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Multimodal graph attention 
network for COVID‑19 outcome 
prediction
Matthias Keicher 1,6*, Hendrik Burwinkel 1,6, David Bani‑Harouni 1,6, Magdalini Paschali 1,4, 
Tobias Czempiel 1, Egon Burian 2,3, Marcus R. Makowski 2, Rickmer Braren 2, Nassir Navab 1 & 
Thomas Wendler 1,5

When dealing with a newly emerging disease such as COVID‑19, the impact of patient‑ and disease‑
specific factors (e.g., body weight or known co‑morbidities) on the immediate course of the disease 
is largely unknown. An accurate prediction of the most likely individual disease progression can 
improve the planning of limited resources and finding the optimal treatment for patients. In the 
case of COVID‑19, the need for intensive care unit (ICU) admission of pneumonia patients can often 
only be determined on short notice by acute indicators such as vital signs (e.g., breathing rate, 
blood oxygen levels), whereas statistical analysis and decision support systems that integrate all of 
the available data could enable an earlier prognosis. To this end, we propose a holistic, multimodal 
graph‑based approach combining imaging and non‑imaging information. Specifically, we introduce 
a multimodal similarity metric to build a population graph that shows a clustering of patients. For 
each patient in the graph, we extract radiomic features from a segmentation network that also serves 
as a latent image feature encoder. Together with clinical patient data like vital signs, demographics, 
and lab results, these modalities are combined into a multimodal representation of each patient. 
This feature extraction is trained end‑to‑end with an image‑based Graph Attention Network to 
process the population graph and predict the COVID‑19 patient outcomes: admission to ICU, need 
for ventilation, and mortality. To combine multiple modalities, radiomic features are extracted from 
chest CTs using a segmentation neural network. Results on a dataset collected in Klinikum rechts der 
Isar in Munich, Germany and the publicly available iCTCF dataset show that our approach outperforms 
single modality and non‑graph baselines. Moreover, our clustering and graph attention increases 
understanding of the patient relationships within the population graph and provides insight into the 
network’s decision‑making process.

Reflecting on the coronavirus disease 2019 (COVID-19)  pandemic1, the first wave, in particular, brought unprec-
edented challenges to the healthcare system. The exponential surge in cases overwhelmed intensive care units 
(ICUs), presenting scenes that had never been witnessed in the age of modern  medicine2,3. During such a state of 
emergency, optimizing the allocation of hospital resources, e.g., ICU beds, mechanical ventilators, or personnel, 
becomes crucial. An essential aspect of effective patient management is correctly assessing treatment necessity 
and potential outcomes. When there is only a limited understanding of a previously unknown disease paired 
with highly multimodal data, as in the case of a novel pandemic, performing such an assessment and prediction 
of patient outcomes is very challenging. The resulting sudden overload of care facilities, in combination with the 
high complexity of the obtained data structure, motivates the need for assistance systems for fast outcome predic-
tion and triaging based on available patient information. At the start of the COVID-19 pandemic, upon a patient’s 
hospital admittance, a multitude of parameters—such as sex, age, body weight, symptoms, co-morbidities, blood 
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cell counts, inflammatory parameters, biochemical values, cytokine profiles, among others—were obtained and 
 documented4. These parameters—“tabular data” in the following—and radiological images, including radiographs 
or X-ray computed tomography (CT) images, were available within the first hours after a new patient arrived at 
the hospital. This deems the two data sources ideal for early triaging and outcome prediction. Traditional disease 
outcome prognosis performed by clinicians is based, however, also on anamnestic information and clinical expe-
riences. The general logic of a physician’s decision-making process partly relies on the information embedded 
in similar patients where the outcome and the connection of this information to currently treated patients are 
 known5. Such population relationships are particularly useful when little to no disease-specific epidemiological 
information, as well as deep medical expertise, is available, as might be the case in potential upcoming health 
crises. Following this method of reasoning, we propose a decision support system that performs multimodal data 
analysis to create a population graph that clusters patients which is then used in a graph neural network with an 
attention mechanism to refine the patient outcome prediction by taking into account similar patients. The used 
similarity metric, attention mechanism, and generated pathology segmentations provide added insight into the 
decision-making process. This becomes possible as the weighting of clinical features and the most influential 
patients used in the prediction process can be directly observed. Our contributions are as follows:

• We introduce U-GAT, an end-to-end, graph-based method for leveraging medical images, extracted radi-
omics, and clinical data for predicting patient outcomes. In this work, we use multimodal data to predict 
COVID-19 patient outcomes, namely ICU admission, need for ventilation, and mortality. This method is 
generalizable and can easily be adapted to different types of anatomies, modalities, and clinical tasks.

• Our model uses a multitasking approach, where segmentation and classification are learned simultaneously. 
A U-Net6 is used to segment the healthy and pathological regions of the lung in chest CTs. From these seg-
mentations, we extract scalar values, in the following called “radiomics”, e.g., the percentage of healthy or 
pathological lung tissue volume, and subsequently perform a joint feature fusion of image, radiomic, and 
clinical features. This combined feature vector is refined in our Graph Attention Network (GAT)7 by leverag-
ing similar patients to perform the final outcome prediction.

• We present an interpretable, multimodal patient similarity metric for graph construction and effective batch 
selection.

• We introduce a novel equidistant image sampling method allowing for end-to-end training of volumetric 
image feature extraction in a graph convolutional setting with multiple patients per batch graph. At test time, 
we make use of all available slices.

• We thoroughly evaluate our novel approach on a newly acquired dataset collected in Klinikum rechts der 
Isar in Munich during the first COVID-19 wave of 2020 as well as an external and publicly available dataset 
and showcase our model’s ability to predict patient-specific disease outcomes. The dataset from Klinikum 
rechts der Isar contains expert annotations of a diverse range of COVID-19 pathologies and is available for 
research purposes upon request.

• While we validate our method on COVID-19, it is disease-agnostic and the insights about modeling multi-
modal data without prior experience with patient trajectories can be easily adapted to new contexts of novel 
disease outbreaks.

Related work
Fusing imaging and tabular data
Within the field of multi-modal learning, within recent years, different works have been published. One interest-
ing approach to interweave features from multiple modalities was introduced by Perez et al. for visual reason-
ing  tasks8. A Feature-wise Linear Modulation (FiLM) layer affinely transformed the output of a Convolutional 
Neural Network (CNN) with a learned scaling and shifting factor using the text of the input question. Dynamic 
Affine Feature Map Transform (DAFT)9 extended FiLM to combine the features of 3D brain T1-weighted MRI 
scans and non-imaging biomarkers for Alzheimer’s prediction. DAFT affinely transformed the imaging features 
extracted by a 3D Fully CNN by a learned scaling and shifting factor using nine non-imaging features, such as 
age, sex, and genetic factors. A multi-headed cross-attention block has been recently proposed to fuse imaging 
and tabular data for skin lesion classification using a transformer  architecture10 showing marginal improvement 
over joint fusion.

Taleb et al.11 introduced ContIG, a self-supervised pre-training approach trained on 500k individuals from 
the UK  Biobank12 combining retinal fundus images with genetic information tested on different classification 
and segmentation downstream tasks. A contrastive loss based on cosine similarity was utilized to decrease the 
distance of the embeddings of the multimodal features of one patient. Moreover, Duanmu et al.13 combined breast 
MRI scans and clinical biomarkers to predict chemotherapy response. A network trained on the non-imaging 
data learned scalar weights that were multiplied with the intermediate results from the imaging network to 
generate feature maps containing interactive information between imaging and tabular data.

Inspired by the holistic decision-making approach taken by experienced physicians and medical boards, 
which involves integrating knowledge from diverse fields of  expertise14, there is a growing interest in developing 
similar machine learning systems. Huang et al.14 outlined three methods for integrating features in deep learning 
models for radiology: merging extracted image features with non-imaging features (early fusion), combining 
features with a joint end-to-end (image) feature extraction (joint fusion), and consolidating predictions made 
by independent models (late fusion). Our method employs joint fusion. In contrast to early and late fusion, joint 
fusion processes the different modalities separately but integrates them during intermediate stages, allowing for 
inter-modal interactions and joint model training. Backpropagating the loss function to the feature extraction 
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allows the model to optimize the feature extraction based on the final output or prediction error, ensuring a 
more synergistic learning process. In the following, we review the fusion methods in the context of COVID-19.

Early fusion
For the COVID-19 detection and the prediction of patient outcome, most of the proposed methods integrat-
ing both imaging and non-imaging data apply early fusion of  features4,15–20. Chassagnon et al.21 demonstrated 
the importance of combining a wide range of non-imaging and extracted imaging features for the outcome 
prognosis of COVID-19 patients in an ensemble of machine-learning models. Shiri et al.22 achieved the best 
results in COVID-19 survival prediction by combining lesion-specific radiomics and clinical data. Gong et al.23 
improved the results for predicting severe COVID-19 outcomes by adding blood values to other clinical features 
and extracted radiomics.

Late fusion
Applying late fusion with penalized logistic regression, Ning et al.24 reported an improvement in both COVID-
19 severity and mortality outcome prediction compared to the stand-alone lung CT CNN and non-imaging 
Multilayer Perceptron (MLP) models. Tariq et al.25 explored different fusion methods for predicting the need for 
hospitalization of COVID-19 patients and found the early fusion of different electronic medical record features 
to work best for this task.

Joint fusion
To the best of our knowledge, we are the first to propose a joint fusion method combining imaging and non-
imaging data to predict ICU admission, ventilation, and mortality, or severity, depending on the dataset used.

Graph convolutional networks for medical applications
Previous studies have showcased the potential of Graph Convolutional Networks (GCNs) in medical applications, 
particularly in optimizing the processing of medical image information. Parisot et al.26 pioneered using GCNs on 
population graphs to improve Alzheimer’s and Autism Spectrum Disorder prediction. They also demonstrated 
that varying the patient information included in the graph setup significantly affects network  performance5. 
Later works sought to diminish performance dependencies on graph generation, with Anirudh et al.27 suggest-
ing a bootstrapping strategy and ensemble learning for GCNs. Cosmo et al.28 introduced a self-learning method 
for graph construction, integrating both imaging and non-imaging data for optimized GCN learning behavior. 
Further, GCNs have also been employed in medical image  segmentation29–32 and Graph Attention Networks 
(GATs)7 have been utilized for patient  diagnosis33,34.

The aforementioned works leveraged already extracted image features. However, Burwinkel et al.35 proposed 
a methodology that used GCNs on image data directly. They showed that end-to-end processing of imaging and 
clinical data within a GCN can improve performance due to optimized feature learning. At the same time, the 
proposed approach allowed for more effective usage of inter-class connections within the graph. We will expand 
upon this concept within our developed methodology and explain the implications in detail in section “Method”.

GCNs for COVID‑19
In the context of COVID-19 diagnosis, GCNs have mainly been adapted for disease detection. Wang et al.36 
and Yu et al.37 built graphs based on the similarity of extracted CT image features and classified the nodes for 
the presence of infiltrates. In addition to image features, Song et al.38 and Liang et al.39 used the acquisition site 
along with other features to improve COVID-19 detection. Instead of modeling a patient population, Saha et al.40 
converted edges detected in chest CT and X-ray images to graphs and leveraged these for detecting COVID-
19. Huang et al.41 used GCNs to refine the segmentation of COVID-19 infections. Finally, Di et al.42 learned an 
uncertainty-vertex hypergraph to distinguish between community-acquired pneumonia and COVID-19. To 
the best of our knowledge, we propose the first graph-based end-to-end patient outcome prediction method by 
leveraging a population graph combining chest CTs and tabular patient data.

Multitask learning for COVID‑19
Recent  works4,22,43,44 on the radiological assessment of COVID-19 patients have shown a high correlation between 
disease burden and patient outcome, e.g., the probability of ICU admission. Several deep learning methods 
have been proposed to exploit this correlation with multitasking  approaches45–47. The majority of the proposed 
multitask methods focus on the joint detection of COVID-19 infection and the binary segmentation of related 
pathologies in lung CT  images48–52. Concerning COVID-19 patient outcome prediction, another set of works 
applied to multitask learning on the joint estimation of the severity of COVID-19 and various classification and 
segmentation  tasks53,54. Similar to our approach, Nappi et al.55 used bottleneck features of a pretrained U-Net to 
predict COVID-19 progression and mortality. However, they did not optimize end-to-end, incorporate clinical 
patient data, or utilize a graph-based approach for the classification.

Method
Our proposed method provides an effective way to process multimodal patient information such as CT images 
XI combined with clinical data XC for disease outcome prediction of patients, as shown in Fig. 1. For a COVID-
19 patient admitted to the hospital, the three outcomes we predict are the need for ICU admission, the need for 
mechanical ventilation, and the survival of the patient (for our in-house dataset), while we predict severity for 
the iCTCF dataset. Additionally, we use the segmentation of COVID-19 pathologies as an auxiliary target to 
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improve the training. From the segmentation output, we calculate radiomic features R that represent the relative 
burden of the lung for each pathology class. To effectively incorporate the different modalities, we introduce 
a new framework that combines the segmentation capabilities of U-Net with the analytic strengths of GCNs. 
This network uses a population graph constructed with the similarity of clinical patient data XC and radiomic 
features R to refine the image features of each patient. The proposed method operates end-to-end to perform 
an ideal combination of image feature representation learning, U-Net image segmentation, and graph data 
processing. The graph is pre-computed before training, and at test time, patients are dynamically connected to 
the graph of patients in the training set to ensure no data leaking during training and allow for usage flexibility 
in a clinical setting.

Graph‑based image processing
To allow for inference on unseen data samples, we employ spatial graph convolutions. Compared to spectral 
methods, this approach allows an extension to unseen samples, not requiring retraining for every new patient. 
As explained in section “Fusing imaging and tabular data”, combining image data XI with other modalities is 
essential for a holistic patient outcome prediction. For GCNs, image-based information is usually first extracted 
either manually or with a pretrained CNN. These extracted image features are then, in a second step, processed 
within the graph network. While this strategy lessens the memory demands of imaging data, it precludes the 
possibility of end-to-end optimization. Burwinkel et al.35 showed that the image feature extraction process can 
potentially benefit from an underlying graph structure through an end-to-end feature extraction with a graph 
neural network since relevant graph information can backpropagate into the learned extraction process. We 
leverage this concept for the processing of the provided CT image information. Every CT image xI ,i is processed 
by a U-Net to perform segmentation on the individual image slices. The calculated bottleneck feature maps of 
the U-Net are extracted (description in section “Segmentation and image feature extraction”) and processed to 
receive a corresponding representation zI ,i , usable within the graph neural network.

Equidistant subsampling
Utilizing GCNs for end-to-end feature extraction from high-resolution 3D images presents a major challenge due 
to high memory demands, which restricts the number of patient instances per batch. However, GCNs necessitate 
diversity in a single batch for effective feature aggregation. To accommodate larger batches, we suggest equidis-
tant subsampling of S slices per volume along the axial view during training. If the main axis length is Z, each 
volume is divided into ⌊Z/S⌋ stacks of S slices, omitting (Z mod S)/2 slices on both sides. This strategy not only 
enhances the likelihood of detecting disease-impacted areas but also mitigates overfitting by distributing scarce 
3D volume data into multiple patient samples. At test time, the complete stack of slices is used, encompassing 
the entire 3D volume.

Graph construction method
We define a binary, directed graph G(V, E) with vertices V and connecting edges E. Every vertex vi ∈ V  cor-
responds to a stack of CT images xI ,i ∈ XI (sampling process described in section “Graph-based image process-
ing”), a vector of radiomics features ri ∈ R (extraction process described in detail in section “Segmentation and 
image feature extraction”) and clinical data xC,i ∈ XC . For building the graph we concatenate the clinical data 
XC and radiomics features R into one tabular feature and calculate the distance ω between two vertices based on 
these features. Each vertex vi is connected with its k nearest neighbors. As an alternative to feature selection, we 
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Figure 1.  U-GAT is an end-to-end model, integrating learned image and radiomic features ( ZI and R) with 
clinical metadata XC-such as age, sex, vital signs, and blood levels-for disease outcome prediction. Disease-
affected area segmentation YSeg in CT images XI aids in extracting radiomic features R and regularizes image 
feature ZI extraction. These features coalesce into a multimodal vector via function � . Test patients cluster with 
training patients in a graph based on radiomic and clinical data feature distance ω . A Graph Attention Network 
(GAT) then refines the features to predict the most probable outcome Y, utilizing learned linear transformation 
� and patient attention coefficients αij . Comparison to outcome ground truth YGT is facilitated by binary 
cross-entropy (BCE), while the Dice loss aids in the auxiliary segmentation task with manual ground truth. In 
the COVID-19 context, we segment lung CT image pathologies and predict patient ICU admission, ventilation 
need, and survival for the KRI dataset, and severity for the iCTCF dataset (not shown here).
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propose to weight each feature based on a statistical analysis of the training data. Statistically important features 
should therefore have a bigger influence on the distance and similarity calculation. Possible weightings include 
correlation coefficients, e.g. the Pearson correlation for continuous features, or estimated mutual  information56 
between the input features and the target labels like YICU calculated on the training set. The motivation to use 
mutual information is to discover non-linear associations between the features and predicted labels, in addition 
to linear relationships. All distances are calculated on the z-scores normalized features. In Fig. 2, the k-nearest 
neighbors (KNN) graphs for one training set are visualized with and without weighting of the distance with 
mutual information.

Segmentation and image feature extraction
The proposed method is built on a joint image feature extraction and segmentation backbone. For this, any 
encoder-decoder-based architecture with a compressed bottleneck representation and segmentation output can 
be used. As described in more detail in section “Experiments”, we choose the original 2D U-Net  architecture6 with 
small adaptions for our experiments. The S equidistant slices forming an input image xI ,i (see section “Graph-
based image processing”) are processed as a batch in parallel. Hence, for each slice, a 2D segmentation of the 
healthy lung and pathologies is generated. The image representation used for the classification task is extracted 
with a global average pooling of the two-dimensional bottleneck features of each slice, reducing the bottleneck 
size c × d1 × d2 with the number of channels c and the spatial dimensions d1 and d2 to a vector with the length 
of c per slice. The resulting S slice-wise image representations are then transformed into a single patient-wise 
representation. To achieve this, the slice features are aggregated by taking the element-wise maximum along 
the stacking dimension resulting in a single vector with size c. This vector is then passed through a final fully 
connected layer followed by a leaky ReLU activation to obtain the latent image representation zI ,i ∈ ZI . Based 
on the improved performance reported by Goncharov et al.54 using the final feature map of the U-Net instead of 
the bottleneck, we evaluated this approach, but initial results showed a substantial drop in performance which 
is why we did not investigate this concept any further.
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Figure 2.  The initial patient clustering, visualized for the KRI dataset, is based on clinical and radiomic feature 
similarity. The top row displays graphs created by linking each node to its seven nearest neighbors based on 
Euclidean distance. To optimize this graph construction for the task at hand, we propose feature weighting in the 
distance calculation, informed by its task-specific mutual  information56 of features (bottom row). This prioritizes 
essential features in clustering and tailors the graph for specific tasks without needing feature selection or prior 
knowledge.
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Extraction of radiomic features
Inspired by Burian et al.4, the clinical data is complemented with radiomics features R that are automatically 
extracted from the segmentation output YSeg . In addition to being more robust to overfitting than extracted image 
features, this improves the interpretability of the network by providing intermediate results that can easily be 
verified by visualizing the segmentation output. For instance, in the case of COVID-19-related tasks, one can 
use quantifications of COVID-19 pathologies in the segmented lung.

Multimodal feature fusion
Our methodology harnesses the multimodal data in a two-fold manner. On the one hand, radiomics extracted 
from the segmentation output and clinical patient parameters are employed to form the patient population graph. 
On the other hand, we synergistically fuse latent image features, extracted radiomics, and clinical data into the 
node features of this graph. This integrated representation encapsulates all salient attributes of a patient, provid-
ing a comprehensive patient characterization for subsequent processing. The three input sources provided by 
the image data xI ,i ∈ XI and resulting extracted features zI ,i , extracted radiomics features ri ∈ R and clinical data 
xC,i ∈ XC constitute three separate modalities used within the graph network to perform the classification task 
for an individual patient node vi within the graph. Especially the clinical data XC can provide valuable orthogonal 
information to the imaging-based other two contributions. We have incorporated the latent bottleneck features 
zI ,i of the U-Net to allow for end-to-end feature optimization, facilitating an image feature extraction beyond 
hand-crafted radiomics. To assure that the influence of every modality is equally considered during processing, 
we are using a linear transformation on every modality to receive a feature representation of equal size. These 
representations are then processed within an aggregation function � to receive the corresponding fused repre-
sentation zf ,i used within the graph network:

where σ is a non-linear activation function and �I ∈ R
FI×Ff  , �R ∈ R

FR×Ff  , �C ∈ R
FC×Ff  are learnable linear 

transformations, which map the incoming feature dimension onto dimension Ff  . Possible approaches for � are 
concatenation, averaging, pooling, or attention mechanisms. Concatenation was experimentally chosen for our 
proposed method as discussed later in section “Experiments”.

Classification of patient outcome
The graph processing of our proposed method is based on graph attention layers (GAT)7. They combine effective 
processing of the provided neighborhood with the possibility for direct inference on new unseen data samples 
while maintaining filter localization and low computational complexity. The attention-based graph processing 
allows us to incorporate the clinical patient data XC effectively into the learning process by basing the graph 
construction on the similarity of tabular features and creating N(i) for every zf ,i . Further, the attention mechanism 
allows for an intelligent learned weighting of the neighbors. Now, a transformation of representation zf ,i does 
not only rely on the representation itself but receives weighted contributions from all zf ,j ∈ N(i) . This process 
has the potential to stabilize the prediction for patients with an uncharacteristic initial representation of its cor-
responding class, but which is localized within the correct data cluster.

Experiments
Datasets
KRI dataset
The KRI dataset (“in-house” dataset) consists of 132 COVID-19 patients, expanding on the dataset with 65 
patients described  in4. To assess the patient outcome, different parameters were collected: admission to the 
ICU, the necessity of mechanical ventilation, and the patient’s survival. These outcomes presented themselves 
immediately or sometime after general admission to the hospital. The complete dataset is available on request 
for research purposes in the frame of the BFS project AZ-1429-20C. For each CT volume, the total lung, healthy 
lung tissue, ground-glass opacifications (GGO), consolidations, and pleural effusions area were annotated by 
expert radiologists (4-8 years of experience). We combined pleural effusion and consolidation into a single class 
named “Other pathologies” since distinguishing between the two classes is a highly challenging task, even for 
senior  radiologists58 as both have almost the same Hounsfield unit range. Moreover, pleural effusion is only 
present in the most severe cases in only 1.2% of all available patients. See radiomics statistics for this dataset in 
the supplementary material.

iCTCF dataset
To substantiate the versatility of our method, we have extended our evaluation to a larger and publicly available 
dataset: the iCTCF  dataset24 (“external” dataset). It comprises 1,521 patients and includes high-resolution CT 
images, clinical data, and patient outcomes. The main difference to the KRI annotations is the lack of image anno-
tations of different pathologies in the lung. Since our work focuses on triaging patients infected with COVID-19, 
we exclude the control group and only predict the outcome severity of PCR-positive COVID-19 patients. This 
results in 620 patients with mild (Type I) and 274 patients with severe outcomes (Type II)24 leading to a total of 
894 patients. Since the iCTCF dataset does not contain any annotations of the CT images, we employ a U-Net, 
pretrained on a diverse  dataset59–61 of lung CT-slices by  Hofmanninger62, to generate lung masks and a nnU-Net 
by Isensee et al.63, pretrained on the COVID-19 Lung CT Lesion Segmentation  Challenge64, to infer the pathology 
annotation. The radiomic COVID-19 burden was extracted using this annotation, resembling the percentage of 
the lung affected by COVID-19 pathologies.

(1)zf ,i = �
(

σ
(

�I zI ,i
)

, σ(�Rri), σ
(

�CxC,i
))

,
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Experimental setup
We first evaluate the proposed method on the KRI dataset using a nested 5-fold cross-validation65 stratified by 
the ICU labels. For this, the dataset is split into five equally sized folds, each containing a similar amount of ICU 
patients. In nested cross-validation, there are outer and inner evaluation loops for testing and validation. In each 
of the five outer loops, one fold is selected as a test set, and the remaining four folds are used for training and 
validation. In the four inner loops, three folds are selected for training and one for validation. This is repeated 
until every combination has been used for testing and validation, resulting in a total of 20 repetitions.

For the experiments presented here, following Burian et al.4, the static lung CT images taken at admission 
were used in combination with the following clinical features and blood test results: age, sex, body temperature, 
percutaneous oxygen saturation, leukocytes, lymphocytes, C-reactive protein (CRP), creatine, D-Dimer, lactate 
dehydrogenase (LDH), creatine kinase, troponin T, interleukin 6 (IL-6), thrombocytes. The outcomes included: 
the need for mechanical ventilation, admission to the ICU, and patient survival (mortality). All three tasks are 
binary classification tasks. We focus on evaluating the main task of ICU prediction and extend some experi-
ments on ventilation and mortality outcome tasks to explore multitasking and the translation to other tasks. 
The experiments were conducted with ten equidistant samples ( Z = 10 ) of the chest CT images, producing nine 
subvolumes per patient. During training, a random subvolume is chosen for each patient. At validation and test 
time, the whole patient volume is sampled. Since there is only a single test patient per batch, the pre-computed 
image features and radiomics of the other patients can be used. During the test phase, a batch graph consists of 
one test node and 18 neighboring nodes from the training set that serves as a context for this new patient. For 
all our experiments, we set the modality aggregation function ψ to perform concatenation.

For the iCTCF dataset, following the evaluation of Ning et al.24, we split the data in a 10-fold cross-validation 
regime. In every run, eight folds are used for training and 1 for validation and testing, respectively. Given only 
a single radiomic of the COVID-19 burden of the lung is available, we concatenate the extracted radiomic with 
the clinical data and encode this tabular data into a joint embedding vector of size 64 for each patient. Since the 
dataset contains many features, of which most have only low mutual information with the target outcome, only 
features with estimated mutual information higher than 0.05 were used for graph construction. All available 
clinical features were used as patient node features. We stopped training when there was no improvement in the 
validation classification loss for five epochs.

Network parameters and training
We conducted all experiments in PyTorch 1.7.066 and PyTorch Geometric 1.7.067 using the Adam optimizer with 
a base learning rate of 5× 10−4 and a weight decay of 3× 10−5 . As the segmentation and image feature extraction 
backbone, we choose the classical 2D U-Net architecture proposed by Ronneberger et al.6 with the following 
modifications in the double convolution blocks: an added batch normalization layer after each activation for 
faster convergence and a padding of one pixel in each convolution layer to align input and output image size of 
the network. The final layer consisted of a one-dimensional convolution to the number of output classes followed 
by a softmax layer. We used a Dice loss as introduced by  Milletari68 for segmentation and a binary cross-entropy 
(BCE) loss for classification. Further training details can be found in the supplementary material. For graph 
processing, we used a two-layer GAT 7.

Graph construction
We employed the KNN graph construction method introduced in section “Graph-based image processing” 
using a mutual information weighted distance metric for the following experiments after comparing it to other 
methods on the validation set. For ω we chose the weighted Euclidean distance (Minkowski distance of second 
order, p = 2 ). Here, every feature dimension was weighted by its approximate mutual information with the 
respective outcome label. The mutual information was estimated using the method proposed by Ross et al.56 with 
3 neighbors averaging the results of 30 repetitions. We compared weighting the KNN with mutual information 
against weighting with Pearson correlation. To understand the impact of weighting features, we also compared 
these weighted methods against an unweighted KNN. For the unweighted setup, we evaluated different subsets 
of manually selected features as can be seen in Table 3. The number of neighbors k used for graph construction 
was set in a hyperparameter search on the validation set.

Ablative testing and comparison to baselines
To investigate the effect of the different components of our method, we show ablative results on the test set. We 
mainly evaluate two components: the image and radiomics feature extraction of the U-Net and the GAT clas-
sification. The end-to-end U-GAT feature extraction is compared with features extracted from a simple frozen 
U-Net trained on the same annotations but without any multi-tasking, and the end-to-end image features from 
a ResNet18 as proposed by He et al.69. It is important to note that radiomics were not used in the ResNet18-GAT 
architecture because ResNet18 does not produce segmentations. To evaluate the contribution of GAT, we compare 
it with the following classification method alternatives:

• Weighted K-nearest neighbors (KNN): The default scikit-learn weighted k-nearest neighbor classifier using 
the inverse Euclidean distance of all features as the similarity metric for neighbor selection and for weighting 
of neighbor  labels70.

• Multilayer Perceptron (MLP): This classifier is a simple neural network with a hidden layer size of 64 followed 
by a leaky ReLU activation and a 10% dropout.

• GraphSAGE: replacing the GAT operator with  GraphSAGE57.
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In addition to ablative testing, we compare unimodal vs. multimodal approaches by evaluating the performance 
of using an MLP classifier using only clinical data or only image features extracted by a ResNet18. An overview 
of the type of data used in each method is given in Table 1.

U-GAT ensemble and comparison with Random Forest
Random Forest is an ensemble method that is an effective classifier for small datasets since they are less prone to 
overfitting due to the Law of Large  Numbers71 and provide the additional benefit of interpretability. As discussed 
in section “Fusing imaging and tabular data”, Burian et al.4 and Chao et al.15 have successfully deployed Random 
Forests to use tabular radiomics and clinical data for ICU prediction. In this experiment, we focus on the task of 
ICU prediction and explore if an ensemble of our proposed model can improve its performance due to increased 
robustness against overfitting and how it compares to the well-established Random Forest classifier. To form an 
ensemble we average the predicted probabilities of the 4 models trained on the inner loops of the nested cross-
validation and evaluate them on the 5 test sets of the outer loop of the nested cross-validation.

Metrics for segmentation and classification
As our proposed method follows a multitask approach including the CT segmentation and each of the tasks of 
ICU, ventilation and mortality prediction individually, the evaluation criteria can be divided into segmentation 
and classification metrics. To measure the overlap between segmented regions and ground truth, we use the 
Dice score (DS). The main metrics for evaluating the binary classification performance are average precision 
(AP) and the area under the receiver operating characteristic curve (AUC), as they are independent of selected 
classification thresholds. Given that all tasks have a severe class imbalance, the F1 score (F1) has been chosen 
as the main threshold-dependent metric. In the ensemble experiments, the balanced accuracy score (bACC), 
sensitivity, and specificity are additionally reported. For all threshold-dependent metrics, the optimal threshold 
is set using the validation results and maximizing the Youden’s J  statistic72: J = sensitivity+ specificity− 1. The 
classification metrics are all binary and were calculated using scikit-learn 0.24.170.

Results and discussion
Population graph construction
In the first phase of experiments on our KRI dataset, we optimized the population graph construction method. 
This involved evaluating various feature selections and distance weights to improve the KNN-based graph con-
struction. We found that connecting each node with its seven nearest neighbors provided optimal results, based 
on a hyperparameter search using a simple, unweighted KNN classifier. Two measures - mutual information 
and Pearson correlation - were used to weight features in the distance calculation of the similarity metric used 
for KNN neighbor selection. Table 2 shows the top 10 of the average of both measures for the ICU task. While 
a Pearson correlation > 0.3 and mutual information > 0.1 can be observed in the ICU and ventilation tasks for 
some features, the mortality showed significantly lower values indicating the difficulty of the task at hand (see 
supplementary material). The percentage of the healthy lung has the highest mutual information for all tasks. The 
results shown in Table 3 confirmed that our proposed weighting with the mutual information method yielded the 
best outcomes, particularly for the ICU task, as indicated by an AP of 0.722± 0.096 and an AUC of 0.757± 0.142 . 
The comparison with manual feature selection, e.g., only using clinical data, showed that using all available 

Table 1.  Backbones and classifiers used for evaluation with the respective features for patients and the 
distance metric (similarity). Images describes the latent image features extracted with an image encoder. 
Radiomics stands for the radiomics extracted from the segmentation networks. Clinical data includes vital 
signs, blood values, and demographic information. We compare U-GAT to other end-to-end trained methods 
only using clinical data (MLP-Clinical), only using image data (ResNet18), and a GAT with a CNN backbone 
without an auxiliary segmentation task (ResNet18-GAT). In addition, we compare the performance of different 
classifiers on the image features extracted from a frozen U-Net, marked with a *, i.e., U-Net*. KNN is a 
k-nearest neighbors classifier. GraphSAGE is a graph convolutional method without an attention  mechanism57. 
Multitasking refers to the joint training of classification and segmentation.

Architecture Multitasking Multimodal

Patient modalities Patient similarity

Images Radiomics Clinical Radiomics Clinical

MLP-Clinical – – – – � – –

RF-Clinical – – – – � – –

ResNet18 – – � – – – –

ResNet18-GAT – � � – � – �

U-Net*+RF – � – � � – –

U-Net*+KNN – � – � � � �

U-Net*+MLP – � � � � – –

U-Net*+GraphSAGE – � � � � � �

U-GAT* – � � � � � �

U-GAT � � � � � � �
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features is most effective, but mutual information estimation can further help identify the most relevant features 
and give them a higher weight in the similarity metric. The external dataset confirmed the feature importance 
of radiomic data. Here, the COVID-19 burden has the highest mutual information with the severity labels (see 
supplementary material). A key benefit of using a weighted distance for KNN graph construction is that the graph 
can adapt to each task without prior knowledge. Fig. 2 shows the graph for each task on the KRI dataset with and 
without weighting the distance measure with mutual information. Besides improving classification, an effective 
similarity measure can be used to identify relevant patients that have been treated in the past and support the 
decision-making process of physicians by enabling them to analyze the disease progression of similar patients.

U‑GAT evaluation
In the next set of experiments shown in Table 4, we evaluate the different components of the proposed method 
and compare the results to baseline methods. Our multimodal method outperforms the unimodal MLP, limited 
to only clinical data as input. The same picture presents when limiting the model to solely use imaging data, 
as is the case for the ResNet18 method. Here, again our proposed methods outperform ResNet18 on all tasks. 
These experiments showcase the benefit of a multimodal approach. U-GAT achieves a higher AP than the other 
methods in all ablations of replacing the U-Net with a ResNet18 and replacing the GAT with an MLP or a Graph-
SAGE. This shows that leveraging similar patients from the training set is useful for refining the features of test 
patients. We see similar results on the external dataset where U-GAT has a higher AP of 0.593± 0.106 than the 
single modality models MLP and ResNet18 with 0.556± 0.099 and 0.525± 0.140 , respectively, highlighting the 
advantage of multimodal learning.

The results of joint end-to-end training of the segmentation and classification task seem to improve the 
AP slightly for all tasks on both datasets. While the average Dice score is lower in all multitask setups than in 
the segmentation single-task setup (see supplementary material), this makes the segmentation task a suitable 
auxiliary task to improve classification results. On the KRI dataset, both the ICU and ventilation predictions 
reached the highest AP of 0.699± 0.149 and 0.644± 0.142 , respectively, when multitasking with segmentation. 
The mortality task generally achieves worse results. One main explanation for this effect is the immense data 
imbalance that is present for the mortality task, with only 19 out of 132 positive samples. Additionally, we observe 
low mutual information of the radiomics and clinical features with the mortality outcome (supplementary 
material, Table S5). This indicates that the features at hand might not be sufficiently predictive for this specific 
task. Several relevant clinical aspects closely connected to multiorgan failure, such as heart, kidney and liver 
parameters, were not available in the datasets. The evaluation on the external dataset shows the same picture 
where joint end-to-end training of severity classification and pathology segmentation with U-GAT increases 

Table 2.  Top 10 features sorted by the mutual information for each task and its Pearson correlation in the KRI 
dataset. The average is calculated on the training sets of all repetitions.

Task Feature Category Mutual information Pearson correlation

ICU Healthy lung (%) Radiomics 0.244± 0.052 −0.596± 0.033

ICU Ground-glass opacity (%) Radiomics 0.184± 0.043 +0.577± 0.026

ICU Other pathologies (%) Radiomics 0.144± 0.055 +0.471± 0.048

ICU C-reactive protein Clinical 0.104± 0.038 +0.372± 0.071

ICU Interleukin 6 Clinical 0.091± 0.023 +0.091± 0.137

ICU Age Clinical 0.087± 0.031 +0.018± 0.062

ICU Lymphocytes Clinical 0.047± 0.027 −0.062± 0.112

ICU Temperature Clinical 0.043± 0.040 −0.016± 0.116

ICU Serum creatinine Clinical 0.041± 0.045 +0.009± 0.125

ICU Thrombocytes Clinical 0.039± 0.037 −0.007± 0.060

ICU Creatine kinase (total) Clinical 0.037± 0.040 +0.113± 0.110

Table 3.  Evaluation of edge features and their weighting used for distance calculation on the validation set of 
the KRI dataset. Highest values are in bold.

Task Architecture Distance features Distance feature weights AP AUC 

ICU U-GAT* Age, sex – 0.512± 0.109 0.573± 0.109

ICU U-GAT* Clinical – 0.671± 0.152 0.720± 0.135

ICU U-GAT* Radiomics – 0.670± 0.145 0.720± 0.116

ICU U-GAT* All – 0.704± 0.080 0.733± 0.073

ICU U-GAT* All Pearson correlation 0.697± 0.122 0.751± 0.088

ICU U-GAT* All Mutual information 0.722± 0.096 0.757 ± 0.142
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the AP from 0.558± 0.102 to 0.593± 0.106 compared to U-GAT* that uses segmentations from a frozen U-Net 
trained on the same annotations.

Multitasking evaluation
We conducted additional experiments on the synergistic effects of multitasking segmentation with classification 
and the concurrent prediction of different patient outcomes since all of these tasks are interdependent. Results 
detailed in the supplementary material showed that classification can benefit from joint segmentation (Supple-
mentary, Table S7) but mortality prediction was the only task that improved with the simultaneous prediction 
of all outcomes (supplementary material, Table S8).

U-GAT ensemble and comparison with Random Forest
As discussed in section “Ablative testing and comparison to baselines”, we also compare our method against 
Random Forests used in previous works to perform classification from fused tabular radiomics with clinical data. 
The comparison, shown in Table 5, illustrates the enhancement in U-GAT’s average precision from 0.699± 0.149 
to 0.745± 0.137 , elevating it to marginally outperform the Random Forest, which stands at 0.729± 0.089 . The 
results indicate that ensembling our method increases the robustness of our method to overfitting, showing 
comparable results as a Random Forest.

Interpretability and inter‑patient graph attention
In addition to its performance boost over GraphSAGE, using GAT offers another important advantage. The 
attention mechanism of our model learns to identify the neighbors in the graph that are the most relevant for the 
prediction task, providing insight into the decision process of the model. The analysis of attention scores could 
suggest patients that the model deems relevant for the individual outcome prediction. These connections within 

Table 4.  Ablative testing and comparison with an MLP only using clinical data and a ResNet18 only using 
image data as input on all tasks. Highest values per task are in bold. U-GAT* refers to the proposed method 
using image and radiomic features extracted from frozen U-Net trained on the same annotations as the end-to-
end U-GAT. Values marked with † indicate statistical significance with p < 0.05 based on the Wilcoxon’s rank 
test comparing the proposed method with every other baseline.

Dataset Task Architecture AP AUC F1

KRI ICU MLP-Clinical 0.577± 0.109† 0.654± 0.104† 0.560± 0.107†

KRI ICU ResNet18 0.670± 0.097 0.716± 0.077 0.560± 0.084†

KRI ICU U-Net*+KNN 0.632± 0.113 0.677± 0.112 0.519± 0.131†

KRI ICU U-Net*+MLP 0.615± 0.127† 0.687± 0.128 0.612± 0.085

KRI ICU U-Net*+GraphSAGE 0.628± 0.114† 0.690± 0.107† 0.574± 0.085†

KRI ICU ResNet18-GAT 0.637± 0.165 0.678± 0.160 0.595± 0.084†

KRI ICU U-GAT* 0.672± 0.129 0.725± 0.107 0.651± 0.104

KRI ICU + Seg. U-GAT 0.699± 0.149 0.743± 0.103 0.661± 0.084

KRI Ventilation MLP-Clinical 0.527± 0.167 0.692± 0.109† 0.475± 0.188

KRI Ventilation ResNet18 0.573± 0.127 0.715± 0.086† 0.390± 0.160†

KRI Ventilation U-Net*+KNN 0.527± 0.180† 0.674± 0.112† 0.368± 0.192†

KRI Ventilation U-Net*+MLP 0.587± 0.183 0.741± 0.119 0.488± 0.134

KRI Ventilation U-Net*+GraphSAGE 0.603± 0.151 0.758± 0.109 0.481± 0.205

KRI Ventilation ResNet18-GAT 0.570± 0.152 0.689± 0.152† 0.423± 0.178†

KRI Ventilation U-GAT* 0.618± 0.137 0.788± 0.106 0.592± 0.130

KRI Vent. + Seg. U-GAT 0.644 ± 0.142 0.788± 0.112 0.539± 0.179

KRI Mortality MLP-Clinical 0.261± 0.135 0.544± 0.134 0.224± 0.152

KRI Mortality ResNet18 0.210± 0.116† 0.461± 0.155† 0.155± 0.138

KRI Mortality U-Net*+KNN 0.257± 0.137 0.512± 0.166 0.184± 0.147

KRI Mortality U-Net*+MLP 0.252± 0.157 0.502± 0.191 0.190± 0.157

KRI Mortality U-Net*+GraphSAGE 0.270± 0.143 0.568± 0.180 0.236± 0.163

KRI Mortality ResNet18-GAT 0.247± 0.151 0.520± 0.156 0.184± 0.157

KRI Mortality U-GAT* 0.271± 0.137 0.549± 0.188 0.230± 0.172

KRI Mort. + Seg. U-GAT 0.287 ± 0.186 0.586± 0.187 0.199± 0.173

iCTCF Severity MLP-Clinical 0.556± 0.099 0.735± 0.068 0.539± 0.064

iCTCF Severity ResNet18 0.525± 0.140 0.739± 0.083 0.513± 0.102

iCTCF Severity U-Net*+KNN 0.456± 0.070† 0.705± 0.060 0.318± 0.129†

iCTCF Severity U-GAT* 0.558± 0.102 0.740± 0.096 0.505± 0.114

iCTCF Severity U-GAT 0.593± 0.106 0.763± 0.085 0.521± 0.109
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the patient population graph can help uncover new information about a disease that is still poorly understood and 
provide valuable insights to physicians. Combined with the segmentation results, our attention mechanism allows 
the clinicians to thoroughly evaluate our model output and decision-making process, giving them potentially 
higher confidence in the prediction. For each of the two GAT layers, the model assigns attention scores to the 
neighbors of each node in the graph. These scores define how much the node representation after the layer will 
be based on the representation of its different one-hop neighbors. These attention scores can be thought of as 
a weighted directed adjacency matrix A ∈ [0, 1]N×N , where N is the number of nodes in the batch and all rows 
in A add up to 1. We can multiply the attention matrices of both layers to receive a matrix that shows how the 
representation of a node is based on its two-hop neighborhood, i.e., all nodes that are at most two edges away. 
These attention scores are visualized in Fig. 3. Our results on the test patient shown in Fig. 3 highlight that the 
attention mechanism succeeds in assigning high importance to neighbors of the same class and lower importance 
to those of the opposite class, thus implicitly refining the neighborhood constructed by the KNN algorithm. 
Furthermore, we can see that the attention mechanism does not necessarily assign high attention to neighbors 
that are particularly similar in their radiomic or clinical features. In contrast to a simple KNN classifier, which 
can only base its prediction on feature similarity, our method evidently can identify the most relevant neighbors 
that go beyond a simple correlation and are connected through more complex patterns and thus introduces 
orthogonal information to that embedded in the KNN graph.

Table 5.  Comparative analysis of ICU outcome prediction on the KRI dataset: U-GAT vs its cross-validation 
ensemble, a random forest model using only clinical data, and another random forest model incorporating all 
available tabular data, including radiomics extracted with a pretrained U-Net. Highest values are in bold.

Architecture AP AUC bACC F1 Sens. Spec.

RF-Clinical 0.635± 0.098 0.707± 0.086 0.624± 0.056 0.519± 0.070 0.475± 0.131 0.773± 0.175

U-Net*+RF 0.729± 0.089 0.774 ± 0.057 0.716± 0.075 0.649± 0.011 0.651± 0.177 0.781± 0.166

U-GAT ensemble 0.745± 0.137 0.770± 0.098 0.735± 0.111 0.700± 0.114 0.736± 0.067 0.734± 0.174

Figure 3.  KRI dataset—Left: Batch graph showing the attention scores of a single test patient. The line’s 
thickness corresponds to the respective neighbors’ attention score after two hops. Right: CT images, 
segmentation ground truth, and predicted segmentation of a single axial and coronal slice from the test patient 
and the neighbor with maximum attention. Bottom: Most important features for the test patient and the 
neighbor with maximum attention. In brackets, the radiomics predicted by the pretrained U-Net are shown.
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Challenges and future outlook
In a future iteration of our current model, the segmentation of infrequent lung pathologies, such as pleural effu-
sion could be improved along with the prediction of imbalanced outcomes, notably mortality. Our approach to 
enhance the model involved constructing the population graph based on the mutual information of each feature. 
This has effectively improved the graph structure, and importantly, the features identified through this method 
are consistent with established radiological findings. It should be noted, however, that the mutual information 
displays a pronounced standard deviation and is notably lower for the mortality prediction task, indicating the 
inherent complexity of this specific prediction task and the potential sparsity of highly informative features given 
the available parameters in the dataset. In subsequent studies, these areas can be addressed by incorporating 
more annotated data and expanding the patient cohort, particularly the clinical data.

Conclusion
In this work, we developed and evaluated a method to effectively leverage multimodal information for the out-
come prediction of COVID-19 patients. Here, the said information in the form of CT lung scans, clinical data, 
and radiomics was incorporated into a graph structure and processed within a GAT to stabilize and support 
the prediction based on data similarity. With U-GAT, we propose an end-to-end methodology that segments 
patient pathologies in medical images and uses a combination of imaging and non-imaging data to predict 
clinical outcomes. We explicitly incorporate automatically extracted lung radiomics in our architecture and 
demonstrate increased performance. We show that the auxiliary segmentation of COVID-19 pathologies indeed 
improves outcome prediction. To create the patient population graph, we propose a novel graph construction 
based on feature weighting utilizing mutual information, effectively clustering relevant patients. Our attention 
analysis imparts an additional layer of transparency, potentially increasing clinicians’ confidence in our predictive 
approach. This added clarity can assist in identifying comparable patients from previous cases, thus informing 
and guiding the treatment trajectory for the current patient under consideration. This study underscores the 
potential of graph-based, data-driven strategies in improving patient care and decision-making in challenging 
clinical settings using multiple modalities.

Data availibility
The iCTCF  dataset24 is publicly available and can be accessed at https:// ngdc. cncb. ac. cn/ ictcf/. The complete KRI 
dataset is available on request for research purposes in the frame of the BFS project AZ-1429-20C.
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