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1
I N T R O D U C T I O N

Machine Learning (ML) research has gained momentum in the recent
decade and opened doors in applications (e.g., speech and image recog-
nition, autonomous driving, chatbots, or generative models) that were
hardly foreseeable for anyone. At its core, ML aims to find patterns in
data (Bishop, 2006). ML’s textbook definition comprises three branches:
supervised learning, unsupervised learning (i.e., deducing structures in
unlabeled data), and reinforcement learning (i.e., an agent adapts its
action policy according to a reward obtained by the environment) (Rus-
sell & Norvig, 2021)[pp. 669–670]. In the context of the most widely used
ML branch of supervised learning (LeCun et al., 2015; Jordan & Mitchell,
2015), ML models predict an outcome based on features. Such models
are often functions f : X → Y, i.e., the function f takes an input (feature)
vector x ∈ X and outputs a response ŷ = f(x) ∈ Y as close as possible to
its true label (target) y ∈ Y, which is only known for the training data set
(most often X = Rn, and Y = Rm in the case of regression or Y represent-
ing a finite set in the case of classification). The goal is to find a function
f that describes the relationship between input x and output y, and to
later apply that function to unseen data. This can be done by selecting a
function (model) from a class of functions that minimizes a certain met-
ric, like the distance between the target output y and the model’s output
ŷ = f(x) predicted to an input x. This idea is not new, but searching for
models in an “expressive” class of models, e.g., Neural Networks (NNs)
with deep, “hidden” structures, was computationally too hard until re-
cently. Not single but multiple developments (e.g., improved hardware,
parallelization, or tailored model architectures for specific applications)
have eased the application of such models and supported the uprise of
ML (see e.g., Pandey et al., 2022 or Gu et al., 2018).

Optimization algorithms lie in the heart of many ML techniques (Rumel-
hart et al., 1986). An example for this would be the selection of models
that minimize a certain error measure (e.g., mean squared error between
the true and predicted label; see Hastie et al., 2009[p. 12]). Conversely,
ML techniques have found their way into Operations Research methods
and applications. At first glance, ML’s probabilistic and mathematical
optimization’s exact nature may seem to contradict each other. However,
ML can enhance optimization algorithms in many ways or even enable
the development of algorithms that could not be realized without ML
models. This becomes evident especially if we relax our optimality re-
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quirement for solutions and, therefore, allow using probabilistic models
during the solution procedure for combinatorial optimization problems.

Bengio et al., 2021 introduced several perspectives on integrating ML
models into solution methods in their review of ML applications for com-
binatorial optimization. They distinguished between imitation learning
(i.e., finding a model that mimics the expected behavior of an expert),
and experience-based learning (i.e., using reinforcement learning to gen-
erate policies according to a reward signal returned by interactions with
the environment). The demonstrated examples range from rather gen-
eral optimization approaches (e. g., approximating bound improvements
by cutting planes or improving the node selection in branch-and-bound
trees) to specialized approaches for specific problem types (e. g., learn-
ing a node selection policy for the traveling salesman problem or learn-
ing to predict suitable algorithm parameter configurations for a given
problem instance). They also presented another perspective on integrat-
ing ML into optimization: using it alongside optimization algorithms. In
this case, the (higher level) optimization algorithm calls the ML model
to get predictions to a (lower level) decision. Unfortunately, using ML al-
gorithms in optimization methods comes with the downside of neither
having a guarantee for the gap to the optimal solution nor knowing if the
answers of a model are feasible. Nevertheless, the authors argued that
imitation learning’s faster response time provides a valuable contribu-
tion to combinatorial optimization algorithms, and they “[. . . ] strongly
believe that this is just the beginning of a new era for combinatorial
optimization algorithms” (Bengio et al., 2021).

Of course, ML methods are also present in the field of (machine) schedul-
ing in which combinatorial optimization problems occur very frequently.
To unify different wordings in the scheduling literature, Uzunoglu et al.,
2023a refer to them as learning-augmented scheduling methods and catego-
rize them as methods that:

• directly make scheduling decisions,

• automatically design new scheduling methods (e.g., heuristics),

• select the most suitable scheduling method from a set of existing
methods (Algorithm Selection Problem),

• determine the most suitable parameters of a scheduling method
(parameter tuning),

• predict the objective value achieved by a specific scheduling
method.

This thesis introduces research in the latter three categories and validates
its added value by incorporating it into a computationally hard (serial-
batch) scheduling problem.
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The remainder of this dissertation is structured as follows: Chapter 2

introduces the application case of a serial-batch scheduling problem,
the potentials and challenges of using heuristic approaches for com-
plex problems, and at which points ML models are used to support
or improve the decisions made for that application case. Additionally,
a brief introduction to ML theory is given. Chapter 3 summarizes the
scientific contributions A-D and highlights the findings that enhance
decision-making, and Chapter 4 presents the research articles, including
their bibliographic information. The last chapter, Chapter 5 concludes
with this thesis’ scientific contributions and raises open questions that
should be addressed in future research.



2
P R E L I M I N A R I E S

This chapter introduces foundations to get a better understanding of the
constituent contributions of this thesis. The concepts and methods de-
veloped in this thesis are generally based on a scheduling application
case from the metal-processing industry but are not limited to this case
or industry. The application case presented in the following section is
the main example used to validate and evaluate the applicability of the
developed concepts in the contributions. Demonstrating these concepts
and methods on a specific industrial example gives the reader an idea
of how to integrate ML models in scheduling and discusses issues that
must be (generally) addressed when using ML models. Choosing an ex-
ample complex enough to be seen in practical applications is important
since idealized examples omit (or relax) details essential for the imple-
mentation. Section 2.1 describes the hard-to-solve serial-batch schedul-
ing problem (called Parallel Serial-Batch scheduling with Incompatible
Job Families (PSBIJF) in the following) used as an example in this thesis’
contributions. Next, Section 2.2 discusses how to tackle hard problems
like the PSBIJF in Section 2.1 and presents the best-known heuristic(s) ca-
pable of solving large instances of that problem. Furthermore, Section 2.2
shows issues arising when using this heuristic and motivates the neces-
sity of incorporating ML models into the solution procedure. Section 2.3
gives a brief introduction to ML theory to ease the understanding of
concepts in the constituent contributions. The last section, Section 2.4,
shows how the contributions in this thesis extend the decision-making
for the PSBIJF.

2.1 application case : a serial-batch scheduling problem

Manufacturers in the metal-processing industry often deal with serial-
batch scheduling problems when laser-cutting machines cut out geomet-
rical shapes (i.e., jobs) from a metal sheet in a serial manner, i.e., each
shape is cut out one after another (Gahm et al., 2022b; Helo et al., 2019).
Hereby, the operators must first decide which jobs to group in which
batches, and second, they must define a sequence of execution (and a
machine allocation when several exist; we assume parallel machines).
The jobs have characteristics like material requirements (e.g., type and
thickness), processing times, sizes (e.g., area demands), weights (often
implied by a customer priority), or due dates that influence both de-
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cisions. Jobs can be grouped in the same batch only if they share the
same job family (material requirements) and do not violate the capacity
constraints of the batch, i.e., the jobs in a batch fit onto the metal sheet.
The latter batch feasibility condition is a difficult geometrical problem
and will be referred to as the batch feasibility check in what follows. The
fact that processed jobs are only available if the whole batch is finished
(“batch availability”) introduces complexity to the decision-making pro-
cess: Adding (or removing) a job to (from) a batch influences not only
the job’s completion time but also the batch’s processing time (the batch
processing time is the sum of all job processing times) and its comple-
tion, and thus, the completion of all jobs in the batch. Furthermore,
if there is no idle time on the cutting machine, completion times of
all subsequent batches (jobs) are affected. Additionally, the serial-batch
scheduling problem considers sequence-dependent setup times between
batches, depending on the current and upcoming batch’s family. Setup
times represent the time the operator needs to take out the processed
jobs, insert a new metal sheet, and (possibly) adjust the machine to the
new material properties if the batch families differ (Shen & Buscher,
2012).

Serial-batch scheduling problems may be part of a multi-stage produc-
tion process or a complex supply chain (Gahm et al., 2022b). Given an
aspired completion date for the (end) product, backward planning re-
turns a due date for the items of the cutting process. Missing a due date
should be avoided but, in contrast to deadlines, do not violate a con-
straint. In the presence of due dates, the objective is usually to minimize
the (weighted) total tardiness of all jobs, which translates to increasing
delivery reliability. If so, the effects of adding (removing) a job may con-
tradict each other because if a job is tardy, allocating it to an earlier batch
reduces its tardiness but increases the completion time of all jobs in this
batch by the processing time of the added job.

This problem was classified as P|sb, if∗,b,aj, sf,g|wT according to the
three-field notation (Gahm et al., 2022b) and is abbreviated in what fol-
lows as the PSBIJF problem (Parallel Serial-Batch scheduling with In-
compatible Job Families).

Figure 1 shows an exemplary PSBIJF instance and a computed schedule
for that instance. The upper part shows customer (or in-house) orders
requiring specific shapes (jobs j1 to j6) with given material requirements
(material type and thickness) and a due date. Stated in scheduling ter-
minology, material requirements define the (incompatible) job families
f1 (aluminum, 22mm) and f2 (stainless steel, 15mm). A job’s size ai is
defined by the area of the shape (not depicted in Figure 1). The pro-
cessing time of a job also depends on the shape (mainly on the cutting
length), but the material type and the thickness may also impact it. The
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Job Shape Job family
(material, thickness)

Processing
time

Due date

j1, j2 f1 (aluminium, 22mm) 8 9

j3 f1 (aluminium, 22mm) 26 1

j4 f2 (stainless steel, 15mm) 8 2

j5 f2 (stainless steel, 15mm) 16 3

j6 f2 (stainless steel, 15mm) 16 5

setup

s0,1

cutting setup

s1,2

cutting setup

s2,1

cutting

j3

B1

j4, j5, j6

B2

j1, j2

B3

Figure 1: A serial-batch scheduling problem and its solution

lower part of the figure shows a computed schedule. Jobs are grouped
into batches B1, B2 and B3 and sequenced, aiming to minimize the total
weighted tardiness. Because customers may have different priorities for
the manufacturer, a job’s tardiness is multiplied by a customer-specific
weight in the objective function. Batch B1 consists only of job j3 and
needs an initial setup time s0,1 (with 0 indicating an initial “dummy”
batch and 1 indicating family f1). Job j3 has the closest due date and,
therefore, is processed without other jobs. Even though job j4 has a sim-
ilar due date, it belongs to family f2 and hence can not be processed
together. After that, a setup time s1,2 is needed to change from family f1
to f2. Batch B2 consists of three jobs (j4, j5, j6) and needs more process-
ing time. The same idea applies to batch B3 and the setup time s2,1. The
next section discusses solution methods to compute schedules for this
problem.

2.2 solving the psbijf

In manufacturing, practitioners frequently use solution methods from
Operations Research in production planning and scheduling. The (com-
binatorial) optimization problems to be solved are often NP-hard, and
therefore, solving large-scale real-world problems to optimality becomes
often intractable. Relaxing the optimality requirement of problem solu-
tions increases the flexibility of solution methods and enables trading
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in solution quality for computation time. Heuristics are popular choices
to obtain reasonable solutions quickly but, in contrast to approximation
algorithms, giving provable statements about their solution quality is dif-
ficult and are often evaluated empirically (Rardin & Uzsoy, 2001). This
disadvantage is an acceptable toll to pay for manufacturers since the
problem characteristics may change at short notice (e.g., due to new cus-
tomer orders or machine breakdowns), leaving the manufacturers with
little to no time to calculate (near) optimal solutions for complex prob-
lems. For the case of the PSBIJF, we can formulate it as a Mixed-Integer
Linear Program (MILP; see Gahm et al., 2022b), allowing us to use so-
phisticated MILP-solvers (e.g., branch-and-cut). Unfortunately, finding a
solution to the MILP is costly because methods like branch-and-cut al-
gorithms fail to find reasonable lower bounds for their branching due to
the “unhandy” total tardiness objective. In a computational study, Gahm
et al., 2022b could only compute (non-optimal) solutions to problem in-
stances with up to 100 jobs due to run time restrictions – a job number far
too low for practical applications with usually several hundreds or thou-
sands of jobs. Therefore, they proposed a new heuristic BATCS-b (Batch
Apparent Tardiness Costs with Setup times and batch utilization control
parameter b; see Vepsalainen and Morton, 1987 and Balasubramanian
et al., 2004) to calculate schedules efficiently. Their heuristic decouples
the batching and scheduling decision by creating batches with unsched-
uled jobs according to a priority rule (which needs two parameters to
be set) when machines become available at a certain point t in the time
horizon. It adds the most “urgent” job to the current batch if it does not
violate the batch feasibility, and restarts the iteration with the remain-
ing unscheduled jobs until no unallocated job is left. Next, the heuristic
adapts the priority rule for batches to asses their urgency and selects the
next batch in the sequence of a machine according to that priority. The
heuristic repeats this routine until all jobs are scheduled. An essential
feature of this heuristic is that it does not force “full” batches but stops
if the altered batch capacity (by parameter b) is reached. In their compu-
tational study, this heuristic computes schedules for instances with up
to 5,845 jobs quickly, but its solution quality highly depends on the used
heuristic parameters. To increase the solution quality, Gahm et al., 2022b
restart the heuristic multiple times with different parameter configura-
tions (also known as multi-start heuristic), which massively increases the
computation time.

The parameter configuration of a heuristic is an example in which the
runtime of a heuristic may become a bottleneck. Setting suitable pa-
rameters for a heuristic immensely influences the solution quality of
most parametrized solution methods. In practical applications, the algo-
rithm’s configuration often relies on an expert’s expertise, leaving huge
space for performance improvements. Unfortunately, finding a suitable
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parameter configuration is often time-consuming, involving executing
the algorithm multiple times with different parameter configurations to
evaluate their performance. In the case of continuous intervals for the pa-
rameter domains, it is common to discretize the intervals and perform a
multi-start heuristic on all combinations, resulting in substantial compu-
tational efforts. Thus, even the fast response times of heuristics may not
be sufficient in such situations.

This also holds for the hierarchical production planning example stud-
ied in this thesis. In general, hierarchical production planning consists of
top-level and (several) base-level decision problems (see, e.g., Hax and
Meal, 1973; Bitran et al., 1981; Schneeweiß, 1995). Those problems are
interdependent, i.e., the solution of one problem influences the solution
(procedure) of another problem. For example, consider a hierarchical
problem in which a top-level problem has to solve a base-level decision
problem in one of its constraints. If the constraint must be checked multi-
ple times while solving the top-level decision problem, even a heuristic’s
(relatively) fast computation time may become a bottleneck for the top-
level problem. Instead, if the top-level decision problem does not need
an elaborate solution to the base-level decision problem, a fast (approx-
imate) anticipation without calculating the actual solution to the base-
level decision problem could help to overcome this bottleneck. Never-
theless, the anticipation’s accuracy may be crucial to the higher-level so-
lutions performance. For instance, too “optimistic” anticipations could
lead to decisions that violate the constraints of the base-level decision
problem (and therefore also the top-level decision problem). Therefore,
developing an accurate anticipation of the base-level decision problem
is worthwhile to increase the chances of obtaining a feasible solution to
the hierarchical problem.

A concrete manifestation of such a hierarchical decision problem is the
interplay between the aforementioned PSBIJF and the batch feasibility
check. Both proposed scheduling methods, the MILP formulation and
the multi-start heuristic, use a simple batch feasibility check that is com-
putationally very fast but can result in infeasible batches as it ignores
the real geometrical properties of the shapes. For a “correct” batch fea-
sibility check, we must know if a set of arbitrarily complex shapes can
be placed on a metal sheet with a given height and width. The corre-
sponding optimization problem is known as the nesting (or strip packing)
problem and is NP-hard (Bennell & Oliveira, 2008; Fischetti & Luzzi,
2009). Even heuristics need several minutes for “complex” nesting prob-
lems, which is already unpractical for methods that must perform the
feasibility check for every potential batch. The simple batch feasibility
check applied so far in (Gahm et al., 2022b) sums up all area demands
of the shape set and compares it to the total area of the metal sheet. This
approach assumes all jobs can be perfectly nested without leaving any
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Heuristic
BATCS-b

Multi-start
Heuristic

PSBIJF instance PSBIJF solution

Batch feasibility
check by simple
approximation

ϑ ∈ Θ ov

(a1, . . . ,an) feasibility decision

Figure 2: Procedure to solve the PSBIJF

unused area on the sheet. However, relaxing the nesting problem in such
a strong way may lead to batching decisions that cannot be implemented
when applying the schedule.

Figure 2 illustrates how the PSBIJF problem is solved according to the
proposed approach in Gahm et al., 2022b. For each PSBIJF instance, the
multi-start heuristic evaluates the objective value ov of every possible
parameter configuration ϑ ∈ Θ by executing the BATCS-b heuristic. In
its batching decisions, the heuristic uses a sum of the job’s net areas
(a1, . . . ,an) to approximate whether the jobs fit onto the batch. Lastly,
the multi-start heuristic returns the best schedule for the problem in-
stance achieved by any parameter configuration ϑ in the parameter space
Θ.

The question to be answered by the constituent elements of this doctoral
thesis is how ML methods can be applied to increase solution quality
and efficiency when solving the PSBIJF, a combinatorial optimization
problem of emerging importance in the field of machine scheduling. Be-
fore answering this question, some basics of ML theory are necessary for
a common understanding and are therefore discussed in the following
section.

2.3 machine learning theory

This section briefly introduces basic ML theory concepts to ease the un-
derstanding of the constituent elements. These concepts help to under-
stand why certain steps must be taken to determine an accurate ML
model and belong to best practices (e.g., splitting test data, penalizing
model complexity) nowadays (Goodfellow et al., 2016). Undoubtedly,
giving a comprehensive overview of this vast field is difficult. For the
interested reader, the following resources might be a good starting point:
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Bishop, 2006; Hastie et al., 2009; Barber, 2012; Murphy, 2013; Shalev-
Shwartz and Ben-David, 2014; Goodfellow et al., 2016; Mohri et al., 2018;
MacKay, 2019; Russell and Norvig, 2021.

Depending on the time and domain of the application, the task of ma-
chine learning is or was defined with different motivations (Bishop,
2006). In fact, even the naming of the field was a challenge in its own
right. The naming has changed over time: in its beginning, the more prac-
tical branch was known as “pattern recognition”, and the theory behind
machine learning as “statistical learning theory”. With the upcoming
introduction of bio-inspired methods, such as perceptrons (Rosenblatt,
1958), “artificial intelligence” has become a more popular name for this
field. Artificial intelligence now embodies a vast field in computer sci-
ence designated to mimic intelligent systems, and ML is a subfield that
uses probabilistic models to achieve its goals (Russell & Norvig, 2021).
Also, throughout the history of this field, its focus and methodology
have shifted with the technologies available at that point in time.

In its foundations, early research focused on theoretical results applica-
ble to asymptotic settings (e.g., infinitely many observations in the limit)
and, with the uprise of powerful computing devices and massive data
sets, shifted its focus (LeCun et al., 2015; Schmidhuber, 2015). It began
as a question in statistics: “What must one know a priori about an un-
known functional dependency in order to estimate it on the basis of
observations?” (Vapnik, 2000). According to Vapnik, 2000, statistical esti-
mation in the 1920s and 1930s (see e.g., Fisher, 1925 or Efron and Hastie,
2016) had very restrictive answers to that.

Starting in the 1960s, the thinking in this field shifted to a more practical
viewpoint and addressed topics like small sample statistics. Also dur-
ing this time, Vladimir Vapnik and Alexey Chervonenkis developed the
Vapnik-Chervonenkis theory (VC-theory), which is very fundamental
for research that followed in statistical learning theory (Vapnik & Cher-
vonenkis, 1971). The ultimate goal of statistical learning theory is to for-
malize the principles that ML methods use to automate the model “learn-
ing” process based on observations. This theory leverages the knowl-
edge about properties of the class of functions that represent the obser-
vations' functional dependency. Formally, let xi ∈ X be an observation
and yi ∈ Y its observed label, then we believe that there exists a map-
ping f : X → Y that describes the dependency as yi = f (xi) + ε with
ε ∼ N(0,σ2) being the inherent noise in our observations (with unknown
σ2; see Bishop, 2006 for a detailed explanation of this connection). As-
suming that the training data (observations) has some underlying “regu-
larities” is key to this theory. Therefore, we desire to find functions that
recognize and exploit some sort of “regularities” rather than “arbitrary”
functions. Allowing arbitrary functions would lead to models that also
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encapture the noise in the training data, leading to poor performance on
testing data – a phenomenon widely known as overfitting (Bishop, 2006).

Making assumptions is essential to obtain well-performing models. Ac-
cording to the No Free Lunch theorem in ML (see Wolpert, 1996), it is even
impossible to predict future (test) data if we cannot make assumptions
about the relation between training and test data. Both, the training and
test data, are assumed to be sampled independently and from the same
distribution (i.i.d) (Shalev-Shwartz & Ben-David, 2014). Being sampled
from the identical distribution implies we can infer knowledge from the
training about the underlying distribution of the observed phenomenon.
The independence of the samples means that we have no restrictions
on how to use the training data (e.g., no specific order or conditioning)
and are able to utilize all the information we have. One important im-
plication of both assumptions is that ML algorithms (may) increase their
prediction performance with increasing training data size (Bousquet et
al., 2004). But for a finite training data size, we can construct counterex-
amples such that an algorithm performs perfectly on the training data
and “arbitrarily bad” on new data if it is allowed to select any function
as a model. This is the phenomenon of overfitting in a very extreme form
and can be overcome by restricting the set of possible functions (i.e., al-
gorithm) that fulfill certain properties (e.g., regularity conditions for the
set of functions or “simple” functions). However, if the set of functions
is too restricted, the function cannot represent complex dependencies in
the training data – this is the opposite of overfitting and known as (induc-
tive) bias. So, selecting a promising class of functions is a sensitive task,
and many different techniques are now available for ML researchers to
control their model’s “complexity”. Furthermore, the fact that functions
may perform well on training and badly on new, unseen data makes it
necessary to split the data set: use the first split for training and assess
the prediction performance on the second split.

To get a formal understanding of the abovementioned concepts, consider
again the input space X and the output space Y (see Shalev-Shwartz
and Ben-David, 2014 or Bousquet et al., 2004 for a much more detailed
and formal explanation of what follows next). For convenience, we can
restrict Y to the set {−1, 1}, meaning our inference problem is a classi-
fication problem. We assume that (x,y) ∈ X× Y are random variables
with an unknown probability distribution P. Our training data set con-
sists of n i.i.d. drawn pairs of (xi, yi) sampled from P, and we want
to find a mapping (i.e., the model) h : X → Y from a hypothesis class
H (e.g., class of linear functions), which predicts the label y for x. To
assess the prediction performance of h, we define the risk (also referred
to as error or loss) of h as R(h) := P (h(x) ̸= y), which is the risk of
h misclassifying x. This notion allows us to decide which functions h

must be preferred and to argue about functions that minimize the risk.
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For our classification problem, we can define the regression function
η(x) := 2P (Y = 1|X = x) − 1 and the target function t(x) = sgn η(x),
which minimizes the risk: R(t) = infh∈H R(h) as described in Bousquet
et al., 2004. Such a risk-minimizing target function t(x) is also called
Bayes classifier, and its associated risk is called the Bayes risk. We have to
find such a function t but, unfortunately, P is not known. Nevertheless,
we can compute the empirical risk of a model h on a finite test data set
with n data points:

Rn(h) :=
1

n

n∑
i=1

1h(xi) ̸=yi
(1)

as a proxy for the actual risk. However, since Rn is an approximation
based on a finite sample, and the function is chosen from a function
class “large enough”, we could always find a function h that achieves
empirical risk Rn(h) = 0 but maximizes the risk R(h) = 1. This is the
problem of overfitting the model to the training data such that it per-
forms poorly on unseen data. We can overcome this by restricting the
hypothesis class from which h can be selected (e. g., h must be a linear
function) or by penalizing “complexity” (which has different definitions
depending on the analyzed subject) in the model itself. In the empiri-
cal risk minimization framework, we define a set of possible functions H

and choose a function hn∈ H that minimizes the empirical risk on our
training data of size n:

hn = arg min
h∈H

Rn(g). (2)

The caveat in this framework is to define a set H that is “rich” enough to
contain the target function or approximate it without being too “rich”
such that overfitting may occur. A good balance between both ends
ensures good prediction performance and low error (i.e., bias-variance
trade-off). Structural risk minimization is a paradigm that aims to con-
trol both, the risk and the size (or the complexity) of the model. Here,
d(h)∈ N describes the size of the model h (e. g., the number of ad-
justable weights in the model). The function hn∈ H minimizes the risk,
and a penalizing term pen(d(h)) which increases with increasing size of
h:

hn = arg min
h∈H

Rn(h) + pen (d(h)) . (3)

If the penalizing term of h is the norm ∥h∥ (multiplied by a constant), the
penalizing term is also called regularizer. Typically, the 1- or 2-norms on
the function properties (e.g., weights) are used in applications(Bishop,
2006).
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Vapnik and Chervonenkis, 1971 nicely combined a concept of the func-
tion class H’s complexity (at least for binary classification problems with
Y = {−1, 1}) and a bound to its risk in VC-Theory. Furthermore, their
theory gives us a formal understanding of notions like “rich enough” or
“complexity”. For that purpose, we have to define the VC dimension of
class H. This is the maximal number of points it can “shatter”, meaning
the maximal number of points it can distinguish given any classification
scenario. For example, in the space R2, the set of hyperplanes can dis-
tinguish three points with any given classification, but we can construct
a counterexample with four points such that no hyperplane is able to
distinguish them (see, for example, the XOR-problem Nitta, 2003), and
hence, its VC-dimension is 3. Let us call vH the VC dimension of H,
then, with probability at least 1− δ, we get a risk lower bound for the
empirical risk (see Bousquet et al., 2004[p. 182]):

∀h ∈ H, R(h) ⩽ Rn(h) + 2

√
2
vH log 2en

vH
+ log 2

δ

n
. (4)

This may seem to be a result for a very restricted case (namely binary
classification and for function classes that have VC dimension that can
be “measured”), but there also exists research on more complex models
(see Bartlett et al., 2019 for results on piecewise linear NNs). However,
even for this simple case, the risk lower bound shows the following:

1. The size of the function class does not depend on the number of
functions in that class but rather on their “geometry”.

2. If the VC dimension h of a function class is finite, the empirical
risk converges to the true risk with increasing training data size.

As the result of the risk lower bound suggests, increasing the test data
size or reducing the complexity of the model can reduce this type of er-
ror. The error achieved by the model can be decomposed into two parts –
approximation and estimation error (see Shalev-Shwartz and Ben-David,
2014[pp. 64–65]). The approximation error occurs due to inductive bias
by selecting a class of too restrictive functions. It is the minimal risk
achievable by functions in that class. The estimation error occurs be-
cause we can not measure the true risk but estimate it via the empirical
risk. Increasing the complexity of H reduces the approximation error but
might increase the estimation error due to overfitting. Conversely, reduc-
ing the complexity of H prevents overfitting, and thus, the estimated
error is more accurate, but we introduce an approximation error. So, we
are left with a sensitive task to find a balance between these two types
of errors.

With these general concepts of ML in mind, the enhancement of existing
and new scheduling methods by ML are discussed next.
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2.4 machine learning enhanced serial-batch scheduling

This dissertation contributes to the literature with three different ap-
proaches of integrating ML models in scheduling. Figure 2 in section
Section 2.2 shows how the scheduling problem PSBIJF is solved with-
out integrated ML models. There, for each PSBIJF problem instance,
the multi-start heuristic evaluates different parameter configurations for
BATCS-b and, internally, approximates the feasibility of a batch by sim-
ply summing the jobs’ area and comparing it to the maximum batch ca-
pacity. This is an easy-to-implement procedure but, as mentioned above,
has potential for improvement.

Regarding parameter configurations, ML models can help to suggest pa-
rameter configurations based on previous executions without perform-
ing the costly parameter search at scheduling time. Of course, the genera-
tion (i.e., training) of the ML model itself is a computationally expensive
task, but this phase is decoupled from the execution and is performed in
advance. Likewise, ML methods also have the potential to provide more
accurate batch feasibility approximations without causing a computa-
tional bottleneck. Furthermore, there are less apparent potentials when
the problem is viewed from a higher level. As this thesis shows, select-
ing a suitable solution method for each instance individually is also a
promising scenario to incorporate ML into the scheduling. Nevertheless,
it is crucial to carefully ask the “right” questions to successfully integrate
an ML model into scheduling.

Figure 3 depicts the integration of ML models according to this thesis's
contributions A to D (indicated by the upper left boxes; light grey boxes
indicate developed scheduling methods, and dark grey boxes ML inte-
grations).

In detail, contribution A aims to approximately anticipate the solutions
of a base-level problem in the context of hierarchical production plan-
ning, i.e., the top-level problem asks the ML model for predictions of a
base-level problem and continues its computations based on these pre-
dictions. Figure 2 shows how the base-level decision problem, i.e., the
batch feasibility check, is incorporated into the top-level decision prob-
lem by a simple approximation rule. Figure 3 depicts how the contribu-
tion of this dissertation alters the procedure by including an ML model
in the feasibility check. Of course, the ML model’s probabilistic predic-
tions introduce uncertainty to the decisions made by the higher-level
problem that must be considered by the (overall) scheduling method,
resulting in a new challenge. Nevertheless, the tremendous speed-up
(compared to solving the nesting problem) is critical for the top-level
decision problem that must solve the base-level decision problem many
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times, thus making it necessary to tackle this new challenge. Contribu-
tion A presents a framework to generate a suitable training data set, train
and validate different ML models (i.e., different hypothesis classes), and
include the learned model in the decision process of a hierarchical pro-
duction planning problem from the metal-cutting industry.

The second approach to effectively apply ML models in machine
scheduling is tuning a solution method’s parameters, which is ad-
dressed in contributions B and C. As mentioned, many heuristics (or
optimization algorithms in general) need parameters that impact their
behavior during the solution calculation, which also influences the solu-
tion quality. A “good” parameter configuration depends on the problem
instance, and therefore, finding suitable parameters for a problem
instance states a new optimization problem. When no prior knowledge
about the parameters is given, it is a common approach to discretize the
parameter space Θ in each dimension and to combine each dimension as
a Cartesian product (called “full grid”), then, to start the heuristic with
different parameter settings for the problem instance, and to select the
best-performing configuration. Even though this “brute-force” method
is easy to implement, the efforts to search for reasonable parameters far
exceed those needed to solve the problem. The inefficiency of such a
“full grid search” limits its practical applicability. However, when prior
knowledge about the performance of the parameter space for a problem
instance is available, we can utilize this to identify suitable candidates
for the parameter configuration.

There is a large body of research employing (statistical) models to
tackle parameter tuning in general for optimization problems. Earlier
approaches used less complex models to individually determine good
parameter configurations for problem instances (e.g.,Kim et al., 1995).
Since complex ML models are becoming more accessible, these models
were utilized to determine suitable parameters. Nevertheless, using
ML models to find suitable heuristic parameters has some caveats
and, therefore, needs to be designed carefully for them to find suitable
heuristic parameters. The first issue appears when multiple parameters
have to be found for the heuristic. In this case, the ML model must be
able to represent dependencies between these parameters. Second, an
instance may have multiple parameter configurations leading to the
best-known objective values. This means that the model must consider
that multiple correct answers for the parameter configuration question
exist. From the ML perspective, the uncertainty of the model’s predic-
tions must be considered when it is being applied to the parameter
tuning. Otherwise, it will negatively impact the solution quality of the
heuristic. Both contributions (B and C) present techniques to incorporate
the uncertainty of the predictions in the parameter tuning process. In
contribution B, the Machine Learning Parameter Prediction (MLPP)
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grid search first predicts a probably well-performing parameter con-
figuration and searches in the region of that predicted configuration.
In contribution C, the Machine Learning Ranking Prediction (MLRP)
grid search creates a ranking based on the predicted objective values
of parameter configurations and searches according to that ranking.
Furthermore, Contribution B presents a refinement of BATCS-b, called
BATCS-d, that, instead of controlling batch capacities, incorporates the
“urgency” of jobs in a batch to stop filling a batch with jobs.

Contribution D utilizes ML models on a higher level: Contributions
B and C present various approaches that use heuristics BATCS-b and
BATCS-d and predict their parameters with different strategies. How-
ever, there is no clear winner among all problem instances, which leaves
us with the question of which method to choose for a given problem in-
stance. This problem is known as the Algorithm Selection Problem (ASP;
see Rice, 1976) in the literature, and contribution D leverages the poten-
tial of ranking-based ML models to individually select a solution method
for a given problem instance. The techniques developed in contributions
B and C generate the data needed to train these models. Furthermore,
it presents two Genetic Algorithms (GAs) to solve the PSBIJF, which
are capable of using initial solutions obtained by the solution method
determined by the ASP.

The next sections present contributions A-D in more detail.



3
C O N S T I T U E N T E L E M E N T S O F T H I S D I S S E RTAT I O N

3.1 contribution a

(Gahm et al., 2022a):

This contribution analyzes a specific aspect of the previously introduced
serial-batch scheduling problem. One critical decision in this application
is which jobs have to be processed together in batches (i.e., batching-
decision), respecting two restrictions: i) only jobs with the same material
requirements can be grouped into batches, and ii) the shapes may not
overlap each other or the border of the metal sheets. So far, the second
restriction implies a cutting and packing subproblem (referred to as com-
plex nesting; see Wäscher et al., 2007 for detailed typology), which is NP-
hard. Problems with such a dependency structure are widely studied in
hierarchical production planning.

Figure 4 depicts in detail the components and their interactions of a
hierarchical production planning problem. In the absence of an antici-
pated base-model (4), an essential characteristic of a hierarchical plan-
ning problem is that the top-level (1) asks the base-level (7) for a de-
cision (6) on a stated problem and uses that answer (8) to control its
further instructions. In our serial batch scheduling problem (i.e., the
top-model), the complex nesting problem (i.e., the base-model) must be
solved for every potential batch of interest, and the top-level must wait
until the comlex nesting problem returns a solution to resume its compu-
tation. Depending on the solution method used to solve the serial-batch
scheduling problem, the set of every potential batch of interest can be
prohibitively large to be computed by a nesting algorithm. Therefore, to
reduce the planning effort, this (or a similar) subproblem is included in
a (strongly) relaxed and computationally easier version to the hierarchi-
cal planning problem (see e.g., Gahm et al., 2022b) by approximating the
area demand of all shapes and comparing it to the area supply of the
sheet (i.e., anticipated base-model). To finally “prove” the feasibility of
batches in the schedule, the top-level can postpone solving the nesting
problems until a solution to the serial-batching problem is found, and
hence the final, much smaller set of nesting problems must be computed
in (7).

This contribution compares three easy-to-calculate approximations of
base-level solutions based on the area of the enclosing polygons, the
convex hulls, and the minimal bounding rectangles of the geometrical
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shapes as reference values. These simple approximations sum up the re-
specting areas and divide the resulting sum by the width of the metal
sheet to estimate the height needed to place all of the shapes on the
metal sheet. A study with generated nesting problem instances shows
that all three simple approximations perform poorly in estimating the
actual height a nesting algorithm from the literature needs to place the
geometrical shapes onto the metal sheet. This is troublesome for practi-
tioners since false positive answers regarding the feasibility of a batch
may imply schedules that cannot be implemented. So, improving the
accuracy of the batch feasibility approximation is essential for success-
fully implementing the serial-batch scheduling problem. Contribution A
proposes applying ML models as the anticipated base-model to approxi-
mate the nesting problem’s solution, i.e., the height needed if the width
of the metal sheet is fixed.

Developing an ML model requires a series of design choices and non-
obvious decisions. All developing steps are elaborately presented in a
framework to allow for reproducibility of the results. The provided data
set for training plays a crucial part in obtaining a useful ML model. One
aspect is to have enough data points – the estimation error decreases,
and the risk lower bound gets tighter with increasing data size. Addi-
tionally, ML models adapt to the (assumed) i.i.d. data distributions and
hence need problem instances complex enough to appear in real-world
applications. Since no industrial data was available, we generated 88,200

nesting problem instances based on 6,000 shapes with different proper-
ties (e.g., convex, non-convex, or “complex” shapes, different sizes, dif-
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ferent height to width ratios) and computed the needed height for these
instances with a nesting algorithm to get the true output (labels). As ML
models operate on numerical representations of the problem instances,
we developed two feature vector representations based on instance char-
acteristics.

Having assumptions about the data structure or the dependency be-
tween input and output is critical to develop a good model (see Sec-
tion 2.3). Therefore, a wide range of ML models exists, each based on
certain assumptions, representing different hypothesis classes H. We
selected 18 ML methods to evaluate their predictive performance (i.e.,
risk), covering major supervised ML types (e.g., linear, kernel-based,
tree-based or ensemble models, or NNs). For the performance evalua-
tion, we measured the Root Mean Squared Error (RMSE) between true
nesting height and predicted height. Most ML methods have tunable
hyper-parameters that, for example, control the model’s complexity. Af-
ter the hyper-parameter tuning phase, we evaluated every ML method’s
performance on a validation data set and selected the best three methods
for a more exhaustive evaluation.

The final testing showed that the NN outperformed other regression
methods and achieved an RMSE of 327 on the test data set, compared
to the best-performing simple approximation method with an RMSE of
1,230. To better visualize the implications of these scores for the applica-
tion case, we analyzed how many instances would have been underesti-
mated with more than 10% of its actual height since the chances are high
that such an underestimation could lead to infeasible solutions. The best
simple approximation method underestimates the height by more than
10% in 10.1 % of the test instances and the NN in only 1.2% of the cases.
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3.2 contribution b

(Uzunoglu et al., 2023a):

Contribution B shifts the focus to the serial-batch scheduling problem,
defined as the top-level decision problem in the former contribution. It
contributes to the literature in several ways. First, the refinement BATCS-
d of the existing BATCS-b heuristic, designed to solve PSBIJF problem in-
stances, is introduced. Second, an ML model augments the heuristics to
improve the efficiency of finding appropriate parameters for the heuris-
tic (by trading in solution quality). Last, post-optimization methods that
improve the solution quality are introduced. The presented new heuris-
tic builds upon the priority-based heuristic BATCS-b developed in Gahm
et al., 2022b that assesses the “urgency” of jobs and batches and creates a
schedule accordingly. Two parameters κ1 and κ2 control the weights for
processing time and setup time in the assessment of a job’s or batch’s ur-
gency. As filling the batch to its limit does not necessarily lead to good
solutions, a third parameter b controls the maximal utilization of the
batch, meaning that the heuristic stops filling a batch when a threshold
batch utilization is reached. However, one downside of this utilization
parameter b is that it is fixed for all batches of the problem instance and
does not consider the overall urgency of a batch – if none of the jobs
are due in a current batch, the heuristic would add further jobs without
increasing the tardiness. To overcome this shortcoming, the new BATCS-
d heuristic exchanges the static utilization limiting mechanism, which
uses parameter b with a more “flexible” mechanism based on the ur-
gency of a batch and is controlled by parameter d. As a computational
study shows, the BATCS-d heuristic remarkably outperforms BATCS-b
on average according to the performance metric Mean Relative Improve-
ment to the Worst (MRIW).

Nevertheless, appropriate parameters κ1, κ2 and b (or d in BATCS-d)
have to be set to achieve a reasonable solution quality. If no prior knowl-
edge is available, a multi-start heuristic, i.e., performing the solution
method multiple times with different parameter configurations, is of-
ten used to find good-performing parameters. The multi-start heuris-
tic evaluates 1,771 parameter configurations for BATCS-b and 1,610 pa-
rameter configurations for BATCS-d. With this approach, however, the
computation time for finding well-performing parameters far exceeds
the solution time of the heuristic. For large problem instances (with up
to 3,200 jobs), the multi-start heuristic needs several hours to find suit-
able parameters in this set of parameter configurations. To circumvent
this computation-intensive parameter search, we present a ML-based
approach to predict parameter configurations (see MLPP in Figure 3)
that may lead to a good solution. We used 93,360 generated serial-batch
scheduling instances and performed the multi-start heuristic to obtain
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the best-performing parameter configuration. As not many ML models
are capable of representing the inherent interdependency of the param-
eter outputs, we chose the NN model for that task. Besides deciding
the model type, other decision in regard to the ML pipeline like the
pre-processing also influences the prediction performance. We included
18 pipeline configurations (i.e., they differ in dimensionality reduction
methods, feature vector representations, and weights for the loss func-
tion) to the evaluation of the multi-target regression task. For problem
instances with multiple parameter configurations leading to the same
best (known) solution, we selected the “most central” parameter con-
figuration as the representative label. As we can not access the heuris-
tic during the learning phase, we used the Euclidean distance between
the predicted configuration and best configuration as a surrogate loss
function, assuming that configurations closer to the best configuration
perform better when applied by the heuristic. In the hyper-parameter
tuning phase, we evaluated 225 hyper-parameter settings on 40% of the
data for the NNs to select the best settings for each pipeline configura-
tion.

In order to compensate for the uncertainty in the ML model’s predic-
tion, we introduced a method that does not only consider the predicted
parameter configuration but also a region next to the estimated configu-
ration. Introducing a control parameter for the size of that region, gives
the user the flexibility to trade-off between computation time and so-
lution quality. Evaluated on 20% of the remaining problem instances,
the MRIW values of the learning-augmented heuristics decrease by 1.66

percentage points on average but only need up to 10% of the initial com-
putation time compared to the full grid search of BATCS-b or BATCS-d.
If the solution quality is crucial in the application case, we can use the
time savings of our ML-based parameter estimation to perform a post-
optimization. Contribution B proposes a local search approach to im-
prove solutions obtained by the ML-based parameter estimation method.
The evaluation shows that by investing several minutes in the post-
optimization, the solution quality substantially improves and even dom-
inates the full grid search of both heuristic variants.
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3.3 contribution c

(Uzunoglu et al., 2023b):

Contribution C tackles the problem of tuning the parameters for the
BATCS-b heuristic for the serial-batch scheduling problem from another
perspective. Assessing the performance of a parameter prediction by the
distance to a best (known) parameter configuration assumes a “geomet-
rical correlation” of parameter configurations and their solution quality
when used in a heuristic. This becomes more of an issue if multiple pa-
rameter configurations may lead to the best solution, but we only use
a single representative of the best solutions as a label. In this case, we
would penalize our model for predictions close to a best parameter con-
figuration that is not set as the representative label. As we present, this
shortcoming can be circumvented by asking the ML model a different
question. In this contribution, we develop ML models (i.e., NNs) that
predict the objective value for a problem instance’s numerical represen-
tation and a parameter configuration. The learned model can be lever-
aged to find a suitable parameter configuration for the problem instance
by estimating multiple parameter configurations to an instance and se-
lecting configurations that have “good” estimated objective values. Since
those estimations are uncertain, we suggest creating a ranking based on
the estimated objective values and applying that ranking for an Machine
Learning Grid Search (called MLGS in contribution D and MLRP in this
thesis; see in Figure 3) with different ranking application strategies to com-
pensate for the uncertainty.

Incorporating the parameter configuration (κ1, κ2 and b for BATCS-b)
into the feature vector handles the interdependency of the parameters
naturally. Consequently, for every problem instance (93,360 in total), the
number of possible data points corresponds to the number of parame-
ter combinations (1,771 in total for our discretized intervals). This leads
to a massive data set, making the hyper-parameter tuning of the ML
model computationally intensive. Therefore, we propose to subsample a
much lower number of parameter configurations per instance with dif-
ferent strategies and also evaluate how these strategies, combined with
different feature vector representations, influence the accuracy of the
prediction. The sampling strategies differ in how the samples are com-
posed: the share of best (known) parameter configurations, the share
of randomly selected parameter configurations, and whether or not the
sample contains a “centralized” best (known) parameter configuration.
After finding the best-performing NN hyper-parameters for every data
pipeline, we validate which sampling and ranking application strategies
perform best according to the MRIW metric.
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The testing of our methods on 18,672 previously unseen problem in-
stances (20% of all problem instances) reveals that MLGS only needs
10.8% of the initial computation time while only losing 2.46 percentage
points of solution quality.
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3.4 contribution d

(Uzunoglu et al., 2023c):

Contributions B and C proposed several solution methods (algorithms)
to solve the PSBIJF. First, there are potentially two heuristics (BATCS-b
and BATCS-d) differing on a lower level, namely when they stop fill-
ing batches. Second, both ML-based grid search variants, MLPP and
MLRP, differ in their prediction strategy (predicting a single represen-
tative of best parameter configurations or a ranking of parameter con-
figurations). Third, we examined different pipelines or even searching
strategies for each ML-based grid search variant; each of them can be
seen as an algorithm. However, analyzing the performance of these dif-
ferent algorithms does not reveal a clear best-performing algorithm –
different algorithms dominate depending on the instance subclass. A sit-
uation like this raises the question of which algorithm to choose for a
given problem instance. The Algorithm Selection Problem (ASP) deals
with this question and is an emerging field that also applies ML. Many
related publications utilize performance predictions as a basis for their
decisions. In contrast to performance prediction methods, contribution
D studies methods from a subfield of ML, learning-to-rank, for the ASP
to find a well-performing algorithm. Learning-to-rank models are heav-
ily used for predicting rankings in the literature on recommender sys-
tems and information retrieval. We evaluate the suitability of these and
other modified learning approaches on the ASP. The results show that
the learning-to-rank methods achieve good outcomes, but modifications
of already existing learning algorithms perform similarly (even better
for some cases).

Additionally, to further improve the solution quality, contribution D
presents two Genetic Algorithms (GAs) that use the computed solution
by the ASP’s selected heuristic. The first GA represents the schedule in
a more direct form allowing for better guidance of the population, but
needs costly repair mechanisms to ensure the validity of the chromo-
somes after performing evolutionary mechanisms (e. g., mutation). In
contrast, the second variant uses a random-keys-representation to en-
code schedules, which does not need repair mechanisms but makes it
harder to stipulate desired solution properties. Both GAs need to set
reasonable parameters to solve problem instances effectively. One of the
parameters, for example, decides if the initial population should be gen-
erated by the selected heuristic (at the cost of its execution time) or cre-
ated randomly (but therefore much faster). The parameter tuning results
showed a substantially increased improvement when the selected heuris-
tic generated the initial population. After setting the parameter of both
GAs, we performed computational experiments on the test instance set.
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These experiments indicated that, depending on the problem instance,
both GAs achieve substantial performance improvements.
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Abstract:

In hierarchical production planning, the consideration of interdependen-
cies between superior top-level decisions and subordinate base-level de-
cisions is essential. In this respect, the anticipation of base-level reactions
is highly recommended. In this paper, we consider an example from the
metal-processing industry: a serial-batch scheduling problem constitutes
the top-level problem and a complex nesting problem constitutes the
base-level problem. The top-level scheduling decision includes a batch-
ing decision, i.e., the determination of a set of small items to be cut out
of a large slide. Thus, to evaluate the feasibility of a batch, the base-
level nesting problem must be solved. Because solving nesting problems
is time consuming even when applying heuristics, it is troublesome to
solve it multiple times during solving the top-level scheduling problem.
Instead, we propose an approximative anticipation of base-level reac-
tions by machine learning to approximate batch feasibility. To that, we
present a prediction framework to identify the most promising machine
learning method for the prediction (regression) task. For applying these
methods, we propose new feature vectors describing the characteristics
of complex nesting problem instances. For training, validation, and test-
ing, we present a new instance generation procedure that uses a set
of 6,000 convex, concave, and complex shapes to generate 88,200 nest-
ing instances. The testing results show that an artificial neural network
achieves the lowest expected loss (root mean squared error). Depending
on further assumptions, we can report that the approximate anticipation
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based on machine learning predictions leads to an appropriate batch
feasibility decision for 98.8% of the nesting instances.
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Abstract:
The addressed machine scheduling problem considers parallel machines
with incompatible job families, sequence-dependent setup times, lim-
ited batch capacities, and arbitrary sizes combined with the serial-batch
processing characteristic (i.e., the processing time of a batch is equal
to the sum of processing times of all jobs grouped in a batch). The
primary objective is the minimization of the total weighted tardiness,
and a subordinate (secondary) objective is the minimization of the flow
time. This scheduling problem arises in many production environments
like cutting operations (metal-processing industry or garment industry)
or in industrial 3D printing. For solving this problem, we propose a
new multi-start construction heuristic with controlled batch urgencies.
Furthermore, to improve solution efficiency, we use machine learning
methods that are appropriate for multi-target regression with depen-
dent outputs (i.e., Neural networks) to minimize the number of starts
by predicting the most suitable heuristic parameters. Hereby, different
learning aspects and pipeline parameters must be considered. Addition-
ally, we apply a mixed-integer linear program and a local search mech-
anism with advanced termination criteria for solution improvement. To
evaluate the performance of the new heuristic, we use an exhaustive
set of small, large, and very large instances (with symmetric Euclidean,
asymmetric Euclidean, and arbitrary sequence-dependent setup times)
and heuristics from the literature. The results indicate the superiority of
the new, learning-augmented heuristics in terms of solution quality and
computation times.
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Abstract:
Serial-batch scheduling problems are widespread in several industries
(e.g., the metal processing industry or industrial 3D printing) and con-
sist of two subproblems that must be solved simultaneously: the group-
ing of jobs into batches and the sequencing of the created batches. This
problem’s NP-hard nature prevents optimally solving large-scale prob-
lems; therefore, heuristic solution methods are a common choice to ef-
fectively tackle the problem. One of the best-performing heuristics in
the literature is the ATCS–BATCS(β) heuristic which has three control
parameters. To achieve a good solution quality, most appropriate param-
eters must be determined a priori or within a multi-start approach. As
multi-start approaches performing (full) grid searches on the parameters
lack efficiency, we propose a machine learning enhanced grid search. To
that, Artificial Neural Networks are used to predict the performance of
the heuristic given a specific problem instance and specific heuristic pa-
rameters. Based on these predictions, we perform a grid search on a
smaller set of most promising heuristic parameters. The comparison to
the ATCS–BATCS(β) heuristics shows that our approach reaches a very
competitive mean solution quality that is only 2.5% lower and that it is
computationally much more efficient: computation times can be reduced
by 89.2% on average.
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Abstract:
Whenever combinatorial optimization problems cannot be solved by ex-
act solution methods in reasonable time, tailor-made algorithms (heuris-
tics, meta-heuristics) are developed. Often, these heuristics exploit struc-
tural properties and perform well on selected subsets of the problem
space. For example, this is how the two best-known construction heuris-
tics solve the scheduling problem investigated in this study (i.e., the
scheduling of parallel serial-batch processing machines with incompat-
ible job families, restricted batch capacities, arbitrary batch capacity de-
mands, and sequence-dependent setup times). However, when the prop-
erties change, the performance of one algorithm might decrease, and an-
other algorithm might have been the better choice. To resolve this issue,
we propose using Machine Learning techniques to exploit the strengths
of different algorithms and to select the probably best-performing algo-
rithm for each problem instance individually. To that, we investigate a
variety of methods from the “learning-to-rank” literature and propose
several adaptations. Furthermore, because there is no algorithm for the
considered scheduling problem that is capable to explore the entire solu-
tion space, we developed two Genetic Algorithms for the improvement
of initial solutions computed by the selected algorithms. Here, we put
special emphasis on ensuring that the solution representation (encoding)
reflects the entire solution space and that the operators (e.g., for recom-
bination and mutation) are appropriate to explore and exploit this space
completely. Our computational experiments show an average increase of
36.73% in solution quality.



5
C O N C L U S I O N

Machine Learning in combinatorial optimization is an ongoing, active
field of research. This thesis presents different scientific contributions
that use ML models on a complex machine scheduling problem. The
following sections summarize the results and look forward to further
questions of interest to both theory and practice.

5.1 key findings and added value

This dissertation shows, based on a scheduling application case, how
decision-making in Operations Research may benefit from including ML
models in solution methods. All the contributions put emphasis on ex-
plaining all critical decisions that must be made in order to overcome
common obstacles in ML and to obtain suitable ML models. For repro-
ducibility reasons, the data sets in the contributions are made publicly
available. Additionally, computational studies in each contribution have
validated the applicability and usefulness of the proposed methods.

Contribution A first presents a serial-batch scheduling problem (top
level) that has to solve a cutting and packing problem (base level) as
one of its constraints, and both are NP-hard. These types of interde-
pendencies are modeled in hierarchical production planning problems,
and anticipated base-level models are commonly used to ease computa-
tions. This contribution uses an ML model to anticipate the answers to
the nesting problem much more accurately than simple approximation
methods. The increased accuracy in the anticipations has far-reaching
implications for the application case – the number of false positive an-
swers drastically decreases. Furthermore, the presented method is not
only applicable to the presented application case but could be modified
for other hierarchical production planning problems.

Contribution B focuses on the solution method that solves the serial-
batch scheduling problem, defined as the top-level in the former contri-
bution. It presents a refinement (BATCS-d) of an already existing heuris-
tic (BATCS-b). Both heuristics need three parameters to be set, which
hugely influences the solution quality. In the absence of prior knowl-
edge about the dependency between parameters and problem instances,
a grid search is a simple but time-consuming approach to find suitable
parameters. Therefore, we translate the parameter-tuning problem to a
regression problem and estimate parameter configurations for problem
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instances via ML models to augment our heuristics with these learned
models. One challenge for the learning task is the fact that multiple pa-
rameter configurations could lead to the same objective value, which
means that the model should actually output multiple predictions for a
problem instance. We solve this by selecting the “most central” param-
eter configuration as the representative label. Again, we explain each
decision to obtain our models in detail and publish our data set to ease
the reproduction of our results. Furthermore, we introduce an additional
search step based on the model’s estimation to counteract the inherent
uncertainty of predictions. A parameter for the search depth controls the
trade-off between computation time and solution quality. Our computa-
tional studies show that the learning-augmented heuristics perform rea-
sonably well while requiring only a fraction of the initial computation
time, and by investing a short period of time in the post-optimization
phase, our learning-augmented methods even outperform the computa-
tionally expensive full-grid search.

Contribution C deepens the analysis of the parameter search introduced
in the previous contribution. Instead of estimating the parameter config-
uration directly, this contribution estimates the objective value achieved
by the heuristic for a specific parameter configuration. An algorithm
can then collect information on many different parameter configura-
tions from the estimations to select a promising configuration. A signif-
icant methodological improvement is coupling the ML model’s predic-
tion with the heuristics performance. The loss function assesses, in this
setting, the performance estimation of the heuristic rather than the geo-
metrical “closeness” of the estimated configuration to the best (known)
configuration. Also, this approach does not deal with the problem of
having multiple valid estimations to an input. Because the feature vec-
tor now comprises the problem instance and the parameter configura-
tion, the estimated performance is a unique output. However, combining
the problem instance characteristics with different parameter configura-
tions prohibitively increases the number of potential data points for the
training. Therefore, this contribution invents subsampling strategies that
immensely reduce the training effort. Additionally, it presents several
methods to use the information on the estimated performance of pa-
rameter configurations to propose promising parameter configurations
and simultaneously deal with the uncertainty in the estimated objective
values.

Contribution D formulates the ASP on the developed algorithms in
contributions B and C to choose the (probably) best performing algo-
rithm for a PSBIJF instance. For that, it analyzes several state-of-the-art
learning-to-rank algorithms and also introduces adaptations of existing
ML algorithms to suggest an algorithm based on the features of a prob-
lem instance. The proposed learning-based algorithm selection increases
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the rate of selected best algorithms remarkably compared to a statically
selected heuristic. Additionally, it presents two GAs that can use com-
puted solutions of the former ASP as an initial population. Applying
the GAs increases the solution quality by 36.73% on average.

5.2 outlook and future research

ML’s breakthroughs have already had a tremendous impact on many
different applications, so also on combinatorial optimization. To use ML
models in combinatorial optimization, several integration points are pro-
posed in the literature. For instance, to predict objective values or to
estimate algorithm parameters. However, if model predictions are used
in constraints, their lack of guarantee to correctly assess feasibility may
depict a challenge for incorporating ML models. Consider, for example,
the estimations used in Gahm et al., 2022b to anticipate complex nesting
solutions. Underestimating the nesting height too much could lead to
infeasible batches and schedules at the end. Future research could con-
tinue searching for methods that give users the flexibility to adjust the
model’s decisions according to their impact on the business case (e.g.,
by favoring models that overestimate if the uncertainty is high for a data
point). A hot topic in ML is quantifying an estimation’s uncertainty (see, for
example, Gal and Ghahramani, 2016), i.e., how confident is the model
that its classification is true or in which interval lies a regression output
for a given significance level? Quantifying the uncertainty of an estima-
tion could be valuable for improving decision-making in combinatorial
optimization.

Contributions B and C show that besides asking for the “what”, the
“how” is also an important question to consider when integrating ML
into combinatorial optimization. Both contributions aim to find suitable
parameter configurations quickly but differ in how they formulate the
regression question. Contribution C links the parameter configuration
with the heuristic performance more naturally in its regression prob-
lem and hence allows for a more versatile application. For example, a
GA could use performance estimations to define a diverse initial pop-
ulation. Lastly, the parameter tuning in contributions B and C searches
in a discretized grid, as searching in a continuous parameter space is
challenging. However, potential good candidates between the discrete
parameters are missed. Contribution C showed that using randomly
sampled configurations from discrete intervals performs well. Therefore,
using randomly sampled configurations from a continuous interval to en-
able models to assess arbitrary queries would be a worthwhile future
research topic.

Contribution D views the problem from a higher level and solves the
ASP on the algorithms in contributions B and C and uses GAs for post-
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optimization of computed solutions. However, Kotthoff, 2016 describes
solutions to the ASP that also allocate computational resources to algo-
rithms. This is an interesting perspective on the situation in contribution
D. Future research could, for example, analyze how they allocate the com-
putation time for several interleaved algorithms (e.g., calculation of initial
solutions and their post-optimization).

The contributions in this dissertation show that integrating ML models
in solution methods for solving combinatorial optimization problems
and particularly for machine scheduling unlocks a considerable poten-
tial for improvement in solution quality and efficiency. However, it re-
quires a well-designed integration concept with a comprehensive anal-
ysis of what is needed from the ML model, and if existing ML models
are capable of providing the desired answer. With the growing research
in the intersection of both fields, even more potential and interconnec-
tions will be unveiled, driving us closer to the predicted “new era for
combinatorial optimization algorithms” as stated in Bengio et al., 2021.
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a.1 contribution d

The following research article “Machine Learning based Algorithm
Selection and Genetic Algorithms for serial-batch scheduling”, referred
to as contribution D, is under review in Computers & Operations Research
(see Uzunoglu et al., 2023c). Due to the review process, the data reposi-
tory was not linked in the document (see “reference to be added” in the
text). The data is published under the following reference (Uzunoglu,
2023):
Uzunoglu, Aykut (2023), “Data set and models to select algo-
rithms for a serial-batch scheduling problem”, Mendeley Data, V1,
doi:10.17632/4s2zfg6mg9.1
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Machine Learning based Algorithm Selection and Genetic Algorithms for
serial-batch scheduling

Aykut Uzunoglu, Christian Gahm, Axel Tuma

• A serial-batch scheduling problem is the application case of our analysis.

• “Learning-to-rank” ML models select the best-performing heuristic.

• Two Genetic Algorithms are introduced with different encoding schemes.

• Both Genetic Algorithms can use solutions from the heuristics as initial
populations.

• Our method substantially improves the solution quality.
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are developed. Often, these heuristics exploit structural properties and perform
well on selected subsets of the problem space. For example, this is how the two
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1. Introduction

Whenever combinatorial optimization problems of industrial scale have to be
solved, exact solution methods (algorithms in the narrower sense) need pro-
hibitively long computation times due to the “combinatorial explosion” of the
solution space (i.e., the set of all feasible solutions). Therefore, experts design
heuristics or meta-heuristics (algorithms in a broader sense), incorporating knowl-
edge about the specific problem to leverage a priori information about structures
or properties of good solutions. These algorithms return good results for the
subset of problem instances they were designed for, but fail to find good results
for other subsets of the problem space comprising “all” problem instances of a
specific problem. This is why, for most combinatorial problems, a variety of algo-
rithms can be found in the literature. This situation also holds for the application
case studied in this paper, a serial-batch scheduling problem often found in the
metal processing industry (cf., e.g.,Helo et al. (2019)). It involves the decisions to
group metal pieces into batches and to schedule the resulting batches, and can be
summarized as the scheduling of parallel serial-batch processing machines with
incompatible job families, restricted batch capacities, arbitrary batch capacity de-
mands, and sequence-dependent setup times (named PSBIJF and classified as “P |
if, crJ, sFS, sb | wT, F, Lex”-problem according to Gahm et al. (2022)). To solve
the PSBIJF, several (learning-augmented) construction heuristics (LACH) can be
found in literature (most recent ones in Uzunoglu et al. (2023a) and Uzunoglu
et al. (2023b)), for which none of them clearly dominates the other.

The dominance of algorithms on a narrow subset of problem instances is
more than a mere empirical observation but rather an underlying property of
combinatorial optimization problems and their algorithms. In some sense, re-
searchers refer to this phenomenon as the No Free Lunch theorem in optimization
and search (NFL; see Wolpert and Macready (1997)). Like other “negative”
theoretical results, such as Gödel’s incompleteness theorem in mathematics or
Arrow’s impossibility theorem in social choice theory, NFL shows the theoretical
boundaries of optimization, namely that no general algorithm can dominate other
algorithms on the whole problem space or even all combinatorial optimization
problems. Since NFL is not the focus of our paper, we refer the reader to Droste
et al. (2002) for a more practical reframing of NFL, Ho and Pepyne (2002) for
a version of finite and discrete input and output spaces, and Adam et al. (2019)
for a review. Apart from the theoretical discussion, the NFL points towards an
essential question for optimization problems: which algorithm to use when there
is no clear winner?

Long before the formalization of NFL, Rice (1976) presented a framework
2
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that deals with the fact that algorithms dominate (in terms of performance) for
certain problem subsets and get dominated by other algorithms for other problem
subsets. In the presence of various algorithms for a problem, the so-called
Algorithm Selection Problem (ASP) aims to find a selector that, depending on
a given problem instance, chooses an algorithm performing best according to a
performance metric. In its basic form, the ASP comprises a problem space P
containing problem instances i ∈ P, an algorithm space A (finite or infinite), and
a performance measure indicating the quality of an algorithm to solve a problem
instance (e.g., objective value or computation time). Given that, the goal of the
ASP is to find a selection function S : P→ A mapping every problem instance to
the algorithm that achieves the best value according to the performance measure.
Rice proposes using a feature extraction step that converts a problem instance
i ∈ P to a feature representation f (i) ∈ F, in the feature space F, which is often
Rm. The framework introduced by Rice (1976) is very versatile and applicable
to a broad range of problems and applications. Since then, many results have
been published in Operations Research and other fields like “meta-learning” (a
subfield of Machine Learning (ML)) that have successfully applied the idea of
ASP (see Soares et al. 2004 or Feurer and Hutter 2019). Some results incorporate
ML models in their selection procedure that predict an algorithm’s performance
metric (e.g., objective value or computation time) on a specific problem instance.
Others even aim to design more sophisticated methods that create an “algorithm
schedule” for a specific problem instance (e.g., Streeter et al. 2007 or Kadioglu
et al. 2011). In such approaches, computational resources are not allocated to
a single algorithm but are distributed among several algorithms according to
their expected performance. Information from preceding algorithm runs, or even
a pre-solving phase, can be used to make more intelligent decisions. Overall,
the contributions to ASP have evolved massively, helping to improve solution
quality by combining algorithms and adding their strengths. However, as Smith-
Miles (2009) argues in her review on ASP and meta-learning, both research areas
could benefit from each other, but those connections have been missed in the
past. Algorithm selection could use meta-learning methods and ML models if the
following requirements are fulfilled (Smith-Miles, 2009):

i A large collection of problem instances with various complexities is available.
ii Many diverse algorithms to solve the problem exist.

iii Performance metrics to evaluate the algorithm’s performance are known.
iv Suitable features to describe the properties of problem instances can be

computed.

With those requirements, the ASP can be stated as a learning problem: given
3
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the feature vector representation of the problem instances and objective values
computed by the algorithms as training data, learn an ML model that predicts the
best-performing algorithm. In this representation, the ML model corresponds to
the function S in Rice’s framework. In his review of algorithm selection applied
to combinatorial optimization problems, Kotthoff (2016) emphasized the role
of ML in performance prediction models. The ongoing progress suggests that
“free lunches” are getting closer. With their growing prediction performance,
ML models already play a significant role in the current literature and will gain
importance in developing ASP solutions. They are capable of recognizing patterns
between algorithms, problem instances, and their performance. Nevertheless, to
achieve the most benefit from ML models, the question to be asked (i.e., what
should be predicted) and the application of the model must be carefully designed.

In this paper, we propose using an ASP method to select the most appropriate
algorithm for a single problem instance offline (i.e., before the solution process
starts) and to use this algorithm to compute initial solutions to be improved by
two Genetic Algorithms (GAs).

We make two major contributions to the literature:

− First, we thoroughly discuss and analyze ML models (from different re-
search areas) and present several adaptations (e.g., an adapted loss function)
for the ASP task at hand. In this context, we put special emphasis on the
“question to ask” the ML model and on finding suitable models to answer it.
As we show, “learning-to-rank” models are better suited for our ASP than
pure performance predictions.

− Second, as no meta-heuristic has been developed so far for the PSBIJF, we
present two GAs as improvement procedures. The two GAs mainly differ in
their solution representation: the first one uses a single integer chromosome
newly designed for the PSBIJF (but not restricted to it), and the second
one, an adaptation from literature, combines an integer chromosome with
a random keys chromosome and is enhanced by new recombination and
mutation operators.

The structure of the paper is as follows. In Section 2, the PSBIJF is formally
described, and existing algorithms for solving it are described. In Section 3, we
discuss literature related to learning-to-rank models and GAs developed to solve
problems similar to the PSBIJF. Section 4 presents the methods applied to solve
the ASP, and Section 5 presents the two GAs. The basic experimental setup and
the (hyper-)parameter tuning are described in Section 6 and Section 7, respectively.

4
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The final experimental results are presented in Section 8. In the closing Section 9,
we summarize the findings and give an outlook on future research topics.

2. Problem description (PSBIJF) and existing algorithms

The analyzed serial-batch scheduling problem, which we call PSBIJF (Parallel
Serial-Batch scheduling with Incompatible Job Families), is described in this
section. Additionally, we present existing algorithms in the literature that can
solve the PSBIJF.

2.1. The PSBIJF
The basic task of the PSBIJF considered in this paper is the grouping of n jobs
(J = {J j | j = 1, ..., n ∈ Z> }) into o batches (B = {Bb | b = 1, ..., o ∈ Z> }) and
the scheduling (machine allocation and sequencing) of those batches on a set
of m identical parallel machines (M = {Ml | l = 1, ..., m ∈ Z> }). The maximum
batch capacity bc is identical for all machines, and the sum of the individual
(arbitrary) batch capacity requirement cr j of each job assigned to a batch must
be lower. Generally, cr j ≤ bc must hold. Furthermore, each job has individual
weights w j, processing times p j, due dates d j, and each job belongs to a job family
f (F = {F f | f = 2, ..., q ∈ Z> }), whereby job families are “incompatible” (that
means jobs of different families cannot be processed together in one batch, e.g.,
due to technical or material restrictions). Because setups between the processing
of two batches (jobs) are required, batching jobs of the same family is done to
reduce setup efforts. Hereby, the setup times are family- and sequence-dependent:
s f ,g defined the setup time for a setup from a family f batch to a family g batch.
Note that s0, f depicts initial setup times for family f at the beginning of a schedule.
Other assumptions include that each machine can process no more than one batch
at a time, that a batch can only be processed by one machine at a time, that all
jobs are available for processing at the start (i.e., no release dates), that batch
processing cannot be interrupted (i.e., no preemption), that jobs cannot be added
or removed once processing of a batch has started (i.e., batch availability), and
that the completion time of a job is the completion time of the batch to which
a job is assigned (see Gahm et al. (2022) or Uzunoglu et al. (2023a) for more
details).

The primary objective is the minimization of the total weighted tardiness.
Additionally, we aim to minimize the total flow time whenever all jobs can be
delivered in time (i.e., tardiness is equal to zero). This objective function is written

5
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as follows:

ov =
∑

j∈J

w j · T j +
T F

C̃max · n · 10
(1)

with tardiness of job T j and total flow time T F. The ordering of the objectives is
achieved by defining the (constant) denominator to be greater than the nominator
(i.e., the total flow time) in the second part. To assure that the denominator is
greater than the T F, the upper bound of the maximum flow time of one job is
estimated by the approximated makespan C̃max and multiplied by the number of
jobs. Because the makespan is approximated, we use a “safety” factor of 10.

2.2. Existing algorithms
For the first time, the previously defined PSBIJF was considered in Gahm et al.
(2022). The authors developed a mixed-integer linear program (MILP), multi-
start construction heuristics based on existing, adapted, and new priority rules,
and a local search mechanism. Multi-starts are used to perform a grid-search
with different heuristic parameter configurations. Their results show that the
BATCS-b heuristic (originally abbreviated ATCS-BATCS(β)) with a “controlled
batch utilization” outperforms all other approaches.

Based on these results, Uzunoglu et al. (2023b) developed a similar multi-start
heuristic with “controlled batch urgency” (called BATCS-d) and used the same
MILP and local search for improving initial solutions. Furthermore, to improve
solution efficiency, the authors proposed learning-augmented heuristics using
ML methods (i.e., Neural Networks (NNs)) to minimize the number of starts
by predicting most suitable parameters for the heuristics. To that, not only the
single predicted parameter configuration is used, but a reduced parameter grid
is computed, and a parameter is introduced to control the size of the reduced
grid (and thus, can be used to balance between solution quality and computation
time). Their results show that the best variants with ML-reduced grids (BATCS-
b-ML(PC8,GS 3) and BATCS-b-ML(PC6,GS 3)) are very competitive regarding
solution quality and clearly outperform BATCS-b and BATCS-d in terms of com-
putation time. The results also show that the “d”-variants generally outperform
the “b”-variants but that for some problem instances, only a “b”-variant is capable
to compute the best solution.

A similar approach to increase solution efficiency was proposed in Uzunoglu
et al. (2023a). The authors also used ML to reduce the parameter grid searched
by the multi-start heuristic BATCS-b but did not predict parameters. Instead, they
used NNs to predict the performance of a certain parameter configuration and

6
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compute a ranking based on the predictions. After computing this ranking, which
can be done efficiently due to the very low response times of NNs, several ranking
application strategies are available to create a reduced parameter grid. Also, a
parameter controls the size of the reduced grid. Their results show that their
BATCS-b-MLGS variants are competitive regarding solution quality and clearly
outperform BATCS-b in terms of computation time. Similar to the findings in
Uzunoglu et al. (2023b), Uzunoglu et al. (2023a) observe that not one specific
BATCS-b-MLGS variant performs best for all problem instances but that different
ones achieve best results in relation to some problem instance characteristics.
Therefore, we conclude that selecting the most promising algorithm among the
best available for the PSBIJF before starting the solution process has the potential
to improve the solution quality without increasing the computation time.

Table 1 lists the 13 most efficient algorithms from the literature. Note that
we do not consider the algorithms presented in Uzunoglu et al. (2023b), which
use improvement procedures since the ASP task considered here is to select the
algorithm that efficiently computes initial solutions.

Table 1: Algorithms from the literature

Algorithm based on parameter
predictions(see tables 21 and 22
in Uzunoglu et al. (2023b))

Algorithm based on ranking predictions
(see table 6 in Uzunoglu et al. (2023a))

BATCS-b-MLPP(PC4,GS 3) BATCS-b-MLRP ([0,5,5]-AF, Bx)
BATCS-b-MLPP(PC8,GS 3) BATCS-b-MLRP ([0,5,5]-AF, B(9)-G)
BATCS-b-MLPP(PC10,GS 3) BATCS-b-MLRP ([1,2,7]-AF, Bx)
BATCS-d-MLPP(PC1,GS 3) BATCS-b-MLRP ([1,2,7]-AF, B(9)-G)
BATCS-d-MLPP(PC4,GS 3) BATCS-b-MLRP ([1,0,9]-AF, Bx)
BATCS-d-MLPP(PC6,GS 3) BATCS-b-MLRP ([1,0,9]-AF, B(9)-G)
BATCS-d-MLPP(PC10,GS 3)

Because Uzunoglu et al. (2023a) did not consider “d”-variants in their analysis,
we performed a preliminary study to close this gap (see Table A.12 in Appendix A).
Based on the results of this study, we added the four most robust algorithms
(BATCS-d-MLRP ([1,2,7]-AF, B(5)-G), BATCS-d-MLRP ([1,2,7]-AF, B(9)-G),
BATCS-d-MLRP ([1,4,5]-CF, B(5)-G), BATCS-d-MLRP ([1,4,5]-CF, B(9)-G)) to
the algorithm space A (with |A| = 17 C nA). Note that the MLRP-variants in their
original version use larger grids (compared to the MLPP-variants), resulting in
higher computation times. To align both variants, we adjust the grid sizes for the

7
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MLRP-variants in a way that all 17 considered algorithms perform similar grid
searches. The following grid sizes are used (cf. Uzunoglu et al. (2023b)): 228 if
n < 100, 76 if n ∈ [100, 1000), and 20 if n ≥ 1000. Note that for the “d”-variants,
the grid sizes are 1 less because the set of considered “d”-values only contains 10
elements (the set of “b” values contains 11 values).

3. Related literature

3.1. Learning-to-rank literature
Concerning the problem at hand, we know that the four requirements i. to
iv. (see Section 1) for using meta-learning methods are met. Therefore, we
conclude that an offline trained ML model is suitable to fulfill the ASP task. For
using ML models, one should carefully consider what level of information is
necessary for algorithm selection, i.e., what the model’s response should be. For
example, is it necessary to predict the objective value of an algorithm, or is an
ordering of algorithms (i.e., ranking) sufficient to select an algorithm? The latter
question might be easier to answer when the objective values differ immensely
between problem instances (like it is the case for given PSBIJF). Note that a
ranking suffices to select an algorithm with a fixed set of algorithms but is not
applicable otherwise. Because such a ranking better reflects its application for
the algorithm selection, it could also be seen as the “more natural” question to be
asked. However, we will analyze both approaches in this paper.

For predicting objective values of algorithms, ML models and methods ca-
pable to perform regressions are required. As such ML models are widespread
in literature, we are not going to discuss detail here but refer the reader to some
standard literature (e.g., Murphy (2013) or Goodfellow et al. (2016)). In contrast,
ML techniques returning a ranking are not so common and will be discussed in
detail in the following.

As pointed out, a ranking of algorithms better reflects the application of the
ML model output than a mere objective value prediction. ML models returning a
ranking of objects are known as “learning-to-rank” models and are most often
found in the field of recommender systems (e.g., recommending products to
customers based on purchase history). Also, the terminologies “collaborative
filtering” and “information retrieval” are used in the literature. For such problems,
the ranking problem is stated as follows: given a query qi (e.g., a user’s purchase
history) and objects x1, . . . , xn (e.g., documents or products), find a ML model
f that returns a ranking of objects xa according to their relevance to the query.
This assumes a numerical representation of the query qi and the objects xa. In the
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literature, the operation modes of the learning-to-rank models are defined to these
three options:

− Pointwise ranking: every object gets a relevance score independent of other
objects and is sorted according to the relevance score.

− Pairwise ranking: the model predicts which one to prefer for each pair
of objects (the final ranking results from multiple preference relations
predicted by the model).

− Listwise ranking: given a set of objects, the model outputs a permutation
of the objects, considering the dependency in between.

Pointwise ranking computes a relevance score for each object and sorts accord-
ingly. In this setting, standard loss functions, such as Mean Squared Error (MSE)
(if different, possibly continuous, levels of relevance exist) or binary cross entropy
(if only levels “relevant” and “not relevant” exist), can be used directly. However,
they fail to capture the interdependency between objects related to a query (Freund
et al., 2003), which is better incorporated in the last two options – pairwise and
listwise approaches. A common drawback of pairwise ranking approaches is,
however, that the learning objective minimizes the error in classifying preferences
on pairs of objects rather than the error in ranking the objects (Cao et al., 2007).

Listwise ranking approaches can overcome this problem by calculating the
loss function on the predicted ranked list of objects and comparing it to the ranked
list given as ground truth instead of object pairs. However, a major challenge in
this approach is to find an appropriate loss function that can be used in common
learning mechanisms (e.g., the loss function must be differentiable for using
gradient descent). Note that we refer to the lowest index in the ranking as highest
position (indicating the probably best algorithm in the ASP) and the highest
index in the ranking as lowest position (indicating the probably worst algorithm
in the ASP). Järvelin and Kekäläinen (2000) proposed the metric Normalized
Discounted Cumulative Gain (NDCG), taking into account that objects with high
relevance in a higher position in the predicted ranking return a higher value
(gain) for the user but objects in lower positions in the predicted ranking are
less likely to be used. So, for example, misplacing the highest two objects in
the ranking results in a higher loss than misplacing the lowest two objects. To
define the NDCG metric, we first need a function g : X → R returning the gain
(relevance or value) of objects for a query and the cumulative gain function
cg : N→ R, p 7→ ∑p

k=1 g(σ(k)) that sums up the gains obtained by the ranking σ
up to position p. Then, the cumulative gain is discounted according to the ranking
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position, for example, by dividing each gain in the sum by log2(·) of its rank:
dcg : p 7→ ∑p

k=1
g(σ(k))

log2(σ(k)) . Other monotonically increasing transformations can be
used for the discounting. Lastly, the achieved Discounted Cumulative Gain (DCG)
is normalized by the highest DCG achievable by the optimal ranking (i.e., NDCG)
to allow comparing predicted rankings between queries with different resulting
rankings (Järvelin and Kekäläinen, 2002). The summation can also be truncated to
a specific position k such that NDCG only considers the k highest ranked positions
of the prediction (called NDCG(k)). As NDCG depends on the ranking σ, which
returns the position of object xa and hence is non-differentiable, the NDCG
metric itself is non-differentiable and thus cannot be used in ML mechanisms
relying on the loss function’s gradient. Burges et al. (2006) circumvent the
non-differentiability of the NDCG metric in their algorithm “LambdaRank” by
defining a smooth approximative loss function. During training, it is known which
properties the gradient should have to achieve a better ranking outcome. To derive
an appropriate loss function, the goal is to choose the gradient of the desired loss
function λ that fulfills this property. In their evaluation, they analyzed different λ
functions and compared them against RankNet using the NDCG metric. Their
analysis revealed that neural nets trained with LambdaRank clearly outperform
a competitive pairwise approach (RankNet; see (Burges et al., 2005)) regarding
accuracy (NDCG) and training time. Its boosted decision tree equivalent was
named “LambdaMART” and published in Burges (2010). Also, with a focus
on treating the ranking problem in a listwise manner, Cao et al. (2007) present
“ListNet”. ListNet is a neural network operating on probability distributions over
permutations or the probability of objects being ranked on the top k positions
(called top k probability). The computational experiments show the superiority of
ListNet over other pairwise competitive algorithms on almost every test data set,
concluding the advantage of listwise approaches over pairwise approaches.

Another line of research takes a more direct approach to find functions that
are easier to optimize and behave like the metric of interest (e.g., NDCG). Some
works try to optimize functions that are (upper) bounds to a ranking metric (see
Chapelle et al. (2007) for a ‘structured output’ based approach and Xu et al.
(2008) for a framework on upper bounds and applications). Another approach by
Taylor et al. (2008) (called “SoftRank”) tries to smooth the metric by assuming
randomness and using a Gaussian distribution as a ranking score. Qin et al. (2010)
proposed an approximation framework that reformulates metrics needing a sorting,
meaning they define positions as indices (i.e., indexed by positions), to metrics
that derive indices from their objects. Second, they approximate the position
function with a logistic function based on the object’s ranking score and apply
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their approximation in an optimization technique called “ApproxNDCG” (and
“ApproxAP” for average precision metric), which also needs a hyper-parameter
to be determined. They compared the accuracy of ApproxNDCG to SoftRank,
ListNet, and others (but without including LambdaRank and LambdaMART in
their analysis). They showed that ApproxNDCG outperforms all other methods
on a variety of data sets.

The literature on learning-to-rank presents a rich body that differ in how they
treat the dependency between objects: pointwise approaches neglect dependencies
between objects, pairwise approaches consider preferences between pairs of
objects, and listwise approaches work on the complete list of objects. Listwise
approaches best reflect how the prediction is applied afterward, but loss functions
of interest are not differentiable, making them not directly usable in gradient-
based methods. Plenty of works attempt to overcome this issue, and the more
recent approaches, such as LambdaRank/LambdaMART or ApproxNDCG, have
shown to be superior in computational studies. In consequence, these are of
special interest regarding the ASP task at hand.

3.2. Genetic algorithm related literature
The following literature review analyses publications using GAs for solving
batch scheduling problems that are closely related to the problem at hand, i.e.,
batch scheduling problems with bounded batch capacities, batch availability, and
incompatible job families. Using the knowledge base provided by Wahl et al.,
we identified 13 relevant articles using GAs (note that we also use their notation
scheme to specify batch scheduling problems in the following). Since our goal is
to design a GA for the PSBIJF, we put special emphasis on the analysis of the used
evolutionary mechanisms (e.g., mutation or recombination). Another important
aspect for each GA is whether the chromosome decoding procedure (or any other
batching procedure) follows a ”full-batch-policy” (i.e., batches are always filled
with jobs until batch capacity does not exceed) or not. As discussed in Gahm et al.
(2022) and Uzunoglu et al. (2023b), forced full batches may lead to suboptimal
decisions for the PSBIJF (but, of course, might have been appropriate for the
originally addressed problem). Furthermore, our GAs are designed to improve
the quality of pre-computed solutions. In order to represent these pre-computed
solutions and not miss regions that could further improve them, we require
our GAs to operate on the entire solution space. Two aspects that are contrary
to this goal (even if they have other benefits) are: decomposition approaches
(instead of solving all subproblems jointly) and exclusion of certain parts of the
solution space. Therefore, we report if the GA solves the complete problem or
a decomposition approach is used, and if the solution methods cover the entire
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solution space of the problem. In Table 2, the developed GAs of the relevant
literature are summarized according to the discussed aspects, if a full-batch-policy
was used (F) or not (L), if the entire problem was solved by the GA (C) or a
decomposition approach was used (D), the type of representation/chromosomes
(bin := binary, int := integer; rk := random key, and obj := objects), and the
information represented by the chromosomes.

Table 2: Overview of related GA developments

Chromosome

Reference
Problem speci-
fication

(F
)o

r(
L

)

(C
)o

r(
D

)
type(s) information (size)

Balasubramanian
et al. (2004)

P | pF, if, cr1,
pb |wT’

F D int
Job to batch assignment
(n)

F D int
Batch to machine assign-
ment (n)

Koh et al. (2004)
P | pF, if, crJ,
pb |C, wC,
Cmax’

F C rk+rk

Job to batch assignment +
batch to machine assign-
ment with batch sequence
(2n)

F D rk
Job to batch assignment
(n)

Koh et al. (2005)
S | pF, if, crJ,
pb |C, wC,
Cmax’

F D rk
Job to batch assignment
(n)

Mönch et al. (2005)
P | pF, rJ, if,

cr1, pb |wT’
L D int

Job to batch assignment
(n)

L D int
Batch to machine assign-
ment (n)

Malve and Uzsoy
(2007)

P | rJ, if, cr1,
pb |Lmax

F C rk Job sequence (n)

Mönch et al. (2007)
P | rJ, net, if,
cr1, sFS, elig,
pb |wT

L D int
Batch to machine assign-
ment (n)
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Dauzère-Pérès and
Mönch (2013)

S | pF, dJ, if,
cr1, pb |wU

F C rk Job sequence (n)

Jia et al. (2013)

P | pF, rJ,
re, if, cr1,
maxL, pb, bLb,
on |wT, TP, cIh

F D int
Batch to machine assign-
ment (n)

Castillo and Gaz-
muri (2015)

HJ | if, crJ,
sFMS, cb,
sb, bF,
bLb |Cmax

L C objects
Batch sequence, size, ma-
chine assignment, family
(n)

Huynh and Chien
(2018)

P | pF, dlJ,
if, crJ, sFS,
pb |Cmax

L C int+rk

Job to batch assignment +
batch to machine assign-
ment with batch sequence
(2n)

Huang et al. (2020)
S, aFlex | rJ, if,
cr1, pb |Cmax’

F D
rk+ bi-
nary

Job sequence + preven-
tive maintenance (2n)

Kim et al. (2021)
S, aFlex | pF,
pDet, if, crJ,
pb |Cmax

F D rk
Job to batch assignment
(n)

F D rk Batch sequence (up to n)

F D rk+rk
Job to batch assignment
+ Batch sequence (up to
2n)

Wu et al. (2022)

HJ, aFlex | pF,
rO, dlO, re, if,
cr1, elig, pb,
bFM |TP’

L C objects

Job to batch assignment,
batch to machine assign-
ment, and batch sequence
(up to n)

All approaches not using a full-batch-policy are of greatest interest and,
therefore, analyzed in greater detail in the following.

Mönch et al. (2005) proposed using GAs to solve the “P | pF, rJ, if, cr1, pb |
wT”-problem. They used the same two decomposition approaches first presented
in Balasubramanian et al. (2004) but combined the GAs with other heuristics
for batching and sequencing. Their modified ATC dispatching rule considered
multiple batch combinations, and thus, also batches with “free” capacity are
considered (no full-batch-policy). However, due to the decomposition approach
and the applied dispatching rules for batching and sequencing, not the entire
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solution space is covered. In their GAs’ implementations, the roulette wheel
selection mechanisms and operators (one-point crossover and a flip mutation)
were the same as in Balasubramanian et al. (2004).

To solve a complex job shop scheduling problem,Mönch et al. (2007) pro-
posed a decomposition approach, which needs to solve the batch-scheduling
sub-problem “P | rJ, net, if, cr1, sFS, elig, pb | wT”. For solving this sub-problem,
a GA allocated and sequenced already formed batches to and on machines. To
that, the integer chromosome represents a batch’s machine allocation, and the
sequence of genes (representing batches) in the chromosome is equal to the se-
quence of batches on the allocated machine. The GA used a one-point crossover,
flip mutation, and overlapping populations as evolutionary mechanisms. Compu-
tations terminated after reaching a given number of generations. The batching
procedure considered multiple batch combinations and thus did not aim at full
batches, but due to the decomposition approach, not the entire solution space is
covered.

Castillo and Gazmuri (2015) proposed three GAs with different types of
crossovers for solving the “HJ | if, crJ, sFMS, cb, sb, bF, bLb | Cmax”-problem.
For solution representation, the authors used an ordered set of batches with
additional information such as batch size and assigned machine. Three crossover
mechanisms were developed: “edge recombination-based crossover”, “batch
position-based crossover” (similar to a one-point crossover), and “guided mutation
crossover” (a local search around the clone parent, towards the guide parent). For
mutation, the authors proposed four mechanisms that partially use local search
to keep all chromosomes feasible: “mutate amount of batches”, “mutate batch
sizes”, “mutate machine assignments”, and “mutate batch sequence” (i.e., batch
swapping). The experiments showed that the guided mutation crossover (with the
integrated local search) had the fastest convergence of all three crossovers. The
applied chromosome representation allows any batch size, the complete problem is
solved, and the entire solution space is covered. However, solution representation
and recombination and mutation operators are highly problem-specific.

For the “P | pF, dlJ, if, crJ, sFS, pb | Cmax”-problem, Huynh and Chien (2018)
proposed a multi-subpopulation GA combined with heuristics. Because our
second GA uses the same solution representation and similar operators, we are not
going into detail here but in Section 5.2. The multi-subpopulation GA used three
parallel subpopulations that evolved independently and were coordinated at certain
points to prevent any single subpopulation from converging too quickly or slowly.
To coordinate the three subpopulations, new subpopulations containing new
chromosomes were created after a certain number of generations by interchanging
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a given number of best solutions. The results showed that the multi-subpopulation
GA outperformed the conventional GAs by about 5% in terms of solution quality,
while the CPU time was about the same. Unfortunately, the authors did not report
results without integrating the two local search heuristics. Therefore, it is not
possible to isolate their multi-subpopulation-strategy’s contribution to the result.
However, since the representation by two chromosomes allows arbitrary batch
sizes and the complete problem is solved, the entire solution space for the problem
at hand is covered, making their approach interesting for solving the PSBIJF.

To solve the “HJ, aFlex | pF, rO, dlO, re, if, cr1, elig, pb, bFM | TP”-problem,
Wu et al. (2022) developed a GA where each chromosome represented a sequence
of “batch objects” defining the machine (assigned tool), the job family (recipe),
the set of assigned operations, and the start time of the batch. The authors
developed several problem-specific properties to reduce the solution space for the
GA. These properties were also used by the procedure to randomly generate the
initial population. Based on a fitness-proportional parent selection, the offspring
were generated through representation-specific crossover and mutation operations.
The authors explicitly stated that they did not follow a full-batch-policy because
smaller batches may lead to better schedules. The proposed GA covers the
entire solution space of the problem considered here. However, due to the large
difference regarding the basic problem settings compared to the PSBIJF and the
GA’s high problem specificity, particularly because of the used properties, we do
not consider its application to be expedient.

4. Algorithm selection by learning-to-rank

As the more recent literature in algorithm selection suggests, ML models can be
powerful tools to select good algorithms for a problem instance to solve. Em-
pirical hardness models or models to predict the performance of an algorithm
and problem instance are popular choices. However, predicting the actual per-
formance value is unnecessary but a mere ordering of algorithms is sufficient for
algorithm selection. Furthermore, evaluating the performance of an ML model
for algorithm selection based on the error (e.g., the MSE) between the actual and
predicted algorithm performance does not coincide with its later use. Loosely
speaking, predicting an algorithm’s (continuous) objective values is more chal-
lenging than predicting the algorithm’s performance on an ordinal scale (e.g.,
”good” or ”mediocre” performance) or a listing according to the performance
(which implies the latter two cases). This becomes particularly important when
objective values can vary by several orders of magnitude from problem instance
to problem instance, as is the case for the PSBIJF with the total weighted tardi-
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ness objective. In consequence, learning-to-rank methods seem the better choice.
Nevertheless, one should be aware that many learning-to-rank algorithms were
developed with use cases very different from algorithm selection. They stem
from applications like recommender systems or search engines with vast sets of
objects explained by numerical feature vectors and deal with problems like bias
in human-generated data. Therefore, thoroughly analyzing the applicability of
different learning-to-rank methods is essential to find the most suitable technique
for our ASP.

Because NN are commonly used by recent ranking methods (and regression
tasks in general) and Gradient-Boosted Decision Trees (GBDT) have shown their
superior performance as learning-to-rank methods, we use them as basic ML
model types in our ASP methods.

In the context of ranking ML tasks like the ASP, the way of labeling the train-
ing data plays an important role. Therefore, we use several “labeling strategies”
in our analysis. In the first strategy, called “BIN”, all algorithms from A that
have computed the best solution for a problem instance are indicated by 1 and
otherwise by 0. That means, a sample for a problem instance has nA binary labels
indicating the performances of nA algorithms. In strategy “OV”, nA real-value
labels depict the objective values computed by each algorithm (ova) for a problem
instance, and in “OVN”, the objective values have been normalized on the interval
[0, 1] with ova =

ova−ovmin
ovmax−ovmin

(regarding a single problem instance).
Furthermore, we use the labeling strategy “RANK”, which has nA = |A| labels
with an integer from the interval {1, ..., nA}. Here nA marks the best algorithm and
1 the worst. If, for example, two algorithms achieved the best objective values,
both are labeled with 17, and the next is labeled with 15. We also use a version of
RANK with scaled labels from { 1

nA
, 2

nA
, . . . , 1}, called RANK-SC, to analyze the

impact of scaling on the training strategies. Here, 1 marks the best algorithm and
1

nA
the worst.
In addition to the labeling strategy, the loss function used during training,

validation, and testing is essential. Therefore, we investigate different loss func-
tions that are coupled to the labeling strategy and model type (i.e., not all loss
functions are applicable to all labeling strategies or model types). For the labeling
strategy BIN, the loss function Binary Cross Entropy (BCE), and for the labeling
strategies OV, N-OV, and RANK-SC the MSE are used. A newly developed loss
function is called “importance weighted MSE” (iwMSE(α)). The idea of this loss
function is to emphasize better (higher) ranked algorithms, so in a sense, the ML
model also has to understand which algorithms should be ranked higher. It is
basically the MSE with a weight depending on the “true” ranking ya of algorithm
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a: iwMSE(y, ŷ) = 1
nA

∑nA
i=1 (ya − ŷa)2 (αya + 1) (with ya representing the label and

ŷa the predicted ranking score). We use the parameter α ∈ R>0 to control the
effect of the weighting. Of course, this biases a model to predict higher rank-
ing scores ŷa since missing higher-ranked algorithms is punished stronger than
missing lower-ranked algorithms. Therefore, the control parameter should not be
exaggerated and be tuned with caution. Theoretically, an “optimal” model would
not mind this effect, but approximation and estimation errors (and the fact that
gradient descent could converge in a local optimum) hinder us from finding such
models in practice. In our experiments, we analyze the impacts for α ∈ {1, 2, 3}.

The following “loss functions” also adapt the learning process (algorithm)
and therefore are not applicable to both model types (see Section 3.1 for further
details): ApproxNDCG is a loss function particularly developed for NNs (Qin
et al., 2010), LambdaRankNDCG is the learning method published in Burges et al.
(2006) for the NDCG loss, and LambdaRankNDCG(1) is its truncated version to
rank 1 only. For GBDTs and the labeling strategy BIN, the LambdaBinary trains
according to the mean average precision Donmez et al. (2009). RankPairwise uses
a GBDT-adaptation of the pairwise loss function RankNet developed by Burges
et al. (2005), and LambdaMART is the GBDT-equivalent to LambdaRankNDCG
presented in Burges (2010). All appropriate ML model types, labeling strategy,
and loss function combinations forming ASP-models are summarized in Table 4
in Section 7.1. Note that all the presented ML model type, labeling strategy, and
loss function combinations can be considered as listwise ranking approaches as
we have a finite and fixed object space (algorithm space).

For the training, validation, and testing of the ASP-models, we use a large
instance set from the literature (see Section 6.1) and solve each of the 71,040
instances with the 17 available algorithms. This leads to a set of 1,207,680
data points when each problem instance and algorithm combination is processed
individually.

To convert a problem instance i ∈ P into a feature representation, we use the
AF-vector (aggregated feature-vector) proposed in Uzunoglu et al. (2023b), as it
has shown to be suitable for adequately representing the properties of the PSBIJF
problem instance.

Since with the objective function in Eq. (1) also a metric to evaluate an
algorithm’s performance exists, all four requirements to use ML models (see i. to
iv. in Section 1) for solving the ASP Algorithm are fulfilled.
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5. The Genetic Algorithms

To solve the present serial-batch scheduling problem, we propose to improve
the solutions computed by the LACH with two GAs that mainly differ in their
problem representation. The first one uses an integer representation where each
job is assigned a batch-position (representing a specific position on one of the
machines). We abbreviate this approach as GA-J2P (job-to-position assignment).
In the language of genetics, this means that a phenotype (schedule) is encoded
by a genotype (individual) consisting of a single chromosome of n genes (one
for each job), and the allele is an integer value representing one of the given
batch-positions (for definitions and details of GA-related terms used in this paper
see Eiben and Smith (2015)). The second GA uses a genotype consisting of two
chromosomes: The first chromosome consists of n integer genes representing the
job-to-batch assignment, and the second chromosome consists of n real-valued
chromosomes representing the batch-to-machine assignment and the sequence of
batches on a machine. This one is called GA-J2BRK (job-to-batch assignment
with random keys).

For both GAs, we implemented the following basic GA scheme (cf. Eiben and
Smith (2015)) with the parameters “population size” (µ), “initial population com-
position” (ipc), “elitism rate” (esr; fraction of best individuals that are certain to
be transferred to the next generation), “survival rate” (svr; fraction of individuals
that survive, i.e., that are transferred unaltered to the next generation), “survivor
selection mechanism” (svs; how individuals are selected for survival), “parent
selection mechanism” (pas; how individuals are selected to compute offspring
individuals), “recombination probability” (Prec; probability that two parents are
recombined into two offspring individuals), “mutation probability” (Pmut; prob-
ability that a gene of an offspring individual is mutated), and the “termination
condition setting” (tcs).

The GA-specific components are described in the following sections. How-
ever, we use the same termination criterion “maximum execution times in seconds”
for both GAs. This value is defined in relation to the number of jobs of an in-
stance, as this is the major characteristic influencing the computation time. During
different stages of the development and final testing of our GAs, we would like
to use different settings to keep computation times manageable. Therefore, two
settings are defined according to Table 3.

Table 3: Termination setting defining maximum GA runtimes
in seconds [s]
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Setting n ≤ 600 n ∈ (600, 1200] n ∈ (1200, 2, 400] n > 2400

TS1 30 60 90 120
TS2 90 180 270 360

5.1. GA-J2P
The basic idea of GA-J2P is the genotype representation of a schedule by a single
chromosome containing the complete information without using any heuristics
for batching or scheduling. The proposed representation can model the complete
solution space, which is particularly important with respect to the problem char-
acteristics combination of serial batching, arbitrary batch capacity requirements,
and weighted tardiness. At the same time, we wanted to avoid an overly specific
representation by complex genes (see. e.g., Castillo and Gazmuri (2015) and
Wu et al. (2022)) to make the proposed GA applicable to a wider range of batch
scheduling problems.

5.1.1. Genotype representation and decoding
The genotype consists of a single integer chromosome with one gene for each
of the n jobs (gene indices are also job indices j), and the allele values represent
batch-positions. Hereby, batch-positions simultaneously encode the machine
and the sequence of batches on a machine, and therefore, each batch-position
simultaneously represents one batch.
This representation idea is very similar to the main decision variable (X) used in
the mixed-integer linear program presented in Gahm et al. (2022). In general, the
number of batch-positions on each machine must not be less than n. However,
since we observed that the number of batches created in the initial solutions is
much smaller than this value and Gahm et al. (2022) report a similar observation
(see their table 14), we introduce the parameter “batch-positions per machine”
bpm) to control the total number of batch-positions. Here, we assume that smaller
bpm values are beneficial for the solution process, but it is important to use values
that do not restrict the solution space in a way that prevents good or optimum
solutions. The effectiveness of different bpm values will be analyzed in detail
in the experimental section. Batch-positions are numbered as follows: bp = 1
for the first batch on machine i = 1, bp=2 for the second batch on machine i=1,
bp = bpm for the last batch on machine i = 1, bp = (i − 1)bpm + 1 for the first
batch on machine i = 2, bp = (i − 1)bpm + 2 for the second batch on machine
i = 2, bp = (i − 1)bpm + bpm for the last batch on machine i = 2, and so on.
Fig. 1 illustrates in part a) the genotype chromosome assigning a batch-position
to each job and in part b) the resulting phenotype schedule after decoding, i.e.,

19

Contribution D-57



Algorithm 1 General GA scheme
pop(0){ } := getInitialPopulation(µ, ipc)
evaluate( pop(0){ }) ▷ calculate fitness of all initial individuals
Do

g := g + 1 ▷ increment generation
s{ } := selectSurvivor(pop(g − 1){ }, esr, svr, svs) ▷ survivors are directly
transferred to the next generation
p{ } := selectParents( pop(g − 1){ }, 1 − svr, pas) ▷ for recombination
o{ } := recombine(p{ }, Prec) ▷ recombination of two parents
m{ } := mutate(o{ }, Pmut) ▷ mutation of the offspring
evaluate(m{ }) ▷ calculate fitness of all offspring individuals
pop(g){ } := s{ } + m{ }

Until tcs is satisfied

Figure 1: Example genotype a) and its phenotype b) in GA-J2P

after assigning jobs (italic) to the batch-positions (in the squares) on the machines.
Note that we do not have any ordering or sorting (e.g., by job families) in the
integer chromosome to avoid any positional bias (see the associated families f
per job in Fig. 1 a)).

The decoding follows the gene sequence of the integer chromosome and adds
one job after the other to the corresponding batches: for example, in Fig. 1 b), job
1 to batch-position 2→ (then) job 2 to batch-position 5→ job 3 to batch-position
2 and so on. Note that empty batches (e.g., batch-position 4) are just ignored
during the evaluation of the schedule.

5.1.2. Close and least impact insertion procedure (CLIP)
Several operations in GA-J2P (e.g., random solution generation or recombination)
require the insertion of a job into “new” batch-positions if the desired batch-
position is already occupied and an insertion is not feasible (due to job family or
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Figure 2: Sections in the CLIP mechanism

batch capacity requirements). In this case, our proposed insertion procedure aims
to insert the jobs into batch-positions closest to the initially desired batch-position
(e.g., near on the same machine or at a similar position on a different machine) and
that have the least impact on the overall schedule. The latter aspect is important
to allow the transfer of “good” partial schedules from one genotype to the other.
To achieve this insertion in an efficient manner, we define 20 insertion sections,
as exemplarily depicted in Fig. 2.

For the definition of these sections, we use several bounds in relation to bpm:
sections 1 to 8 are defined by lb1 = 1 and ub1 = 0.1 · bpm, sections 9 to 14 are
defined by lb2 = ub1 + 1 and ub2 = 3 · ub1, and sections 15 to 20 are defined
by lb3 = ub2 + 1 and ub3 = bpm. Given these definitions, Fig. 2 illustrates the
procedure to find a new batch-position for all the jobs with the desired batch-
position 48: we first try to insert the job in a batch-position in section 1 (49→50),
then in a batch-position in section 2 (47→46), then in a batch-position in section
3 (28→8), then in a batch-position in section 4 (68 → 88 → 108), then in a
batch-position in section 5 (29→ 9→ 3→ 10), then in a batch-position in section
6 (69→ 89→ 109→ 70→ 90→ 110), then in a batch-position in section 7 (27
→ 7→ 26→ 6), then in a batch-position in section 8 (67→ 87→ 107→ 66→
86→ 106), and so on.

Note that the sections 3, 5, 7, 11, 13, 17, and 19 contain the corresponding
batch-positions from the current machine (here 3) to machine 1 (i = 1) and that
the sections 4, 6, 8, 12, 14, 18, and 20 contain the corresponding batch-positions
from the current machine (here 3) to machine i = m.

5.1.3. Initial population composition
To generate the initial population for GA-J2P, we use three approaches controlled
by the parameter “initial population composition” (ipc): the first approach uses
only randomly generated solutions (ipc = ran), the second one uses 30% initial
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solutions computed by the LACH and 70% randomly generated solutions (ipc =
icr), and the third one uses 30% initial solutions computed by the LACH and 70%
randomly modified initial solutions (ipc = iri; by the recombination and mutation
variation operators described below). The latter two approaches significantly
differ in the diversity of the initial population, and we will investigate the effect
on the solution process in our experimental study. Depending on the population
size and since the learning-augmented heuristics provide only a limited number
of solutions related to the number of jobs (i.e., 227 or 228 if n<100, 75 or 76 if
n ∈ [100, 1000), and 19 or 20 if n>1000; cf. Section 2.2), the number of available
initial solutions may not be sufficient with respect to the given proportion. In this
case, additional random solutions are added to the initial population according to
the population size µ. Because of the limited number of available initial solutions,
we are not going to tune the fraction of initial solutions during parameter tuning.

For the fully randomly generated solutions, we draw batch-positions from
{1, . . . ,m·bpm} for each job (note that if not stated otherwise, random numbers are
always drawn from restricted uniform distributions). To ensure feasible solutions
in the initial population, we decode all generated genotypes after generation.
If we identify an infeasible batch in terms of incompatible job family or batch
capacity during decoding, we store the job in an additional list instead of adding
it to the batch. After adding all jobs to the schedule or the list, we sort the list
by non-decreasing batch positions and add the jobs to the schedule in that order
using CLIP.

For generating randomly modified initial solutions, we randomly pick two
of the initial solutions, apply all five mutation operators to them, use all two re-
combination operators to generate four offspring, and then apply all five mutation
operators to the offspring. This leads to 10 + 4 + (4 · 10) = 54 randomized initial
solutions. These actions are repeated with a gradually increasing chance of muta-
tion until the necessary quantity of initial solutions is reached. The probability
of mutation begins at .02 and rises by .005 per cycle. As all operators compute
feasible solutions, an additional feasibility checking is not required here.

5.1.4. Elitism and survivor selection
Since GA-J2P is basically designed to improve initial solutions, we use an elitism
mechanism that directly transfers a certain integer number ε of best genotypes
to the next population. This number is controlled by the parameter “elitism rate”
esr and defines the number of transferred best genotypes as ε = ⌊esr · µ⌋. For the
same reason, we follow a steady-state population management model, i.e., we
do not replace the entire population in each generation, but only a part of it (cf.,
Eiben and Smith (2015)). In literature, the number of individuals replaced by its
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offspring is named λ, and thus, the number of surviving individuals is µ − λ. As
the number of surviving genotypes is controlled by the “survival rate” parameter
svr, λ = µ − ⌊svr · µ⌋. To preserve the diversity of populations, not the best µ − λ
genotypes are selected but more advanced selection mechanisms, controlled by
the “survivor selection mechanism” parameter svs are applied. Here, we will
study the fitness-based selection mechanisms “Tournament Selection” (TOS) and
“Stochastic-universal Sampling” (SUS). In TOS, a genotype wins a “tournament”
if its fitness is greater than the fitness of the other s−1 competing genotypes,
whereat the competing genotypes are drawn randomly. To vary selection pressure,
one can adjust the tournament size s. When s is larger, genotypes with lower
fitness have a reduced chance of surviving. Note that the worst genotype never
survives, and the fittest genotype is the winner of every tournament in which it
competes. The tournament selector is commonly used in practice due to its lack
of stochastic noise in comparison to fitness proportional selectors. In contrast,
SUS chooses individuals based on a given probability (related to the fitness)
to minimize the chance of fluctuations. It can be seen as a form of a roulette
wheel game with evenly spaced points that we spin. SUS uses a single random
value to select individuals at equally spaced intervals. This fitness-based selection
method grants a better chance of the selection of weaker individuals, thus reducing
the “unfairness” associated with other fitness-based selection methods. Because
both survivor selection mechanisms are intended to preserve diversity, we use a
tournament size of two (s = 2) in all experiments. The parameters esr,svr, and
svs will be tuned later.

5.1.5. Parent selection and recombination
To randomly select the parents that are used for offspring generation, we also
study the two selection mechanisms TOS (with s = 2) and SUS from Section 5.1.4.
The parameter “parent selection mechanism” pas is used to differentiate between
them.

For the recombination of two genotypes, we adapted two standard opera-
tors from the literature: one-point crossover and two-point crossover. The first
operator, “J2P adapted one-point crossover” (J2PaOPX), begins with randomly
selecting a crossover point from {2, . . . ,m · bpm − 1} (e.g., 6 in Fig. 3 a)). This
point partitions both the chromosomes A and B into head and tail (see Fig. 3 a)).
The J2P-specific adaptation takes place with the exchanging of the tails. Here, the
batch-positions are transferred by CLIP in non-decreasing order of batch-positions
and job indices (see the small numbers in Fig. 3 a)) to the two offspring A* and
B*, respectively. Note that all following examples assume m = 1, bc = 2 (jobs),
and bpm = 11. Furthermore, actualized batch-positions are marked bold, and that
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Figure 3: Example one-point a) and two-point crossover recombinations

gray shaded fields signal batch-position updates by CLIP.
The second recombination operator “J2P adapted two-point crossover” (J2Pa-

2PX) follows the same procedure but uses two randomly selected crossover points
from {2, . . . ,m ·bpm} (e.g., 3 and 9 in Fig. 3 b)) and first transfers the middle parts
and then CLIP inserts head and tail in non-decreasing order of batch-positions
and job indices (see Fig. 3 b)).

Both recombination operators have individual recombination probabilities
(PJ2P

aOPX and PJ2P
a2PX) that must be tuned, whereby a value of 0 indicates that the

operator is not in use (as also for the following mutation operators).

5.1.6. Mutation
Mutation operators have two distinct (conflicting) roles in the evolution process
of a GA: Exploitation, i.e., intensification of the search in promising regions of
the solution space by making small changes, and exploration, i.e., maintaining
population diversity to prevent a premature convergence to a local optimum. In
this context, we developed five operators for mutating the offspring resulting from
recombination: “J2P random resetting” (J2Prr), “J2P batch swap” (J2Pbsw), “J2P
job swap” (J2Pjsw), “J2P batch insert” (J2Pbin), and “J2P job insert” (J2Pjin).

Random resetting is a standard mutation operator for integer chromosomes
that mutates each gene independently (with a given probability PJ2P

rr ) and draws a
new allele value (batch-position) from {1, . . . ,m · bpm}. The new batch positions
are added by CLIP in non-decreasing order of batch-positions and job indices.

Fig. 4 shows an example where the jobs 2, 5, 6, 10, and 11 have been selected,
new randomly chosen batch-positions have been drawn, and added to the new
chromosome A* using CLIP. The number of mutated genes in a population can
be approximated by µ · n · PJ2P

rr (where n represents the number of genes in
the chromosome). Therefore, J2Prr combined with a high mutation probability
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Figure 4: Example random resetting mutation

Figure 5: Example batch swap mutation

PJ2P
rr can be used to maintain population diversity as many jobs to batch-positions

assignments may be affected, and batches may be “opened” or “closed”.
The mutation operator J2Pbsw swaps two complete batches with arbitrary

families. This is done by randomly selecting two genes with probability PJ2P
bsw and

swapping batch-positions for all jobs assigned to one of the batch-positions (see
Fig. 5 a)). Since both batches (batch-positions 3 and 6, respectively) were feasible
in terms of job family and batch capacity, the swapping must be feasible.

In contrast, infeasibilities may occur when J2Pjsw tries to swap two jobs
between batches (by interchanging the batch-positions). Therefore, we first
randomly select a single gene with probability PJ2P

jsw (indicated by 1 in Fig. 5
b)), then determine all genes with jobs of the same family (e.g., 1, 3, and 11
in Fig. 5 b)) and that are not in the selected batch-position (since otherwise the
probability of swapping jobs from batches with many jobs is lower compared to
other batches). Then, we randomly select one of these genes (indicated by 2 in
Fig. 5 b)). If swapping is feasible in terms of batch capacity, the batch-positions
are interchanged, otherwise, the chromosome remains unchanged. In general,
J2Pbsw has a greater impact on a chromosome (because multiple jobs change
their batch-position) than J2Pjsw, which only changes the batch-position of two
jobs. In both cases, the number of batches remains the same.

The mutation operator J2Pbin inserts a complete batch at a different batch-
position. First, a single gene j is randomly selected with probability PJ2P

bin , and
the assigned batch-position bpA is determined (e.g., j = 9 with bpA = 6; cf.,
Fig. 6 a)). Then, the new batch-position bpB is drawn from {1,m · bpm}. If
bpB is empty (i.e., no job is assigned to it), all jobs at bpA are inserted into bpB
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Figure 6: Example batch insert a) and job insert b) mutatios

by updating the corresponding genes (see, for example, chromosome A∗1 with
bpB = 4). If bpB is not empty (e.g., bpB = 2), all jobs at bpA are also inserted
into bpB, and the batch-positions of jobs formerly assigned to bpB are inserted
into bpB+1. If bpB+1 is not empty, its jobs are moved to bpB+2 and so on (see
chromosome A*2 in Fig. 6 a); additionally, updated batch-positions are marked in
italics). If bpB + x = m · bpm holds, the “search” for empty batch-positions starts
with batch-position 1 and ends at the latest when bpA is reached (which must
now be empty). This operator can have a high impact on a chromosome if many
batch-positions are occupied because many jobs may change their batch-position.

The fifth mutation operator J2Pjin extracts a single job from one batch and
inserts it into another batch that can already contain jobs (of the same family) or
is empty. Again, we first randomly select a single gene j with probability PJ2P

jin ,
and the associated job family j f A and the assigned batch-position bpA is derived
from that gene (e.g., j = 9 with j f A = X and bpA = 6; cf., Fig. 6 b)). Then, all
batch-positions associated with j f A and different from bpA are determined and
combined with all empty batch-positions (e.g., 2 and 9 combined with 4, 10, and
11). From this set of batch-positions, the new batch-position bpB is randomly
selected. If bpB is empty (e.g., bpB = 4), the batch-position of j is updated (cf.,
chromosome A*1 in Fig. 6 b)). If bpB is not empty, a capacity feasibility check
is required. If the check is positive, job j is inserted into bpB (see chromosome
A*2 in Fig. 6 b)); otherwise, the chromosome remains unchanged. The impact of
this operator on a chromosome is relatively low, as only a single job changes its
batch-position. However, it can ”open” a new batch or “close” a batch (if j was
the only job in batch bpA and is inserted into a batch already containing jobs).

5.2. GA-J2BRK
The schedule representation of GA-J2BRK bases by two chromosomes was also
used by Huynh and Chien (2018) for a problem very similar to the PSBIJF.
However, we propose several adaptations and enhancements.
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Figure 7: Example genotype a) and its phenotype b) in GA-J2BRK

5.2.1. Genotype representation and decoding
The first chromosome (INT) of the J2BRK genotype consists of n integer genes
with one gene for each of the n jobs (gene indices are therefore simultaneously
job indices j), and the alleles define the job-to-batch assignment by batch indices.
In contrast to Huynh and Chien (2018), we do not group jobs by job families to
avoid positional biases. The second chromosome (RK) consists of n real-valued
genes (one for each possible batch), and the allele represents random keys from
[0, 1] indicating the batch-to-machine assignment and the sequence of batches on
a machine. Fig. 7 shows the two chromosomes in part a).

The batch-to-machine assignment is decoded by dividing [0, 1] into m equal
ranges (e.g., for m=3: [0, 1/m), [1/m, 2/m), and [2/m, 1]) and batches with random
keys in the first range are assigned to machine one, batches with random keys
in the second range are assigned to machine two, and so on. The sequencing of
batches on the machines is done by sorting the batches by their random keys. To
avoid that small random key changes leading to machine assignment changes
also completely changes the position of the changed batch and all other batches
on the “new” machine, we change the batch sorting according to the machine
index: On machines with an odd index, batches are sequencing in non-decreasing
order of their random keys, whereas on machines with an even index, batches are
sequencing in non-increasing order of their random keys. The decoding of the
example is shown in Fig. 7 part b).

5.2.2. Initial population composition
To generate the initial population for GA-J2BRK, we use the same three ap-
proaches as before: ipc = ran, icr, or iri.

To generate completely random initial solutions, we first randomly draw n
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integers from {1, . . . , n} for chromosome INT and n random keys from [0, 1] for
chromosome RK. As this will likely result in infeasible solutions regarding job
families and batch capacities, we need a repair mechanism. For repairing, we
check if the insertion of a job into a batch is feasible, and if not, the corresponding
allele in RK is incremented by one as long as insertion becomes feasible. Since
this may lead to a “chain” of allele updates, the resulting genotype is very different
from the initial one. However, as we just want to compute random initial solutions
here, it does not matter.

The procedure for generating randomized initial solutions remains the same
as before. We apply mutation and recombination operators iteratively, gradually
increasing the mutation probabilities.

5.2.3. Elitism and survivor selection
For elitism and survivor selection, we use the same mechanisms as for GA-J2P
with the control parameters esr, svr, and svs to be tuned for GA-J2BRK.

5.2.4. Parent selection and recombination
To select the parents that are used for offspring generation, we also study the two
selection mechanisms TOS (with s = 2) and SUS, controlled by the parameter
pas.

For recombing genotypes A and B, Huynh and Chien (2018) used a job
family-related approach. They selected all genes of a randomly selected job
family in genotype A (B), transferred these genes to offspring A* (B*), and
transferred the genes of all other job families from B (A) to A* (B*). For the
random key chromosome, they used a one-point crossover. In contrast to this
job family-related approach, we propose using adapted standard recombination
mechanisms: “J2BRK adapted one-point crossover” (J2BRKaOPX) and “J2BRK
adapted two-point crossover” (J2BRKa2PX).

J2BRKaOPX starts with the random selection of the crossover point from
{1, . . . , n} to partition both chromosomes of genotypes A and B into heads and
tails (e.g., 6 in Section 5.2.4). First, the heads of the INT chromosomes and the
complete RK chromosomes are transferred to the offsprings A* and B*. Next, the
tail of both chromosomes of B (A) are transferred to A* (B*) in non-decreasing
order of assigned batches (already existing random keys are overwritten). If a
batch index to be transferred is already in use, the next unused batch index is used,
and the random key is set accordingly. Note that this procedure does not affect
job-to-batch and batch-to-machine assignments, but only the batch sequence on a
machine might change. Thus, J2BRKaOPX is able to preserve promising parts of
both parent genotypes. In Section 5.2.4, allele values resulting from tail transfers
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Figure 8: Example recombination in GA-J2BRK

are marked in bold, and gray shaded fields indicate values affected by the batch
renumbering.

The J2BRKa2PX recombination operator follows the same procedure except
using two randomly selected crossover points from {1, . . . , n}, first transfers the
middle parts, and then completes the offspring genotypes accordingly.

5.2.5. Mutation
For mutation, we propose using three standard operators, “J2BRK random re-
setting” (J2BRKrr), “J2BRK uniform” (J2BRKuni), and “J2BRK Gaussian”
(J2BRKgau).

J2BRKrr is an adaptation of the standard random resetting mutation operator
for integer chromosomes. It mutates each gene with a given probability PJ2BRK

rr
by drawing new allele values for the INT chromosome from {1, . . . , n}. If one of
the drawn batch indices is already in use, renumbering takes place. The random
keys of chromosome RK remain unchanged.

In contrast, J2BRKuni (also used by Huynh and Chien (2018)) and J2BRKgau
keep job-to-batch assignments unchanged, but random keys change. They mutate
each gene with probability PJ2BRK

uni and PJ2BRK
gau , respectively. As the names suggest,

they differ in the distribution new allele values are drawn from: J2BRKuni draws
from a uniform distribution restricted by [0, 1], whereas J2BRKgau draws from a
Gaussian (normal) distribution with the mean equal to the old random key and a
standard deviation of 0.25

m . The adjustment by m is made to make the probability
that this mutation operator leads to a machine swap of a batch independent of the
number of machines m. Obviously, the drawn values must be clamped to [0, 1].
The INT chromosome remains unchanged when J2BRKuni and J2BRKgau are
applied.

In addition to these standard mutation operators, we developed four problem-
specific mutation operators similar to those for GA-J2P: “J2BRK batch swap”
(J2BRKbsw), “J2BRK job swap” (J2BRKjsw), “J2BRK batch insert” (J2BRKbin),
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and “J2BRK job insert” (J2BRKjin).
J2BRKbsw swaps two complete batches of arbitrary job families by randomly

selecting two genes (with probability PJ2BRK
bsw ) and swapping the batch indices for

all jobs assigned to one of these indices. Since both batches were feasible in terms
of job family and batch capacity, the swapping must be feasible. RK remains
unchanged.

As for J2Pjsw (cf., Fig. 5 b)), J2BRKjsw first randomly selects a single gene
from chromosome INT with probability PJ2BRK

jsw , then determines all genes from
INT with jobs of the same family and that are not in the same batch, and finally
randomly selects one of these genes. If swapping the two jobs between the
assigned batches is feasible in terms of batch capacity, the batch indices are
swapped, otherwise, the chromosome remains unchanged. Random keys are
always left unchanged. A similar mutation operator is also used by Huynh and
Chien (2018).

The mutation operator J2BRKbin inserts a complete batch at a new position.
To this, a gene from INT is selected with probability PJ2BRK

bin , and the assigned
batch bA is determined. Then, the new batch bB is drawn from [1, n]. If bB equals
bA, no insertion is done. If batch bB is empty, all jobs are inserted into bB by
updating the corresponding genes of chromosome INT. If bB is not empty, batch
bA is inserted before bB by setting the random key of bA to the random key of
bB decremented by a very small number. This operator can be very influential as
a new batch may be created, and batch positions on a machine may change.

J2BRKjin extracts a single job from one batch and inserts it into another batch
that can already contain jobs (of the same family) or is empty. We first randomly
select a gene (job) j from INT (with probability PJ2BRK

jin ) and determine its job
family j f A. Then, all batches also containing jobs of family j f A are combined
with all empty batches. From this set of batches, the new batch bB is randomly
selected. If bB is empty, the batch index of j is updated to bB. If bB is not empty,
a capacity feasibility check is required. If it is positive, job j is inserted into bB.
Otherwise, the chromosome INT remains unchanged (RK remains unchanged in
any case). The effect of this operator on INT is relatively small because only a
single job-to-batch assignment is changed. However, it can ”open” a new batch
or ”close” a batch if j was the only job in batch bA and is inserted into a batch
that already contains jobs.

5.3. Task parallel implementation
As the task parallel implementation of the learning augmented heuristics proposed
in Uzunoglu et al. (2023b) resulted in a remarkable speedup, we follow this
approach not only in the implementation of the heuristics computing initial
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solutions but also for our GAs. Similar to the multi-start of the heuristics, we start
several evolution engines in parallel threads. This means that several identically
parametrized GA are executed, and the best result of all of them is returned. As
the results of Uzunoglu et al. (2023b) showed that the greatest efficiency gains are
achieved with four parallel threads, we also use four threads in our experiments.

6. Experimental setup

To perform training, validation (hyper-parameter tuning), GA parameter tuning,
and testing, we need to prepare the required data and ML models. Note that all
used data sets are either already available for download or are added to a new data
set on Mendeley Data (reference to be added).

6.1. Problem instances and data sets
It is vital to have a sufficiently large set of problem instances to train well-
performing ML models with good generalization and prediction accuracy. Fur-
thermore, to validate models’ applicability to real-world problems, the instances
should also be realistic, diverse (i.e., representing different scenarios), and present
a challenging learning task. The data set provided by Gahm fulfills these re-
quirements. It contains three sets of instances that differ in the number of jobs
n and machines m. As we are interested realistic-large problem instances, we
use the sets L (containing 57,600 large instances with n ∈ {100, 200, 400} and
m ∈ {1, 3, 4, 5, 10}) and XL (containing 13,440 large instances with n ∈ {800,
1,600, 3,200} and m ∈ {5, 10, 20}) to define the problem space P for this paper
(|P| = 71, 040). All generated instances base on nine attributes (like n or m),
and for each attribute combination, five instances are randomly generated (thus,
each instance has a marker s ∈ {1, 2, . . ., 5}). Based on the marker, we can define
different data sets for training, validation (hyper-parameter tuning), GA parameter
tuning, and testing. To represent these subsets, we use the notation Ds (e.g., D1,2

consists of all instances with the markers 1 and 2).

6.2. Model training for the learning augmented heuristics
Since all 17 algorithms from algorithm space A use ML models to predict parame-
ters in one way or another, we must train these models. Because hyper-parameter
tuning and validation were already done in the referenced publications, we can
use D1,2,3,4 for training the models. For future use, we provide all 17 models (and
scaling data) for download (reference to be added).
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6.3. Performance metric
Comparing the performance of algorithms relative to the best solution could
be misleading if objective values tend to get close (or equal to) zero (like for
the weighted tardiness criterion of the PSBIJF). In these cases, small absolute
deviations to zero result in huge relative deviations, which may distort the analysis
even with a large number of experiments. To get a robust metric for our analysis,
we use the key figure Mean Relative Improvement to the Worst (MRIW; cf.,
Valente and Schaller (2012) and Gahm et al. (2022)). The relative improvement to
the worst objective value for a problem instance RIWa,i is based on the following
definitions: let A′ ⊆ A be the (sub)set of all algorithms to be analyzed, let ova,i

be the objective value computed by algorithm a ∈ A′ for problem instance i ∈ P′

(with P′ ⊆ P), and let ovworst
i = maxa∈A′ ova,i be the worst achieved objective value

by one of the algorithms (note that ovworst
i is not an intermediate solution or the

worst candidate objective value observed during the execution of an algorithm
but the worst final solution of one of the considered algorithms). With these
definitions, we define the relative improvement to the worst for algorithm a and
instance i as:

RIWa,i =
(ovworst

i − ova,i)
ovworst

i

if ovworst
i > 0 and otherwise, RIWa,i = 0. Aggregating these values using the

mean over all instances of interest (P′) for an algorithm a gives us the MRIWa.
Here, it is fundamentally important that MRIWa-values can only be compared to
each other if the same (sub)set of algorithms A′ (and instances) is used for their
computation.

6.4. Implementation
The training, hyper-parameter tuning, validation, and testing of all ML models
is implemented in Python and uses “Keras” (keras.io), “TensorFlow” and “Ten-
sorFlow Ranking (tensorflow.org), “scikit-learn” (Pedregosa et al., 2011), and
XGBoost (xgboost.ai). All heuristics, the GAs, and a tool for the management of
the experiments are implemented in Java 10. For the GA implementations, we
use the Jenetics framework (jenetics.io), and for task-parallel execution of the
learning-augmented heuristics and the GAs, we use the “Parallel Java 2 PJ2” API
(available at http://jimihford.github.io/pj2/).

The machine learning and all experiments have been executed on workstations
with an Intel® XEON® CPU E5-2690 with 3.0 GHz and 64 GB RAM.
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7. Parameter tuning

7.1. ASP model hyper-parameter tuning
The hyper-parameter tuning of the ASP models uses the dataset D1,2 for training
and D3 for validation (i.e., to determine the most suitable one). For the 15
NN-based ASP models, we use NNs with three hidden layers and evaluated the
following hyper-parameters: 256, 512, and 1024 neurons for all three layers
independently, the dropout rates .1, .2, and .3, and the L2 weight regularization
rates .001, .002, and .003. In total, 243 (= 33 · 3·3) hyper-parameter combinations
have to be evaluated to determine the best configuration for each NN-based ASP
model. For the 14 GBDT-based ASP models, we evaluated the following hyper-
parameters: number of estimators 250, 350, and 450, learning rates .01 and .001,
maximum depth 8, 9, and 10, minimal child weights 1 and 2, subsampling rates
.5 and .7, column sampling rates .5 and .7. In total, 144 (= 3 · 2 · 3 · 2 · 2 · 2)
hyper-parameter combinations have to be evaluated.

Because the ASP models use different loss functions, we cannot use them
for the validation of the most suitable ASP model. Therefore, we introduce the
metric “hit rate”, quantifying the ratio of how often the model’s proposed (best)
algorithm was in fact one of the best algorithms for a problem instance. Table 4
depicts the best hit scores for every model, labeling strategy, and loss function
after tuning the hyper-parameters (see Appendix B Table B.13 and Table B.14 for
best hyper-parameters for each ML model, labeling strategy, and loss function
combination).

Table 4: Hit rates by ML model, labeling strategies, and loss
functions

ML
model
type

Labeling
strategy

Loss function Hit
rate[%]

MRIW[%]

NN

BIN BCE 70.16 40.33
OV MSE 57.09 36.38
N-OV MSE 64.92 39.61

RANK

MSE 66.31 39.89
iwMSE(1) 68.94 40.31
iwMSE(2) 68.98 40.39
iwMSE(3) 61.77 38.98
ApproxNDCG 68.28 39.45
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LambdaRankNDCG 67.46 39.27
LambdaRankNDCG(1) 67.91 39.34

RANK-SC

MSE 65.13 39.71
iwMSE(1) 65.70 39.72
iwMSE(2) 68.00 40.04
iwMSE(3) 64.23 38.46
ApproxNDCG 64.75 39.34

GBDT

BIN BCE 73.44 41.14
BIN LambdaBinary 69.93 40.59
OV MSE 67.37 39.84
N-OV MSE 71.90 41.22

RANK

MSE 72.99 41.12
iwMSE(1) 73.11 41.10
iwMSE(2) 73.07 41.07
iwMSE(3) 72.99 41.08
RankPairwise 71.13 40.77
LambdaMARTNDCG 70.26 40.57

RANK-SC

MSE 72.99 41.12
iwMSE(1) 73.08 41.13
iwMSE(2) 73.18 41.15
iwMSE(3) 73.24 41.14

The results in Table 4 show that GBDT as ML model type generally outper-
forms NN, which is not surprising since GBDT is known to outperform other
models on tabular data (in contrast to image data or text documents; Shwartz-Ziv
and Armon (2022)). For both model types, representing the ranking problem
as a binary classification achieves the highest hit scores. It is also evident that
using (pure) objective value labeling strategies (see OV rows in Table 4) perform
worse than all other labeling strategies for NN and GBDT, respectively. Con-
sequently, we conclude that asking ML models for a ranking of algorithms is
better than asking for objective values for each of the algorithms in A. For the
NN, the two best-performing settings use the labeling strategies BIN with training
strategy BCE and RANK combined with the custom loss function iwMSE(α).
Interestingly, the custom loss function outperforms MSE, and the scaling factor α
seems to play an important role as the hit rate decreases from 68.98% to 61.77%
when α changes from 2 to 3. This indicates that tuning the α-value is important.
For GBDT, the two best-performing settings are BINARY labels with BCE and
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RANK-SC labels with the custom loss function iwMSE(α). In contrast to the
NN, the GBDT seems to be less sensitive to changes in the α-value. However,
tuning the α-value is still important. Overall, the GBDT model type achieves
more consistent hit rates throughout the different methods. The results also show
us that the scaled RANK version RANK-SC performs better for GBDT, while
this is not the case for NN. Somewhat surprisingly, the “simple” binary encoding
BIN combined with BCE for both GBDT and NN outperforms more sophisticated
alternatives (such as LambdaRankNDCG or ApproxNDCG) with respect to the
ASP at hand. The only loss function that achieves a similar performance is the
newly introduced iwMSE(α) function. An advantage of iwMSE(α) is its less
complex implementation compared to the more sophisticated ones. However,
further studies have to examine if iwMSE(α) is generally suitable for ranking
predictions.

The best determined hyper-parameters for the four best ASP models show
that both model types prefer higher capacity models in almost every experiment.
To achieve a maximum prediction performance, we performed a second hyper-
parameter tuning on the best four ASP models with extended capacities but
omitted certain hyper-parameters for the GBDT since they did not lead to accurate
models (e.g., 250 and 350 as number of estimators or 8 as maximum depth). For
GBDT models we define the hyper-parameter space as: 450 or 550 for number
of estimators, 9 or 10 for maximal depth, .001 or .01 for the learning rate, 1 or 2
for minimum child weight, and .5 or .7 for subsampling rates for data points and
columns. For the NN we increase the number of neurons in the hidden layers (all
three hidden layers with 256, 512, 1024, or 2048 neurons, dropout rate of .1 or
.2, and regularization rates of .001, .002, or .003). To further improve prediction
accuracy, in the second hyper-parameter tuning, training is performed the data set
D1,2,3 and validation on D4.

Table 5: Results of second hyper-parameter tuning

ML model
type

Labeling
strategy

Loss
function

Hit rate[%] MRIW[%]

NN
BIN BCE 64.75 40.95
RANK iwMSE(2) 61.87 40.54

GBDT
BIN BCE 67.67 41.56
RANK-SC iwMSE(3) 66.57 41.43

Table 5 shows that overall the hit rate in the second hyper-parameter tun-
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ing slightly decreases due to the new validation data set D4. Nevertheless,
the results confirm that GBDT-RANK-SC-iwMSE(3) is competitive and that
GBDT-BIN-BCE outperforms the other ASP models (see Appendix C Table C.15
and Table C.16 for best-performing hyper-parameters). In consequence, GBDT-
BIN-BCE is used to select the learning-augmented heuristics for initial solution
computation in all following experiments.

7.2. GA-J2P parameter tuning
Because of the large number of parameters and values for GA-2JP, we perform
a two-step tuning to keep experiments at a manageable level. For the parameter
tuning of GA-J2P (and also GA-J2BRK), we use a reduced set DPT of 30 instances,
i.e., five randomly selected instances for each n ∈ {100, 200, 400, 800, 1600, 3200}
from D4.

In parameter tuning step one, we are interested in the general behavior of
GA-J2P, for example, regarding the initial population composition or the effect
of the elitism mechanism. The parameters and their investigated values, as
listed in Table 6, are used to set up 51,840 experiments in the study (1,728
parameter configurations · 30 problem instances from DPT ). For termination, we
use setting TS1 (see Table 3). Because the MRIW of GA-J2P without initial
(ipc = ran) solutions is so much worse compared to the other ones (33.8% vs.
93.7% and 93.7%), we remove these results from further considerations (and
MRIW computations) to make the differences between parameter values more
traceable. To simplify readings, we introduce PJ2P

cust. for representing identical
probabilities for PJ2P

bsw , PJ2P
jsw , PJ2P

bin , and PJ2P
jin . In Table 6, bold values indicate values

to be further investigated in step two, and bold and underlined values are fixed
based on the results.

Table 6: Parameters and results of study GA-J2P-PT1

Parameters and values
# values

MRIW [%]

bpm n , 1.2(n/m) 2 19.95 20.88
ipc (ran ,) icr , iri 3 19.98 20.85
µ 200 , 400 2 20.60 20.23
esr 0 , .05 2 19.26 21.57
svr 0.2 , 0.4 2 19.88 20.94
svs TOS(2) , SUS 2 20.40 20.43
pas TOS(2) , SUS 2 20.24 20.59
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rec.
( PJ2P

aOPX

PJ2P
a2PX

) (
.2

.0

)
,
(
.0.0.0

.2.2.2

)
,
(
.2

.2

)
3 20.64 21.08 19.53

mut.
(

PJ2P
rr

PJ2P
cust

) (
.02

.00

)
,
(

000

.02.02.02

)
,
(
.02

.02

)
3 17.15 22.25 21.85

Tot. # of parameter configurations 1,728

The results in Table 6 show that reducing the number of batch positions has
a remarkable effect on the solution quality, and thus, we conclude that different
parameter values are worth exploring in the second parameter tuning step. As
already mentioned, the standalone execution of GA-J2P without initial solutions
is so much worse that we do not investigate this approach further. Furthermore,
since the randomized initial solutions outperform initial populations with fully
randomized solutions, we fix the parameter ipc to iri. We also fix the parameters
esr to .05 as larger values are not used in literature and therefore perceived as un-
favorable, and svs to SUS and pas to SUS as results are almost similar. Because
smaller population sizes (leading to more generations) seem to be favorable, we
will explore different settings for µ in the next tuning step. Regarding recombina-
tion, we see that J2Pa2PX outperforms J2PaOPX, and thus, we only tune PJ2P

a2PX in
the second step. For mutation, we can see that the problem-specific mutation oper-
ators J2Pbsw, J2Pjsw, J2Pbin, and J2Pjin perform best when solely applied. As the
survival rate (svr) is directly related to recombination and mutation probabilities,
we investigate both esr values in step two.

In the second parameter tuning study (GA-J2P-PT2), we use 540 parameter
configurations to define 16,200 experiments (see Table 7). To ensure a feasible
transfer of initial solutions to the genotype representation, we must guarantee that
the number of batches on each machine is not smaller than in any initial solution.
Therefore, we calculate the maximum value of used batches per machine of all
solutions bpmMAX

m and adjust the finally available batches-positions per machine
accordingly. In addition, we use this value to define two additional settings.

Table 7: Parameters and results of study GA-J2P-PT2

Parameters and values #
va

lu
es

MRIW [%]
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bpm max{n, bpmM AX
m } ,

max{1.1n/m, bpmMAX
m } ,

max{1.2n/m, bpmMAX
m } ,

1.1bpmMAX
m , 1.2bpmMAX

m

5 8.07 7.62 7.91 7.88 7.75

µ 150 , 200 , 250 3 7.92 7.89 7.72
svr .2 , .4.4.4 2 7.43 8.27

PJ2P
a2PX .2.2.2 , .3 , .4 3 9.44 7.76 6.33

PJ2P
cust .02 , .04 , .08.08.08 , .12 , .16 , .20 6 6.91 7.68 8.42 8.30 8.08 7.69

Tot. # of parameter configurations: 540

Based on the results of the parameter tuning studies GA-J2P-PT1 and GA-
J2P-PT2, we fix the parameters of GA-J2P as follows: bpm = max{n/m, bpmMAX

m },
ipc = iri, esr=.05, svr=.4, svs=SUS, pas=SUS, PJ2P

a2PX = .2, and PJ2P
bsw = PJ2P

jsw =

PJ2P
bin = PJ2P

jin = .08 (all other operator probabilities are set to 0).

7.3. GA-J2BRK parameter tuning
We also perform a two-step parameter tuning for GA-J2BRK on instance set DPT .
The parameters and their investigated values, as listed in Table 8, are used to set up
60,480 experiments in study GA-J2BRK-PT1. For termination, we use setting TS1
(see Table 3). The version of GA-J2BRK without initial solutions (ipc = ran)
is much worse than the others (22.7% vs. 89.1% and 85.1%), and therefore,
we remove the corresponding results from further considerations and MRIW
computations. In Table 8, bold values indicate values to be further investigated
in step two, and bold and underlined values are fixed based on the results. To
simplify readings, we introduce PJ2BRK

cust for representing identical probabilities
for PJ2BRK

bsw , PJ2BRK
jsw , PJ2BRK

bin , and PJ2BRK
jin . Similarly, PJ2BRK

uni,gau represents identical
probabilities for PJ2BRK

uni and PJ2BRK
gau .

Table 8: Parameters and results of study GA-J2BRK-PT1

Parameters and values #
va

lu
es

MRIW [%]

ipc (cr ,) icr , iri 3 23.59 24.15
µ 200 , 400 2 23.82 23.92
esr 0 , .05 2 23.00 24.74
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svr .2 , 0.4 2 23.48 24.26
svs TOS(2) , SUS 2 23.80 23.94
pas TOS(2) , SUS 2 23.91 23.83
( PJ2BRK

aOPX

PJ2BRK
a2PX

) (
.2

0

)
,
(

000
.2.2.2

)
,
(
.2

.2

)
3 23.61 24.33 23.67

( PJ2BRK
rr

PJ2BRK
cust

PJ2BRK
uni,gau

)
(
.02
0
0

)
,
(

0
.02.02.02
0

)
,
(

0
0
.02.02.02

)
3 23.89 23.94 24.03

(
.02
.02
0

)
,
(
.02
.02
0

)
2 23.79 23.88

(
0
.02
.02

)
,
(
.02
.02
.02

)
2 23.92 23.64

Tot. # of parameter configurations: 2,016

The results in Table 8 support the previous observation that randomized initial
solutions are preferable compared to completely randomly generated solutions for
initial population composition. In contrast to GA-J2P, GA-J2BRK performs better
with larger populations and µ will be tuned in the second step. For the parameters
esr, svr, svs, and pas, the results are very similar to those from GA-J2P, and thus,
we proceed as before. The recombination by J2BRKa2PX leads to better results
compared to J2BRKaOPX, accordingly, we tune the corresponding probability
PJ2BRK

a2PX in the second step. The results for the mutation operator are not as clear as
for GA-J2P because the MRIWs are close together. However, as the setting with
PJ2BRK

rr =.00, PJ2BRK
cust. =.02, and PJ2BRK

uni,gau=0 (23.94%) and PJ2BRK
rr =0, PJ2BRK

cust. =0, and
PJ2BRK

uni,gau=.02 (24.03%) performs best, we are going to optimize PJ2BRK
cust. and PJ2BRK

uni,gau
independently of each other in tuning step two. The investigated parameter values
are summarized in Table 9.

Table 9: Parameters and results of study GA-J2BRK-PT2

Parameters and values
#

val-
ues

MRIW [%]

µ 300 , 350 , 400 , 450 4 1.29 1.31 1.28 1.26 1.29
svr .2 , .4.4.4 2 1.26 1.31
PJ2BRK

aOPX .2.2.2 , .3 , .4 3 1.36 1.3 1.2
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mut.

PJ2BRK
cust = .02, .04 ,

.08 , .12 , .16 (with
PJ2BRK

rr =0, PJ2BRK
uni,gau=0)

10

1.27 1.3 1.23 1.27 1.24

PJ2BRK
uni,gau =.02.02.02 , .04 ,

.08 , .12 , .16 (with
PJ2BRK

rr =0, PJ2BRK
cust =0)

1.37 1.31 1.29 1.31 1.26

Tot. # of parameter configurations: 240

The results in Table 9 clearly indicate most suitable parameters. The better
performance of PJ2BRK

uni,gau = .02 compared to all other mutation settings can be traced
back to be the most efficient one and leads to the highest number of generations in
the given time limit. Based on the overall results of the parameter tuning studies
GA-J2BRK-PT1 and GA-J2BRK-PT2, we fix the parameters of GA-J2BRK as
follows: ipc = iri, esr = .05, svr = .4, svs = S US , pas = TOS , PJ2BRK

a2PX =.2, and
PJ2BRK

uni,gau=.02 (all other operator probabilities are set to zero).

8. Experimental results

For the final testing phase of our developed algorithms, we reserved D5 (20%
of the data), which was not used in either of the previous training or tuning phases,
for assessing the solution quality on unseen problem instances. We use the MRIW
metric to compare four solution methods:

- BATCS-d-MLPP(PC6, GS3) has the highest MRIW score among the 17
solution methods (see Section 2.2) on D1,2,3,4. We use this solution method
as a baseline to compare the effectiveness of our algorithm selection method.

- AlgSel(GBDT-BIN-BCE) has the highest hit rate according to our anal-
ysis in Section 7.1. We trained the model on D1,2,3,4 to predict the best-
performing solution method for each problem instance from Section 2.2
and used that algorithm to solve it.

- GA-J2BRK is the GA with the parameters from Section 7.3.

- GA-J2P is the GA with the parameters from Section 7.2.

Both GAs used the AlgSel(GBDT-BIN-BCE) to create their initial population
and terminated their computations after reaching the time limits as defined in TS2
(see Table 3). So, our algorithm set A′ consists of these four solution methods for
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the computation of the MRIW. Table 10 presents the MRIWs of all four methods
grouped according to the number of jobs (n) and number of machines (m). Certain
(n,m) groups do not exist in the used data set and hence are left blank in the table.

Table 10: MRIWs [%] per solution method, number of jobs,
and machines.

n= 100 200 400 800 1,600 3,200 MEAN

BATCS-d-MLPP (PC6, GS3)
m=1 2.02 0.85 1.76 1.54
m=3 2.55 2.29 1.78 2.21
m=4 2.60 2.47 1.80 2.29
m=5 2.19 2.24 2.05 1.63 2.05

m=10 2.33 2.32 2.61 2.45 1.95 2.37
m=20 3.13 4.25 3.48 3.56

MEAN 2.34 2.03 2.00 2.40 3.10 3.48 2.23

AlgSel(GBDT-BIN-BCE)
m=1 6.71 6.60 6.92 6.74
m=3 4.62 5.55 4.93 5.03
m=4 5.99 6.53 5.72 6.08
m=5 5.92 5.96 5.25 4.51 5.47

m=10 9.48 9.22 8.01 5.68 5.63 7.95
m=20 9.79 5.25 3.65 7.25

MEAN 6.54 6.77 6.17 6.66 5.44 3.65 6.42

GA-J2BRK
m=1 11.52 9.94 10.08 10.51
m=3 13.68 11.94 9.61 11.74
m=4 15.87 14.40 10.79 13.69
m=5 17.19 14.46 12.15 8.45 13.37

m=10 22.22 20.38 16.18 11.87 10.94 17.21
m=20 18.50 12.57 4.46 14.18

MEAN 16.09 14.23 11.76 12.94 11.75 4.46 13.64

GA-J2P
m=1 47.40 50.33 42.21 46.65
m=3 41.85 40.41 30.46 37.57
m=4 43.74 40.54 28.84 37.71
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m=5 45.44 39.13 28.08 22.02 34.44
m=10 52.19 45.47 32.23 21.25 18.48 36.48
m=20 25.20 16.38 9.90 19.71

MEAN 46.12 43.18 32.36 22.82 17.43 9.90 36.73

Our ML-based algorithm selection method outperforms the “statically” chosen
best solution method in every group (n,m). Averaged over all instances, it achieves
an MRIW of 6.42 % compared to the static best solution method’s MRIW of
2.23%. The performance improvement is higher for instances with fewer jobs
and decreases for very large instances, but nonetheless exists. This justifies the
efforts of training a model to rank solution methods if several are available for the
problem at hand.

Both GAs create their initial population using the AlgSel(GBDT-BIN-BCE)
and hence achieve, as expected, substantially higher performances in each group
(n,m) than the algorithm selection method without post-optimization. Interest-
ingly, a clear winner exists between both GAs. GA-J2P immensely outperforms
GA-J2BRK in each group. The greatest difference in performance improvement
between both GAs can be observed for small instances (e.g., n = 100 or n = 200).
Across the different machine settings (m), both GAs performed (rather) similarly.
One exception to that is the performance of GA-J2P for m = 20. From m = 10 to
m = 20, the MRIW drops from 36.48% to 19.71%. However, this effect is due to
the fact that large instances with n = 3200 only exist for m = 20.

Table 11: Results of GA-J2P by instance characterisics

Instance characteristic MRIWs [%]

n 100, 200, 400, 800, 1600, 3200 46.12 43.18 32.36 22.82 17.43 9.90
m 1, 3, 4, 5, 10, 20 46.65 37.57 37.71 34.44 36.48 19.71
q 3, 5, 10, 20, 40 35.98 38.53 39.49 39.62 16.23
jtfam ND, UD 36.65 36.81
crs 1, 2, 3, 4 46.74 37.91 31.74 30.53
st AR, AE, SE 36.38 37.63 36.19
eta 0.25, 0.75 37.51 35.96
tf 0.3, 0.6 38.67 34.79
rdd 0.5, 2.5 39.17 34.30

Table 11 shows the MRIW grouped for each instance characteristic (see
Gahm et al. (2022) or Uzunoglu et al. (2023b) for detailed description of instance
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characteristics). The job to family assignment mode ( jt f am), setup time allocation
(st), setup time severity(eta), tightness factor (t f ), and due date range factor
(rdd) seem to have minor effects on the performance of the GA. The capacity
requirement scenarios (crs) define the ranges of a job’s capacity demand and
have a noticeable effect on the MRIW. Also, the MRIW for the number of job
families (q) drops immensely for q = 40, but, again, this number of job families
only exists for n = 3200. Due to its coupling to the job size, it is unclear how
much of this effect should be attributed to the characteristic itself. An explanation
for the trend of decreasing improvement with increasing job size might be the
coupling between job size and the “complexity” of the problem: large instances
need more time for their mutation and repair mechanisms, and therefore, GAs
can search for solution improvements for these instances less intensely. However,
this situation needs a deeper understanding of its causes and has to be analyzed
more nuancedly in future research.

9. Conclusions and further research directions

In this paper, we presented two learning-based contributions to both ends of using
a heuristic to solve a complex scheduling problem. First, we addressed an issue
appearing before using a heuristic – selecting the most suitable method. The
Algorithm Selection Problem is an active topic in research and has come a long
way since its initial formulation in 1976 by Rice. Recent contributions incorporate
ML models, for example, by predicting the performance of an algorithm on a
given instance. In our approach, we used learning-to-rank methods from different
ML research fields like information retrieval and recommender systems that best
suit the needs of the algorithm selection task. Our computational results show that
asking “the right questions” does matter: Asking for the (probably) best algorithm
(or a ranking of algorithms) instead of asking for a performance prediction results
in a hit rate. Besides this finding, we can confirm that GBDTs perform better
on the tabular data of our ASP than NNs, and we can report that the importance-
weighted MSE with weighting parameter α (iwMSE(α)) is competitive and worth
to be studied in more detail in the future. Overall, the application of the ASP
model GBDT-BIN-BCE to dynamically select an algorithm for solving an instance
has outperformed the static selection of the best algorithm (BATCS-d-MLPP(PC6,
GS3)) (MRIW of 6.42% vs. 2.23%).

The second major contribution of this paper addressed what happens after solv-
ing the problem instance with a selected construction heuristic – improving the
initial solution(s). To that, we presented the two GAs GA-J2P and GAJ2BRK with
different representations (encodings). The random keys approach (GAJ2BRK)
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represents feasible solutions with every representation and, therefore, does not
need any costly repair mechanism during its computation like the GA-J2P ap-
proach. However, a great advantage of GA-J2P is that we can easily include
knowledge about reasonable solutions. For example, we know the number of used
batches (i.e., batch positions per machine) from the initial solutions and use it to
limit the number of available batches. As the experimental results have shown,
the GA-J2P approach achieves significantly higher improvements when compared
to GA-J2BRK. Nonetheless, the improvements decrease with increasing instance
size and lead to the question of how to utilize the potential of our solution method
for such problem instances.

In conclusion, we demonstrated in this paper how to integrate several parts
in the decision-making to get better solutions quicker. We strongly believe that
having a more holistic view on the solution procedure(s) will lead to very fruitful
results for practical application.

Furthermore, we advocate shifting the goal of ASP from a mere, isolated
selection of the best algorithm to decisions involving the allocation of compu-
tational resources, interleaving of algorithms, or use of information gathered
online during the solving. Kotthoff (2016) presented an interesting survey on
algorithm selection and referred to the topic in a broader sense with the term
algorithm portfolio. The algorithm portfolio technique outputs several (probably)
good algorithms for a problem instance to achieve more robust results. Their
online variants may even change the currently used algorithm if the solution
quality misses the expectation to mitigate wrong decisions made at the beginning.
One next challenge for our solution approach(es) would be to include every part
of our solution concept into the ASP. This could help us to use the potentials
of the GA(s) even for the largest instances. Fundamental questions implied by
that would be: how much time should we invest in finding the initial population
compared to the GA? Or, which GA-variant to choose, and which parameter con-
figuration to select, could be included in the ASP. Taking that idea even further,
information from a pre-solving phase of several GA variants could be used to
further improve the solution quality. These ideas and questions will definitely
need sophisticated ML models tailored to give the right answers. Researchers
must, however, carefully consider how to incorporate the feedback from these
ML models into their decision-making.
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Appendix A. Preliminary study of “d-MLRP” variants

Table A.12: Performance of “d-MLRP” variants by pipeline
configuration and ranking application strategy

Pipeline
configura-
tion

Ranking application strategy

B1 B1-G Bx B(3)-G B(5)-G B(9)-G Mean

[1,9,0]-CF 34,42 76,41 76,75 76,86 76,86 76,90 69,70
[1,9,0]-AF 34,68 76,24 76,44 76,42 76,44 76,54 69,46

[0,5,5]-CF 51,82 77,38 77,55 77,59 77,64 77,46 73,24
[0,5,5]-AF 54,80 77,43 77,55 77,53 77,55 77,56 73,74

[1,4,5]-CF 56,80 77,55 77,62 77,53 77,63 77,55 74,12
[1,4,5]-AF 53,23 77,39 77,73 77,56 77,58 77,66 73,52

[0,2,8]-CF 52,56 77,02 77,46 77,38 77,44 77,53 73,23
[0,2,8]-AF 55,07 77,43 77,52 77,49 77,47 77,51 73,75

[1,2,7]-CF 56,05 77,15 77,33 77,30 77,38 77,34 73,76
[1,2,7]-AF 57,99 77,40 77,74 77,72 77,69 77,73 74,38

[0,1,9]-CF 46,56 76,95 76,90 77,14 77,11 76,99 71,94
[0,1 9]-AF 51,68 77,07 77,12 77,08 77,03 77,13 72,85

[1,0,9]-CF 49,32 77,06 77,00 77,06 77,02 76,99 72,41
[1,0,9]-AF 52,50 77,24 77,43 77,34 77,52 77,42 73,24

[0,0,10]-
CF

47,44 76,74 75,97 76,74 76,72 76,52 71,69

[0,0,10]-
AF

47,81 77,07 76,84 77,26 77,29 77,32 72,26

52.87 67.94 68.75 68.55 68.71 68.76
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Appendix B. Best-performing hyper-paramters for tuning phase 1

Table B.13: Best-performing hyper-parameter for NN tuning
phase 1

Labeling
strategy

Loss function layer 1 layer 2 layer 3 dropout
rate

reg
rate

BIN BCE 1024 1024 1024 .1 .01
OV MSE 256 1024 256 .3 .001
N-OV MSE 1024 1024 512 .1 .01

RANK

MSE 1024 1024 512 .1 .001
iwMSE(1) 1024 1024 512 .1 .001
iwMSE(3) 1024 512 512 .1 .002
iwMSE(3) 1024 1024 256 .1 .002
ApproxNDCG 1024 1024 256 .1 .002
LambdaRankNDCG 512 1024 1024 .1 .002
LambdaRankNDCG(1) 1024 256 256 .1 .002

RANK-SC

MSE 1024 1024 1024 .1 .001
iwMSE(1) 1024 1024 1024 .1 .002
iwMSE(2) 512 512 1024 .1 .01
iwMSE(3) 1024 512 512 .1 .001
ApproxNDCG 1024 256 512 .1 .002

Table B.14: Best-performing hyper-parameter for GBDT tun-
ing phase 1

Labeling
strat-
egy

Loss function number
estima-
tors

learning
rate

maxi-
mum
depth

min
child
weight

sub-
sampling
rate

column
sample

BIN BCE 450 .01 9 1 .7 .5
BIN LambdaBinary 350 .1 8 2 .7 .5
OV MSE 450 .01 10 2 .7 .7
N-OV MSE 450 .01 10 1 .7 .7

RANK

MSE 350 .01 10 1 .7 .7
iwMSE(1) 450 .01 10 2 .7 .7
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iwMSE(2) 450 .01 10 2 .7 .7
iwMSE(3) 350 .01 10 2 .7 .7
RankPairwise 450 .1 9 2 .7 .5
LambdaMARTNDCG 250 .1 9 1 .7 .5

RANK-
SC

MSE 350 .01 10 1 .7 .7
iwMSE(1) 450 .01 10 1 .7 .5
iwMSE(2) 450 .01 9 2 .7 .5
iwMSE(3) 450 .01 10 1 .7 .5

Appendix C. Best-performing hyper-paramters for tuning phase 2

Table C.15: Best performing hyper-parameters for NN phase
2

Labeling
strategy

Loss function layer 1 layer 2 layer 3 dropout
rate

reg rate

BIN BCE 2048 256 2048 .1 .001

RANK iwMSE(2) 2048 2048 2048 .1 .002

Table C.16: Best-performing hyperparameters for GBDT
phase 2

Labeling
strategy

Loss function number
estima-
tors

learning
rate

maxi-
mum
depth

min
child
weight

sub-
sampling
rate

column
sample

BIN BCE 550 .01 10 2 .7 .5

RANK iwMSE(2) 550 .01 10 2 .7 .5
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