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We study electron-electron and electron-phonon mediated pairing in the Holstein extended Hubbard model on
the kagome lattice near the van Hove fillings, and we investigate their combined effects on electron pairing states.
We find that their combination can promote exotic pairings in a crossover region, where the filling is close to a van
Hove singularity. In particular, at the p-type van Hove filling, the E1u (p-wave) and B2u ( fy3−3yx2 -wave) pairings
become leading, and at the m-type van Hove filling, the E1u and A2g (i-wave) pairings get promoted. Moreover,
we show that the electron-phonon interaction acquires a significant momentum dependence, due to the sublattice
texture of the Fermi surfaces, which can promote non-s-wave pairing. We present a detailed analysis of these
pairing propensities, and we discuss implications for the vanadium-based kagome superconductors AV3Sb5.
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One of the central questions in the field of correlated su-
perconductors is the nature of the pairing mechanism, which
can be either electron-phonon driven or entirely electronic.
The answer to this question, which has been hotly debated
in numerous classes of superconductors [1,2], directly deter-
mines the properties and topologies of the superconducting
state: While electron-phonon-mediated pairing tends to pro-
duce trivial s-wave states [3–5], purely electronic pairing leads
to topological states with higher angular momenta and pos-
sibly nontrivial spin configurations [6,7]. The latter types of
pairings are highly sought after, since they have applications
in quantum information and sensor technology [8].

The recent discovery of superconductivity in kagome ma-
terials, including vanadium-based AV3Sb5 (A = K,Rb,Cs)
[9–12], ruthenium-based RRu3Si2 (where R denotes rare-earth
elements) [13–15], Ti-based materials [16], and Ta2V3.1Si0.9

[17], has brought the question of the pairing mechanism
to the table again, but now with several new twists, re-
lated to the sublattice texture and van Hove singularities of
the kagome lattice [18–22]. Especially, the vanadium-based
kagome material AV3Sb5 has attracted tremendous atten-
tion due to its possible unconventional superconducting and
charge density wave (CDW) orders. With multiple van Hove
(VH) singularities in the vicinity of the Fermi level [23–26],
superconductivity emerges in AV3Sb5 inside a CDW order
with a transition temperature of Tc � 0.9–2.5 K at ambient
conditions [10,27,28]. As VH singularities (VHSs) carry a
large density of states, correlation effects are expected to be
crucial in these kagome superconductors. So far, the con-
flicting experimental evidence about superconducting gaps

*xxwu@itp.ac.cn

renders the pairing mechanism elusive [23,29–41]. A sig-
nificant residual thermal conductivity [30], superconducting
domes with external pressure [31–33] and charge doping
[34–36], and V-shaped gaps in scanning tunneling microscopy
(STM) measurements [23,37] suggest unconventional pairing.
In contrast, penetration depth and nuclear magnetic resonance
(NMR) measurements suggest an electron-phonon-coupling-
driven s-wave pairing [38,39]. Moreover, μSR measurements
[40] reveal a transition from a nodal to nodeless gap with
increasing pressure, and they suggest that the nodeless pair-
ing breaks time-reversal symmetry when the CDW order is
suppressed by pressure. Recent angle-resolved photoemission
spectroscopy measurements identified clear kinks in both Sb
p-orbital and V d-orbital bands from which an intermedi-
ate electron-phonon coupling (EPC) strength was determined
[42]. Thus, both electronic interactions (EIs) and EPC are
believed to play crucial roles in promoting the exotic orders
of AV3Sb5 [43–52]. Hence, in order to properly address the
mechanism of superconductivity in AV3Sb5, one must con-
sider electron-phonon and electron-electron interactions on an
equal footing.

Motivated by this, we study in this paper the pairing
states on the kagome lattice at VH fillings by including
both electron-phonon coupling and electronic interactions
within the random phase approximation (RPA). We find that
the effective pairing interaction from an isotropic electron-
phonon pairing obtains a substantial momentum dependence
due to the VH sublattice texture and can promote non-s-
wave pairing. Moreover, the combined electron-phonon and
electron-electron pairing mechanisms lead to electron pairings
in the p-wave (E1u) and fy3−3yx2 -wave (B2u) channels near the
p-type VH filling and in the E1u and i-wave (A2g) channels
near the m-type VH filling. The mechanism is analyzed, and
implications for pairing in AV3Sb5 are discussed.
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FIG. 1. (a) Kagome lattice structure with the three sublattices A,
B, and C indicated by the red, green and blue spheres, respectively. a1

and a2 denote the unit vectors. The white spheres located at the center
of hexagons with arrows represent the vibrations of the out-of-plane
Holstein phonon mode. (b) Band structure in the Brillouin zone, with
the pink and blue planes denoting fillings of p-type (μ = 0.08) and
m-type (μ = −2.08) near the van Hove singularities. The red and
blue lines represent band dispersion along �-M and �-K , respec-
tively. (c) Total effective interaction from the electronic interaction
and electron-phonon coupling.

I. MODEL AND FORMALISM

To explore the superconducting pairing on the kagome
lattice [Fig. 1(a)], we consider a tight-binding model H0 with
an extended (U -V ) Hubbard interaction and a Holstein-type
electron-phonon coupling. The U -V Hubbard Hamiltonian
reads

Hint = U
∑
i,α

niα↑niα↓ + V
∑

〈i j〉,α,β
α �=β

niαn jβ , (1)

where niα = niα↑ + niα↓ is the electron density operator, 〈i j〉
denotes the nearest-neighbor sites, U is the on-site Hubbard
repulsion, and V is the nearest-neighbor Coulomb repulsion.
For the phonons, we consider the Holstein model, which
mimics the out-of-plane vibration of the phonon subsystem
at the center of the hexagon in Fig. 1(a). The study of super-
conductivity in interacting Holstein models is an old topic,
and has resurfaced recently [53–55]. The phonon and the
electron-phonon part of the Holstein Hamiltonian is given by

Hp + Hep =
∑

q

ωD

(
a†

qaq + 1

2

)

+ g0√
N

∑
αkqσ

c†
k+qασ ckασ (a†

−q + aq), (2)

where g0 is the bare electron-phonon coupling constant and
ωD is the phonon frequency, which can be associated with
the Debye frequency for studying superconductivity. a†

q (aq) is
the phonon creation (annihilation) operator, and N is the total
number of lattice sites. More details on the Hamiltonian are
presented in the Appendixes. Defining the hopping parameter
t as the unit of energy, we set t = 1 from now on. For the

numerical calculations, we choose the representative values
ωD = 0.01 and g0 = 0.1 (see the Appendixes).

Diagonalizing the bare electron Hamiltonian, we obtain
three bands as shown in Fig. 1(b), one of which is flat and the
other two form Dirac cones at the K points. At the M points
there are two types of VHSs with energies E = 0 and −2,
featuring pure sublattice (p-type) or mixed sublattice (m-type)
characters, respectively. The corresponding hexagonal Fermi
surfaces near the two VH fillings are displayed in Figs. 2(a)
(p-type) and 2(e) (m-type), respectively. The red, green, and
blue colors represent the weight of the A, B, and C sublattices.

From the total Hamiltonian H = H0 + Hint + Hp + Hep

(see the Appendixes), we have two contributions to the ef-
fective interactions for superconducting pairing: An electron-
electron (VEI) and an electron-phonon (VEPC) effective inter-
action, as shown diagrammatically in Fig. 1(c). In Fig. 1(c),
the filled diamonds represent the electron-phonon coupling
renormalized by correlations, a curly line indicates the bare
phonon propagator, and a darkened zigzag line represents the
effective electron-electron interaction. We calculate the effec-
tive electronic interactions and renormalized electron-phonon
coupling using the RPA, as detailed in the Appendixes. Near
Tc, the gap function can be obtained by solving the linearized
gap equation,

−
∫

FS

√
3dk′

2(2π )2|vk′ |V
S/T
η (k, k′)	i(k′) = λ

η
i 	i(k), (3)

where vF (k) is the Fermi velocity at the momentum k on the
Fermi surface (FS). λη

i denotes the pairing strength for the gap
function 	i(k) from the pairing interaction vertex Vη, in the
triplet (T ) and singlet (S) channels, with η = EPC, EI, tot (for
details, see the Appendixes).

II. RESULTS AND DISCUSSIONS

At both VHSs, there are three nesting vectors Q1 = (0, 2π )
and Q2/3 = (±√

3π, π ), as shown in Fig. 2(a). Around the
p-type VHS, these nesting vectors always connect distinct
sublattice characters of states around the three saddle points
[Fig. 2(a)]. Around the m-type VHS, however, the Fermi
surface segments near M points connected by Q1,2,3 always
share a common sublattice. These features dominantly deter-
mine the intrinsic charge or spin fluctuations embedded in
the susceptibility. Despite similar peak structures of the bare
susceptibility near the � and M points in the two cases, the
corresponding distributions of sublattice weight in the mo-
mentum space are quite different, as shown in Figs. 2(b) and
2(f). Near the p-type VHS, the peaks around the � point are
mainly attributed to one sublattice, while the peaks around the
M point are attributed to a mixture of the other two sublattices,
derived from the sublattice characters on the Fermi surface.
In contrast, near the m-type, the distribution of sublattice
weight of the susceptibility is the opposite. The peaks ascribed
to one sublattice and mixed sublattices in the susceptibility
can be enhanced by including on-site and nonlocal Coulomb
interactions, respectively. Due to the sublattice makeup on the
Fermi surface, the effective interaction will be reduced in the
band space. In the following, we will demonstrate the crucial
effect of these salient sublattice features on the correlated
phenomena.
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FIG. 2. Sublattice-resolved Fermi surface and largest eigenvalues for the bare static susceptibility matrix χ0(q) near the p-type VHS
μ = 0.08 (a),(b) and m-type VHS μ = −2.08 (e),(f), where red, green, and blue represent the weight of the A, B, and C sublattice, respectively.
Q1,2,3 are the nesting vectors. The effective Cooper pairing scattering interaction on the Fermi surface from the EPC and electronic interactions
near p-type VHS (c),(d) and m-type VHS μ = −2.08 (g),(h). The k1 is fixed near the M point denoted by a star in (a),(e), and kp runs on the
Fermi surface. V = 0.3U in (c), (d), (g), and (h).

We start with the case at a filling μ = 0.08 near the
p-type VHS. Here, only intra-sublattice pairing is allowed
near three saddle points due to the sublattice feature in
Fig. 2(a). We project the bare EPC interaction into the band
space (see the Appendixes), and Fig. 2(c) shows the pairing
vertex VEPC(k1, kp), where k1 is fixed around the M point
(− 2π√

3
, 0) [marked by a star in Fig. 2(a)] and kp runs on

the FS and is numbered from 1 to 72. Remarkably, we find
that the interaction already exhibits a large anisotropy with-
out including electronic interactions. It peaks at kp = 1, 36,
where the eigenstates at both k1 and kp are dominantly con-
tributed by the A sublattice and rapidly fall to almost zeros at
kp = 12, 24, 48, 60, where the eigenstates are mainly at-
tributed to B and C sublattices. Such a sublattice dependence
is intimately related to the sublattice characters at the saddle
points and the density-type EPC, which can only generate an
intra-sublattice Cooper pair scattering but no inter-sublattice
one. This is in contrast to the case of the bare local coupling
of the Holstein type, which is usually expected to generate an
isotropic effective attraction between electrons [56,57].

Once electronic interactions are introduced, the EPC vertex
will get renormalized and reduced, as shown in Fig. 2(c),
but the anisotropy remains. The effective interaction directly
derived from the EI is displayed in Fig. 2(d). Except for the
repulsive nature, the general features are similar to the EPC.
Here, the peak around kp = 1 is dominantly contributed by
the ladder diagrams as the spin fluctuations peak off the �

point, and the sharp dip around the kp index 12,24,48,60 is
because spin or charge fluctuations with a momentum Q1,2,3

cannot mediate intersublattice Cooper scattering on the Fermi
surface.

For the filling μ = −2.08 near the m-type VHS, the effec-
tive interaction from the bare EPC is displayed in Fig. 2(g).

It is less anisotropic, and it falls to a quarter of VEPC(k1, k1)
for kp = 12, 24, 48, 60. This value is nonzero as the eigen-
states at those k points share the same sublattice B or C with
that at k1. With increasing electronic interactions, the EPC
interaction becomes more isotropic, and additional features
appear, as shown in Fig. 2(g). At U = 2 shown in the inset, the
interaction exhibits dips around kp = 12, 24, which is derived
from the renormalization by the enhanced spin or charge fluc-
tuations at Q2/3. The pairing vertex from the EI is displayed
in Fig. 2(h). It exhibits similar features but peaks at the dip
positions of the EPC case as the corresponding fluctuations
enhance the electronic pairing vertex.

We further analyze the pairing propensity near two VH
fillings. For μ = 0.08, EPC alone is expected to generate a
dominant s-wave (A1g) pairing due to its attractive nature, as
shown in Fig. 3(a). Remarkably, even for the noninteracting
case U = V = 0, the bare EPC can already create competing
pairings in the d-wave (E2g), p-wave (E1u), and fy3−3yx2 -wave
(B2u) channels, due to the anisotropic pairing vertex. This is
in sharp contrast to the vanishing non-s-wave pairing in the
triangular or square lattice [56,57]. These subleading states
are pairings between nearest-neighbor (NN) sites, and the
B2u pairing features a sign change under a 60◦ rotation with
line nodes along the �-M direction (see the Appendixes).
With increasing U and a fixed ratio V/U = 0.3, the pairing
vertex gets renormalized and the pairing eigenvalues in all
channels decrease monotonically. From the pure electronic
effective interactions VEI, an fx3−3xy2 -wave (B1u) and p-wave
(E1u) pairing dominate for weak interactions (U < 1.2), as
shown in the inset of Fig. 3(b). With increasing interaction,
the pairing eigenvalues of the d-wave, i-wave, and s-wave
increase rapidly and they become dominant after U exceeding
1.2, promoted by the antiferromagnetic fluctuations within the
unit cell (see the Appendixes). These states are almost de-
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FIG. 3. Pairing strength eigenvalues for the dominant instabilities as a function of U (V = 0.3U ) near the p-type (top panels) and m-type
(bottom panels) and the contribution from EPC (a),(d), electronic interactions (b),(e), and their summation (c),(f). Here, both bubble and ladder
diagrams are included for EI. The results with only bubble diagrams are given in the Appendixes.

generate approaching the critical interaction, consistent with
previous results [22].

The pairing eigenvalues from including both contributions
from EPC and EI (Vtot) clearly show three regimes in Fig. 3(c):
the EPC-dominated regime, the crossover regime, and the EI-
dominated regime. In the first regime, U < 0.8, the difference
between s-wave and d-wave pairing eigenvalues is not big
and superconductivity is not necessarily s-wave but might be
d-wave, as s-wave paring will be significantly reduced by
the Coulomb pseudopotential μ∗, while the subleading E2g

pairing is unaffected, leading to a value for Tc of the order
of a few K (see the Appendixes). In the crossover regime,
p-wave and fy3−3yx2 -wave (B2u) pairing become dominant for
0.9 < U < 1.3, in contrast to the discussed pure EI case,
and the d-wave pairing is slightly favored for 1.3 < U < 2.
Through comparing pairing eigenvalues in Figs. 3(a), 3(b) and
3(c), we can find that there are two main effects triggering
this behavior: (a) repulsive VEI, whose magnitude increases
with increasing U and V , significantly suppresses the on-site
A1g and NN E2g pairing from the EPC; (b) the interaction-
driven E2g pairing gets slightly enhanced by EPC for U > 1.3.
Moreover, the electronic interaction suppresses the pairing
in the spin-singlet channels faster than the triplet channels.
Therefore, the dominant p-wave and fy3−3yx2 -wave pairing
emerge in the crossover regime due to the combined effect
of EPC and EI.

The situation for μ = −2.08 is quite different. As shown
in Fig. 3(d), the s-wave pairing is dramatically dominant in
the EPC case compared to E2g, E1u, and B1u, different from
the case of p-type VHS, which is consistent with the smaller

anisotropy of the EPC effective interaction [Fig. 2(g)]. From
VEI, the p-wave and B1u-wave pairing are leading with close
eigenvalues for weak interactions U < 1.7, as shown in the
inset of Fig. 3(e). The A2g (i-wave) pairing is subleading
at weak interactions but increases rapidly with increasing U
(U > 1), and its pairing eigenvalue exceeds the p-wave state
and becomes leading for U > 1.7. The s- and d-wave states
are subleading close to the critical interaction, distinct from
the p-type VHS. These states are promoted by the antifer-
romagnetic spin and bond fluctuations (see the Appendixes).
Similarly, there are three regimes in Fig. 3(f) when including
both EPC and EI. For U < 0.9, an s-wave pairing from EPC
dominates. In the crossover regime, the p-wave pairing is
dominant for 0.9 < U < 1.1, and A2g-wave pairing becomes
clearly leading for 1.1 < U < 1.8, which is ascribed to the
competition between EPC and EI in the p-wave channel and
mutual enhancement in the A2g channel.

III. CONCLUSIONS AND IMPLICATIONS
FOR EXPERIMENTS

We have shown that the combined effect of electron-
phonon coupling and electronic correlations near VH fillings
is crucial for the occurrence of anomalous pairing in kagome
materials. Although our results are for the Holstein-Hubbard
model, they can be expected to hold for a more general class
of models due to the intriguing sublattice texture. Our theory
can be applicable to recently discovered kagome supercon-
ductors, including AV3Sb5 [9,10], RRu3Si2 [13–15], Ti-based
materials [16], and Ta2V3.1Si0.9 [17]. Especially, for the mul-
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tiorbital AV3Sb5, where two p-type VHSs and one m-type
VHS appear near the Fermi level [25,26], our work has im-
plications for its pairing symmetry. First, it is noted that the
pairing eigenvalue λs without correlations (U = V = 0) is of
the order of the values reported in first-principle calculations
[42,47,58,59], confirming that our choice of phonon param-
eters is realistic for AV3Sb5. As nematicity emerges in the
CDW order with the lattice rotational symmetry broken, the
corresponding twofold pairing states may be split. If AV3Sb5

is located at the crossover regime of EPC and EI, a nematic
pairing, involving a mixture of px- and py-wave gaps, or an f -
wave pairing, will be favored from the p-type VHS at ambient
pressure. This gap is usually nodal or has a deep minimum,
consistent with nodal signatures in experiments [30,40]. With
increasing pressure, the bandwidth increases and the correla-
tion effect weakens. Thus, the pairing may stay unchanged or
transforms to an s-wave state according to Fig. 3(c). When
the CDW order is eliminated, the lattice rotational symmetry
is restored and a p + ip in the E1u channel with time-reversal
symmetry breaking will be favored. Both p + ip- and s-wave
states are nodeless. This provides a possible explanation for
the observed transition from a nodal to nodeless gap with
increasing pressure in μSR measurements [40]. Moreover,
the p + ip state can account for the time-reversal symmetry
breaking of the superconducting state observed in μSR mea-
surements without CDW order.

Note added. Upon finalizing our manuscript, we became
aware of Ref. [60], in which pure electron-electron-mediated
pairing was discussed on the kagome lattice by including both
bubble and ladder diagrams with on-site and nearest-neighbor
interactions. A rich pairing phase diagram is revealed, in
agreement with our findings.
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APPENDIX A: MODEL AND METHODS

1. Hamiltonian

We consider a Hamiltonian on a two-dimensional kagome
lattice with both electron-electron and electron-phonon inter-
actions,

H = He + Hp + Hep, (A1)

with the electron part of the Hamiltonian He given by an
extended Hubbard model,

He = H0 + Hint,

H0 = −t
∑

〈i j〉,α,β,σ
α �=β

c†
iασ c jβσ − μ

∑
i,α

niα,

Hint = U
∑
i,α

niα↑niα↓ + V
∑

〈i j〉,α,β
α �=β

niαn jβ , (A2)

where c†
iασ (ciασ ) is the creation (annihilation) operator of an

electron with spin σ at lattice site i, α = A, B,C is the index
for the three different sublattices, niα = niα↑ + niα↓ is the
electron density operator, 〈i j〉 denotes the nearest-neighbor
sites, t is the nearest-neighbor hopping amplitude, μ is the
chemical potential, U is the on-site Hubbard repulsion, and
V is the nearest-neighbor Coulomb repulsion. For the phonon
part of the Hamiltonian, we consider a Holstein phonon mim-
icking the out-of-plane vibration of ions at the center of the
kagome unit cell given by

Hp =
∑

i

h̄ωD(a†
i + ai ), (A3)

where a†
i (ai) is the phonon creation (annihilation) operator

and ωD is the phonon frequency, which can be associated
with the Debye frequency for studying superconductivity. The
electron-phonon coupling is given as

Hep = g0

∑
i,α

niα
(
a†

i + ai
)
, (A4)

where g0 is the bare electron-phonon coupling constant, and
within the considered model the electrons at different sublat-
tices couple to the phonon with the same coupling strength.
For simplicity, we express energies in units of t , lengths in
units of the lattice spacing a, and we set h̄ = kB = 1.

Due to the translational invariance, we Fourier
transform the Hamiltonian using the transformation
c†

iα = 1√
N

∑
k e−k·Ri c†

kα for the electron operators and

a†
i = 1√

N

∑
q e−q·Ri a†

q for the phonon operators, where N is
the total number of sites. The phonon and the electron-phonon
part of the Hamiltonian can be written as

Hp + Hep =
∑

q

ωD

(
a†

qaq + 1

2

)

+ g0√
N

∑
αkqσ

c†
k+qασ ckασ

(
a†

−q + aq
)
. (A5)

After Fourier transformation, and making explicit the spin
indices, the noninteracting Hamiltonian can be written in
a matrix form H0 = ∑

k �†h0(k)� in the basis �† =
(c†

kA↑, c†
kA↓, c†

kB↑, c†
kB↓, c†

kC↑, c†
kC↓) with

h0(k) =
⎛
⎝ −μI2 −t fABI2 −t fACI2

−t fBAI2 −μI2 −t fBCI2

−t fCAI2 −t fCBI2 −μI2

⎞
⎠, (A6)
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FIG. 4. (a) Total effective interaction Ṽ tot
eff from electronic and

EPC interactions. (b) Bubble and ladder diagrams for electronic
interactions. (c) The renormalized EPC vertex. Solid zigzag lines
represent the effective electron-electron interaction, filled diamonds
indicate the renormalized electron-phonon interaction vertex of the
bare electron-phonon interaction vertex denoted as filled circle, curly
lines indicate the phonon propagator, and solid lines represent elec-
tron propagator.

where I2 is a 2 × 2 identity matrix in the spin basis, the
elements are given by

fAB(k) = (1 + e−ik·a1 ),

fAC (k) = (1 + e−ik·(a1+a2 )),

fBC (k) = (1 + e−ik·a2 ), (A7)

and fαβ (k) = fβα (−k), with the unit vectors given as
a1 = (

√
3/2,−1/2)T and a2 = (0, 1)T . The corresponding

noninteracting electronic Green’s function is obtained by
G0(k, iωn) = [iωn − h0(k)]−1.

2. Interactions within the random phase approximation

The total effective interaction can be written as the sum
of the electron-electron (ee) and EPC interactions [Fig. 4(a)].
From the bubble diagrams, we calculate the effective
electron-electron interactions incorporating the renormaliza-
tions caused due to charge and spin fluctuations as shown in
Fig. 4(b),
{
Ṽ ee,B

eff (q, iνn)
}σσ ′

αα,ββ
= {[

I + V 0
int(q)χ0(q, iνn)

]−1
V 0

int(q)
}σσ ′

α,β
,

(A8)

where I is a 6 × 6 identity matrix, and the bare (noninteract-
ing) susceptibility χ0 is given by

χ0
ασ,βσ ′ (q, iνn) = −T

N

∑
k,iωm

G0
ασ,βσ ′ (k, iωm)

× G0
βσ ′,ασ (k + q, iωn + iνn), (A9)

where iωn (iνn) is the fermionic (bosonic) Matsubara fre-
quency, T is the temperature, and G0

ασβσ ′ (k, iωn) are elements
of the noninteracting electronic Green’s function G0(k, iωn).
The bare interaction matrix is defined as[

V 0
int

]
ασ,βσ ′ (q) = U (1 − δσσ ′ )δαβ + V fαβ (1 − δαβ ), (A10)

where δ is the Kronecker delta function, and fαβ are given by
Eq. (A7).

In the ladder diagrams, the interaction lines depend on
the internal momenta, and the geometric summation cannot
be directly done with previously defined susceptibilities. To
address this, we introduce a generalized susceptibility [61],[

χL
0 (q, iνn)

]st

αβ,γ δ
= −T

N

∑
k,iωm

f s,∗
αβ (k)G0

αγ (k)G0
δβ

× (k + q, iωm + iνn) f t
γ δ (k), (A11)

where α, β, γ , δ is the sublattice index, and s, t = 0,+,−
denotes the on-site, symmetric, and antisymmetric nearest-
neighbor form factors. The corresponding form factors are
given by

f 0
αα (k) = 1,

f ±
AB(k) = 1 ± e−ik·a1 ,

f ±
AC (k) = 1 ± e−ik·(a1+a2 ),

f ±
BC (k) = 1 ± e−ik·a2 ,

f ±
αβ (k) = f ±

βα (−k). (A12)

The general susceptibility is motivated by the separation of
momenta in the interaction form factor, i.e.,

f +
αβ (−k + k′) = 1

2 [ f +,∗
αβ (k) f +

αβ (k′) + f −,∗
αβ (k) f −

αβ (k′)].

From the ladder diagrams, the renormalized susceptibility
reads[

χL
RPA(q, 0)

]st

αβ,γ δ
= {

χL
0 (q, 0)[1 − V0χ

L
0 (q, 0)]−1

}st

αβ,γ δ
,

(A13)

with the interaction matrix V0,

[V0]s
αβ,γ δ =

⎧⎪⎨
⎪⎩

U, α = β = γ = δ, s = 0,
1
2V, α = γ , β = δ, α �= β, s = ±,

0, others.

(A14)

The effective Cooper pair scattering through the ladders dia-
gram reads[

Ṽ ee,L
sc (k, k′)

]↑↓
αβ,γ δ

= [
Vkχ

L
RPA(k + k′, 0)Vk′

]
δβ,γ α

, (A15)

with the interaction matrix Vk,

[Vk]s
αβ,γ δ =

⎧⎨
⎩

U, α = β = γ = δ, s = 0,
1
2V f s

αβ (k), α = γ , β = δ, α �= β, s = ±,

0, others.

(A16)

For the electron-phonon effective interaction, the second
diagram of Fig. 4(a) is computed in the RPA [62,63], where
the bare electron-phonon coupling constant g0 is renormalized
due to charge fluctuations, represented by the diagram in
Fig. 4(c), giving

g̃(q, iνn) = [
I + V 0

int(q)χ0(q, iνn)
]−1

ĝ0, (A17)

where ĝ0 = g0I6×1, and I6×1 is a 6 × 1 matrix with all compo-
nents being unity.

3. Effective pairing interactions
and superconducting instabilities

We investigate the possible superconducting instabilities
induced by both spin and charge fluctuations. Fluctuation-
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induced renormalized effective electron-electron interaction
can give rise to unconventional superconductivity, as often
discussed in the context of high-Tc superconductors [64–66].
Importantly, the renormalized electron-phonon coupling con-
stant in Eq. (A17) also gives the possibility of the emergence
of unconventional superconducting pairings [56,57]. The total
effective interaction in the superconducting channel in the
weak coupling BCS form is

H eff
sc =

∑
α,β,k,k′

[
Ṽ tot

sc

(
k, k′)]

αβ
c†
αk↑c†

β−k↓cβ−k′↓cαk′↑, (A18)

where Ṽ tot
sc (k, k′) is the total pairing scattering vertex in the

sublattice basis and is a sum of the pure electronic contribu-
tion Ṽ ee,B

sc (k, k′), Ṽ ee,L
sc (k, k′), and the pure electron-phonon

contribution Ṽ ep
sc (k, k′); see also Fig. 4(a). The pure electronic

contribution from both bubbles and ladders in the ↑↓ channel
is given as

Ṽ ee,↑↓
sc (k, k′)

=

⎛
⎜⎝

[
Ṽ ee,B

eff (q)
]

12

[
Ṽ ee,B

eff (q)
]

14

[
Ṽ ee,B

eff (q)
]

16[
Ṽ ee,B

eff (q)
]

32

[
Ṽ ee,B

eff (q)
]

34

[
Ṽ ee,B

eff (q)
]

36[
Ṽ ee,B

eff (q)
]

52

[
Ṽ ee,B

eff (q)
]

54

[
Ṽ ee,B

eff (q)
]

56

⎞
⎟⎠

+ [
Ṽ ee,L

sc (k, k′)
]↑↓

. (A19)

Due to the absence of any spin orbit interactions, we only
keep the opposite spin terms of Ṽ ee

eff (q), making Ṽ ee
sc (k, k′) a

3 × 3 matrix in the sublattice basis. The pure electron-phonon
contribution is represented by the second diagram on the right-
hand side of Fig. 4(a), giving

Ṽ ep
sc

(
k, k′) = D(q, iνn = 0)

⎛
⎝g̃1g̃2 g̃1g̃4 g̃1g̃6

g̃3g̃2 g̃3g̃4 g̃3g̃6

g̃5g̃2 g̃5g̃4 g̃5g̃6

⎞
⎠, (A20)

where D(q, iνn) = 2ωD/[(iνn)2 − ω2
D] is the bare phonon

propagator. Here again, the absence of spin-orbit coupling
enables us to write Ṽ ep

sc (k, k′) as a 3 × 3 matrix since g̃1 = g̃2,
g̃3 = g̃4, and g̃5 = g̃6. Here q = k − k′, and we take, as usual
[22,57,60,67], k and k′ to be restricted to the Fermi surface
and iνn = 0 in the spirit of a weak-coupling BCS approach,
i.e., no retardation effects are included.

Now, we transform the effective interaction in Eq. (A18) in
the band basis using the transformation that diagonalizes the
noninteracting Hamiltonian h0(k),

c†
kασ =

∑
γ

ψ
†
kγ a∗

γασ , (A21)

where α is the sublattice index and γ is the band index. Three
sublattices in a kagome lattice result in three bands. However,
since we are interested in the effective interactions in the su-
perconducting channel within the weak-coupling formalism,
we only consider the band crossing the Fermi energy. As a
result, each k corresponds to only one band and hence we drop

FIG. 5. Eigenvalues of the spin and charge susceptibilities for
different interaction parameters for μ = 0.08 near the p-type VHS
filling.

the index γ hereafter. Using the transformation in Eq. (A21),
Eq. (A18) can be written in the band basis as

H eff
sc =

∑
kk′

Vtot(k, k′)ψ†
k↑ψ

†
−k↓ψ−k′↓ψk′↑, (A22)

where Vtot(k, k′) = VEI(k, k′) + VEPC(k, k′) with

VEPC/EI(k, k′) =
∑
αβ

a∗
α↑(k)a∗

β↓(−k)aβ↓(−k′)

× aα↑(k′)[Ṽ ep/ee(k, k′)]αβ, (A23)

where Ṽ ep/ee(k, k′) are given by Eqs. (A19) and (A20) in the
sublattice space.

We compare different superconducting instabilities using
the effective interactions VEPC/EI and Vtot. We apply two
approaches. The first approach is to compute the effective
superconducting couplings using the eigenvalues of the ma-
trix VEPC/EI/tot in the singlet (S) and the triplet (T) channels
separately using

V S/T
EPC/EI/tot(k, k′) = 1

2 [VEPC/EI/tot(k, k′) ± VEPC/EI/tot(k,−k′)],

(A24)

which is equivalent to finding the eigenvalue of the linearized
gap equation,

−
∫

FS

√
3dk′

2(2π )2|vk′ |V
S/T

EPC/EI/tot(k, k′)	i(k′) = λ
EPC/EI/tot
i 	i(k),

(A25)

where λ
EPC/EI/tot
i are the eigenvalues corresponding to the

gap function 	i(k), and vk is the quasiparticle velocity at
momentum k.

Another approach involves computing the effective cou-
plings λi in the different pairing channels or irreducible
representations of the order parameter on the kagome lattice
after projecting the interactions on a particular pairing chan-
nel. λi is then defined as

λ
EPC/EI/tot
i = −

√
3

2(2π )2

∫
FS(dk/|vk|)

∫
FS(dk′/|vk′ |)Fi(k′)VEPC/EI/tot(k, k′)Fi(k)∫

FS(dk/|vk|)Fi(k)2
, (A26)
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FIG. 6. Eigenvalues of the spin and charge susceptibilities for
different interaction parameters for μ = −2.08 near the m-type VHS
filling.

where Fi(k) denotes the different pairing symmetry channels
[22,67]. λi measures the strength of the interaction between
electrons at the Fermi surface in a given symmetry channel i.
Superconductivity is only possible when λi > 0. Note that in
this method of computing the effective couplings, we ignore
any mixing between different pairing channels. In principle,
the gap function 	i(k) is a linear combination of different
pairing symmetry channels Fi(k) and contains mixing of dif-
ferent pairing channels with the same symmetry. However,
we refer to both of the effective couplings obtained from
Eqs. (A25) and (A26) using two different approaches as λi

for simplicity. Moreover, we find similar findings in the main
text, where we use the eigenvalue method, and in Appendix E,
where we use the projection method.

APPENDIX B: SPIN AND CHARGE SUSCEPTIBILITIES

Around the p-type VHS filling, the RPA spin and charge
susceptibilities are shown in Fig. 5. In the bare suscepti-
bility, as discussed in the main text, there are prominent
peaks around the � and M points. An on-site interaction will
significantly enhance the peak around the � point, and this
peak corresponds to an antiferromagnetic fluctuation within
the unit cell. The antiferromagnetic fluctuations usually pro-
mote spin-singlet pairing. The nearest-neighbor repulsion will
strongly enhance the peak around the M point in the charge
channel. The divergence of RPA charge susceptibility corre-
sponds to a 2 × 2 CDW instability.

Around the m-type VHS filling, the RPA spin and charge
susceptibilities are shown in Fig. 6. Despite different sublat-
tice texture on the Fermi surface, the prominent peaks for the
m-type filling are similar to the p-type VHS for the bare case

FIG. 7. Pairing eigenvalues for the leading pairing states as a
function of V (U = 1.25) for μ = 0.08 near the p-type VHS filling:
EPC (a), electronic interactions (b), and their summation (c).

FIG. 8. Pairing eigenvalues for the dominant instabilities as a
function of U (V = 0.3U ) for μ = −3.5 away from the VHS filling.
The contribution from EPC, EI, electronic interactions, and the total
case and in (a), (b), and (c), respectively.

U = V = 0. However, for the interacting case the susceptibili-
ties are quite different. An on-site interaction will significantly
enhance the peak around the M point, corresponding to an
antiferromagnetic fluctuation. The nearest-neighbor repulsion
will strongly enhance the peak around the � point in the
charge channel.

APPENDIX C: PAIRING EIGENVALUES WITH VARYING
NEAREST-NEIGHBOR REPULSION

In the main text, we study the pairing eigenvalues as a func-
tion of U with a fixed ratio V/U = 0.3. Here we further study
the effect of tuning the nearest-neighbor repulsion. Figure 7
displays the pairing eigenvalues for the leading pairing states
as a function of V in the crossover regime at U = 1.25 near the
p-type VHS filling. For the EPC the pairing eigenvalues grad-
ually decrease with increasing V and then increase abruptly
from V = 0.9, where s-wave pairing is always leading. In
contrast, for the EI, the pairing eigenvalues increase with
increasing V , and spin-triplet pairing is dominant for V < 0.8.
When V further increases, the pairing eigenvalues of both
s-wave and d-wave states increase abruptly and become the
leading ones. With including both EPC and EI, the dominant
pairings are spin-triplet for weak NN repulsion and the pairing
eigenvalues decrease to almost zero with increasing V towards
V = 0.5. With further increasing V towards the critical value
Vc ∼ 1.1 where the charge instability occurs, s-wave and d-
wave pairings get enhanced abruptly and become dominant.

FIG. 9. Pairing strength eigenvalues for the dominant instabil-
ities as a function of U (V = 0.3U ) near the p-type (top panels)
and m-type (bottom panels) and the contribution from EPC (a),(d),
electronic interactions (b),(e), and their summation (c),(f). Here only
the bubble contributions are included. The eigenvalues are scaled by
a factor of 2/

√
3.
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FIG. 10. This figure shows the pairing projection for a filling
μ = 0.08 (a)–(c) and μ = −2.08 (d)–(f) with only bubble contribu-
tions. The eigenvalues are scaled by a factor of 2/

√
3.

Interestingly, it was suggested that pressure would increase
V , driving the system into the superconducting state (see, for
instance, Ref. [68]).

APPENDIX D: PAIRING INSTABILITIES AWAY
FROM THE VAN HOVE FILLINGS

Away from the van Hove fillings, the sublattice distri-
bution on the Fermi surface is uniform and the sublattice
interference effect is very weak. As shown in Fig. 8(a), EPC
generates a dominant pairing in the isotropic s-wave A1g chan-
nel, and the pairing eigenvalues of other spin-singlet pairings
are extremely weak, similar to the EPC on the square and
triangular lattices. In the spin-triplet channel, there is only
a weak subleading E1u pairing at low U . The contributions
from EI [Fig. 8(b)] are very small, with λ′

is of the order of
∼10−3. Finally, the total contribution [Fig. 8(c)] is dominated
by the s-wave channel from phonons. It is interesting to note
that no superconductivity is expected for U � 1.8, where the
repulsive s-wave contributions from EI suppress the supercon-
ducting pairing in A1g from phonons.

APPENDIX E: PAIRING STATES WITH ONLY BUBBLE
DIAGRAMS AND RESULTS OF THE PROJECTION

In this Appendix, and for completeness, we discuss
the pairing with only bubble diagrams in the electronic
interactions.

FIG. 11. This figure shows the pairing projection for a filling
μ = −3.5 away from the van Hove fillings. The eigenvalues are
scaled by a factor of 2/

√
3.

The pairing eigenvalues from EPC, EI, and their sum-
mation by solving the linearized gap equation are displayed
in Fig. 9 (the eigenvalues are scaled by a factor of 2/

√
3

compared with those in the main text). In contrast to Fig. 3
in the main text, we find that the effective interactions from
the bubble diagrams mainly promote the spin-triplet pairing
for U > 1. Similar to the main text, the electronic interactions
will significantly suppress spin-singlet pairing from EPC at
both van Hove fillings [see Figs. 9(c) and 9(f)] for large U .
However, for U < 1, EPC dominates with and without ladder
contributions.

The pairing eigenvalues from the projection method are
shown in Fig. 10, and the adopted lattice harmonics are pro-
vided in Table I. We find a good match between Figs. 9 and
10 in most regimes. For both μ = 0.08 and −2.08, the pairing
eigenvalues from EPC in both methods are very close for the
leading and subleading channels. In addition, and importantly,
both methods show that the non-s-wave channels are more
competitive with respect to the isotropic s-wave symmetry for
μ = 0.08 than for μ = −2.08.

The results for λ′
is from EI [see Figs. 9(b) and 10(b)] are

also very similar, although the agreement is less quantitative
than for the EPC case. For instance, the subleading λ′

is are
more extended to lower U in the eigenvalue calculation than
in the projected one. This is because the eigenvalue calcula-
tion allows for a mixing of lattice harmonics with the same
symmetry, which is not allowed in the projecting calculation.
The most important difference is that d-wave symmetry is
missing in the projection calculation, due again to the mixing
harmonics in the eigenvalue calculation. Finally, the total case
shows also similar results [see Figs. 9(c) and 10(c)]. Impor-
tantly, the dominant pairing states from the projection method

TABLE I. Adopted lattice harmonics for the gap function in the projection method.

Irrep. Lattice harmonics [F (k)] nth NN pairing in kagome lattice

A1g(s-wave) cos ky + 2 cos(
√

3kx/2) cos(ky/2) NN

E2g(d-wave) sin(
√

3kx/2) sin(ky/2) ∗ √
3 NN

E2g(d-wave) cos ky − cos(
√

3kx/2) cos(ky/2) ∗ √
3 NN

A2g(i-wave) sin 2ky sin
√

3kx − sin 5
2 ky sin

√
3

2 kx − sin 1
2 ky sin 3

√
3

2 kx

E1u(p-wave) sin(
√

3kx/2) cos(ky/2) ∗ √
3 NN

E1u(p-wave) sin ky + cos(
√

3kx/2) sin(ky/2) NN

B2u( f -wave) sin ky − 2 cos(
√

3kx/2) sin(ky/2) NN

B1u( f -wave) sin(
√

3kx ) − 2 sin(
√

3/2kx ) cos(3ky/2) NNN
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FIG. 12. The same as Fig. 7 for the projection calculation. The
eigenvalues are scaled by a factor of 2/

√
3.

are consistent with those obtained from solving the linearized
gap equation.

Figure 11 shows the case for μ = −3.5, i.e., far from the
two VHSs. The results are also similar to the results from the
eigenvalues (Fig. 8). The λ′

is for the EPC case are very similar
qualitatively and quantitatively, and they dominate in the total
case. In principle, the results for EI [Figs. 11(b) and 8(b)]
seem to be different. While the projection calculation shows
only B1u, the eigenvalue calculation shows more channels.
However, the corresponding numbers are very small, and four
orders of magnitude smaller than the λ′

is for the EPC case.
Figure 12 shows results as a function of V calculated within

the projection calculations, which agree qualitatively with
those presented in Fig. 7.

We find that the eigenvalues λi from the linearized gap
equation [Eq. (A25)] match well in most regimes with the λi

obtained from the projection method [Eq. (A26)], where NN
and next-NN harmonics are used in different pairing chan-
nels. While the largely used projection method [64] focuses
on one specific symmetry channel, the eigenvalues from the
linearized gap equation may show a mixing between different
symmetry channels. However, it is important to remark that
the projection method fails to reproduce the behavior of the
eigenvalues when ladders are included, which is interpreted
as the eigenvectors in this case possessing strong mixing with
high harmonics.

FIG. 14. Gap functions for B1u spin-triplet (a) and A2g spin-
singlet (b) pairing states. The B1u pairing is from the electronic
interactions with U = 0.5 and V/U = 0.3 near the p-type VHS and
the A2g pairing is from the electronic interactions with U = 1.5 and
V/U = 0.3 near the m-type VHS.

APPENDIX F: GAP FUNCTIONS AND EFFECTIVE
INTERACTIONS FROM EPC AND EI

We display the representative gap functions in Figs. 13
and 14. Figure 13 shows the gap functions from the bare EPC
without electronic interactions (U = V = 0), while Fig. 14
displays the B1u and A2g gap functions from the electronic
interactions. According to Ref. [22] and calculations from the
projection method, the dominant pairing from EPC occurs
between the NN sites. We plot the effective interactions
from EI and EPC in Fig. 15 for the p-type and m-type
VHS, respectively. For the case of the p-type VHS, the
interaction is anisotropic in both spin-singlet and spin-triplet
channels, determined by the sublattice texture. The effective
interaction in the spin-triplet channel �T

EI(k1, k36) is attractive,
slightly suppressing the spin-triplet pairing. The effective
interactions from the EI bubbles and ladders are displayed
in Fig. 16 for U = 1.5 and V = 0.3U . We find that the
interactions �T

EI(k1, kp) in the spin-triplet channel from the
bubble and ladder diagrams are opposite. As the bubble
contribution promotes the spin-triplet pairing (as discussed

FIG. 13. Fermi surface (a1) and gap functions for A1g and E2g spin-singlet pairing states (a2)–(a4), and E1u and B2u spin-triplet pairing
states (b1)–(b3). The gap functions are from EPC without electronic interactions (U = V = 0).
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FIG. 15. Effective pairing interaction V (k1/6, kp) in spin-singlet and spin-triplet channels from EPC and EI near the p-type VHS (top
panels) and m-type VHS (bottom panels). The adopted interactions are U = 1.5 and V = 0.3U in both cases.

in Appendix E), the ladder contribution (dominated by the
U ladder terms) suppresses the spin-triplet pairing. When
the ladder diagrams are included, the spin-triplet pairings
are suppressed and spin-singlet pairings are promoted at
large U (as shown in Fig. 3 in the main text). For the m-type
VHS, the anisotropy of the effective interactions is smaller,
as shown in the bottom panels of Fig. 15. Similarly, the
ladder contribution also suppresses the spin-triplet pairing,
generating comparable pairing eigenvalues in the spin-singlet
and spin-triplet channels for large U .

APPENDIX G: ADDITIONAL REMARKS ABOUT
THE PRESENT RESULTS AND THE PHENOMENOLOGY

OF KAGOME SYSTEMS

1. The model, motivation, formalism, and phonon softening

Although several studies on the new kagome superconduc-
tors focus on correlation effects as the origin of the pairing

FIG. 16. Effective pairing interaction V (k1/6, kp) in spin-singlet
and spin-triplet channels from bubble and ladder diagrams near the
p-type VHS. The adopted interactions are U = 1.5 and V = 0.3U .

glue [22,48], the interest in the role of phonons has appeared
only recently (see Refs. [17,42,47,58,69], to mention only a
few papers). Remarkably, most of the electron-phonon stud-
ies on superconductivity focus on the usual s-wave pairing,
and for the estimation of Tc they use the McMillan formula,
which requires knowledge of the Coulomb pseudopotential
parameter μ∗. In the present paper, we have investigated
the role of the electron-phonon interaction in the context of
the microscopic Hubbard-Holstein model, which is distinct
from the first-principle calculations approach [47,58,69]. The
Holstein model is well known and considered to be a basic
model for discussing superconductivity. It treats the vibration
of phonons in an average form, i.e., considering only one
phonon frequency ωD which can be associated with the Debye
frequency. In addition, a bare and constant electron-phonon
coupling g0 is considered. In spite of its apparent simplicity,
the model captures a realistic situation since the phonons and
the electron-phonon interaction are rather constant at a bare
level. In fact, the electron-phonon conventional superconduc-
tors are s-wave. In a kagome lattice, we find a subdominant
d-wave pairing with relatively large λ. With further inclu-
sion of electronic interaction, p-wave and f -wave pairing can
emerge in the crossover regime.

Since the electron-phonon coupling is in the moderate-
coupling regime (λ is moderate; see Ref. [42]), we expect
that our formalism can capture the leading pairing states
and it may not change even when a more sophisticated
method is adopted by solving the full Eliashberg equations.
The combined effect of EI and EPC in cuprates by solving
the linearized gap equations has been earlier studied, and
it was found that the EPC from the in-plane breathing mo-
tion of oxygen will suppress the d-wave pairing [70], which
is qualitatively consistent with the results from solving full
Eliashberg equations [71]. This shows that our results can be
qualitatively consistent with those from solving the Eliashberg
equations. Tc can be accurately determined by solving the
Eliashberg equations, which is beyond the scope of this work.

Near van Hove fillings, phonons softening may become
relevant, but we expect that the analysis of the pairing
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symmetries will remain valid due to the dominant sublattice
interference. As the peaks in the susceptibility are mainly
around the � and M points (see Fig. 2 in the main text), the
phonon at the corresponding q points will get soft and this will
accordingly enhance the EPC at these q points. However, as
the EPC effective interaction is determined by the sublattice
textures, this phonon softening will not alter the profile of
EPC interactions [the EPC interaction for k1 − kp = Q2,3 is
fixed to zero, and phonon softening will not change this,
as shown in Fig. 2(c)]. Therefore, in our case, the phonon
softening will only enhance the EPC interactions and the
renormalized values of average electron-phonon coupling λ,
which will not change the pairing symmetry and, at most,
increases Tc.

2. Realistic parameters and estimation
of the superconducting critical temperature

As discussed in the main text, it is not our aim to reproduce
the observed value of Tc. In the present stage of the topic,
the most important aspect is to identify pairing symmetry and
its mechanism. Then, as in usual superconductivity, after that
it is worthwhile to perform quantitative calculations for Tc.
However, we can give a rough estimation for Tc.

First, we recall that our chosen parameters are realistic.
We choose ωD = 0.01t , with t ∼ 1 eV of the order of 100–
200 K [47,58]. By choosing g0 = 0.1, we obtain λ ∼ 0.5 near
the p-type van Hove in the s-wave channel [see Fig. 3(a) at
U = 0], which is in agreement with the more recent reported
values [17,42,69]. Note that the reported values of λ in the
first-principles calculations as well as in angle-resolved pho-
toemission spectroscopy experiments are close to our λ in the
s-wave channel in the absence of correlations, indicating that
the adopted parameters are reasonable.

At this point it is important to remark that in Ref. [47]
electron-phonon superconductivity was ruled out because a

low value for λ ∼ 0.3 was obtained, which leads to a very low
Tc with μ∗ = 0.12. However, as mentioned above, the recent
literature shows that the electron-phonon coupling constant λ

is larger.
Our calculations not only show that the value of λ in the

s-wave channel is close to the recent literature (λs ∼ 0.5),
but they also show a large value of λ in the d-wave channel
(λd ∼ 0.3) without correlations (U = V = 0) due to the sub-
lattice interference. This is in sharp contrast to other lattices.
Since the value of λ is moderate, we can use the BCS formula
T s(d )

c = 1.14ωDexp[−1/(λs(d ) − μ∗
s(d ))] to roughly estimate

the transition temperature. Using our value for λs and assum-
ing μ∗

s ∼ 0.1, a value of T s
c of a few Kelvin can be expected.

In addition, since μ∗
d is expected to be much lower than μ∗

s
[72], T d

c of the order of a few Kelvin may also be expected.
Thus, due to the sublattice interference effects, in the

kagome materials superconductivity with anomalous pairing
may be expected even without or with weak electronic corre-
lations, which make the results rather robust and independent
of the method of treating the electron-electron interaction.

3. Possible role of the CDW

In the kagome superconductor AV3Sb5, superconductivity
was originally observed inside the CDW order. It is well
known that SDW and CDW can emerge in the kagome lattice.
In our model, the SDW or CDW instabilities occur at high U
or V . So we are in a regime where SDW or CDW ordered
states do not appear and do not influence the superconduc-
tivity. However, the competition between superconductivity
and other ordered states is indeed an interesting future di-
rection. In our paper, we focus on the superconductivity
without a CDW order, as the CDW order in AV3Sb5 can
be eliminated by external pressure and doping and is absent
in RRu3Si2 [14,15], Ti-based kagome materials [16], and
Ta2V3.1Si0.9 [17].
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