at that moment a rebuild was triggered
and remains there L time steps longer as it would be part of the buffer in the naive
case. Thus, in the best case, samples remain L times longer in the buffer. The worst
case is when an experience is added to the buffer L times after it was observed,
because the rebuild happened just before the observation and is excluded exactly
at the time the naive approach would replace it. Thus, in the worst case, samples
remain L times shorter in the buffer. On average experiences are included into the
tree L

2 time steps later than the occurrence, and remain there L
2 time steps longer as

in the naive case, which turns out to be the same duration on average delayed by ≈
L
2 time steps.

It can be seen, that the time a sample can be used for NN searches is the same as
with the naive approach (on average). However, this time is delayed and the choice
of a huge L would result in interpolations with out-dated data. Such a behavior
could possibly harm the learning process and needs to be avoided. The choice of
L should therefore be small enough. On the other hand, a choice of L that is too
small would cost a disproportional amount of resources and should therefore be
avoided as well. As mentioned above, L is a hyperparameter that needs to be tuned
individually.

The set of NNq is searched in the tree-structure and all experiences that start (St)
within a predefined radius nnthresh are selected.

5.2.2 Query Functions

An evaluation of different query functions in [PSH21] revealed that the IER ben-
efits from a sampling method that follows the distribution that is created by the
policy. An off policy equivalent of this distribution is present in the real experience
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buffer as it was created by the policy. In discrete environments, it was enough to
draw an experience (PD) or take the last observed one (LS) out of the real valued
buffer and use the received state-action pair as query point. This is no longer rea-
sonable for continuous environments, because the number of states is much bigger,
and, the state-space should be explored instead of just interpolating points for which
the exact corresponding reward and follow-up state is already known. The method
needs to be adjusted to work again, and to achieve this, the query point is drawn
within a radius rsq around the state received from the drawn real example. To sim-
plify this hyperparameter for multidimensional state spaces, it is defined as follows:
0 ≤ rsq ≤ 1. When the maximum value of each dimension is known, it is possible to
determine a corresponding radius for each dimension:

rd
sq = rsq ∗ Sd

max ∀ d ∈ Sdim, (5.3)

with Sdim being the dimensionality of the state space. If the state space is defined as
infinite or not known for one or more dimensions the maximum discovered value
for the appropriate dimension(s) can be tracked and used instead. To follow an on
policy variation of the distribution (LS) the state-action pair that was recently created
by the policy can be used instead of sampling from the buffer.

5.2.3 IER algorithm

To be able to ensure at least some accuracy of the conducted interpolations, a pa-
rameter minspoints is introduced that specifies the minimum required amount of sam-
pling points before an interpolation is performed. Algorithm 2 from chapter 4 can
be adapted to work in continuous environments and is transformed to Algorithm 3.
The presented algorithm represents the final version of IER and is ready to be used
in continuous environments. IER for continuous environments provides an answer
to Q 1 - Q 3.

5.3 Evaluation

The presented algorithm extends the proof-of-concept from chapter 4 to a version
that is theoretically ready to work in continuous environments. However, it still
remains the question if IER can be beneficial in terms of episodes that are required
to solve a problem with continuous state-space. The following section will perform
an evaluation that investigates if IER can reduce the required time to solution and
consequently increase sample efficiency (Q 4).

5.3.1 MountainCar Environment

The MOUNTAINCAR environment from OpenAi Gym [Bro+16a] is a prominent bench-
mark problem that was chosen for evaluational purposes. In this problem an agent,
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Algorithm 3 IER for continuous environments

1: Initialize D, Dinter

2: Initialize nnthresh, minspoints
3: Initialize ssyn_min, ssyn_max, ser_max
4: while Training do
5: Store Experience e in D
6: if |D| ≥ cstart_inter then
7: Find xq = (Sq, Aq) based on Query Function F
8: Get NNq =

{
et|d(Sq, St) ≤ nnthresh ∧ At = Aq

}
from D

9: if Not |NNq| ≥ minspoints then
10: Continue
11: Interpolate Rsyn based on NNq
12: Interpolate δq based on NNq
13: Compute Ssyn = Sq + δq
14: Interpolate dsyn based on NNq
15: Generate esyn =

(
Sq, Aq, Rsyn, Ssyn, dsyn

)
16: Store esyn in Dinter

17: sp = max[ssyn_min, ser_max − |D|]
18: while |Dinter| > min[sp, ssyn_max] do
19: Remove e from Dinter

20: sp = max[ssyn_min, ser_max − |D|]

the mountain car, starts in between two hills and has to reach the top of the right hill.
The action-space consists of three actions: A = {move-left, move-right, do nothing}.
As the car on its own is not powerful enough to drive up the hill straight away, it has
to build up height on one side and use speed that is acquired by driving downwards
to build up more height on the other side. By exploiting this effect the agent is able
to finally reach the goal on the right hill. Figure 5.3 illustrates the environment.

Car

Goal

v

x

state: [x, v]

FIGURE 5.3: MOUNTAINCAR environment.

A state is defined as the position and the velocity at a time step. An episode is
over if the agent reaches the goal or a maximum time limit of 200 steps is exceeded.
An episode is considered as terminated (terminal tag) only if the goal was reached.



80 Chapter 5. Interpolated Experience Replay

Every step is rewarded with a reward of -1, and the positive incentive for reaching
the goal is the terminal tag which results in no estimation of the action-value of a
follow-up state. As only negative rewards are received until the goal was reached
once, the exploration in the beginning is crucial and bad or too less exploration might
result into a high time to solution (or even never being able to solve the problem).

5.3.2 Experiments

Several different IER configurations have been evaluated that, to some extend, have
also been part of the evaluation in section 4.3. Note that ONS is not possible for con-
tinuous states-spaces as the follow-up state is interpolated instead of being drawn
from observed ones. The different configurations are presented in the following:

1. Def: This configuration is the same as in chapter 4. The synthetic buffer is
filled as long as the real valued buffer is not full yet.

2. Def-OnPol: This configuration is the same as in Def with the addition that in-
terpolations are performed for exactly one action that is retrieved by the actual
policy.

3. Def-zeta: This configuration is the same as Def but ζ is used to prolong the
time that interpolations are generated and added to the buffer.

4. Del-zeta-OnPol: This configuration is the combination of Def-zeta and Def-
OnPol.

5. Full: This configuration is the same as in chapter 4. The synthetic buffer is
filled to the same amount as the maximum size of the real valued buffer and
this continues for the whole training.

6. Full-OnPol: This configuration is the same as Full with the addition that in-
terpolations are performed for exactly one action that is retrieved by the actual
policy.

5.3.3 Hyperparameters

The hyperparameters that are shared by IER and ER have been tuned by a hyperpa-
rameter search. Most hyperparameters are shared by IER and ER to ensure compa-
rability and are presented in Table 5.1

As only the IER configurations make use of a synthetic buffer, ssyn_min is of no
relevance for the baseline or rather set to zero. The same thing holds for the point
in time when interpolation starts, the search radius for the query point, the inter-
polation threshold and the minimum required amount of sampling points. All of
these hyperparameters are shared by all IER configurations. The chosen values can
be observed in Table 4.3:
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TABLE 5.1: An overview of shared hyperparameters of IER and ER
for the MOUNTAINCAR task.

Parameter Values

Learning rate α 0.00015
Gamma γ 0.99
Epsilon start 1
Epsilon min 0
Tau τ 0.4
Soft target update True
Double DQN True
Dueling Architecture True
Real valued buffer size ser_max 50,000
Start learning at size of buffer 300
Minibatch size 32
Hidden Layer [50, 200, 400]

TABLE 5.2: An overview of the hyperparameters that are shared by
all IER configurations.

Parameters Values

Synthetic buffer size ssyn_max 50,000
Start interpolation at size of buffer 100
Query radius rsq 0.05
Interpolation threshold nnthresh 0.005
Minimum amount of sampling points minspoints 2

All IER configurations use an IDW interpolation (cf. subsection 2.5.2) with a
power parameter of pidw = 2. Further more, when IER was used, a ball-tree (cf.
subsection 2.6.2) managed true experiences to speed up NN searches. The tree was
rebuilt every 2000 steps. The minimum size of the synthetic buffer ssyn_min is dif-
ferent for each configuration. All configurations that are combinations of them (*-
OnPol) and that are not listed separately below share these values. The Zeta config-
urations use ζ while for all other configurations no ζ was used. Table 5.3 provides
an overview of the used parameters:

TABLE 5.3: An overview of the different hyperparameters for the dif-
ferent IER configurations.

Configuration ssyn_min ζ M

Def 0 - -
Def-zeta 20,000 1 1500
Full 50,000 - -
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5.3.4 Statistical Analysis

The statistical analysis of the results follows the structure that was presented in sub-
section 4.3.4. Runs have been repeated 40 times with different random seeds and
were terminated after 4000 episodes.

5.3.5 Results

For the sake of space, only the best performing configurations for the four different
exploration lengths are presented in this section. A complete overview of the results
of the conducted experiments is provided in Appendix B.

The MAR for the MOUNTAINCAR problem is defined in OpenAI Gym as an av-
erage value of -110 over 100 consecutive episodes.

Table 5.4 shows the best performing IER configurations for the following explo-
rations lengths texpl = {250, 500, 750, 1000}. A very short exploration time of 250
episodes was very good for ER and IER was not able to outperform it here, as the
probability that IER solves the problem faster than ER is only at around 23 % whereas
the probability that ER solves the problem faster is at around 75 %. Even if there is
at least some evidence towards IER outperforming ER in terms of TTS, it can be ex-
pected that IER will perform worse in most of the cases. Furthermore, Def-OnPol LS
was the best performing configuration and all other IER configurations performed
even worse. However, for increased exploration phases IER shows very strong evi-
dences (≥ 90 %) in favor of IER. This holds for all evaluated configurations. The LS
query function is thereby performing better than PD in most of the cases and seems
to be a better choice in general.

TABLE 5.4: Probabilities (in %, rounded to two decimal places) for
the best performing configurations on the MOUNTAINCAR problem
of IER performing better or worse in terms of TTS than ER—or prac-
tically equivalent (with respect to a rope). Only taken into account

runs that finished within 4000 episodes.

Config texpl
Query ER practical IER

Function better equivalent better

Def-OnPol 250 LS 75.54 1.04 23.42
Def-OnPol 500 LS 1.82 0.30 97.88
Def 750 LS 3.60 0.53 95.86
Def-zeta-OnPol 1000 PD 3.49 0.41 96.10

Table 5.5 shows the probability that the solution rate of IER is bigger than the
solution rate of ER. Similar to the results from section 4.3, the configurations that
outperform ER in terms of TTS have a high probability to have a higher solution
rate in general.

The histograms in Figure 5.4 show the probability distribution of the difference
of the means of the TTS of IER and ER and confirm the results from above. An
exploration phase that is longer than 250 episodes favors IER and the majority of
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TABLE 5.5: Probability (in %) for the best performing IER configura-
tions on the MOUNTAINCAR problem that the solution rate of IER is

greater than the solution rate of ER.

Config texpl Query Function p (pIER > pER)

Def-OnPol 250 LS 28
Def-OnPol 500 LS 93
Def 750 LS 93
Def-zeta-OnPol 1000 PD 97

the probability mass is to the right of the green area that indicates the rope. The
Def-OnPol LS configuration at texpl = 500 for example can be expected to solve the
MOUNTAINCAR problem between 205 and 2087 episodes faster in 95 % of the times.
A short exploration phase of texpl = 250 favors ER as the majority of the probability
mass is to the left of the rope.
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FIGURE 5.4: Density plots of the posterior distribution of µDQN −
µFU-DQN for best performing IER configurations on the MOUNTAIN-
CAR problem. Orange colors indicate the central 95 % HPDI (also
known as the 95 % credible interval; 95 % of central probability mass
lies within these bounds). The green area indicates the rope in which

a difference is treated as practical equivalent.

An overview of the most likely TTSs of the best performing IER configurations
is given in Table 5.6 and shows that ER performs best in the texpl = 250 case while



84 Chapter 5. Interpolated Experience Replay

IER is able to outperform in the other cases. Even if ER is able to solve the MOUN-
TAINCAR problem very well with an exploration phase of 250, it can be seen that
IER performs good when given enough time to generate synthetic experiences.

TABLE 5.6: Most likely values and uncertainties for the mean TTS
of IER and ER for the best performing configurations on the MOUN-
TAINCAR problem given as the modes and 95 % HDPIs of the esti-

mated distributions of µER and µIER.

Config texpl
IER mean TTS ER mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Def-OnPol 250 1909 [1551, 2596] 1688 [1350, 2196]
Def-OnPol 500 2240 [1852, 2783] 3142 [2642, 4248]
Def 750 2213 [1961, 2792] 2941 [2532, 4041]
Def-zeta-OnPol 1000 2908 [2507, 3664] 3799 [3331, 5465]

5.4 Discussion

IER for continuous environments provides an answer to the question of how gath-
ered knowledge in form of stored experiences can be exploited to generate meaning-
ful synthetic experiences (Q 1). Furthermore, it was shown that all parts of an ex-
perience can be interpolated, even if the generation of the synthetic follow-up state
requires the interpolation of the state-transition-delta to reduce expected interpola-
tion errors and overcome the problem of potential occurring extrapolation cases (Q
2). It was also shown how synthetic experiences can be used to assist a DQN with
learning (Q 3).

Q 4 raises the question if synthetic experiences can be used in combination with
a DQN to speed up convergence and increase sample efficiency. The evaluation
showed that a baseline with original ER is able to solve the MOUNTAINCAR problem
better than IER in general, but when exploration is increased IER started to outper-
form ER and was able to solve the problem faster and more consistently. Thus, it can
be expected that IER requires a sufficient amount of time to generate experiences
that are good enough that they can help with exploration. Furthermore, at least in
the investigated problem, it seems that the LS query function performs better than
PD which might be reasoned by the fact that LS stays closer to the distribution that is
generated by the policy. The best performing configuration was Def-*, which is the
one that generates lesser synthetic experiences as the Full configuration and it seems
to be better when the amount of them is only high in early phases when exploration
is high.

Overall, it can be said, that IER is able to assist a DQN and reduce TTS when
exploration is high and the agent has a hard time to explore the problem-space. In
such cases, IER can increase sample efficiency as not only the problem is solved in
less episodes, but also true experiences are used to generate synthetic ones by means
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of interpolation. However, interpolation is costly and thus, IER seems like a good
option in scenarios where a lot of exploration is required but on the other hand is
expensive (like in real-world scenarios).
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Chapter 6

Full-Update Deep Q-Network

The former sections introduced how synthetic experiences can be generated by means
of interpolation based on stored real experiences as sampling points. Those interpo-
lated experiences have then been included into the replay buffer while the training
functionality of the DQN has not been changed. However, adding synthetic samples
to the buffer is not the only way that they can be used to assist a DQN. In this section,
the Full-Update DQN (FU-DQN) is presented that generates synthetic experiences to
do training updates that cover the whole action space. An evaluation on several
different environments with a sparse reward setting shows that FU-DQN is able to
solve these problems more consistently and even faster than the original approach.

Parts of the following text have already been published in a similar form in
[Pil+23].

6.1 Full-Update DQN

As mentioned above, IER is not the only possibility to make use of synthetic experi-
ences. FU-DQN uses them to perform updates that do take the whole action-space
into account.

6.1.1 The Unused Potential of a DQN Update

A DQN model is built such that it accepts a state as input and predicts Q-values for
every action in the action-space. This design was chosen, because the agent needs
access to all Q-values of a current state in order to pick the action that maximizes the
expected return which is estimated by the Q-value (cf. section 2.4). An alternative
design would accept a state-action pair as input and predict the single corresponding
Q-value. To find the best action, a feed-forward operation would then be necessary
for every possible action, which increases the required computational effort. It is
possible to reduce this amount to one when the first mentioned design is used. In
each training step, experiences are drawn from the ER buffer and the TD error is
computed for each of them to be used as a loss for updating the network. Since
DQNs have an output node for every action in the action-space A, the loss for every
action could be calculated given the TD error of that action. However, as can be seen
in Equation 2.20, to calculate the TD error for an action, the immediate reward Rt as
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well as the follow-up state St+1 are required. These values are only known for the
action that has been actively chosen for the corresponding experience and, therefore,
the losses for the unknown actions are treated by setting them to zero. By doing so,
the back-propagated loss can be attributed clearly to the chosen action.

In Figure 6.1 it can be observed, that the loss for one sample out of a minibatch
is computed by the sum of the TD errors from all output nodes.

FIGURE 6.1: Graphical illustration of a DQN loss.
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This can be concretised like shown in Figure 6.2. For each subloss, the corre-
sponding TD error needs to be calculated. The problem is that only one experience
is at hand and this experience inherits the reward and the follow-up state for exactly
one action that was executed at the time the experience was generated. Let this ac-
tion be a2 and thus, as already explained above, the TD errors for a1 and a2 are set to
zero.

FIGURE 6.2: Intuition of a DQN update.

L(s) Q(s, a2)

Q(s, a3)

Q(s, a1)

− ra2 + γ ∗maxa Q(s′a2, a; θ)

− ra1 + γ ∗maxa Q(s′a1, a; θ)

− ra3 + γ ∗maxa Q(s′a3, a; θ)

This mechanism makes perfectly sense as the required values for all actions that
are not part of the given experience are unknown and not achievable at the time
of the update. But in general, the structure of a DQN is such that an update for
all actions would be possible if these values would be known. Even estimates of
these values would allow such an update, of course the potential errors need to be
addressed somehow. With such estimations at hand, it would be possible to perform
an update that takes into account all the possible actions, and therefore, would give the
learner a broader understanding of the environment dynamics in a single update
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operation. Depending on how the data needed additionally is obtained, the sample
efficiency as well as the amount of required training operations could be improved.

6.1.2 Updates for the Whole Action-Space

An algorithm that is able to perform DQN updates that take into account the whole
action-space is FU-DQN. This extension of DQN is able to utilize already stored
data in the replay buffer to generate the required data for the missing action-losses
by employing a Generation Function. First, the loss for a minibatch (a multiset) of
experiences {(s, a, r, s′)} = {e} = B at iteration i is defined as

LB(θi) =
1
|B| ∑e∈B

δ2
e,i (6.1)

with
δe,i =

(
r + γ max

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)
, (6.2)

where, like in the original work on DQNs, θi are the parameters of the Q-function
approximation at iteration i and θ−i are the parameters of the target network (cf. sec-
tion 2.4). Note that if Bi is chosen as the batch drawn uniformly from the ER buffer,
e ∼ U (D)∀e ∈ Bi, in iteration i, the original loss function is retrieved [Mni+15]:

LBi(θi) =
1
|Bi| ∑

e∈Bi

δ2
e,i ≈ Ee∼U (D)

[
δ2

e,i
]

(6.3)

Next, synthetic batches are introduced: A synthetic batch B̃ for a batch B based on the
generation function I is a multiset

B̃I = {(s, a′, r∗, s′∗) | (s, a, r, s′) ∈ B, a′ ̸= a, (s, a′, r∗, s′∗)← I(D; s, a′)} (6.4)

where the generation function has been used to generate synthetic experiences for
the state-action pairs (s, a′) based on the current ER buffer D. Such a synthetic batch
inherits |A| − 1 synthetic experiences for every real experience in Bi. These syn-
thetic experiences start in the same state s as the corresponding real experience does
but consider all actions a′ ∈ A \ {a} that differ from the action that is part of the
corresponding real experience. As mentioned before, the synthetic rewards r∗ and
follow-up states s′∗ are generated by I. Bi I is further defined as the union of the real
batch Bi and its synthetic batch based on the generation function I, Bi I = Bi ∪ B̃i I .
This leads to the following loss for batch Bi at iteration i:

LBi(θi) = LBi I
(θi) (6.5)
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6.1.3 Generation Function I

Note that I may use interpolation but that it is in general not limited to do so. It may
be any method that is able to generate a prediction of the reward and the follow-
up state based on stored (i. e. observed) experiences and given a state-action-pair.
Thereby, it is not mandatory that only data is used that is actually present in the ER
buffer but model-based approaches may be used as well. Other conceivable methods
are tied to the IER approaches. As introduced above, they use the stored samples
in the ER buffer as sampling points for interpolations, which is also the approach
utilized for the evaluations. To be more specific, the generation function I(D, s, a)
is defined for the purpose of this work as follows: Given a state s and an action a,
all neighbours that are located within a predefined distance around s and executed
action a are searched in the replay buffer D. Those nearest neighbours are considered
as sampling points for the interpolation of the synthetic reward r∗ and the follow-up
state s′∗. Similar to IER, IDW interpolation is used that weights sampling points that
are closer to the query point stronger than points that are further away. The output
of I(D, s, a) is therefore a synthetic experience e∗ = (s, a, r∗, s′∗), which is the same as
esyn = (Sq, Aq, Rsyn, Ssyn). In the edge case where the number of nearest neighbours
is 0, no meaningful interpolation is possible and the specific subloss for that state-
action-pair is set to zero such that no update is performed for the corresponding
action. The same is done if the number of nearest neighbours is 1 and that sampling
point does not perfectly match the query point. Figure 6.3 shows how the generation
function I is used to generate missing values of the TD errors of the actions that have
not been part of the given experience.

FIGURE 6.3: A graphical intuition of how the generation function I is
used to generate missing values for TD errors fo actions that have not

been part of the given experience.
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6.1.4 Handle Interpolation Noise

The generated data has to be expected to be noisy and, possibly, biased without be-
ing able to determine the magnitude of either error. This is due to the fact that the
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quality of an interpolation depends on the sampling points and the ability of the
reward-/state-transition-function to be interpolable. However, as mentioned above,
I is not forced to be an interpolation with other conceivable in-place options be-
ing models of the environment dynamics, which, depending on the type of model
and its goodness-of-fit (e.g. untrained vs. well trained vs. given pre training) might
produce untrustworthy estimates as well. To counteract this effect, weights are in-
troduced into (6.1) which yields the following updated definition:

LB(θi) =
1
|B| ∑e∈B

weδ
2
e,i (6.1a)

For any real experience e, the corresponding weight should be we = 1 which corre-
sponds to not changing their contribution to the loss function. For synthetic experi-
ences, on the other hand, we should probably be chosen such that we ≤ 1 since the
goal is to compensate for errors in data generation. Finding adequate values for the
we represents an intricate problem not solvable at runtime. In the experiments the
we are treated as hyperparameters and set

we =

1, e is a real experience

w, e is a synthetic experience,
(6.6)

that is, all the synthetic experiences are discounted by the same weight.

6.1.5 Expected Benefits

The proposed update mechanism considers the whole action space for every state
that has been part of a sampled experience. If the generated experiences would be
free from noise, this could be compared to performing the amount of |A| DQN up-
dates, one for every action in A. As discussed above, noise has to be expected in the
generated experiences and, therefore, this comparison should not hold true. How-
ever, as FU-DQN tries to compensate the noise by using weights and the generations
are trustworthy at least to some degree, the true increased efficiency can be expected
to be higher than the efficiency of only updating a single action but also below the
efficiency of updating all actions at once.

Another benefit is the increased exploration that comes with an update that con-
siders the entire action space. While DQN would require the same states with differ-
ent actions to be sampled again, FU-DQN updates them in one flush. Furthermore,
since synthetic experiences are weighted less, this exploration’s impact on the up-
date is not overwhelming (depending on w), and the main focus of the training re-
mains on the trajectories that are generated by following the policy. Both mentioned
points are expected to improve the performance of the learner as less experiences
are required to have the same training effect that DQN achieves with more sam-
ples. Thus, less iterations are expected to be required to solve a problem, which also
indicates an increased sample efficiency.
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In terms of research questions provides FU-DQN a different way than IER of how
synthetic experiences can be used to assist a DQN with learning (Q 3). Instead of
adding such experiences to the buffer and draw them at random, FU-DQN generates
exactly these synthetic experiences that are required at the moment of the update.
A drawback is of course the fact that once generated synthetic experiences are not
stored and thrown away after the update. As interpolation can be quite costly, this is
not ideal. If FU-DQN can help speed up convergence and reduce the required time
to solution and consequently increase sample efficiency (Q 4) can be answered only
after the evaluation.

6.2 Evaluation

In the former sections, the idea behind FU-DQN and its functionality have been
introduced. Even if the approach of updating the whole action space in one update
operation is expected to help with exploration and therefore should reduce the time
to solution, this can only be stated with high confidence after an in-depth evaluation.
To do so, several environments that share a sparse reward function and differ in
characteristics and difficulty are evaluated against an original DQN baseline (in the
following referred to as DQN).

6.2.1 Experiments

For evaluation purposes four environments that have different characteristics and
address different problem specifications have been identified. However, they all
have in common a sparse reward signal that is focused on a (large) positive reward
for the terminal state. The four environments are:

1. CHAIN-N: discrete, deterministic

2. FROZENLAKE: discrete, non-deterministic, three different rewards

3. MOUNTAINCAR: continuous, deterministic, three actions

4. UMAZE: continuous, deterministic, 8 actions

The first problem is mentioned by Andrychowicz et al. [And+17] as a motivat-
ing example for their Hindsight Experience Replay technique. The general environ-
ment is a simple bit-flipping problem and is described by an array of the size N
where every entry can be either one or zero. Therefore, the state-space is defined
as S = {0, 1}N and the action-space as A = {0, 1, . . . , N − 1} where the i-th action
flips the i-th bit. While Andrychowicz et al. investigated the area of multi-objective
RL and therefore draw a new goal for every episode, a target state is only drawn
once, in the beginning and kept for the rest of the run. A reward of -1 is received
until the state equals the goal and a reward of 1 is retuned. This problem is used as
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FIGURE 6.4: A graphical intuition of: (1) CHAIN-N, (2) FROZENLAKE
8x8, (3) MOUNTAINCAR and (4) UMAZE.

a very basic discrete and deterministic problem that can easily be increased in diffi-
culty by increasing the size N. As mentioned by Andrychowicz et al. a DQN is only
reasonably able to solve this kind of problem up to a size of N = 13.

The FROZENLAKE 8x8 environment from the OpenAI Gym [Bro+16b] is a non-
deterministic grid world and has already be introduced in subsection 4.3.1. The final
state returns a reward of 5, falling into a hole a reward of -1 and any other state a
reward of 0. The difficulty of this problem comes from its non-deterministic nature.

The first two environments focus on discrete state-spaces. A continuous one is
found in the MOUNTAINCAR environment from the OpenAI Gym [Bro+16b]. This
problem has already been introduced in subsection 5.3.1 In comparison to the for-
mer problems MOUNTAINCAR has a continuous state-space but also never returns
a positive reward.

The last problem is the PointUMaze-v1 environment from the Mujoco-Maze repos-
itory [Kan21]. In this problem, a ball has to manoeuvre from a start position to a goal
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in a U-shaped world. Originally, the action-space is continuous, but because com-
mon DQNs are not able to handle such spaces, it was discretized to 8 actions. The
speed the ball is moving with has been fixed to a constant value and different angles
that it can change its direction with are used as actions. A state is originally encoded
in six different parts. The first two are coordinates that describe the position of the
ball, the next one describes the actual direction that the ball faces and is encoded
in pi. The last three describe the angular velocity. The direction that the ball faces
poses a problem for interpolation and NN searches, as a value of π is the same as
the value of −π in this case and a value of π is close to a value of −π − ϵ whereas
ϵ is a small number. These values are very far away form each other when treated
as spatial distances, while they are in fact near to each other. To enable NN searches
and interpolations for that part of the state, it is converted to its absolute value and
a sevenths value is added to the state which is a boolean that indicates if π is posi-
tive or negative. A reward of -0.0001 is received in each step in which the goal has
not been reached yet; entering the goal yields a reward of 1. In comparison with
the MOUNTAINCAR problem, which is continuous as well, both the state- and the
actions-space of this problem are larger.

A graphical intuition of the four learning tasks is given in Figure 6.4. All ex-
periments used an ϵ-greedy exploration scheme and a DQN. For each particular
environment, the same set of hyperparameters is used for both FU-DQN and DQN
which have been tuned individually. For each learning task, 20 FU-DQN and 20
DQN agents are initialized (each seeded with a different random seed), each of them
placed in an independent copy of the environment and statistics are collected of their
respective performance (rewards received).

6.2.2 Hyperparameters

The hyperparameters that are shared by FU-DQN and DQN have been tuned by a
hyperparameter search for each problem and are presented in Table 6.1 and Table 6.2.

FU-DQN specific hyperparameters are the distance threshold that was used for
the NN search as well as the weights that have been used to counteract interpolation
noise. Those hyperparameters are presented in Table 6.3. The reason why CHAIN-
N and MOUNTAINCAR have a NN distance threshold of zero is because an exact
match query was used instead of a true interpolation. This method is more like a
local model of the environment as experiences are searched in the buffer that match
the exact situation and action. Because the underlying environments are discrete,
this approach is possible. Furthermore, by using this technique, interpolation errors
are not possible and the generated values can be trusted to 100 %, which is why the
value for we is set to 1.
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TABLE 6.1: Shared hyperparameters of the CHAIN-N and FROZEN-
LAKE task.

Parameter CHAIN-N FROZENLAKE

Learning rate α 0.0002 0.0005
Gamma γ 0.95 0.95
Epsilon start 1 1
Epsilon min 0 0
Tau τ 0.03 0.25
Soft target update True True
Double DQN True True
Dueling Architecture True True
ER buffer size 5,000 100,000
Start learning at size of buffer 100 200
Minibatch size 32 32
Hidden Layer [256] [128, 256]
Exploration length texpl 250 250

TABLE 6.2: Shared hyperparameters of the MOUNTAINCAR and
UMAZE task.

Parameter MOUNTAINCAR UMAZE

Learning rate α 0.00015 0.0001
Gamma γ 0.99 0.95
Epsilon start 1 1
Epsilon min 0 0
Tau τ 5 0.15
Soft target update False True
Double DQN True True
Dueling Architecture True True
ER buffer size 50,000 200,000
Start learning at size of buffer 2,000 2,000
Minibatch size 32 32
Hidden Layer [50, 200, 400] [50, 200, 400]
Exploration length texpl 500 200

TABLE 6.3: Specific hyperparameters of FU-DQN for each specific
task.

Task nnthresh we

CHAIN-N 0 1
FROZENLAKE 0 1
MOUNTAINCAR 0.005 0.05
UMAZE 0.1 0.1

6.2.3 Statistical Analysis

The statistical analysis of the results follows the structure that was presented in sub-
section 4.3.4. There are some differences in the parameters nevertheless. Runs were
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repeated for 20 times instead of 40, this is reasoned by time limitations. Also exper-
iments were only run for 3000 episodes before they were terminated, which results
in a value of uµ = 6000.

6.2.4 Results

The four different problems are evaluated seperately in the following subchapters.

Analysis of the CHAIN-N tasks

For the CHAIN-N problems three different complexities have been investigated, that
are, N ∈ {12, 20, 30}. While the CHAIN-12 problem should be solvable even for the
DQN approach, the state space of the latter two is rather large. As the FU-DQN
makes use of stored experiences, the hypothesis arose that the performance could be
improved with a single perfect episode in the buffer. Therefore, all experiments are
also run with the first episode having been guided directly towards the goal state, in
the following denoted as CHAIN-N w/ hints. If an episode is able to find the target
state within N steps a final reward of 1 is reported and 0 otherwise. This task’s
MAR is set to 1.0 for all tested values of N (i. e. the problem is considered as solved
as soon as the agent is able to find the goal state in 100 consecutive episodes). As
already mentioned above, for the generation function I a perfect match search in the
ER buffer was used and since perfect matches can be trusted, a weight of w = 1 was
used.

First, the solution rates are compared using the beta-binomial model as described
in Table 6.4 and the results are reported in Table 6.5. The values can be interpreted as
follows: For CHAIN-12, the collected data tells that there is a 82 % probability of the
solution rate of FU-DQN being larger than the one of DQN. Overall, Table 6.4 shows
that there is a definite tendency towards the solution rate of FU-DQN exceeding the
one of DQN on the CHAIN-N tasks, unless the problem is easy enough that both
approaches are able to solve it within 3000 episodes (which is the case for CHAIN-12
w/ hints) or so difficult that neither of them can (CHAIN-30).

Let’s now turn the attention to the difference in the TTS. To do so, the gamma-
distribution-based model from Section 4.3.4 is used. The probabilities obtained from
that model when factoring in the rope defined in Section 4.3.4 are given in Table 6.5.
It can be seen that, for CHAIN-12, the probability that FU-DQN solves the tasks faster
than (at least as fast as) DQN is 94.12 % (94.94 %). CHAIN-20 and CHAIN-30 were not
solved in time by any of the runs which is why this analysis cannot be performed
for these tasks. For CHAIN-12 and CHAIN-20 w/ hints, very strong evidence (over
99 %) can be seen in favor of FU-DQN. CHAIN-30 w/ hints was only solved in time
by very few runs (2 for DQN and 5 for FU-DQN, corresponding to 90 % and 75 %
of data being censored). Even if, for both approaches, the problem seems to be too
difficult to be solved within time consistently, there is some slight evidence (63.86 %)
towards FU-DQN performing at least as well as DQN.
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TABLE 6.4: Probability (in %) for each task that the solution rate of
FU-DQN is greater than the solution rate of DQN. A * indicates that
for at least one of the methods, not a single run was able to solve the

problem in time.

Experiment p (pFU-DQN > pDQN)

CHAIN-12 82
CHAIN-20* 76
CHAIN-30* 50
CHAIN-12 w/ hints 50
CHAIN-20 w/ hints 88
CHAIN-30 w/ hints 87
FROZENLAKE 76
MOUNTAINCAR 77
UMAZE 50

TABLE 6.5: Probability (in %, rounded to two decimal places) of FU-
DQN performing better or worse in terms of TTS than DQN—or prac-
tically equivalent (with respect to a rope). Only takes into account
runs that finished within 3000 episodes. A * indicates that the test
was not possible, because, for at least one of the two methods, not a

single one of the runs was able to solve the problem in time.

Experiment
DQN pract. FU-DQN
better equiv. better

CHAIN-12 5.06 0.82 94.12
CHAIN-20 ∗ ∗ ∗
CHAIN-30 ∗ ∗ ∗
CHAIN-12 w/ hints 0.4 0.26 99.34
CHAIN-20 w/ hints 0.01 0.02 99.97
CHAIN-30 w/ hints 36.15 2.05 61.81
FROZENLAKE 0.0 0.01 99.99
MOUNTAINCAR 3.24 0.50 96.26
UMAZE 16.1 4.46 79.44

Figure 6.5 displays the distributions of the difference of the means of the TTS
distributions for the three main CHAIN-N tasks that were comparable using the TTS
model. The distribution for CHAIN-30 w/ hints is not plotted, because the amount of
censored data is above 75 %. This visualizes the results from Table 6.5: Only for the
CHAIN-12 problem there is considerable probability mass to the left of 0 indicating
that DQN may, with a rather low probability, be better than FU-DQN. Figure 6.5
also shows the central 95 % HPDI which indicates, that for CHAIN-12 one can be
very confident that the true value of the mean difference lies between -10 and 851
episodes.

Table 6.6 gives summary statistics of the distributions over the TTS means (the
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FIGURE 6.5: Density plots of the posterior distribution of µDQN −
µFU-DQN for the three CHAIN-N problems that the gamma-
distribution-based model is applicable to. Orange colors indicate the
central 95 % HPDI (also known as the 95 % credible interval; 95 % of
central probability mass lies within these bounds). The green area in-

dicates the rope.

distributions of µi for i ∈ {DQN, FU-DQN}). The most likely value (mode of the
distribution over mean values µi) is reported as well as a measure of uncertainty
(once more, 95 % HPDIs). It can be observed that the TTSs of FU-DQN are smaller
than the TTSs of DQN. Furthermore, the differences of the mean TTSs align with the
distributions in Figure 6.5.

Analysis of the results for the FROZENLAKE task

For the FROZENLAKE task, similar to the CHAIN-N task, successful runs are reported
with a final reward of 1. The MAR is set to 0.8 which corresponds to a success rate of
80 %. Because of the non-deterministic nature of the problem it is possible to fall into
a hole despite of using a good policy. For the generation function I, the linear reward
interpolation (cf. chapter 4) is used, with the additional restriction that exactly one
interpolation is required and thus, one follow-up state from the distribution of stored
possible follow-up states is drawn (cf. ONS). I is trusted (discrete environment) and
a weight of w = 1 is used.

Table 6.4 shows that, with respect to solution rate, FU-DQN is favoured with a
probability of 76 % of performing better. Further on, Table 6.5 indicates that FU-DQN
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TABLE 6.6: Most likely values and uncertainty for the mean TTS of
DQN and FU-DQN given as the modes and 95 % HPDIs of the esti-
mated distributions of µDQN and µFU-DQN. A * indicates that the sta-
tistical model was not computed, because, for at least one of the two
methods, not a single one of the runs was able to solve the problem

in time.

Experiment
DQN’s mean TTS FU-DQN’s mean TTS

Mode 95 % HPDI Mode 95 % HPDI

CHAIN-12 1316 [1087, 1816] 964 [815, 1252]
CHAIN-20 ∗ * ∗ *
CHAIN-30 ∗ * ∗ *
CHAIN-12 w/ h/ 651 [551, 793] 477 [432, 525]
CHAIN-20 w/ h/ 1902 [1706, 2213] 1270 [1129, 1444]
CHAIN-30 w/ h/ 3871 [3462, 6384] 3616 [3190, 5642]
FROZENLAKE 989 [854, 1214] 577 [475, 686]
MOUNTAINCAR 1893 [1495, 2661] 1243 [1073, 1661]
UMAZE 1892 [1672, 2161] 1683 [1447, 1994]

can be expected to solve the FROZENLAKE task faster than DQN with a confidence
of almost 100 %. These results are backed by Figure 6.6a.
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FIGURE 6.6: Density plots like Figure 6.5 but for the FROZENLAKE,
MOUNTAINCAR and UMAZE experiments.

Table 6.6 shows that the most likely mean TTS of FU-DQN is smaller than the
TTS of DQN, while the difference in TTS aligns with the distributions in Figure 6.6.
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This can be observed for all of the tasks that are remaining to be discussed.

Analysis of the results for the MOUNTAINCAR task

For the MOUNTAINCAR experiment, the MAR was used as defined by the OpenAI
Gym [Bro+16b] which is -110. As generation function I an IDW interpolation was
used. The sampling points are gathered by a nearest-neighbour search in a radius
around the query state of rq = 0.005. A weight of w = 0.05 was used.

First, the solution rate is compared. Here again, FU-DQN is favoured with 77 %
as can be observed in Table 6.4. Regarding the TTS, Table 6.5 shows that there is a
high probability of around 96 % of FU-DQN solving the task faster than DQN. When
looking at Figure 6.6b, it can be seen that while the central 95 % HDPI is made up of
all positive values, it is also considerably wider than for the other tasks indicating a
higher uncertainty.

Analysis of the results for the UMAZE task

For the UMAZE task, a similar reward metric as for CHAIN-N and FROZENLAKE

was used. A fixed value of 0.1 for the speed parameter increases the state-space
and difficulty. Because of that, the value for the MAR was set to 0.9 which equals
a solution rate of 90 %. The weight value was set to w = 0.1. For the generation
function I an IDW interpolation with rq = 0.1 was used.

Table 6.4 shows that the solution rate model reports the solution rates of the
approaches to be equal. In contrast to some other experiments above, this is not due
to all or none of the runs solving the task, but from an equal count of successful
runs. According to the TTS model, the probability that FU-DQN solves the problem
faster than DQN is 79.44 % while the probability of solving it at least as fast is 83.9 %.
Figure 6.6c confirms this statement visually with the majority of the probability mass
lying to the right of the rope.

6.3 Discussion

In summary, it can be reported that there is some evidence that FU-DQN’s solution rate
exceeds the one of DQN (E-Q1): All the values in Table 6.4 are at least 50 % (which
corresponds to the two solution rates being the same) and if only considering the
tasks that both methods were able to solve in time at least once, the values are actually
at least 76 % with the exception of the UMAZE task (50 %).

Furthermore (E-Q2), the analysis shows that there are considerably high amounts
of evidence (>94 %) for the statement that the TTS of FU-DQN is shorter than that of
DQN on most of the tasks considered with the only exceptions being the CHAIN-30
w/ hints and the UMAZE tasks. The statistical analysis concludes that there is only
some evidence (62 %) towards FU-DQN being faster for the former whereas there are
considerable but not high amounts of evidence (slightly less than 80 %) for FU-DQN



6.3. Discussion 101

outperforming DQN on UMAZE. It is assumed that this is due to those problems
being the ones with the largest state-spaces—and thus the highest difficulty. When
looking at the mean TTSs of all tasks (E-Q3), then it can be observed that FU-DQN
was able to solve the problems in less iterations than DQN. This encourages the
statements from above

As FU-DQN uses experiences to generate synthetic ones in addition to ER, and
it solves the investigated problems in less iterations than DQN, it can be concluded
that it is able to increase sample efficiency in a beneficial way. As mentioned above,
an update of FU-DQN updates the action-value function for all actions whereas the
same effect would require a single update of DQN for every action. However, the
factor of less required iterations for FU-DQN over DQN is smaller than this. There
are several reasons for this, the most obvious one being that non-experience action-
updates are weighted less to counteract noise (cf. subsection 6.1.5). Overall, the anal-
ysis shows that FU-DQN is able to outperform DQN at least on the tasks that DQN
is able to solve consistently and possibly on the other tasks as well.

When considering the research questions, then FU-DQN presents a way of us-
ing synthetic experiences in combination with a DQN, such that faster convergence
can be achieved and consequently the sample efficiency can be increased (Q 4). Fur-
thermore, the evaluation results show once more that the generation of synthetic
experiences by means of interpolation based on stored experiences is a beneficial
way of how to exploit knowledge in form of stored experiences (Q 1). Also it was
shown that all parts of an experience can be interpolated, with the addition that a
synthetic follow-up state should be generated by an interpolated state-transition (Q
2). And, as mentioned before, FU-DQN represents an alternative approach, next to
IER, of how synthetic experiences can be used to assist a DQN with learning (Q 3).
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Chapter 7

Semi-Model-Based Reinforcement
Learning

It still remains the question to be answered, if the combination of synthetic experi-
ences with model-free RL algorithms is to be classified as model-based or model-free
RL (Q 5). In the following section, an analysis of the presented approaches of this
work in the context of the definitions of model-based/free RL is conducted.

Parts of the following text have already been published in a similar form in
[PSH22a].

7.1 Semi-Model-Based Reinforcement Learning

First, a categorization of interpolation based methods that make use of ER into the
three main categories of model-based RL from subsection 2.3.3 is conducted:

1. Type of model: As IER/FU-DQN uses true experiences stored in the real-
valued replay buffer as sampling points to interpolate rewards and follow-up
states, it can be classified as forward model.

2. Region in which the model is valid: Interpolated experiences are created from
surrounding sampling points and the interpolation model is discarded after-
wards. This falls clearly into the local region category.

3. Estimation method: As no model is learned that is parametrized, the paramet-
ric class can be excluded. As stated in subsection 2.3.3 replay buffer methods
could be considered as model-based approaches, but for the scope of this work
they are not classified as such. This assumption is taken as the range of pre-
dictions that these “models” can make is very limited to, not only the exact
experienced transitions of the learners past, but additionally only to those that
are currently stored in the buffer. This means that no form of generalization
is possible as well. The second argument also holds for parametric and exact
methods like Dyna, but in contrast, these methods are capable of covering a
bigger area of the state space (they do not forget) and in addition can model
stochastic state-transitions way better than a simple fraction of past transitions
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does. In fact, experiences in a replay buffer can be seen as true experiences,
even though off-policy ones. This assumption is retrieved because they are not
directly generated from an interaction with the environment but drawn from
a memory. If they are considered true experiences, they can not be simulated
ones and considering the definition that model-based methods use synthetic
samples to learn, replay buffer methods do not satisfy this requirement. This
consideration could be interpreted to be true for tabular models as well, but the
main difference here is that replayed experiences are drawn from the distribu-
tion created from a developing/converging policy and can therefore be seen as
off-policy experiences while reused experiences from a tabular model do not
follow such a distribution. Indeed, there are researchers who describe the us-
age of replay methods as a way to avoid a conventional model [VS15]. So, the
underlying replay buffer functionality does not fit in here, even if the line is
thin. Interpolation, which is used on top, can not be considered as an exact ap-
proach apart from the values equal to the sampling points and therefore does
not fit the non-parametric and exact class as well. The only remaining candi-
date among the traditional classes is non-parametric and approximate. Here,
the line is very thin again. The general concept of interpolation based on stored
true experiences could be classified as a non-parametric model. Then again, in-
terpolation is a different thing than approximation (cf. subsection 2.5.1) and it
remains at least discussable if such methods fit in here. Nevertheless, the sim-
ulated experiences are used in a replay-based manner which is regarded as
model-free learning in general (see above). As interpolated samples are added
into the mix (IER) this is of course not true anymore for all updates and IER
combines planning and learning in a stochastic manner which at least differs
from classic model-based RL approaches in the way that they usually have a
clear separation of these phases. For FU-DQN, no synthetic experiences are
added to the buffer, but the update combines synthetic and real experiences
as well. In conclusion, IER/FU-DQN is not considered as a whole to meet the
requirements of a non-parametric model to the fullest.

The question may arise why IER/FU-DQN uses interpolation instead of ap-
proximation in the first place. Looking at the two different situations from subsec-
tion 2.5.1, IER/FU-DQN clearly fits the second one. The replay buffer is of limited
size and throws away experiences when its maximum size is reached. First of all, the
amount of sampling points for an interpolation is restricted to the replays maximum
size. And furthermore, predictions are needed for very specific local areas and as
the true experiences are expected to be distributed over the state space this number
can be expected to be rather small. Of course all of this depends on the chosen max-
imum size of the replay buffer and the problems state space, but it can be expected
to rather have few than many sampling points and this scenario favours interpola-
tion. In classic RL, sampling points usually come without noise (non-deterministic
environments are an exceptional case) which requires that the points are matched
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exactly, also favouring interpolation. Of course in real world scenarios (that are OC
systems often applied to) this is not true, but the first point still holds.

Focusing on value-based and model-free RL techniques like DQN, IER/FU-DQN
also expresses some beneficial features of model-based approaches. The generation
and usage of synthetic experiences is of course one of them. In early exploration
phases, the learner is assisted with interpolated transitions that try to cover un-
explored areas. This effect could be classified as model-based RL, but over time
the generation of synthetic experiences is reduced (IER) and the method focuses
on model-free Q-updates. Under the assumption that interpolation would fit the
model-based RL definition, IER still would be a method that shifts from model-based
to model-free and might even shift back if concept drifts occur. FU-DQN makes use
of interpolated experiences for the whole training process and it was even stated,
that the generation function I could also be a model. If a model is used, then FU-
DQN has clearly to be classified as model-based, but when interpolation is used the
classification remains unclear.

According to [Jac04] classification and categorization can be defined and distin-
guished as follows: Classification involves the assignment of each entity to one and
only one class, whereas categorization is described as the process of dividing the
world into groups of entities that share some similarities. The main difference is that
classes can not overlap whereas categories can.

In conclusion, IER/FU-DQN (-with interpolation) could be categorized as a model-
free, as well as a model-based RL method depending on the point of view and the
definition of single aspects, as in fact the line is very thin. But on the other hand,
if one wants to classify it he would need to commit for one class, and, following
the former argumentation, this is neither easy nor explicit. Therefore, a class right
in-between model-based and model-free is introduced and called semi-model-based.
Following this new option, IER/FU-DQN (-with interpolation) is to be classified as
a semi-model-based RL approach.

7.2 Interpolation-Based RL in Organic Computing

An architectural approach for OC systems is the generic Observer/Controller-architecture,
more specifically the Multi-Layer Observer/Controller-architecture (MLOC) [MT17].
Even if there do exist other approaches beside it, the focus is on this one because
it is the architecture that is tied to OC the closest and has even been set into close
relation to RL [Ste+18]. The MLOC architecture is composed of 4 layers. At the bot-
tom sits layer 0 which is the productive system and, in the OC domain, is often called
System under Observation and Control (SuOC). Here manageable resources are encap-
sulated via well-defined interfaces that enable monitoring (observation) as well as
configuration (control). The SuOC is considered to be deployed in a Non-Stationary
Environment (NSE) that continuously challenge the MLOC with unforeseen situa-
tions and external disturbances. Layer 1 is called the runtime adaptation layer and
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deploys a feedback control loop by periodically observing the internal system state
and adapting the SuOC accordingly. A form of online RL approach is often situated
in this layer. Layer 2 is known as the offline learning layer and its main functionality
is the monitoring of layer 1. If a critical situation (unknown state or disturbance) is
detected, then an internal model of the SuOC is used to find a solution. The model
can be an upfront known simulation or even a parametrized model that is trained
during runtime. Critical exploration is outsourced to this layer so that situations in
which the SuOC might be harmed can be reduced to a minimum. The last layer is
called collaboration layer and is responsible for communicating with entities from
the outside such as the user or neighbouring MLOC instances.

An IER implemented into an OC system based on a MLOC architecture would
look the following way: First of all, the online learning DQN instance is located in
layer 1 and continuously interacts with the SuOC to generate new insights in the
form of true experiences. The replay buffer used on this layer shall be Dl1 and this
buffer is composed of true and simulated experiences and has a maximum length of
l1. When the maximum length is reached, new samples replace old ones in a FIFO
manner. Minibatches drawn at random from Dl1 are used continuously to perform
Q-updates and train the online DQN. The true experiences generated by interacting
with the SuOC follow the trajectory τ = ((S1, A1), . . . , (Sn, An)) with t = 1 . . . n.
Even if neural networks are capable of generalisation, it requires a lot of samples
(in form of experiences) to understand the dynamics of the environment. This re-
sults in a lot of exploration which can be costly in real world scenarios. Reasons
for that are among others energy, abrasion and possible damage to either the OC
system or entities in the environment. To reduce exploration, synthetic experiences
can be generated in layer 2. Therefore, the real experiences stored in Dl1 are copied
to a sampling-point-buffer called Dl2. This storage is of length l2 and can be bigger
than l1 resulting in l2 ≥ l1. The benefit of remembering true experiences longer than
layer 1 does is an increased accuracy for interpolations, whereas sticking too long
to old samples in layer 1 can result in unstable learning. Asynchronously, in an of-
fline manner, layer 2 triggers interpolations in areas surrounding τ. To realize that,
a state St is drawn uniformly from τ and the querypoint Sq is drawn uniformly from
the corresponding ball of radius r: Br(si) = {y ∈ Rn : |x − y| ≤ r]}. Using the in-
terpolation technique described in chapter 5 simulated experiences can be generated
and added to Dl1 which helps with the exploration around τ and therefore can result
in reduced exploration needed in the real world. This effect was shown in detailed
evaluations in [PSH21; PSH22b] and in chapter 4 and chapter 5.

As mentioned above, the system is considered to operate in a NSE and therefore
concept drifts (changes in the world dynamics) can be expected to occur which re-
quire the agent to relearn the environments dynamics at least for local areas. Conse-
quentially, exploration is required to adapt. A mechanic that is able to detect concept
drifts would trigger the reset of Dl2, and probably also Dl1, and the new dynamics
could be learned with a reduced amount of exploration. An approach that would
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reduce exploration even more would require a technique that is able to not only de-
tect when a concept drift occurs, but also where. In this case only stored experiences
from that area would be deleted and all the still valid sampling points could be kept.

The MLOC architecture described above is typically realized with rule-based
learning approaches and one representant of such is the Organic Traffic Control
(OTC) [Pro+11]. The authors use Learning Classifier Systems (LCSs) to generate
rules that configure traffic lights for a crossroad. Here, on layer 1, an online version
of an LCS reacts in real time to changing traffic volumes. The rules feature evalu-
ation metrics such as fitness, expected payoff, expected error and experience. The
expected payoff resembles a state-action-value and is mainly used, among the other
metrics, to optimize the rule set. According to the definition of model-free RL meth-
ods from subsection 2.3.2 the learning approach on layer 1 can be classified as such.
If unforeseen or unknown situations occur, the offline layer is triggered. Here a Ge-
netic Algorithm (GA) generates new rules of minimum quality in interaction with a
simulation of the underlying environment. A simulation that is given upfront holds
as model, but a GA performs optimization and does not learn. So, layer 2 on its
own can not be classified as model-based RL. In combination with layer 1 on the
other hand it fulfills the requirements of storing a global solution and the usage of a
model. Another requirement says that simulated experiences have to be used, and
this is not the case, instead the model is used to produce new rules. Furthermore,
in contrast to the typical model-based RL approach, the triggering of the model is
restricted to special cases instead of a general assistance for the global solution.

The classification of this system in one of the classes model-free or model-based
is not easy and obvious and the OTC tends to be in-between both. Therefore, it could
be classified as a semi-model-based RL approach. Furthermore, the OC system that
implements IER follows the argumentation of section 7.1 and turns out to be a semi-
model-based RL approach as well. In conclusion, it can be seen that the MLOC
architecture pairs well with approaches of this type, as the separation between the
online component and the offline and model-based component encourages them.
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Chapter 8

Conclusion

In the end, a conclusion examines if hypothesis 1 can be confirmed based on the
two presented approaches and the evaluation results. Afterwards, a summary will
give an overview of the contents that have been presented in the dissertation and
the work is concluded with a short outlook of potential future work.

8.1 Conclusion

As the five research questions have been identified with the scope of answering hy-
pothesis 1, they will be investigated each in detail first.

Q 1: How can gathered knowledge in form of experiences be exploited to generate
meaningful synthetic experiences?

Both, IER and FU-DQN use stored experiences in the replay buffer as sampling
points to generate synthetic experiences by means of interpolation. It is important to
have a method that finds all relevant sampling points for a given query point xq and
that is as efficient as possible in terms of complexity as this procedure is repeated
many times. A dictionary solution is used for discrete environments, while a form
of k-d tree does the trick for continuous environments. With a set of NNs at hand,
an appropriate interpolation method can generate synthetic experiences. The eval-
uations of IER and FU-DQN prove that the generated experiences are meaningful
enough to assist the learner in a way that can reduce the required time to solution.

Q 2: Which parts of an experience et = (St, At, Rt+1, St+1, dt+1) can be interpolated, and
what needs to be considered by doing so?

In general, all parts of an experience can be interpolated, but there are some parts
that are more critical than others. In a proof-of-concept implementation for con-
tinuous non-deterministic environments only the reward is interpolated while the
follow-up state and the terminal tag are copied from matching observed experiences.
The reward is also the part of an experience that is the least critical when it is interpo-
lated. As discussed in subsection 4.1.1, this is reasoned by the fact that its impact on
the TD-error is tied to its exact value. However, for IER for continuous environments
and FU-DQN the follow-up state and the terminal tag are successfully interpolated
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as well. As mentioned above, the influence that these parts have on the TD error is
greater than that of the reward which comes from the recursive nature of the bellman
equation that is part of the TD-error. An error in the estimate of a follow-up state
produces a false chain of future states and rewards and a similar thing holds for the
terminal tag. A small example visualizes the problem of unwanted and unrecog-
nized extrapolation cases that might occur when follow-up states are interpolated as
raw values (cf. subsection 5.1.1). A solution to this problem is the interpolation of
the state-transition-delta instead. By doing so all cases are interpolation cases and no
extrapolation cases can occur. With such a synthetic state-transition-delta at hand, a
synthetic follow-up state can be computed.

Q 3: How can synthetic experiences be used to assist a Deep Q-Network with learning?

Two different ways of how synthetic experiences can be used to assist a DQN have
been proposed during the former sections. The first one is the Interpolated Experience
Replay that stores synthetic experiences into the buffer next to real experiences that
have been generated by interaction with the environment. The update functional-
ity of a DQN remains unchained and minibatches of both, synthetic as well as real
experiences are drawn at random from the buffer. Different configurations of the
IER buffer have been presented, but the main idea is that the buffer that holds only
synthetic experiences shrinks over time when the amount of real experiences grows.
This is reasoned by the expectation that interpolations can suffer from errors while
true experiences can be trusted at any time. In the beginning, when the agent knows
little about the problem space, synthetic experiences can assist with exploration but
later on, when the learner has build up some wisdom (good enough policy cf. chap-
ter 1) the focus should be on the true experiences. It turned out that IER comes with
a lot of hyperparameters that need to be tuned for problems individually.

The second presented approach is the Full-Update DQN that makes use of the fact
that the original DQN structure is build such that a training update over the whole
action space would be possible in general. This is not done in the original DQN
as important values for the computation of the TD error for all actions but one are
missing at the time of the update. If those values, or at least estimates of them, are
available, then a training update could cover the whole action space. This is what
FU-DQN does. Synthetic experiences are interpolated the same way as for IER but
not stored in the buffer and only used once for a full update.

Q 4: Does the usage of synthetic experiences in combination with a Deep Q-Network result
in faster convergence and consequently in an increased sample efficiency?

The evaluation of linear reward interpolation IER for discrete and non-deterministic
environments (cf. section 4.3) shows that synthetic experiences can be of great as-
sistance in such cases. Three different state-encodings of the MOUNTAINCAR prob-
lem represent different aspects like local and global state-spaces and encodings that
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encourage generalization resp. do not. For each state-encoding and four different
exploration lengths, it was possible to find an IER configuration that reduces the re-
quired time to solution. Furthermore, the configurations that did so, also enabled
a more consistent solution of the problem as well. However, one exception was the
VE state-encoding with an exploration length of 750 episodes. Here, the baseline
performed better than IER and an exploration length of 750 on that state-encoding
seems to be an optimal configuration that leaves no potential for improvements.
Overall, linear reward interpolation IER is able to reduce the amount of required
episodes until a discrete and non-deterministic problem is considered as solved and
thus, can help increase convergence.

IER for continuous environments was evaluated on the MOUNTAINCAR prob-
lem (cf. section 5.3), again with four different exploration lengths. It turned out that
the baseline is able to solve the task very well on a very low exploration length and,
again, here it seems that there is no room for improvements left. When the explo-
ration time is increased on the other hand, IER starts to outperform ER. The assump-
tion here is that IER requires problems that need a sufficiently high exploration time
for IER to bring noticeable positive effects. Nevertheless, IER is able to reduce the
required time to solution in continuous environments that are complex enough. In
such cases, the convergence can be speed up as well.

At last, FU-DQN was evaluated on four different problems (cf. section 6.2) that
all share a sparse reward setting. For all these problems, FU-DQN was able to re-
duce the required amount of episodes until a task was considered as solved. Also,
convergence could be speed up.

As discussed before, the effect, that the usage of synthetic experiences can reduce
the required amount of episodes (samples) to solve a task, increases the sample effi-
ciency, as less samples are required to gain a similar result that a comparable baseline
can achieve without any synthetic experiences. Furthermore, true experiences (sam-
ples) are used many times to generate synthetic samples which assist the learner and
so, sample efficiency of true experiences (samples) is increased even further.

Q 5: Is the combination of model-free Reinforcement Learning methods that make use of
Experience Replay with synthetic experiences that have been generated by means of

interpolation classifiable as model-free or model-based Reinforcement Learning?

As discussed in chapter 7, methods that combine the usage of synthetic experiences
with a replay buffer and model-free RL algorithms are not easily classified into one
of the two classes model-based and model-free. An in-depth investigation of dif-
ferent aspects of such methods and how they align with the definition of model-
based RL made clear, that no definite answer can be given to this question. To es-
cape this dilemma, the new class semi-model-based was introduced, that is located
somewhere in between the former two categories. Model-free RL algorithms that
use synthetic experiences in combination with a replay buffer are to be classified as
semi-model-based.
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Let’s now come back to hypothesis 1. With a (positive) answer to all of the iden-
tified research questions, the hypothesis can be answered as follows:

Yes! Stored samples in the ER buffer can be used as sampling points for the
interpolation of synthetic experiences. Such synthetic experiences are meaningful
and can help a learner, but the methods that have been proposed to do so are heavily
reliant on correct hyperparameters.

Yes! These synthetic experiences can be used to assist the learner to speed up
learning and increase sample efficiency. Two different methods have been proposed
that offer a way to include synthetic experiences into the learning process. Both are
able to speed up learning such that the required amount of episodes to solve a task
can be reduced. Consequently, these methods increase sample efficiency.

Even if the amount of required episodes can be reduces, interpolation remains an
operation that can be very costly in terms of computation. Therefore, semi-model-
based RL approaches that make use of interpolation are best to be used when the
amount of actual exploration actions should be kept as small as possible. This fits
well to real-world scenarios which aligns well to OC in general.

8.2 Summary

The present work dealt with the interpolation of synthetic experiences that are used
in combination with the model-free RL algorithm DQN. In the context of MDPs, ex-
periences can be treated as knowledge of an underlying environment and its dynam-
ics. This knowledge can be exploited to generate synthetic experiences by means of
interpolation that cover yet unexplored areas in the state-space and can therefore
help with exploration.

At first, the theoretical background of RL was provided in form of an exten-
sive overview. Starting with the general concepts of finite MDPs, the background
section covered types of RL and introduced some value-based RL algorithms like Q-
Learning and DQN. Also, the concept of interpolation was covered as well as some
methods for efficient nearest neighbour searches. After a short summary of related
work that is of relevance for the usage of synthetic experiences in combination with
DQN, two concrete ways of how to use synthetic experiences have been presented.

Those are, IER and FU-DQN. While IER adds synthetic experiences to the replay
buffer and leaves the update mechanism of a DQN unchanged, FU-DQN uses syn-
thetic experiences to enable updates that span over the whole action space. For IER,
a proof-of-concept version for discrete and non-deterministic environments was pre-
sented first. An in-depth evaluation revealed that this approach works well and has
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potential to be extended for continuous environments. It turned out, that the follow-
up state is a crucial part of an experience that can suffer from unrecognized extrapo-
lation cases when interpolated straight away. An interpolation of state-transition-
deltas instead solved this problem and made IER ready for continuous environ-
ments. An evaluation of the MOUNTAINCAR problem revealed that IER can be bene-
ficial, but it requires sufficiently long enough explorations phases. FU-DQN exploits
that the architecture of a DQN is build such that an update is possible for the whole
action space in theory. As at the time of an update data is only available for one
specific action (determined by the present experience) this is not done in the origi-
nal approach. FU-DQN generated the missing values based on stored experiences
in the replay buffer and can perform updates that cover the whole action space. An
evaluation on four different problems that share a sparse reward signal showed that
FU-DQN can be of great benefit.

In the end, methods that combine synthetic experiences, a replay buffer and
model-free RL algorithms have been tried to fit into either the model-based or the
model-free category. It turned out that this classification is not possible unambigu-
ously. Thus, the new class semi-model-based was introduced to fit such cases.

8.3 Outlook

The evaluation of IER for continuous environments showed that ER outperforms
IER on a small exploration phase, while IER performs better on larger exploration
phases. The assumption is that IER requires high exploration phases and conse-
quently more complex problems to be beneficial. Because of time restrictions, this
assumption could not be verified with further evaluations. This should be done in
the future to confirm this assumption. Furthermore, the presented approaches are
limited to state-spaces that are interpolable and, for example, is not usable for im-
ages. It might be possible however, to use the output of the classification layer of a
Convolutional Neural Network as a representation of the state-input and use those
values as sampling points for interpolations. This would of course require a lot of
further research but seems like a good point to start with future work. As mentioned
above, interpolation can be very costly and so far, no investigation of the actual re-
quired computation time was done. A comparison of the effect of the reduced re-
quired time with the increased required computation time would be a good thing to
have. In the context of real world scenarios (OC), inputs have to be expected to be
noisy. This is reasoned by the sensors that produce these values and that can suffer
from measurement uncertainties and shifts. Also, sensors need to be re-calibrated
in regular intervals. In such environments, interpolation could be of great benefit,
even for states, that have already been observed as values suffer from noise. Semi-
model-based approaches that make use of interpolation could be a good fit here.
Such scenarios could easily be simulated by adding noise to states. An evaluation of
IER and/or FU-DQN in such scenarios would be of great interest.
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Appendix A

Evaluation Results from Linear
Reward Interpolation

A.1 Solution Rates

TABLE A.1: Probability (in %) for each IER configuration in the VE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol ONS OnPolONS

Def 250 LS 91 59 87 *
Def 250 PD 50 81 94 *
Def 500 LS 68 50 94 *
Def 500 PD 93 84 89 *
Def 750 LS 13 50 35 *
Def 750 PD 13 8 50 *
Def 1000 LS 24 67 50 *
Def 1000 PD 83 50 49 *

Def-area 250 LS 50 75 58 *
Def-area 250 PD 50 32 87 *
Def-area 500 LS 69 98 94 *
Def-area 500 PD 19 51 94 *
Def-area 750 LS 8 22 1 *
Def-area 750 PD 1 5 7 *
Def-area 1000 LS 50 36 67 *
Def-area 1000 PD 24 82 65 *

Full 250 LS 51 * * *
Full 250 PD 74 * * *
Full 500 LS 97 * * *
Full 500 PD 94 * * *
Full 750 LS 34 * * *

( To be continued)
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TABLE A.1: Probability (in %) for each IER configuration in the VE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol ONS OnPolONS

Full 750 PD 34 * * *
Full 1000 LS 35 * * *
Full 1000 PD 82 * * *

Full-area 250 LS 19 * * *
Full-area 250 PD 50 * * *
Full-area 500 LS 4 * * *
Full-area 500 PD 50 * * *
Full-area 750 LS 4 * * *
Full-area 750 PD 33 * * *
Full-area 1000 LS 82 * * *
Full-area 1000 PD 66 * * *

Zeta 250 LS * * * 50
Zeta 250 PD * * * 81
Zeta 500 LS * * * 77
Zeta 500 PD * * * 100
Zeta 750 LS * * * 13
Zeta 750 PD * * * 13
Zeta 1000 LS * * * 24
Zeta 1000 PD * * * 94

Zeta-area 250 LS * * * 67
Zeta-area 250 PD * * * 13
Zeta-area 500 LS * * * 93
Zeta-area 500 PD * * * 96
Zeta-area 750 LS * * * 22
Zeta-area 750 PD * * * 49
Zeta-area 1000 LS * * * 50
Zeta-area 1000 PD * * * 94
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TABLE A.2: Probability (in %) for each IER configuration in the CE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol ONS OnPolONS

Def 250 LS 19 75 10 *
Def 250 PD 17 50 18 *
Def 500 LS 99 95 97 *
Def 500 PD 85 6 24 *
Def 750 LS 98 87 82 *
Def 750 PD 9 2 14 *
Def 1000 LS 100 33 82 *
Def 1000 PD 18 17 3 *

Def-area 250 LS 75 50 10 *
Def-area 250 PD 75 50 31 *
Def-area 500 LS 100 100 91 *
Def-area 500 PD 100 100 98 *
Def-area 750 LS 100 100 100 *
Def-area 750 PD 100 100 99 *
Def-area 1000 LS 100 100 100 *
Def-area 1000 PD 100 100 100 *

Full 250 LS 50 * * *
Full 250 PD 50 * * *
Full 500 LS 100 * * *
Full 500 PD 95 * * *
Full 750 LS 100 * * *
Full 750 PD 75 * * *
Full 1000 LS 96 * * *
Full 1000 PD 41 * * *

Full-area 250 LS 75 * * *
Full-area 250 PD 75 * * *
Full-area 500 LS 100 * * *
Full-area 500 PD 100 * * *
Full-area 750 LS 100 * * *
Full-area 750 PD 100 * * *
Full-area 1000 LS 100 * * *
Full-area 1000 PD 100 * * *

Zeta 250 LS * * * 10
Zeta 250 PD * * * 30

( To be continued)
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TABLE A.2: Probability (in %) for each IER configuration in the CE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol ONS OnPolONS

Zeta 500 LS * * * 70
Zeta 500 PD * * * 24
Zeta 750 LS * * * 6
Zeta 750 PD * * * 0
Zeta 1000 LS * * * 24
Zeta 1000 PD * * * 5

Zeta-area 250 LS * * * 11
Zeta-area 250 PD * * * 3
Zeta-area 500 LS * * * 50
Zeta-area 500 PD * * * 23
Zeta-area 750 LS * * * 42
Zeta-area 750 PD * * * 34
Zeta-area 1000 LS * * * 87
Zeta-area 1000 PD * * * 8

TABLE A.3: Probability (in %) for each IER configuration in the LKE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol ONS OnPolONS

Def 250 LS 1 0 31 *
Def 250 PD 0 8 31 *
Def 500 LS 2 4 77 *
Def 500 PD 0 1 68 *
Def 750 LS 0 0 60 *
Def 750 PD 0 0 86 *
Def 1000 LS 0 8 69 *
Def 1000 PD 0 8 69 *

Def-area 250 LS 0 3 50 *
Def-area 250 PD 0 2 40 *
Def-area 500 LS 0 13 77 *
Def-area 500 PD 0 4 60 *
Def-area 750 LS 0 1 31 *
Def-area 750 PD 0 8 23 *

( To be continued)
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TABLE A.3: Probability (in %) for each IER configuration in the LKE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol ONS OnPolONS

Def-area 1000 LS 0 1 12 *
Def-area 1000 PD 0 1 17 *

Full 250 LS 0 * * *
Full 250 PD 0 * * *
Full 500 LS 0 * * *
Full 500 PD 0 * * *
Full 750 LS 0 * * *
Full 750 PD 0 * * *
Full 1000 LS 0 * * *
Full 1000 PD 0 * * *

Full-area 250 LS 0 * * *
Full-area 250 PD 0 * * *
Full-area 500 LS 0 * * *
Full-area 500 PD 0 * * *
Full-area 750 LS 0 * * *
Full-area 750 PD 0 * * *
Full-area 1000 LS 0 * * *
Full-area 1000 PD 0 * * *

Zeta 250 LS * * * 50
Zeta 250 PD * * * 78
Zeta 500 LS * * * 94
Zeta 500 PD * * * 77
Zeta 750 LS * * * 31
Zeta 750 PD * * * 50
Zeta 1000 LS * * * 78
Zeta 1000 PD * * * 24

Zeta-area 250 LS * * * 60
Zeta-area 250 PD * * * 70
Zeta-area 500 LS * * * 50
Zeta-area 500 PD * * * 68
Zeta-area 750 LS * * * 23
Zeta-area 750 PD * * * 60
Zeta-area 1000 LS * * * 24
Zeta-area 1000 PD * * * 24
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A.2 Probabilities

TABLE A.4: Probabilities (in %, rounded to two decimal places) for
each configuration in the VE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def 250 LS 8.51 0.15 91.35
Def 250 PD 48.26 0.37 51.37
Def 500 LS 20.69 0.56 78.75
Def 500 PD 0.97 0.07 98.96
Def 750 LS 98.32 0.44 1.24
Def 750 PD 99.08 0.27 0.65
Def 1000 LS 79.45 3.61 16.94
Def 1000 PD 2.56 1.61 95.83

Def-OnPol 250 LS 40.03 0.37 59.60
Def-OnPol 250 PD 18.35 0.29 81.36
Def-OnPol 500 LS 47.82 0.74 51.44
Def-OnPol 500 PD 8.11 0.36 91.53
Def-OnPol 750 LS 52.81 6.12 41.08
Def-OnPol 750 PD 99.54 0.14 0.32
Def-OnPol 1000 LS 23.28 5.92 70.80
Def-OnPol 1000 PD 48.52 6.33 45.14

Def-ONS 250 LS 10.65 0.23 89.12
Def-ONS 250 PD 2.98 0.07 96.96
Def-ONS 500 LS 1.10 0.08 98.82
Def-ONS 500 PD 2.80 0.16 97.04
Def-ONS 750 LS 70.97 4.56 24.47
Def-ONS 750 PD 73.33 4.70 21.96
Def-ONS 1000 LS 52.76 6.44 40.80
Def-ONS 1000 PD 51.53 6.48 41.99

Def-area 250 LS 50.83 0.32 48.85
Def-area 250 PD 20.01 0.32 79.67
Def-area 500 LS 24.32 0.58 75.10
Def-area 500 PD 84.01 0.36 15.62
Def-area 750 LS 99.78 0.06 0.16

( To be continued)
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TABLE A.4: Probabilities (in %, rounded to two decimal places) for
each configuration in the VE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def-area 750 PD 99.99 0.00 0.01
Def-area 1000 LS 56.31 6.55 37.14
Def-area 1000 PD 80.07 3.70 16.23

Def-area-OnPol 250 LS 27.25 0.32 72.43
Def-area-OnPol 250 PD 68.81 0.33 30.85
Def-area-OnPol 500 LS 0.14 0.02 99.84
Def-area-OnPol 500 PD 44.71 0.71 54.58
Def-area-OnPol 750 LS 96.68 0.82 2.50
Def-area-OnPol 750 PD 99.90 0.01 0.08
Def-area-OnPol 1000 LS 64.25 5.43 30.33
Def-area-OnPol 1000 PD 3.05 1.81 95.15

Def-area-ONS 250 LS 38.99 0.35 60.66
Def-area-ONS 250 PD 12.04 0.21 87.76
Def-area-ONS 500 LS 0.88 0.04 99.08
Def-area-ONS 500 PD 1.01 0.06 98.93
Def-area-ONS 750 LS 99.99 0.00 0.01
Def-area-ONS 750 PD 99.62 0.10 0.28
Def-area-ONS 1000 LS 23.28 5.90 70.82
Def-area-ONS 1000 PD 23.74 6.07 70.20

Full 250 LS 55.55 0.36 44.09
Full 250 PD 26.23 0.36 73.41
Full 500 LS 0.24 0.01 99.76
Full 500 PD 1.95 0.13 97.92
Full 750 LS 81.83 3.54 14.62
Full 750 PD 78.41 3.75 17.84
Full 1000 LS 70.47 4.91 24.62
Full 1000 PD 16.43 5.34 78.23

Full-area 250 LS 69.99 0.26 29.74
Full-area 250 PD 56.81 0.32 42.87
Full-area 500 LS 97.99 0.06 1.95

( To be continued)
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TABLE A.4: Probabilities (in %, rounded to two decimal places) for
each configuration in the VE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Full-area 500 PD 46.80 0.69 52.51
Full-area 750 LS 99.74 0.07 0.19
Full-area 750 PD 86.97 2.56 10.47
Full-area 1000 LS 1.76 1.21 97.03
Full-area 1000 PD 10.92 3.72 85.36

Zeta-OnPolONS 250 LS 29.65 0.37 69.97
Zeta-OnPolONS 250 PD 16.31 0.26 83.43
Zeta-OnPolONS 500 LS 13.95 0.43 85.62
Zeta-OnPolONS 500 PD 0.00 0.00 100.00
Zeta-OnPolONS 750 LS 98.25 0.36 1.39
Zeta-OnPolONS 750 PD 98.37 0.50 1.14
Zeta-OnPolONS 1000 LS 77.79 3.91 18.31
Zeta-OnPolONS 1000 PD 0.57 0.52 98.92

Zeta-area-OnPolONS 250 LS 33.20 0.28 66.52
Zeta-area-OnPolONS 250 PD 79.62 0.22 20.16
Zeta-area-OnPolONS 500 LS 1.57 0.14 98.29
Zeta-area-OnPolONS 500 PD 0.42 0.04 99.54
Zeta-area-OnPolONS 750 LS 93.31 1.50 5.19
Zeta-area-OnPolONS 750 PD 85.95 3.12 10.94
Zeta-area-OnPolONS 1000 LS 36.17 6.37 57.46
Zeta-area-OnPolONS 1000 PD 1.81 1.50 96.69
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TABLE A.5: Probabilities (in %, rounded to two decimal places) for
each configuration in the CE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def 250 LS 76.45 3.49 20.06
Def 250 PD 96.58 0.74 2.67
Def 500 LS 1.20 0.24 98.56
Def 500 PD 24.79 1.79 73.42
Def 750 LS 0.77 0.20 99.04
Def 750 PD 90.41 0.71 8.88
Def 1000 LS 0.02 0.01 99.98
Def 1000 PD 60.57 1.56 37.87

Def-OnPol 250 LS 15.51 3.84 80.65
Def-OnPol 250 PD 96.58 0.77 2.65
Def-OnPol 500 LS 8.48 1.03 90.49
Def-OnPol 500 PD 98.45 0.12 1.44
Def-OnPol 750 LS 16.43 1.57 82.00
Def-OnPol 750 PD 97.05 0.24 2.71
Def-OnPol 1000 LS 52.87 1.72 45.41
Def-OnPol 1000 PD 64.99 1.41 33.61

Def-ONS 250 LS 99.80 0.04 0.16
Def-ONS 250 PD 99.93 0.02 0.05
Def-ONS 500 LS 3.57 0.53 95.89
Def-ONS 500 PD 89.86 0.76 9.38
Def-ONS 750 LS 19.20 1.82 78.98
Def-ONS 750 PD 85.07 0.94 13.99
Def-ONS 1000 LS 14.46 1.11 84.43
Def-ONS 1000 PD 89.59 0.55 9.87

Def-area 250 LS 0.00 0.00 100.00
Def-area 250 PD 0.00 0.01 99.99
Def-area 500 LS 0.00 0.00 100.00
Def-area 500 PD 0.00 0.00 100.00
Def-area 750 LS 0.00 0.00 100.00
Def-area 750 PD 0.00 0.00 100.00

( To be continued)
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TABLE A.5: Probabilities (in %, rounded to two decimal places) for
each configuration in the CE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def-area 1000 LS 0.00 0.00 100.00
Def-area 1000 PD 0.00 0.00 100.00

Def-area-OnPol 250 LS 10.05 2.61 87.34
Def-area-OnPol 250 PD 1.29 0.58 98.12
Def-area-OnPol 500 LS 0.00 0.00 100.00
Def-area-OnPol 500 PD 0.00 0.00 100.00
Def-area-OnPol 750 LS 0.00 0.00 100.00
Def-area-OnPol 750 PD 0.00 0.00 100.00
Def-area-OnPol 1000 LS 0.00 0.00 100.00
Def-area-OnPol 1000 PD 0.00 0.00 100.00

Def-area-ONS 250 LS 98.69 0.31 1.00
Def-area-ONS 250 PD 48.28 5.34 46.38
Def-area-ONS 500 LS 4.40 0.59 95.01
Def-area-ONS 500 PD 2.32 0.37 97.31
Def-area-ONS 750 LS 0.00 0.00 100.00
Def-area-ONS 750 PD 0.07 0.01 99.91
Def-area-ONS 1000 LS 0.00 0.00 100.00
Def-area-ONS 1000 PD 0.00 0.00 100.00

Full 250 LS 51.83 5.63 42.54
Full 250 PD 93.60 1.43 4.98
Full 500 LS 0.04 0.01 99.95
Full 500 PD 12.64 1.38 85.99
Full 750 LS 0.62 0.15 99.23
Full 750 PD 29.81 2.12 68.07
Full 1000 LS 1.11 0.17 98.72
Full 1000 PD 36.86 1.76 61.38

Full-area 250 LS 13.69 4.17 82.14
Full-area 250 PD 0.92 0.54 98.55
Full-area 500 LS 0.00 0.00 100.00
Full-area 500 PD 0.00 0.00 100.00

( To be continued)
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TABLE A.5: Probabilities (in %, rounded to two decimal places) for
each configuration in the CE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Full-area 750 LS 0.00 0.00 100.00
Full-area 750 PD 0.00 0.00 100.00
Full-area 1000 LS 0.00 0.00 100.00
Full-area 1000 PD 0.00 0.00 100.00

Zeta-OnPolONS 250 LS 96.88 0.63 2.49
Zeta-OnPolONS 250 PD 92.16 1.62 6.22
Zeta-OnPolONS 500 LS 40.60 2.25 57.15
Zeta-OnPolONS 500 PD 91.91 0.57 7.51
Zeta-OnPolONS 750 LS 93.94 0.40 5.66
Zeta-OnPolONS 750 PD 98.95 0.10 0.95
Zeta-OnPolONS 1000 LS 64.99 1.44 33.57
Zeta-OnPolONS 1000 PD 88.40 0.62 10.98

Zeta-area-OnPolONS 250 LS 99.49 0.11 0.40
Zeta-area-OnPolONS 250 PD 99.99 0.00 0.01
Zeta-area-OnPolONS 500 LS 71.33 1.68 26.99
Zeta-area-OnPolONS 500 PD 87.46 0.82 11.72
Zeta-area-OnPolONS 750 LS 59.40 1.98 38.62
Zeta-area-OnPolONS 750 PD 70.96 1.50 27.54
Zeta-area-OnPolONS 1000 LS 9.10 0.90 90.01
Zeta-area-OnPolONS 1000 PD 77.30 1.11 21.60
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TABLE A.6: Probabilities (in %, rounded to two decimal places) for
each configuration in the LKE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def 250 LS 99.82 0.04 0.13
Def 250 PD 99.95 0.01 0.04
Def 500 LS 98.75 0.27 0.98
Def 500 PD 99.94 0.02 0.04
Def 750 LS 99.98 0.01 0.01
Def 750 PD 99.99 0.00 0.01
Def 1000 LS 100.00 0.00 0.01
Def 1000 PD 100.00 0.00 0.00

Def-OnPol 250 LS 99.85 0.04 0.10
Def-OnPol 250 PD 96.16 0.95 2.89
Def-OnPol 500 LS 98.40 0.37 1.22
Def-OnPol 500 PD 99.19 0.20 0.60
Def-OnPol 750 LS 99.96 0.02 0.02
Def-OnPol 750 PD 99.90 0.02 0.08
Def-OnPol 1000 LS 91.48 2.42 6.10
Def-OnPol 1000 PD 91.21 2.33 6.46

Def-ONS 250 LS 71.88 4.40 23.72
Def-ONS 250 PD 81.16 3.50 15.34
Def-ONS 500 LS 14.96 3.38 81.65
Def-ONS 500 PD 47.60 5.87 46.53
Def-ONS 750 LS 40.00 6.46 53.54
Def-ONS 750 PD 16.60 4.50 78.90
Def-ONS 1000 LS 16.81 4.93 78.25
Def-ONS 1000 PD 21.45 6.91 71.64

Def-area 250 LS 100.00 0.00 0.00
Def-area 250 PD 100.00 0.00 0.00
Def-area 500 LS 99.99 0.00 0.01
Def-area 500 PD 100.00 0.00 0.00
Def-area 750 LS 100.00 0.00 0.00
Def-area 750 PD 100.00 0.00 0.00

( To be continued)
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TABLE A.6: Probabilities (in %, rounded to two decimal places) for
each configuration in the LKE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def-area 1000 LS 99.93 0.03 0.05
Def-area 1000 PD 100.00 0.00 0.00

Def-area-OnPol 250 LS 99.28 0.21 0.51
Def-area-OnPol 250 PD 98.89 0.32 0.79
Def-area-OnPol 500 LS 89.93 1.91 8.15
Def-area-OnPol 500 PD 97.60 0.61 1.80
Def-area-OnPol 750 LS 99.29 0.17 0.53
Def-area-OnPol 750 PD 94.40 1.24 4.36
Def-area-OnPol 1000 LS 99.21 0.24 0.54
Def-area-OnPol 1000 PD 99.18 0.29 0.54

Def-area-ONS 250 LS 49.00 6.01 44.99
Def-area-ONS 250 PD 77.18 4.32 18.50
Def-area-ONS 500 LS 36.58 5.93 57.48
Def-area-ONS 500 PD 45.59 5.50 48.91
Def-area-ONS 750 LS 71.88 4.51 23.61
Def-area-ONS 750 PD 88.76 2.45 8.79
Def-area-ONS 1000 LS 92.04 2.34 5.62
Def-area-ONS 1000 PD 91.42 2.58 6.00

Full 250 LS 100.00 0.00 0.00
Full 250 PD 100.00 0.00 0.00
Full 500 LS 100.00 0.00 0.00
Full 500 PD 100.00 0.00 0.00
Full 750 LS 100.00 0.00 0.00
Full 750 PD 100.00 0.00 0.00
Full 1000 LS * * *
Full 1000 PD 100.00 0.00 0.00

Full-area 250 LS * * *
Full-area 250 PD * * *
Full-area 500 LS * * *
Full-area 500 PD * * *

( To be continued)
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TABLE A.6: Probabilities (in %, rounded to two decimal places) for
each configuration in the LKE state-encoding of IER performing bet-
ter or worse in terms of TTS than ER—or practically equivalent (with
respect to a rope). Only taken into account runs that finished within
4000 episodes. A * indicates that that the test was not possible, be-
cause, no a single run of the IER configuration was able to solve the
problem in time. Bold entries indicate a probability greater than 50%

for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Full-area 750 LS * * *
Full-area 750 PD * * *
Full-area 1000 LS * * *
Full-area 1000 PD * * *

Zeta-OnPolONS 250 LS 36.81 5.61 57.58
Zeta-OnPolONS 250 PD 35.03 6.15 58.81
Zeta-OnPolONS 500 LS 12.91 3.68 83.41
Zeta-OnPolONS 500 PD 20.23 4.40 75.37
Zeta-OnPolONS 750 LS 76.93 3.94 19.13
Zeta-OnPolONS 750 PD 60.96 5.95 33.09
Zeta-OnPolONS 1000 LS 5.32 2.40 92.28
Zeta-OnPolONS 1000 PD 74.95 5.23 19.82

Zeta-area-OnPolONS 250 LS 29.88 5.83 64.29
Zeta-area-OnPolONS 250 PD 36.98 6.52 56.51
Zeta-area-OnPolONS 500 LS 60.81 5.21 33.98
Zeta-area-OnPolONS 500 PD 33.13 5.67 61.20
Zeta-area-OnPolONS 750 LS 81.33 3.48 15.20
Zeta-area-OnPolONS 750 PD 61.69 5.64 32.67
Zeta-area-OnPolONS 1000 LS 60.68 6.80 32.51
Zeta-area-OnPolONS 1000 PD 74.31 5.83 19.86

A.3 Mean TTS
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TABLE A.7: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the VE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config texpl
LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

ER 250 4229 [3404, 7483]

Def 250 3046 [2122, 4737] 4181 [3290, 7564]
Def-ONS 250 3070 [2293, 4862] 2460 [1962, 3910]
Def-OnPol 250 4217 [3081, 6946] 3291 [2480, 5613]
Def-area 250 4421 [3311, 7804] 4001 [2941, 4806]
Def-area-OnPol 250 3578 [2744, 6226] 5416 [3891, 9522]
Def-area-ONS 250 4293 [3010, 6699] 2730 [2259, 5060]
Full 250 4208 [3372, 8404] 3453 [2774, 6000]
Full-area 250 5395 [4144, 7300] 4127 [3395, 8492]
Zeta-OnPolONS 250 4268 [3076, 5340] 3130 [2424, 5428]
Zeta-area-OnPolONS 250 3910 [2883, 6632] 5931 [4477, 8853]

ER 500 2442 [1930, 3795]

Def 500 2089 [1600, 2912] 1383 [1201, 1948]
Def-ONS 500 1392 [1186, 1951] 1578 [1273, 2149]
Def-OnPol 500 2388 [1936, 3679] 1681 [1417, 2442]
Def-area 500 2069 [1674, 3006] 3576 [2538, 5034]
Def-area-OnPol 500 1270 [1059, 1679] 2530 [1879, 3627]
Def-area-ONS 500 1417 [1149, 1909] 1458 [1234, 1936]
Full 500 1304 [1065, 1710] 1512 [1255, 2056]
Full-area 500 3915 [3466, 7713] 2662 [1914, 3679]
Zeta-OnPolONS 500 1843 [1509, 2690] 1071 [937, 1323]
Zeta-area-OnPolONS 500 1514 [1246, 2017] 1332 [1128, 1786]

ER 750 1055 [933, 1192]

Def 750 1348 [1173, 1657] 1405 [1205, 1710]
Def-ONS 750 1115 [978, 1314] 1136 [1003, 1282]
Def-OnPol 750 1057 [943, 1213] 1476 [1247, 1825]
Def-area 750 1587 [1295, 1924] 1810 [1510, 2373]
Def-area-OnPol 750 1314 [1132, 1564] 1589 [1348, 2012]
Def-area-ONS 750 1782 [1489, 2363] 1468 [1265, 1833]
Full 750 1142 [1020, 1364] 1179 [1005, 1352]
Full-area 750 1524 [1302, 1970] 1206 [1043, 1407]

( To be continued)
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TABLE A.7: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the VE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config texpl
LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Zeta-OnPolONS 750 1386 [1169, 1659] 1341 [1174, 1671]
Zeta-area-OnPolONS 750 1246 [1087, 1503] 1186 [1056, 1326]

ER 1000 1394 [1244, 1563]

Def 1000 1498 [1334, 1792] 1195 [1106, 1294]
Def-ONS 1000 1396 [1262, 1590] 1390 [1254, 1586]
Def-OnPol 1000 1302 [1195, 1448] 1377 [1245, 1570]
Def-area 1000 1418 [1273, 1601] 1519 [1336, 1794]
Def-area-OnPol 1000 1424 [1281, 1669] 1187 [1114, 1299]
Def-area-ONS 1000 1299 [1197, 1449] 1321 [1190, 1453]
Full 1000 1404 [1303, 1704] 1285 [1189, 1402]
Full-area 1000 1178 [1090, 1271] 1231 [1126, 1392]
Zeta-OnPolONS 1000 1511 [1323, 1787] 1169 [1127, 1214]
Zeta-area-OnPolONS 1000 1333 [1205, 1533] 1198 [1158, 1256]

TABLE A.8: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the CE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config
texpl LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

ER 250 1038 [941, 1234]

Def 250 1179 [1011, 1407] 1360 [1168, 1612]
Def-OnPol 250 967 [861, 1091] 1344 [1171, 1567]
Def-ONS 250 1548 [1340, 1865] 1581 [1398, 1894]
Def-area 250 649 [601, 699] 732 [678, 790]
Def-area-OnPol 250 932 [803, 1074] 838 [742, 957]
Def-area-ONS 250 1502 [1236, 1866] 1073 [937, 1245]
Full 250 1088 [974, 1219] 1262 [1141, 1435]
Full-area 250 993 [914, 1047] 856 [787, 936]
Zeta-OnPolONS 250 1377 [1170, 1698] 1303 [1111, 1525]

( To be continued)
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TABLE A.8: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the CE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config
texpl LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Zeta-area-OnPolONS 250 1514 [1283, 1783] 1848 [1553, 2214]

ER 500 2518 [2112, 3250]

Def 500 1763 [1601, 2136] 2283 [1976, 2762]
Def-OnPol 500 2091 [1795, 2448] 3768 [3170, 5152]
Def-ONS 500 1907 [1706, 2279] 3115 [2712, 4008]
Def-area 500 980 [921, 1053] 1178 [1059, 1340]
Def-area-OnPol 500 1177 [1095, 1278] 1289 [1188, 1427]
Def-area-ONS 500 1883 [1644, 2351] 1871 [1630, 2232]
Full 500 1674 [1542, 1855] 2151 [1934, 2503]
Full-area 500 1225 [1167, 1296] 1239 [1166, 1310]
Zeta-OnPolONS 500 2440 [2109, 3000] 3331 [2778, 4110]
Zeta-area-OnPolONS 500 2745 [2406, 3461] 2955 [2633, 4003]

ER 750 3549 [3022, 4715]

Def 750 2632 [2335, 2986] 4760 [3920, 6024]
Def-OnPol 750 2994 [2705, 3783] 5093 [4385, 7091]
Def-ONS 750 3116 [2802, 3803] 4204 [3700, 5815]
Def-area 750 1463 [1377, 1568] 1500 [1352, 1617]
Def-area-OnPol 750 1618 [1491, 1777] 1947 [1750, 2246]
Def-area-ONS 750 1981 [1782, 2281] 2215 [1956, 2655]
Full 750 2583 [2352, 2953] 3363 [2935, 4045]
Full-area 750 1493 [1431, 1567] 1571 [1446, 1720]
Zeta-OnPolONS 750 4243 [4002, 7489] 5490 [4752, 8536]
Zeta-area-OnPolONS 750 3873 [3286, 4709] 3960 [3353, 5280]

ER 1000 4885 [4098, 6889]

Def 1000 2937 [2646, 3397] 5364 [4476, 7255]
Def-OnPol 1000 4986 [4284, 6826] 5199 [4505, 7678]
Def-ONS 1000 3877 [3405, 5364] 6853 [5302, 10313]
Def-area 1000 1738 [1605, 1867] 2167 [1955, 2428]
Def-area-OnPol 1000 1942 [1810, 2146] 2362 [2112, 2645]
Def-area-ONS 1000 2310 [2047, 2596] 2643 [2418, 3029]
Full 1000 3569 [3102, 4150] 4744 [4086, 6037]

( To be continued)
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TABLE A.8: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the CE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config
texpl LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Full-area 1000 1940 [1813, 2057] 2290 [2087, 2523]
Zeta-OnPolONS 1000 4929 [4419, 7780] 6044 [5200, 10341]
Zeta-area-OnPolONS 1000 3867 [3291, 5034] 6036 [4806, 8585]

TABLE A.9: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the LKE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config texpl
LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

ER 250 3043 [2654, 3406]

Def 250 4101 [3722, 5411] 4369 [3893, 5393]
Def-OnPol 250 4504 [3786, 5925] 3777 [3217, 4476]
Def-ONS 250 3069 [2829, 3693] 3232 [2942, 3789]
Def-area 250 5868 [5146, 9623] 5910 [4709, 8591]
Def-area-OnPol 250 3829 [3484, 4628] 3899 [3417, 4849]
Def-area-ONS 250 2928 [2672, 3428] 3213 [2948, 3597]
Full 250 5950 [5243, 9720] 6418 [5341, 10451]
Full-area 250 * * * *
Zeta-OnPolONS 250 2978 [2546, 3362] 2862 [2607, 3253]
Zeta-area-OnPolONS 250 2860 [2556, 3219] 2833 [2629, 3267]

ER 500 3183 [2832, 3721]

Def 500 4173 [3718, 5386] 5252 [4317, 6830]
Def-OnPol 500 4219 [3666, 4979] 4272 [3779, 5681]
Def-ONS 500 2812 [2557, 3303] 3170 [2882, 3651]
Def-area 500 5619 [4771, 7979] 5910 [4848, 8239]
Def-area-OnPol 500 3626 [3307, 4423] 3917 [3622, 4652]
Def-area-ONS 500 3129 [2835, 3484] 3163 [2852, 3643]
Full 500 5703 [4914, 8602] 6700 [5685, 11595]
Full-area 500 * * * *

( To be continued)
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TABLE A.9: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the LKE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config texpl
LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

Zeta-OnPolONS 500 2910 [2645, 3198] 2984 [2671, 3336]
Zeta-area-OnPolONS 500 3240 [2978, 3802] 2992 [2790, 3479]

ER 750 2983 [2676, 3443]

Def 750 4801 [4101, 6479] 4682 [4254, 6103]
Def-OnPol 750 4603 [3968, 5712] 4085 [3788, 5365]
Def-ONS 750 2971 [2714, 3260] 2739 [2528, 3051]
Def-area 750 4932 [4442, 6680] 4854 [4449, 6285]
Def-area-OnPol 750 3991 [3535, 4944] 3589 [3181, 4299]
Def-area-ONS 750 3097 [2877, 3678] 3397 [3119, 3778]
Full 750 5400 [4918, 8539] 5317 [4787, 7716]
Full-area 750 * * * *
Zeta-OnPolONS 750 3238 [2938, 3685] 3086 [2847, 3442]
Zeta-area-OnPolONS 750 3197 [2979, 3784] 3106 [2824, 3503]

ER 1000 3240 [3033, 3695]

Def 1000 5209 [4490, 7100] 6674 [5075, 9679]
Def-OnPol 1000 3691 [3422, 4264] 3679 [3412, 4320]
Def-ONS 1000 2993 [2770, 3464] 3119 [2924, 3437]
Def-area 1000 4507 [4092, 5425] 5923 [5079, 9014]
Def-area-OnPol 1000 4127 [3768, 5013] 4077 [3758, 4803]
Def-area-ONS 1000 3731 [3440, 4277] 3652 [3464, 4045]
Full 1000 * * 6579 [5916, 12689]
Full-area 1000 * * * *
Zeta-OnPolONS 1000 2854 [2619, 3258] 3555 [3215, 4018]
Zeta-area-OnPolONS 1000 3416 [3109, 3867] 3446 [3251, 3898]

A.4 Probability Distributions

Density plots of the posterior distribution of µER − µIER for all IER configurations
that the gamma-distribution-based model is applicable to. Orange colors indicate
the central 95 % HPDI (also known as the 95 % credible interval; 95 % of central prob-
ability mass lies within these bounds). The green area indicates the rope in which
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a difference is treated as practical equivalent. Only successful runs were taken into
account.
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A.4.2 CE state-encoding
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A.4.3 LKE state-encoding
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Appendix B

Evaluation Results from IER for
Continuous Environments

B.1 Solution Rates, Probabilities and TTS

TABLE B.1: Probability (in %) for each IER configuration in the VE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol

Def 250 LS 9 28
Def 250 PD 3 1
Def 500 LS 84 93
Def 500 PD 33 76
Def 750 LS 93 41
Def 750 PD 19 41
Def 1000 LS 94 94
Def 1000 PD 91 91

Def-zeta 250 LS 0 9
Def-zeta 250 PD 6 4
Def-zeta 500 LS 41 93
Def-zeta 500 PD 25 93
Def-zeta 750 LS 32 32
Def-zeta 750 PD 41 13
Def-zeta 1000 LS 87 86
Def-zeta 1000 PD 97 96

Full 250 LS 3 2
Full 250 PD 0 1
Full 500 LS 68 42
Full 500 PD 4 67

( To be continued)
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TABLE B.1: Probability (in %) for each IER configuration in the VE
state-encoding that the solution rate of IER is greater than the solution
rate of ER. A * indicates that the query function was not evaluated for

the corresponding configuration.

Config texpl Query Function Vanilla OnPol

Full 750 LS 9 33
Full 750 PD 59 50
Full 1000 LS 58 87
Full 1000 PD 75 59

TABLE B.2: Probabilities (in %, rounded to two decimal places) for
each configuration in the MountainCar problem of IER performing
better or worse in terms of TTS than ER—or practically equivalent
(with respect to a rope). Only taken into account runs that finished
within 4000 episodes. Bold entries indicate a probability greater than

50% for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def 250 LS 94.45 0.29 5.27
Def 250 PD 98.79 0.07 1.13
Def 500 LS 8.91 0.97 90.12
Def 500 PD 63.01 1.59 35.39
Def 750 LS 3.60 0.53 95.86
Def 750 PD 81.61 0.95 17.44
Def 1000 LS 3.92 0.49 95.58
Def 1000 PD 8.44 0.82 90.74

Def-OnPol 250 LS 75.54 1.04 23.42
Def-OnPol 250 PD 99.68 0.01 0.31
Def-OnPol 500 LS 1.82 0.30 97.88
Def-OnPol 500 PD 12.41 1.21 86.38
Def-OnPol 750 LS 57.70 1.65 40.64
Def-OnPol 750 PD 51.81 1.57 46.62
Def-OnPol 1000 LS 4.67 0.56 94.77
Def-OnPol 1000 PD 9.32 0.89 89.79

Def-zeta 250 LS 99.89 0.00 0.11
Def-zeta 250 PD 98.25 0.12 1.64
Def-zeta 500 LS 42.44 1.84 55.72
Def-zeta 500 PD 78.89 1.24 19.87
Def-zeta 750 LS 71.13 1.31 27.56
Def-zeta 750 PD 58.12 1.63 40.25

( To be continued)
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TABLE B.2: Probabilities (in %, rounded to two decimal places) for
each configuration in the MountainCar problem of IER performing
better or worse in terms of TTS than ER—or practically equivalent
(with respect to a rope). Only taken into account runs that finished
within 4000 episodes. Bold entries indicate a probability greater than

50% for IER performing better than ER.

Config texpl
Query ER practical IER

Function better equivalent better

Def-zeta 1000 LS 7.40 0.63 91.97
Def-zeta 1000 PD 2.51 0.30 97.18

Def-zeta-OnPol 250 LS 93.83 0.32 5.85
Def-zeta-OnPol 250 PD 99.02 0.07 0.90
Def-zeta-OnPol 500 LS 3.64 0.57 95.78
Def-zeta-OnPol 500 PD 3.21 0.50 96.29
Def-zeta-OnPol 750 LS 65.73 1.47 32.80
Def-zeta-OnPol 750 PD 86.61 0.74 12.65
Def-zeta-OnPol 1000 LS 11.74 0.90 87.36
Def-zeta-OnPol 1000 PD 3.49 0.41 96.10

Full 250 LS 98.47 0.09 1.44
Full 250 PD 99.99 0.00 0.01
Full 500 LS 18.58 1.56 79.86
Full 500 PD 96.00 0.26 3.73
Full 750 LS 91.32 0.54 8.14
Full 750 PD 49.11 1.88 49.02
Full 1000 LS 41.85 1.73 56.43
Full 1000 PD 26.32 1.51 72.17

Full-OnPol 250 LS 99.56 0.02 0.42
Full-OnPol 250 PD 99.73 0.01 0.26
Full-OnPol 500 LS 44.75 1.75 53.50
Full-OnPol 500 PD 22.07 1.57 76.36
Full-OnPol 750 LS 79.42 1.21 19.37
Full-OnPol 750 PD 48.80 1.69 49.50
Full-OnPol 1000 LS 8.44 0.74 90.82
Full-OnPol 1000 PD 42.89 1.70 55.41
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TABLE B.3: Most likely values and uncertainties for the mean TTS
of IER and ER for all configurations of the VE state-encoding given
as the modes and 95 % HDPIs of the estimated distributions of µER
and µIER. A * indicates that the statistical model was not computed,
because, for the IER configuration not a single one of the runs was

able to solve the problem within time.

Config texpl
LS mean TTS PD mean TTS

Mode 95 % HPDI Mode 95 % HPDI

ER 250 1688 [1350, 2196]

Def 250 2340 [1870, 3389] 2792 [2166, 4015]
Def-OnPol 250 1909 [1551, 2596] 2882 [2410, 4746]
Def-zeta 250 3268 [2696, 5540] 2711 [2102, 3740]
Def-zeta-OnPol 250 2145 [1850, 3242] 2769 [2209, 4059]
Full 250 2583 [2129, 3981] 3971 [2987, 5658]
Full-OnPol 250 3124 [2332, 4332] 2989 [2468, 4648]

ER 500 3142 [2642, 4248]

Def 500 2490 [2068, 3215] 3373 [2759, 4865]
Def-OnPol 500 2240 [1852, 2783] 2484 [2072, 3414]
Def-zeta 500 3072 [2461, 4333] 3722 [3117, 5147]
Def-zeta-OnPol 500 2464 [2018, 2923] 2237 [1953, 2908]
Full 500 2743 [2255, 3534] 4688 [3763, 6932]
Full-OnPol 500 3079 [2451, 4474] 2714 [2311, 3621]

ER 750 2941 [2532, 4041]

Def 750 2213 [1961, 2792] 3962 [2975, 5250]
Def-OnPol 750 3150 [2680, 4147] 2942 [2498, 4254]
Def-zeta 750 3414 [2839, 4525] 3253 [2685, 4151]
Def-zeta-OnPol 750 3154 [2688, 4611] 3777 [3149, 5362]
Full 750 3889 [3292, 5747] 3244 [2608, 3892]
Full-OnPol 750 3537 [3032, 4668] 3014 [2532, 4033]

ER 1000 3799 [3331, 5465]

Def 1000 2858 [2591, 3684] 3082 [2662, 4010]
Def-OnPol 1000 2907 [2502, 3794] 3095 [2733, 4039]
Def-zeta 1000 2856 [2558, 3994] 2804 [2482, 3567]
Def-zeta-OnPol 1000 3211 [2750, 4145] 2908 [2507, 3664]
Full 1000 3915 [3430, 4857] 3504 [3042, 4663]
Full-OnPol 1000 3081 [2654, 4030] 3753 [3416, 4916]
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B.2 Probability Distribution

Density plots of the posterior distribution of µER − µIER for all IER configurations
that the gamma-distribution-based model is applicable to. Orange colors indicate
the central 95 % HPDI (also known as the 95 % credible interval; 95 % of central prob-
ability mass lies within these bounds). The green area indicates the rope in which
a difference is treated as practical equivalent. Only successful runs were taken into
account.
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