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Abstract

Since the beginning of the 21st century, the exploration of ever-growing data sets has
gained more and more attention in research and application-related data analysis. In
particular, recommender systems-related use cases due to social networks and media,
as well as increasingly popular services in online shopping and marketing, became of
specific interest. Moreover, entertainment media such as music and video streaming
services and many associated communities and forums are also services that collect
large amounts of user-based data. Analyzing correlations, structures, and groups
based on various characteristics in sometimes enormous data sets, e.g., place targeted,
user-based advertising or making recommendations for music and movies, is essential.
In addition, analyzing user behavior and interactions in social networks and media is
a crucial area in research to create traceability and understanding of behavior. Also,
changes in user profiles over time and correlations between user behavior and news
propagation paths are other significant areas in research. Giving structure to this
amount of data and extracting relevant results requires human expertise. However, this
is very expensive for humans, as it is very time-consuming to identify commonalities
and differences in structures and patterns for individual specific data sets.

In particular, identifying specific user roles in social media and networks has taken
on a special significance in the last 20 years, as the proportion of bots, spammers, or
users who otherwise engage in harmful behavior has increased significantly. Moreover,
in addition to these user roles, many other classes of users exist that are distinguished
from other users by their behavior on the network and fine-grained characteristics.
While the focus in research and practice has so far been on generalized user roles, such
as detecting harmful user behavior, fine-grained identification has largely fallen by
the wayside due to the need for expert input and transferability to other data sets
and the associated effort. Furthermore, taking the rise of influencers as an example,
the development of user roles over time, among other things, is a worthwhile but still
largely unexplored topic.

In this work, the use of human expertise for the recognition and transferability of
patterns and structures in the context of known Machine Learning (ML) methods will



now be applied and gradually reduced. In particular, the refinement and classification of
generalized user roles into fine-grained structures benefit from a largely automated and
scalable process. Furthermore, traceability aspects serve as substantial knowledge gains,
especially at the beginning of the analysis, to enable transferability to new scenarios.
In the process, users distinguished by many conspicuous, partly complementary
characteristics, such as their actions in the social network, their position, and their
ability to influence other users, are first grouped comprehensibly. Subsequently, a
trained and supervised classifier assigns each cluster a probability to the existing
user roles. The method excites as it can be successfully applied to datasets that
are temporally and thematically distinct from the original dataset. Further research
also shows that transferability to completely new datasets with a different origin is
possible with little effort. Different sampling strategies are investigated to successfully
analyze datasets in terms of scalability and stability of user roles and are combined
probabilistically afterward. Moreover, a transition model is presented, which can
make predictions for users in previously unexamined datasets in a temporal context
to investigate longer-term trends regarding user role migrations.

The evaluation results show that many stable distinct user roles are reliably
detected, that transferability concerning topical and temporal influences is possible with
small cutbacks, and that transferability to entirely new data sets can be successfully
implemented with moderate effort. The results of the transition model also show that
a large number of users can be predicted reliably to a large extent. Ultimately, all of
these aspects also ensure that the approach can cope with a wide variety of data sets
in terms of scalability and, with minor drawbacks, hardly relies on the need for expert
input.

In addition, the transferability of the approach to datasets representing cascades of
user messages as a graph is also carried out in the context of this work. Compared to
user role analysis, similar graphs are summarized by various largely hidden properties,
with the difference that a Deep Learning (DL) procedure is performed. The evaluation
of this use case also shows that parts of the model work on entirely different scenarios
and that knowledge can also be extracted and analyzed based on patterns. Furthermore,
the transferability also allows an enormous saving of human resources.

Moreover, an approach is presented to minimize the costly and tedious data
preparation process by integrating normalization and standardization into a clustering
procedure. Again, as with fine-granular user analysis, the primary goal is to cluster
common structures and abstract them from others to save human resources.

This thesis presents methods for recognizing fine-grained structures in diverse
scenarios, abstracting them successfully, and analyzing them with minimal expert
input. In particular, the gain in knowledge and the traceability of how structures
emerge during the analysis confirm the usefulness of the methods. Furthermore, these
approaches are strengthened in their significance by scalability and transferability.



Zusammenfassung

Die Erforschung von riesigen, immer weiter wachsenden Datensätzen hat seit Beginn
des 21. Jahrhunderts durch die sozialen Netzwerke und Medien, sowie auch durch
immer populärer werdende Dienste im Bereich des Online Shoppings und Marketings
immer mehr Beachtung in der Forschung aber auch in der anwendungsbezogenen
Datenanalyse in Zusammenhang mit Empfehlungssystemen gefunden. Auch Unterhal-
tungsmedien wie Musik- als auch Video-Streaming Dienste und viele damit verbundene
Communitys und Foren sind Dienste, die große Mengen an nutzerbasierten Daten sam-
meln. Dabei ist es essenziell, anhand vieler sehr unterschiedlicher Eigenschaften in teils
sehr großen Datensätzen Zusammenhänge, Strukturen und Gruppen zu analysieren,
um beispielsweise gezielt und nutzerbasiert Werbung zu platzieren oder Empfehlun-
gen für Musik als auch Filme zu unterbreiten. Darüber hinaus ist auch die Analyse
von Nutzerverhalten und Interaktionen in sozialen Netzwerken und Medien ein sehr
ausschlaggebender Bereich in der Forschung um Nachvollziehbarkeit und Verständnis
für das Verhalten zu schaffen. Auch die Veränderungen von Nutzerprofilen im Laufe
der Zeit, sowie die Korrelationen zwischen Nutzerverhalten und Ausbreitungspfaden
von Nachrichten zu verfolgen sind weitere bedeutende Bereiche in der Forschung. Um
dieser Menge an Daten Struktur zu geben und relevante Ergebnisse zu gewinnen wird
menschliche Expertise benötigt, die jedoch für Menschen sehr teuer ist, da es sehr
zeitaufwendig ist, Gemeinsamkeiten und Unterschieden in Form von Strukturen und
Mustern für einzelne spezifische Datensätze ausfindig zu machen.

Insbesondere die Identifikation von spezifischen Nutzerrollen in sozialen Medien und
Netzwerken hat in den letzten 20 Jahren einen besonderen Stellenwert eingenommen,
da der Anteil an Bots, Spammern oder Nutzern, die anderweitig schädliches Verhalten
an den Tag legen, sehr stark zugenommen hat. Darüber hinaus existieren neben diesen
Nutzerrollen auch viele andere Klassen von Nutzern, die sich durch ihr Verhalten
im Netzwerk und zu anderen Nutzern von diesen durch feingranulare Eigenschaften
abheben. Während in der Forschung und Praxis der Fokus bislang auf generalisierten
Nutzerrolen, wie beispielsweise der Erkennung von schädlichem Nutzerverhalten lag,
blieb die feingranulare Identifikation aufgrund der Notwendigkeit des Einsatzes von



Experten und der Übertragbarkeit auf andere Datensätze und dem damit verbundenen
Aufwand, bislang weitestgehend auf der Strecke. Ferner ist am Beispiel des Aufstiegs
der Influencer unter anderem auch die zeitliche Entwicklung von Nutzerrollen ein sehr
interessantes, aber noch weitestgehend unerforschtes Thema.

Im Rahmen dieser Arbeit soll nun der Einsatz von menschlicher Expertise für die
Erkennung und Übertragbarkeit von Mustern und Strukturen im Zusammenhang mit
bekannten ML Verfahren eingesetzt und schrittweise reduziert werden. Insbesondere
die Verfeinerung und Klassifikation von generalisierten Nutzerrollen in feingranu-
lare Strukturen profitiert von einem weitestgehend automatisierten und skalierbaren
Prozess. Darüber hinaus dienen vor allem zu Beginn der Analysen die Aspekte der
Nachvollziehbarkeit für wichtige Erkenntnisgewinne um eine Übertragbarkeit auf neue
Szenarien zu ermöglichen. Im Prozess werden zunächst Benutzer, die sich durch eine
Vielzahl von auffälligen, teils komplementären Eigenschaften wie deren Aktionen im
sozialen Netzwerk, deren Position, sowie deren Eigenschaft andere Nutzer zu beein-
flussen in nachvollziehbarer Art und Weise zusammengefasst. Im Anschluss daran
erhält jeder dieser Cluster mithilfe eines trainierten und überwachten Klassifikators
eine Wahrscheinlichkeit zu den vorhandenen Nutzerrollen. Das Verfahren besticht
dadurch, dass es auf Datensätze, die sich temporal und thematisch vom Ursprungs-
datensatz abheben, erfolgreich angewendet werden kann. Weitere Untersuchungen
zeigen auch, dass die Übertragbarkeit auf komplett neue Datensätze mit anderem
Ursprung mit geringem Aufwand möglich ist. Um auch Datensätze erfolgreich im
Hinblick auf Skalierbarkeit und Stabilität von Nutzerrollen analysieren zu können,
werden verschiedene Sampling- und Kombinationsstrategie untersucht. Außerdem
wird ein Transitionsmodell vorgestellt, welches im temporalen Kontext in der Lage
ist, Vorhersagen für Nutzer in bislang nicht untersuchten Datensätzen eine Vorher-
sage für erwartete Nutzerrolen zu treffen, um auch längerfristige Trends hinsichtlich
Nutzerrollenwanderungen untersuchen zu können.

Die Ergebnisse der Evaluation zeigen, dass eine Vielzahl an stabilen unterschiedlichen
Nutzerrollen zuverlässig erkannt werden, dass die Übertragbarkeit hinsichtlich the-
matischer und zeitlicher Einflüsse mit kleinen Abstrichen möglich ist, sowie dass die
Übertragbarkeit auf komplett neue Datensätze mit moderatem Aufwand erfolgreich
umgesetzt werden kann. Auch die Ergebnisse des Transitionsmodell zeigen, dass eine
Vielzahl an Nutzern weitestgehend zuverlässig vorhergesagt werden können. Letz-
tendlich sorgen all diese Aspekte auch dafür, dass der Ansatz hinsichtlich Skalierbarkeit
mit unterschiedlichsten Datensätzen zurechtkommt und mit geringen Abstrichen kaum
auf die Notwendigkeit des Einsatzes von Experten angewiesen ist.

Außerdem wird im Rahmen dieser Arbeit auch die Übertragbarkeit des Ansatzes
auf Datensätze, die Ausbreitungsgraphen von Nachrichten repräsentieren, vollzogen.
Verglichen mit der Nutzerrollenanalyse werden hier ähnliche Graphen durch eine
Vielzahl von weitestgehend verborgenen Eigenschaften zusammengefasst, mit dem



Unterschied, dass hier ein Deep Learning Verfahren vollzogen wird. Auch die Auswer-
tung dieses Anwendungsfalles zeigt, dass Teile des Verfahrens auf komplett anderen
Szenarien funktionieren und dass ebenfalls Wissen anhand von Strukturen extrahiert
und analysiert werden kann. Darüber hinaus ermöglicht die Übertragbarkeit ebenfalls
eine enorme Einsparung von menschlichen Ressourcen.

Ferner wird unter anderem ein Ansatz vorgestellt, um den sehr aufwendigen
und langwierigen Prozess der Datenaufbereitung zu minimieren, indem Aspekte der
Normalisierung und Standardisierung in ein Clusteringverfahren integriert werden.
Auch hier ist, wie bei der feingranularen Nutzeranalyse das vorrangige Ziel, gemeinsame
Strukturen zusammenzufassen und von anderen zu abstrahieren sowie, dass dadurch
menschliche Ressourcen eingespart werden können.

Die in dieser Arbeit vorgestellten Verfahren zeigen allesamt, dass es möglich ist in
mannigfaltigen Szenarien mit teilweise komplett unterschiedlichen Ausgangssituationen
hinsichtlich der verfügbaren Datensätze, feingranulare Strukturen zu erkennen, diese
erfolgreich voneinander zu abstrahieren, sowie mit möglichst wenig Zeitaufwand von Ex-
perten zu analysieren. Insbesondere der Erkenntnisgewinn und die Nachvollziehbarkeit,
wie Strukturen im Laufe der Analysen entstehen, bestätigen den Nutzen der Ver-
fahren. Darüber hinaus werden diese Ansätze durch die Aspekte der Skalierbarkeit
und Übertragbarkeit in ihrem Stellenwert verstärkt.
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Chapter 1

Introduction

I’m swinging hard for all my life
Reaching across this great divide
Until I see the other side
Until I die, until I die

Parkway Drive - Darker Still

1.1 Motivation

User-generated data has become more and more significant in the last few years.
Especially the purpose of sharing personal and public information and interacting
with other users on social media platforms led to a continuously growing number
of users and their produced content, leading to a vast amount of data to analyze.
The importance and significance of user-generated data are reflected in online social
networks and users in the real world, as information is discussed and spread offline in
daily routines: Whether discussions of significant sports events, political elections and
topics, and the latest movies regularly reach and affect a vast part of today’s society.
This massive amount of user-generated data allows experts to analyze and categorize
users by their behavior and interaction in digital platforms, which is a significant
component of this work.
The behavior of users in those kinds of data sets became an extensive area in research
and several regions of the economy, as analyzing it is an eminently significant benefit.
Keeping track of the immense, ever-growing data is challenging, making it difficult
to understand individuals, groups, and products in the data sets provided. Experts,
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researchers, and data scientists often struggle with this vast amount of data as they
must process and structure it before an analysis is feasible.
In a commercial setting, social media benefited from the trends beginning in the late
2000s, as user-generated data also exists in many other parts of digital daily routines,
such as e-commerce. For example, micro-targeting, describing a segmentation process
of a group of users with similar characteristics such as specific interests, demography, or
residence to deliver them custom-tailored content, is very important in online shopping
and social networks. The granularity adjustment is significant in this use case, as
users could get bored by coarse-grained non-personalized ads and get frightened by
too fine-grained personalized ads (cp. [Bar14]). Moreover, detecting fine-grained user
roles is also applicable to the behavior and interaction of users in social networks to
distinguish between different kinds of user roles. The work presented in this thesis
picks up this trend. It aims to find fine-grained and hierarchically built structures
using independent dimensions. A major, but not the only, contribution is to detect
stable and distinguishable user groups starting from coarse-grained structures. In
literature, granularity in terms of granular computing is present in both ways, from
coarse to fine-grained and vice versa, being a prominent area in data clustering and
cluster analysis, which is discussed in the survey of Ding et al. [DDZ15].
Valuable strategies for the aims of this thesis can be addressed with both Unsupervised
Learning (USL) and Supervised Learning (SL) techniques from the area of Machine
Learning (ML) as some steps need further human interaction and intervention, while
others only need them as catalysts in the beginning. Even though many areas in ML
do not require human intervention, e.g., the plain unsupervised user group detection,
the analysis and classification of structures need at least human assistance in the
beginning and supervisory authority in the learning process of the classification. Thus,
the use of human expertise respectively intervention in the different and manifold
areas of ML is a significant aspect, which will be discussed later in Section 1.4. Both
the human intervention for amendments in Knowledge Discovery (KD) approaches
and expertise in model building or training models are helpful but expensive in terms
of time and effort. This thesis will examine human expertise’s benefits, challenges,
and drawbacks in each step of the approach.
The individual aspects of this work will now be explained and motivated, considering
how their interaction creates a unique set of challenges.
First, large-scale user-generated data sets consist of user information, information
considering behavior to other users as well as to non-human entities, such as (digital)
products, e.g., movies. In [KDN08], user-generated content is described as content
that has its origin from regular people who voluntarily interact with (non)-human
entities and contribute data and information, e.g., people rate movies, videos, music, or
interact with the content of other people. This data is then utilized in social networks,
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online shopping platforms, and other places. Frequently, these user-generated data
sets are massive in terms of data points and distinct features and, thus, difficult
to interpret from the view of humans. These aspects outline ambitious tasks and
cause challenges for researchers and data scientists, such as finding groups, structures,
patterns, connections, and differences, often leading to overwhelming situations and
challenges in the analysis process. Since it is impossible to avoid human effort, one of
the main aspects of this work is to minimize the effort to unburden experts. These
tasks will be discussed later in related work in Section 4.8.
In this work, data sets from the Social Media platforms Twitter1, which was recently
renamed to X, and Telegram2, which contain user information and user behavior
between pair of users considering their interaction and content, will be analyzed.
Twitter and Telegram are well-known social media platforms that deliver vast amounts
of user-generated data. Analyzing data sets from two distinct and miscellaneous kinds
of social networks to analyze user features representing different user behaviors and
interactions substantiates the variety and adaptability of the approach presented in
this thesis. Furthermore, a data set from the Internet Movie Database (IMDB)3, which
contains data on movies, actors, directors, or user ratings, is part of an approach to
reduce human intervention in terms of preprocessing.
Second, analyzing and detecting fine-grained structures also play an essential part in
this work. Fine-grained structures can be distinguished only by a few characteristics
or features, sometimes only negligible, from others. These aspects play an essential
role in cluster analysis as the way from coarse to fine-grained structures is a manifold
research area, discussed in the survey of Ding et al. [DDZ15]. This work analyzes data
sets with a variety of features in most of the occurring use cases, where a widespread
comprehension of the given data and their patterns is necessary. Ensuring a more
fine-grained level considering the structures in the analysis process, straightforward and
complex features, but also latent and explicit features, are considered. These features
are needed to describe users and summarize similar groups, leading to modeling user
roles. Many well-known user roles in the literature have a manifold description, which
must be mapped on those fine-grained structures covering as many features as possible,
creating known and new user roles. While most of the related research (cp. Section
2.1.2 and 4.8) focuses only on a few coarse-grained structures, which incorporates
only the recognition of limited features or characteristics, this work targets explicitly
the identification of fine-grained structures as well as their understanding and the
comprehensibility w.r.t. their origin and composition within a clear hierarchical
structure among the classes. Finding these structures in a fine-grained manner
compared to a few coarse-grained classes also distinguishes the number of classes,

1https://twitter.com
2https://telegram.org
3https://www.imdb.com
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which is, in most cases, a lot larger depending on features and use cases. Summarizing
data objects to structural mapping of groups can also lead to two or more best-
matching classes due to character deviation. Thus, it is also necessary to consider
a probabilistic n-class problem for each pattern to map. Distinguishing from the
previously mentioned approach of micro-targeting, where users are characterized
distinctly by a set of features, i.e., whether a feature is fully present, this approach
aims no hard allocation as allocating user roles may often not be precise. Since the
use of human expertise is scarce and expensive in terms of time and effort and forces
increased demand, in this work, the use of human knowledge will take place in a
limited way when it is valuable and necessary aiding to reduce human expertise over
time to facilitate an automated model-based process as far as possible.
Third, a vital component in this research is the significance of explainability and
discovery of fine-grained structures, which emphasizes the additional value of fine-
grained structures in large-scale user-generated data sets. Understanding how results
are achieved is essential for researchers and analysts. ML techniques often provide only
results for a given input, which are difficult to comprehend. In contrast to classic KD
approaches, the approach presented in this thesis appropriates all steps of a transparent
strategy to understand the process and the outcome. Since fine-grained structures may
only differ measurably in a few features, it is necessary to aid the analyst reasonably
and well-structured through each analysis step. In most aspects, human analysts and
experts’ central part involves supervision during and after the analysis, especially at
the beginning of analyzing new data sets. Onwards, while exploring more and more
data sets, the central part of analysis consists of monitoring and comparing results
against a ground truth, which is associated with less effort in time and resources
compared to the previous steps.
Finally, the challenges of this work, mentioned in the paragraphs before, considering
the benefits of a fine-grained structural analysis in large-scale user-generated data
sets, are summed up briefly. This work provides a cohesive and thus comprehensible
approach to understanding each step of the novel KD process, which will be introduced
in the following section. Furthermore, it aims to recognize even fine-grained patterns
in vast and complex data sets. A pre-eminent aspect, which is emphasized more or
less in each part of this approach, is the need for human expertise and the opportunity
to conserve resources and time the more data sets are analyzed. Moreover, it is of
significant interest to focus on the behavior of users in several aspects of today’s digital
routines, such as online shopping or online social communities, in particular, social
networks and media and other platforms.
While the previous aspects concentrate mainly on the analysis of disconnected data
sets within a social network, it is also of peculiar interest to transfer the model to other
data sets stemming from other social media platforms and social communities, such as

6
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video and music streaming portals, with the benefit of recommending specific content
to fine-grained user roles. In addition to the approach presented in this thesis, the
ability to track user role changes over time in data sets stemming from the same source
also provides the possibility to transfer such kinds of models to other scenarios in the
social-political area, such as election forecast and shift of votes, which is a well-known
scope in aspects of political elections. The insights of detecting fine-grained structures
in this approach may also pave the way into other directions, such as online shopping
and e-commerce, as the possibility to customize promotions to specific user groups
depending on their behavior in the platform is possible.
Not only does the comprehension of social behavior or interaction with other users
require the need for fine-grained structures such as user roles, but also the diffusion of
messages in information cascades and their correlation with fine-grained structures
are worthwhile research topics. The ability to cluster users and whole cascades of user
messages, represented as graphs, is a worthwhile research area. This topic significantly
enhances the related research regarding coarse-grained user role analysis, as cascade
structures also exhibit different graph shapes representing a lucrative research area.

1.2 Overview of Approach & Methodology

To specify the problem statement and the contributions of this thesis more in detail,
a brief overview of the approach and the methodology is presented in this section,
as can be seen in Fig. 1.1. At first glance, the approach resembles the classic KD
process for databases as presented in [FPSS96], yet there are some crucial extensions
and innovations.

Figure 1.1: Flowchart of the novel KD approach.

In the first and most conventional step of the approach, on a raw data set consisting of
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several data points with feature values, all kinds of Feature Engineering are addressed,
such as filtering data or normalization and standardization techniques to reach accurate
and comparable data. Regardless, preprocessing is a time-consuming but vital step,
requiring careful observation and analysis. Moreover, general aspects of preprocessing
are also easily adaptable to new data sets.
Sampling is a cross-cutting technical aspect encompassing the following stages of the
approach, which will be presented after the remaining steps. The third step of the
model deals with Clustering and Cluster Analysis to group similar items and delimit
them from other clusters. Thus, each cluster remains unlabeled until the Classification
step. While human intervention in Clustering is initially vital, as finding and tuning
parameters needs to be done only in the beginning, Cluster Analysis is a step that
requires careful observation, as Clustering does not produce a straightforward output
each time. Once a clustering strategy and a sense for cluster evaluation metrics are
found, the adaptability to other data sets is easily manageable. Delimitating from
those approaches, finding more fine-grained instead of coarse-grained structures, and
comprehending each step, especially in Cluster Analysis, break new grounds in this
work.
After Clustering and producing a set of unlabeled clusters, an optional step, Manual
Class Labeling, is followed, especially when applying the pipeline to entirely new
data sets. After that, the manually labeled and unlabeled cluster deal as input for
the Classification step where unlabeled clusters receive a label. Classification is
the most expensive step in terms of both human intervention and transferability, as
training data and a ground truth need to be specified, and the classifiers need to
be trained. Transferability is necessary depending on the data source, as data sets
stemming from the same source can get around with training data as features and
specifications are similar. Thus, much time is saved when reusing several training data
sets for topically related or close-in-time data sets, making the proposed approach
valuable and effective. While most traditional approaches in KD focus on either
Clustering or Classification, this approach considers both techniques consecutively.
Moreover, classifying fine-grained structures as a part of a multi-class problem leading
to probabilistic vectors is not prevalent in most related procedures as it requires a lot
of human resources. Significantly, SL techniques benefit from more recent techniques,
such as Active Learning (AL) and Semi-Supervised Learning (SSL), due to a significant
reduction of human involvement, as experts conduct as a corrective.
As a cross-cutting concern, Sampling represents the first significant extension of the
proposed approach using several strategies, which will be introduced later in Section
2. While Sampling is described in work published since 2010, such as [ZAL14], as the
purpose for scalability issues for the continuously growing data sets in social media
use cases, the lack of lower accuracy and validity is a clear drawback. Even though

8
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sampling has become an increasingly important strategy, it reveals new challenges
as data sets become more difficult to manage. Sampling is beneficial in this work,
preventing the drawbacks of classical sampling, as the whole process from Steps 3
to 4 is applied to each sample as part of the novel Multi-Sampling and Combination
Strategy, revealing clear advantages in certainty and stability of classes. Saving time
in the whole process, mainly due to reducing the size of data objects to representative
samples in terms of the quadratic complexity of hierarchical clustering, is the most
critical aspect of sampling in this thesis. In addition, a unique feature of the novel
Multi-Sampling and Combination Strategy is to guarantee coverage of the whole data
set, which is a well-known problem in massive data sets, as such data sets cannot be
processed in one step due to the complexity of running runtime and memory. The
most crucial aspect of this work is the possibility that sampling, and combination
provide certainty and stability in classifying classes. Human experts only need to
choose valuable strategies that can easily be adapted to all kinds of data sets. Once
convenient methods are found, human intervention is not required anymore. Only
finding suitable sample sizes is substantial for the following steps, as too large and too
small data sets can cause issues.
The output of the Classification step for each sample delivers a probabilistic labeling
for each cluster in terms of a vector. These probabilistic class vectors for each data
point represented in clusters from different samples are combined in the combination
step to achieve stability. It is possible to reach for each data point of the input a stable
probabilistic classification in the output. This final step of the pipeline is an entirely
new attempt at classifying objects, ensuring more stability and certainty in finding
patterns for specific data objects, as each can have a slightly different probabilistic
classification in varying samples.
Finally, this approach has a lot of common steps as traditional KD and Data Science
pipelines but also strikes a new path, especially considering the novel Multi-Sampling
and Combination Strategy that guarantees to find stable and specific patterns, which
is essential for the analysis of fine-grained structures, the evolution of those as well
as the portability of this approach to new data sets. Especially the latter aspect is
particularly substantial, as the transferability of single steps such as clustering and
classification and the whole approach leads to minimizing human effort and expertise
when applying it to (entirely) new data sets.

1.3 Contributions

After introducing the overall direction of this thesis, giving an overview of the approach
and methodology, and motivating the content of this work, the most important
contributions will be presented and discussed briefly in this section.

9
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• The main goal of this work is to provide a framework for fine-grained structural
analysis of data sets stemming from social media. While the coarse-grained
analysis was a very established topic in related research (cp. Section 4.8), this
work extends the detection of coarse-grained classes by refining them comprehen-
sibly and traceably. Nevertheless, some approaches concentrate on finer-grained
analysis. However, most of them consider only a limited number of classes or
focus on analyzing a few features. The approach presented in this thesis allows a
lucid, well-structured, and comprehensible procedure by applying a hierarchical
and probabilistic strategy that enables refinements for several clusters but also
classes that need to be pre-defined. Moreover, some results of the classification
step show affinity to several classes, which augments a fine-grained structural
analysis to define them precisely. Both learning the structure of fine-grained
patterns, such as user roles as well and the assignment process in terms of
suitable labels are covered in this thesis.

• Furthermore, a significant contribution of this work is the ability to adapt
the proposed framework with moderate effort, employing human intervention
in new unknown data sets. The first scenario is the adaptability of scalable
and complementary data sets from the same source. The ability to adapt the
model on (entirely) new data sets only with fewer and more suitable variations
illustrates the feasibility of the recognition and transferability of knowledge over
time as well as topic variations. As scalability addresses the variation of sizes
of data sets, sampling plays a pivotal step in this thesis. The comprehensive
experiments in Chapter 5 approve the functionality and transferability of the
approach and the benefits of fine-grained probabilistic classes considering topic
and time variations.

• As the framework works successfully on a specific data set, it is of significant
interest that it also can handle data sets stemming from other sources, which
augments the contribution of the adaptability of the proposed model as a second
scenario. This thesis provides, on the one hand, a transfer of the model to
a new social network with similar but varying features, on the other hand, a
transfer to a completely different scenario, where cascade shapes are identified
and classified. In this scenario, the challenge in the process is that features are
latent and elusive for humans and thus can hardly be tracked and comprehended.
The experiments and analysis in Chapter 6 and 7 confirm the transferability
on ultimately other data sets, show the versatility, and amplify this approach’s
previously mentioned benefits.

• Last, one fundamental contribution of this work is the reduction of human
intervention. This thesis provides an approach that needs human experts,
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especially initially, for supervision and learning. However, the more data sets
were supervised, the less human intervention and maintenance were required for
the following analysis. In particular, experts can focus more on understanding
the process and the subsequent analysis. A rather eminent aspect is simulating
and predicting user roles using models based on analyzing users and user roles
in terms of a time series of related events in Section 5.8. This model-driven
approach can cut short the whole process of analyzing users and user roles from
Fig. 1.1 as the extensive analysis in Section 5.9 reveals.

• Another somewhat orthogonal approach for clustering data sets is a novel clus-
tering approach exploiting the Borda Social-Choice voting rule in the allocation
process instead of allocating data objects to clusters using traditional distance
metrics in Chapter 3. The most outstanding benefit is that a normalization
and standardization of data sets are not required, and thus, experts can save
much time in the step preprocessing. Moreover, the extensive experiments show
the suitability of this approach in terms of a Pareto-optimal use case such as
recommendations.

1.4 Assigning Contributions to ML Areas

The KD approach from Section 1.2, as well as the contributions stated in the previous
section, include several techniques and approaches from the area of ML. Thus, first, a
general overview of KD will be presented. After that, the focus will be set more detail
on the contributions of this thesis, and their interaction with the most essential areas
of ML will be examined and brought into line, while the most crucial areas of ML will
be introduced later in Section 2.5.
Maimon and Rokach describe KD in Databases as an “automatic exploratory analysis
and modeling of large data repositories“ to identify “valid, novel valuable and under-
standable patterns from large and complex data sets.“ Data Mining is crucial for KD.
It uses algorithms to explore datasets, build models, and identify unknown structures
and patterns to understand phenomena and make predictions. The analysis of mas-
sive datasets requires techniques, approaches, and algorithms from the field of Data
Mining (DM) [MR10]. In Awad and Kanna, KD is defined as an “extraction process
where knowledge is gathered from structured and unstructured data sources to create
a knowledge database for identifying meaningful and useful patterns from underlying
large and semantically fuzzy data sets.“ KD combines algorithms and concepts of ML
with statistical metrics and methods to solve user-oriented queries and issues. The
extracted knowledge is used repeatedly as input for new data to produce a new output,
which can also be reused in the knowledge base. In most cases, the procedures of
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KD are applied on huge scalable data sets to achieve patterns and structures using
several concepts and algorithms of ML such as clustering, classification, dimensionality
reduction, and much more, to name only a few of them, which will be introduced in
the following section. [AK15]. Finally, scalability, automation, and the ability to find,
comprehend, and transfer fine-grained structures and patterns, pivotal in this work,
are present in KD and ML.
Considering the fine-grained structural analysis of data sets from Fig. 1.1 focusing on
a general KD approach, the first area needed to provide a hierarchical and probabilistic
procedure is USL using hierarchical agglomerative clustering to refine coarse-grained
structures. Furthermore, cluster analysis is a pivotal follow-up technique that guides
the cluster hierarchy to find the best possible clustering. Besides USL, this approach
also affords an interaction with SL techniques, such as classifiers, to map each clustered
and analyzed result to a set of given user roles in a probabilistic way. This interaction
of hierarchical clustering and probabilistic classification substantiates the success of
finding fine-grained classes.
Regarding the adaptability and transferability of the approach on data sets stemming
from the same source and other sources, mostly preprocessing and data preparation
from the area of DM are needed. The expert has to incrementally select and adjust
the features using statistical measures if a completely new data set stemming from
another social network is analyzed. Suppose the source of the data set is related to
already analyzed data sets. In that case, there are only minor adjustments needed in
the sampling strategy, clustering, and cluster analysis (USL), and some circumstances
in the classification step (SL), as significant deviations in terms of time and topic
between the data sets sometimes need manual adjustments. Besides SL, there exist
approaches from the area of SSL and AL to support the user in creating training data
to reduce human involvement, as manual labeling of entirely new data objects is only
needed in the beginning.
Suppose there is a sufficient pool of already analyzed data sets. In that case, using
statistical models, it is also possible to predict user role distributions in terms of a
long-time analysis for new data sets. Especially for analyzing and processing user and
user role movements beyond distinct data sets, Markov Chains deal as a foundation
for a model-building process, which may shorten the analysis of new data sets in
an existing time series. As Markov Models are not a general step of a typical KD
approach, the essential steps and methodology will be introduced later in Section 5.9.
Since reducing human intervention is one pivotal aspect of this work, it is very present
in most of the given steps. While the savings of resources in preprocessing and data
preparation (DM) are very manageable, as these steps are only needed again if entirely
new data sets are analyzed, the clustering and cluster analysis (USL) need some more
attention, as the technique is based on statistical values, which needs to be adjusted

12
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based on the granularity of user roles, which can slightly differ between data sets.
More human effort is needed to generate training data for the classification step (SL)
and ground truth to validate the classifiers. Especially if hardly trained classifiers are
available, human resources are needed to create, enrich, and validate new training
data.
This work also involves a study to minimize preprocessing steps to save time and human
resources. The approach in chapter 3 combines the time-consuming preprocessing step
and k-means clustering, which is not part of Fig. 1.1. This almost automatic approach
aims to reduce time and human intervention by combining a clustering algorithm from
the area of USL with a social choice voting role.

1.5 Thesis Structure

The remainder of this thesis is structured as follows. After the motivation, an overview
of the proposed approach, the contributions, and their allocation to areas of ML in
Chapter 1, in Chapter 2, relevant definitions are clarified, and the most significant
background knowledge of ML techniques, algorithms as well as (statistical) measures
are introduced as the last section in Part I.
The main part of this thesis (Part II) includes in Chapter 3 a technique to minimize
human intervention in terms of preprocessing right before clustering will be introduced
and underpinned with many experiments considering a movie based recommendation
scenario. The aim to reduce human intervention is also part of the following Chapter
4 where a model-building process is presented. This process deals with several ML
strategies from Chapter 2 in a kind of pipeline to (semi)-automatically cope with
massive data sets in a user-labeling process. This chapter is followed by Chapter
5, where data sets from Twitter are analyzed within single data sets, and results
are compared to other topically and temporal (non) related data sets. Moreover, a
comprehensive long-term analysis of users and user roles is performed, leading to a
model-building process to simulate and predict user roles. After that, in Chapter 6,
the ability to transfer the model-building process described in Chapter 4 from the
Twitter data sets to Telegram data sets is displayed and discussed. The last chapter
of the main part (Chapter 7) deals with the analysis of cascade shapes from Twitter
data sets and the ability to deploy parts of the methodology from Chapter 4 on them.
In Part III, this work concludes with a summary and classification of the most
significant contributions as well as a short outlook on future work in Chapters 8 and 9.

13





Chapter 2

Background

Ich hebe den Hammer
Und schlage den Meißel
Ich suche nach Erzen
Tief in deinem Herzen

Callejon - Unter Tage

This chapter introduces the most important terms and definitions con-
sidering social networks and social media as well as user roles. After the
terminology, a broad range of statistical and mathematical metrics and
measures are presented, which are eminent for the approach presented in
Chapter 4. Furthermore, general algorithmic approaches addressing the
main steps of the Knowledge Discovery (KD) approach from Fig. 1.1 in
Section 1.2 are introduced.

2.1 Definitions

First, conceptual definitions essential for this thesis’ work will be presented and clarified.
Especially for detecting user roles in social media, it is necessary to introduce social
media, the different aspects, and characterizations of the most typical representatives
and their purposes. As user roles play a significant role in this work, a basic definition
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for the term of a user role is also introduced in this section, while specific kinds of user
roles will be presented in Chapter 5 for the Twitter and in Chapter 6 for the Telegram
use cases.

2.1.1 Social Networks & Social Media

Social networks and social media play a crucial role in this work since the data stems
from social networks or social media. Data sets from social media services are often
characterized by several features, which provide many possibilities in terms of analyzing
user roles as well as information diffusion of message cascades using Machine Learning
(ML) as mentioned in Section 1.4.
In [OW15], social media services are defined as “Web 2.0 Internet-based applications,
where user-generated content is created by users and shared with others“. Each user
and sometimes user group is represented by a user-specific profile maintained by the
social media service. Moreover, traditional social media services ensure that profiles
are connected bilaterally to other users’ profiles, such as Facebook, while the focus in
Twitter and more recent social media services, such as Instagram or TikTok, is more
follower -based and thus unilateral. Some of the most common social media services
these days are the social networks Facebook and Instagram, the microblogging service
Twitter, and the social video hosting services YouTube and TikTok [Sta].
Many social media services, such as Facebook, complicate access to data sets due to data
protection. Moreover, services such as Instagram or TikTok are not considered because
they are driven by non-transparent algorithms, which compound the transparency
of connections between users and interactions on messages by users. Only certain
services like the microblogging service Twitter and the messaging service Telegram
allow analyzing data sets, as manifold data is available.
Another definition of social media services was provided by [May08] back in 2008
as “services, where users can spread information across societies worldwide within
minutes“, as messages can be spread within a few seconds around the world today.
Content such as messages, pictures, and videos can be shared with others. However,
the interaction with other users, their messages in the network, and the organization of
users in different kinds of social structures are also very characteristic of social media.
In today’s society and daily life, social media services are essential as information can
be spread to family and friends, but also to many others around the world within
seconds, enabling reactions and discussions that are vital for the analysis of users and
their behavior in social media.
In particular, Twitter allows users to create, react, and share content in terms of bare
text, images, or videos, leading to conversations that experts can analyze for user
behavior and interaction with others and their content [Jav+07]. Unlike many other
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social networks, such as Facebook or MySpace, Twitter is not based on symmetric
friendships, as users can follow others. However, the following users can skip the
following back. Twitter was also the first social media service that provided mentions
of users as well as hashtags. Also, the possibility to retweet content was a new feature
in online social networks, which allowed users to spread information more easily beyond
the creators’ environment. These features characterize the social media service Twitter
as more likely to be a news source than a traditional social network [Kwa+10].
In contrast to Twitter, Telegram, released in 2013, is not a typical traditional social
media service but more an instant messaging platform where users can communicate
with other users using text messages, pictures, or multimedia services such as video
or voice chats between two individuals. Besides, it is also possible to create groups
or channels where a single user can share content with many other users, while on
Twitter, messages are shared globally. Compared to Twitter, user-based features are
scarce, as there is no information about the verified status of a user nor the possibility
of adding a URL. However, the possibility of communicating with other users, such as
responding to messages and forwarding them but also mentioning other users, is given
in Telegram, too. These aspects also substantiate the suitability as a data source for
analysis, as many features from Telegram are similar to those of Twitter, as seen in
the Telegram API4. Also, the possibility of creating bots for channels that can respond
to users’ messages is widespread in Telegram. While Twitter has problems with bots,
which are flooding spam messages to specific topics, bots in Telegram are used as
chat-bots5.
Considering the data sets in this work, the main reasons to choose Twitter and
Telegram are the availability of manifold data, described by user profile features, the
position of users in the network as well as interaction with other users, which is all
given in Twitter and Telegram.

2.1.2 User Roles

After introducing social media services, it is essential to define user roles, which play a
crucial part in social media, and in a fine-grained structural analysis in this work. Users
in online social networks share similar features but differ in others. Before defining
user roles, focusing on specific roles and intentions for using social media services like
Twitter is essential. Analyzing intentions provides insights for understanding user
roles. Twitter has evolved in the past 15 years with new features like threads and user
mentions. Researchers studied user behavior to improve specific features. Critical
insights on finding different types of users will be presented chronologically to describe

4https://core.telegram.org
5https://telegram.org/blog/bot-revolution

17



2 Background

the evolution and specification of user roles. In contrast, depending on the specific use
cases, specific user roles will be introduced later in Chapter 5 and 6.
In [Jav+07], the author describes how different kinds of users have shaped the mi-
croblogging platform Twitter, especially the communication between users and the
intention of users. Based on the users’ intentions, specific user roles can be adapted.
One of the main directions of this paper is to understand how and why specific kinds
of users use Twitter by studying topological and geographical properties. Especially
in terms of activity, considering following other users or being followed were central
aspects of the analysis of [Jav+07]. The distributions for in-degrees, i.e., followers,
and out-degrees, i.e., followees, show a relatively similar power-law distribution. This
distribution leads the authors to consider Hubs and Authorities using the HITS al-
gorithm by [Kle98]. Users with a high Authority value often have a low Hubs value
and thus are defined as users with many followers but only follow fewer other users.
In contrast, low Authority and high Hub value define users with fewer followers and
follow many others. There are also many users in between, which leads the authors to
group the users into different communities using Modularity by [GN02], finding, e.g.,
users influenced by Hubs. This aspect leads to many different user roles, which can
also vary, as users may behave differently in different communities.
Besides the work of [Jav+07], published in 2007 as Twitter did not have the scope
of today and thus several properties, e.g., replies were not yet possible, there are
more definitions of specific user roles such as in [Smi15]. Self-presentation, considering
athletes, is very common in social media, as they want to improve their range and
popularity by sharing verbal and non-verbal messages to express their identity. This
behavior is also noticeable on Twitter, as personal insights into their life using text
messages or images are very common for rising stars and celebrities.
To expand the user intentions made in [Jav+07], the work of [HH09] analyzes the
benefits of user exchanges using the possibility of tagging them with the @ sign. This
sign is vital to identify users who participate a lot in conversations after they are
mentioned or users who are active and try to motivate other users to participate in
conversations after they are mentioned. [Tin+12] focuses on their work on user roles,
which have significant participation in conversations w.r.t distribution of messages.
In [BD+14], the focus is also on community detection, as the authors use an extended
Markov Stability approach by [DYB10], which can deal with directed networks [LDB08].
They scan the network for communities using a continuous time diffusion process, which
reveals different kinds of fine to coarse-grained communities, creating also several user
role-alike groups. The flow of information and the degree of reinforcement is a central
point in their work. It overviews the different communities built and characterized
by location, profession, or topic. Also, patterns of interest considering incoming and
outgoing interests in the communities are crucial in this work for defining different

18



2.2 Statistical Metrics

user roles. Moreover, they also consider the degree of retweets for the community
nodes to define user roles more precisely.
All of the previously presented related work led to various characterizations of user
types with entirely different intentions in social networks and social media. This
insight is precious to get an overview of these distinct roles by grouping similar users.
So, analysis needs to summarize users with similar features to understand how often
users are represented in a social network or social media, how users evolve, or the
impact on information diffusion of cascade shapes. Nevertheless, defining them by
the given features is pivotal before user roles can be summarized. The central aspect
of the summation in several groups is to consider not only many individuals but
only a few groups in terms of analysis. The term user role does not have a general
definition in literature, but primarily, representatives are described by their features
and characteristics. [Zyg17] also describes the problem of defining a general definition
of user roles, as significant features from data sets need to be extracted to create a
valuable summary of the original data set, which is highly dependent on the data set
and the purposes of the analysis. Considering user roles, [Zyg17] describes this as ”a
tool for simplifying patterns of action, distinguishing between different types of users,
and understanding human behavior.” Thus, for this work, a user role is built by a
group of similar users and is relevant and stable if this role occurs in an adequate
number in a single data set and regularly reoccurs in sufficient data sets. For this
work, a user role is defined as a group of users who share similar feature values and
are well separated from other user groups.
As mentioned in Section 1.3, this work targets the detection of coarse-grained user
roles such as spammers or malicious acting users and, furthermore, fine-grained user
roles. The general definition of a user role and the specific definitions of different roles
in the literature pave the way for a comprehensible, fine-grained structural analysis of
user roles.

2.2 Statistical Metrics

Several approaches in this thesis rely on statistical metrics as they are essential tools
to describe correlation and similarities of features or whole data sets. Moreover, they
help to visualize distributions of features or data sets. Thus, statistical metrics are
helpful tools to confirm data sets and their suitability after preprocessing steps such
as normalization and stabilization.
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2.2.1 Correlation

While preprocessing in a KD model, choosing features carefully for the following steps
is essential. In most Supervised Learning (SL) and Unsupervised Learning (USL)
techniques, correlation of features, w.r.t. to input data matters, as features that
influence others in an intense way sophisticate the results. Therefore, features have to
be chosen depending on their correlation to each other. The Correlation Coefficient
is a well-known statistical measure that indicates a statistical relationship between 2
variables. Thus, it is a pivotal technique that helps data analysts decide whether a
feature is needed, depending on the relationship to other features.
There are several methods to specify correlation, especially the term correlation
coefficient. The most common is the Pearson Correlation Coefficient, used in several
implementations, e.g., pandas or numpy, defined as in [Weib].

Definition 1 (Correlation Coefficient)

cor(X,Y ) ≡ cov(X,Y )

σXσY
(2.1)

for two variables X and Y . Where cov(X,Y ) is the covariance and σX and σY is the
standard deviation of these two variables.

The Covariance for two variables X,Y with sample size N is defined as in [Weia]:

Definition 2 (Covariance)

cov(X,Y ) = 〈(X − µX)(Y − µY )〉 = 〈XY 〉 − µXµY =

N∑
i=1

(xi − x̄)(yi − ȳ)

N
(2.2)

where µX , µY are the respective means.

It is essential to choose features in a way that they correlate to only a few other features
and that there is no high anti-correlation. Both features with a high correlation and a
high anti-correlation do not bring benefits using SL, as well as USL algorithms, as they
can be distorted, e.g., can embarrass the process of clustering and classification. If too
many features strongly (anti-) correlate, the separation in hierarchical clustering can
lead to unusable clustering hierarchies, as similar structures can be found in several
subtrees of the dendrogram. In Hall ([Hal99]), the importance of correlation in terms
of feature selection for classification is discussed as a strong (anti-) correlation can
lead to overfitting effects, as these features have no additional value to the model.
Good features of a set of features correlate with a specific class while uncorrelated
with any other class. Fig. 2.1b shows a correlation matrix of several features on the x-
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and y-axis, whereas the diagonal stands for the correlation of identical features. A
correlation coefficient of 1 means that features are strongly correlated, i.e., the features
of y are predicted fully by the features of x, whereas -1 means they are strongly
anti-correlated, i.e., the features of y are predicted wholly negatively by the features
of x. A correlation coefficient of 0 means that features are not correlated and thus not
influenced by other features.

(a) Boxplot with several features. (b) Correlation matrix.

Figure 2.1: Boxplot and correlation matrix.

2.2.2 Effect Size

Effect sizes are also robust statistical measures to evaluate a set of data objects
against another to specify their relationship based on the standard deviation. A
ubiquitous effect size measure is Cohen’s d, which is very valuable to show, e.g., the
explanatory power of features between two data sets. Thus, it can be a helpful tool
for cluster analysis by finding those salient features that are significant for a specific
cluster. Furthermore, Cohen’s d is also an auspicious method to validate representative
sampling strategies.
Cohen’s d, especially a pooled version where the number of objects is considered, was
defined in [Coh88] and further specified in [Saw09] as follows:

Definition 3 (Pooled Cohen’s d)

d =
x̄1 − x̄2

s
(2.3)
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where x̄1 and x̄2 are the two means of each set, and s is the pooled standard deviation
of two sets.

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(2.4)

where the variance for s2i is defined as in Eq. (2.12).
For the interpretation of pooled Cohen’s d, the following specifications for the effect
size were made. A value of 0.01 is a very small effect, a value of 0.2 delivers a small
effect, 0.5 is a medium effect, 0.8 is a large effect, while values of 1.2 are described as
very large and 2.0 is as huge effect.

2.2.3 Box & Whisker Plot

Box & Whisker Plots is a further tool for analyzing data sets, briefly called boxplots.
Boxplots enable the possibility to have a closer look at the features and their deviation.
Thus, it is an essential tool for reviewing data transformation and normalization steps
in data preparation, which will be introduced in the following section. These steps can
also be discerned in boxplots, potent methods to depict statistical values like mean
and median, but also skewness and variance to facilitate data analysis of data sets’
features. An example of a boxplot using pythons matplotlib6 can be seen in Fig. 2.1a.
Each boxplot consists of standardized values like the minimum, which is the lowest
data point in a data set excluding outliers; the maximum, which is the highest data
point without any outliers; the median, which describes the middle value and the first
and the third quartile, which describe the median of the lower respectively the upper
half of the data set. The box of the Box & Whisker plot is represented by the values
between the first and third quartile, in which the median is drawn as a line. The
mean (green triangle) value is sometimes drawn in the box. The whiskers do not have
a standardized definition, but in some cases, the lower and the upper whiskers are
represented by the minimum and maximum values. If many outliers are present in
the data set, a more standard definition for the lower and upper whiskers is the first
quartile minus 1.5 times the interquartile range, respectively, the third quartile plus
1.5 times the interquartile range. The interquartile range is the difference between the
third and the first quartile. All data points that do not lie between the whiskers are
depicted as circles [MTL78].
So many statistical values introduced in this section can be comprehended in a boxplot.
A tiny box with short whiskers represents a feature with a low standard deviation
around the mean. In contrast, larger boxes are interpreted as features with a higher

6https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html

22



2.3 Distance Measures

standard deviation. If the mean of a feature is quite balanced in the middle of a box,
i.e., the whole box and whiskers are symmetric, the skewness delivers a symmetric
distribution of the data. Right-skewed distributions of features are depicted as boxplots
of features where the mean value is entirely at the bottom of the box, while in left-
skewed distributions, the mean value drifts to the top of the box. Thus, boxplots
deliver many possibilities for processing and interpreting features while preprocessing.
Especially the suitability of data sets for following steps, such as clustering, where
a consistent distribution of data is crucial in terms of distance measures, shows the
benefits of boxplots.

2.3 Distance Measures

Distance metrics deal with comparing pairwise objects, such as single data points and
sets. For the evaluation of the novel Borda clustering approach in Chapter 3, as well
as several other clustering approaches in Chapter 4 and the model building process
in Section 5.8 distance measures are essential. Nevertheless, before specific Distance
Measures between objects are presented, the definition of Distance Measures, which
quantifies the distance between pairwise objects, is introduced as stated in [LRU20].

Definition 4 (Distance Measure)
Given a set of points, defined as a space, a distance measure on this space is a function
d(x, y) between two points x and y, which produces a real number as output and
satisfies the following axioms.

1.) d(x, y) ≥ 0 which states that there are no negative distances.

2.) d(x, y) = 0 if and only if x = y. Distances are always positive, except for the
distance between a point and itself.

3.) d(x, y) = d(y, x) Distances are always symmetric.

4.) d(x, y) ≤ d(x, z) + d(z, y) which describes the triangle inequality. This axiom
defines distances between two data points as shortest paths, as travel between two
points x and y via a third point z has no benefits.

Distance measures are crucial for clustering algorithms such as k-means and their
variants, but distances between sets can also be calculated. Distance and similarity
measures describe how close data objects or sets of objects are to each other. Well-
known traditional measures like the Euclidean Distance or Canberra Norm will be used
with the basic k-means clustering to evaluate against the Borda clustering approach
in Chapter 3 defined in [BS13; ES00; LRU20].
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The basic Euclidean Distance represents the linear distance between two data points
and thus is very common in k-means clustering as the variance between the data
points and the centroids are minimized and thus the Euclidean distance maps well
according to the target function of k-means, and centroids are easy to determine. In
addition, the calculation is stable and produces a low overhead.

Definition 5 (Euclidean Distance)
Given two points xi = (xi1 , . . . , xid) and xj = (xj1 , . . . , xjd) with d dimensions, the
particular squared distances regarding each dimension are summed up and rooted
after that, i.e.,

dist(xi, xj) =

√√√√ d∑
l=1

(xil − xjl)2 (2.5)

To also set the focus on distances using small domain ranges, the Canberra Norm
is a very supplemental measure. As Canberra simulates a kind of normalization, as
the local domain ranges of the data points are considered separately, it is a valuable
distance measure, especially to evaluate the basic k-means along with the Canberra
distance against the Borda Social Choice clustering approach. Similar to the Euclidean
Distance, the Canberra Norm also has low overhead and good stability in terms of
calculation.

Definition 6 (Canberra Norm)
It sums up the absolute fractional distances of two d-dimensional points xi, xj con-
cerning the range of the focused dimension for all dimensions:

dist(xi, xj) =

d∑
l=1

|xil − xjl |
(xil + xjl)

(2.6)

Definition 7 (Weighted Manhattan Metric)
Given two transition tables as matrices xi,j and yi,j both with user roles as sources i
and targets j as well as their transition probabilities, the Weighted Manhattan Metric
is defined as follows:

di,j = |xi,j − yi,j | ×
xi,j + yi,j∑n

i=0

∑m
j=0 xi,j + yi,j

(2.7)

Definition 8 (Jaccard Coefficient)
Jaccard is a measure of the similarity of sets. To handle categorical values in data
sets in terms of clustering, they must be expressed with numerical values. Given two
d-dimensional sets of objects A and B, the similarity of these two sets is calculated as
follows, as presented in [WX08].
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J(A,B) =
A ∩B
A ∪B

(2.8)

where A∩B represents the number of simultaneous presence in both sets, while A∪B
represents the union set of the two sets. Values of the Jaccard Coefficient lie between
[0, 1], whereas a value of 1 signalizes a complete intersection of both sets, and 0 stands
for sets without any common objects.

2.4 Data Preprocessing

Before data sets can be processed, such as clustering or classification (cp. Fig. 1.1), it
is necessary to observe the characteristics of user features, such as the distribution.
As most data sets have various features with diverse bounds, variance, and outliers,
processing the data to gain a more successful output in later steps of the pipeline, which
rely on traditional distance metrics, is essential. Data Preprocessing is a significant
step of the approach presented in Chapter 4, which will be applied to several uses in
Chapter 5 for Twitter data sets and in Chapter 6 for the Telegram data set.
First, data sets must be carefully analyzed using the Correlation Coefficient from
Section 2.2.1 to select features sufficient for the analyst. After that, the features cannot
be used, as they have different bounds and deviations, which would complicate typical
ML approaches in the following steps, such as clustering. Especially regarding social
media analysis distributions such as the well-known power-law matter [New04]. Several
well-known data transformation techniques are considered to provide a successfully
performed clustering, whereas the most suitable approaches are presented.

Standardization Skewness is a vital aspect of preprocessing, which describes a
feature’s distribution in a data set. In most real-world networks, e.g., the number of
followers or friends is a very striking feature for Skewness, as many users have a few
friends and a handful of users who have thousands of friends, which is described as
a power-law distribution in [ZAL14; Jav+07]. This distribution is also well-known
regarding clicked sites on the internet, as only a few sites are clicked very often, and
many sites generate only a few clicks, or e-commerce considering products for sale,
where cheap products are exponentially provided more often than expensive ones.
Visualizing extremely distributed data sets is easier by utilizing Skewness to cope with
the distribution. The shape of a distribution of a feature x, which can be symmetric
or asymmetric, so-called left or right-skewed, is defined by their Skewness as in the
implementation of Scipy7, which relies on [ZK00]:

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
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Definition 9 (Skewness)

G1 =

√
N(N − 1)

N − 2
× m3

m2
3/2

(2.9)

where the adjusted Fisher-Pearson Standardized Moment Coefficient for i = 2, 3 is
given by

Definition 10 (Fisher-Pearson Standardized Moment Coefficient)

mi =
1

N

N∑
n=1

(x[n]− x̄)i (2.10)

Kuhn and Johnson deliver an interpretation of the Skewness as follows [KJ13]:

• Skewness = 0: Symmetric distribution

• Skewness > 0: Asymmetric distribution, where the mass of the distribution of
the feature is concentrated on the left, a so-called right-skewed distribution.

• Skewness < 0: Asymmetric distribution, where the mass of the distribution of
the feature is concentrated on the right, a so-called left-skewed distribution.

The Skewness of features is a compelling metric to justify data transformations, as
extremely asymmetric distributions can distort essential values like the mean or median
and thus are no longer representative of the data set. Especially when using distance
metrics in clustering, the data sets must have an almost symmetric distribution.
However, the distribution should be kept intact, as specific characteristics of features
can get lost. Thus, a Standardization matching the distribution must be chosen.
Occasionally, choosing a suitable transformation is difficult as distributions can be
opaque. To handle this aspect in terms of clustering, a novel clustering approach
where preprocessing steps such as normalization and standardization are not needed
anymore is introduced in Chapter 3.
After motivating reasons for data transformation using Skewness, the most important
technique used in this work is presented. As mentioned, extreme outliers can be
a massive problem in clustering, as they could negatively influence the clustering
process. A compelling method to reduce extremely skewed data is the Logarithmic
Transformation, which is defined as follows [ZC18]:

Definition 11 (Logarithmic Transformation)

x′ = log10(x) (2.11)
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Features of data sets with an extreme exponential distribution, caused by, e.g., outliers,
are compressed more powerfully than using other transformation functions like square-
root or cube-root transformation, as the distance between outliers and the mean
compared to other data points and the mean is getting closer.

Normalization Besides data transformation, it is also essential to consider data
normalization because massive data sets with many features often manifest different
bounds, which can negatively affect the clustering as they work with distance measures.
Considering friend relationships in social networks again, which was described in
[ZAL14], the power-law distribution of those data sets often causes a mean very close
to those data objects which have, e.g., few friends as those users often represent up to
80 percent of all data points. In contrast, the rest is distributed over an enormous
range, as stated in the Pareto Principle, also known as the 80/20 rule, as discussed in
[New04]. Thus, it is also imperative to consider the variance of features because the
variance indicates how values in a data set are distributed around the mean. The data
points are closer to their mean if the variance has a smaller value. So, it is necessary
to ensure that features of a data set have similar bounds and thus have almost equal
variance. The Sample Variance of a feature x is determined based on a sample set of
size N as follows [FPT04]:

Definition 12 (Sample Variance)

s2 =
1

N

N−1∑
i=1

(x1 − x̄)2 (2.12)

Based on the variance, the well-known Standard Deviation is calculated as the square
root of the variance.
Several methods bring features of a data set into the same bounds discussed in [Osb10],
such as the division by greatest value, MinMax normalization, or z-score normalization.
The first two methods transform the data into bounds between 0 and 1, while division
by greatest value does not have mandatory values for 0. Moreover, negative values
must be shifted, and extreme outliers significantly influence the transformation, as
all values are divided through the highest value. It is advisable to use the MinMax
normalization, which leads to an equal range between 0 and 1 for each feature and
thus is a linear transformation where the ratio of the data is not altered. In contrast
to these two techniques, the z-score normalization delivers different bounds for all
features, which can lead to problems in clustering since features with an unequal
domain can negatively influence the clustering process. Both normalization techniques
are sensitive to outliers, so it is mandatory to use a transformation method to reduce
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Skewness and, thus, extreme outliers. The MinMax normalization for a single feature
value xi and a set of feature values x1, ...xN is defined as in [JNR05]:

Definition 13 (MinMax Normalization)

x
′

i =
xi −min{x1, ..., xN}

max{x1, ..., xN} −min{x1, ..., xN}
(2.13)

2.5 Machine Learning in Knowledge Discovery

In Section 1.4, the contributions of this thesis were mapped to the most crucial areas
of ML, which will be presented in this section in more detail. ML is a manifold area
of Artificial Intelligence (AI), in which computers can analyze structures in data sets
using algorithms and models and thus can learn from these structures. This learning
aspect is a central point of KD because it is also vital to comprehend the output of data
sets. Nevertheless, not each model or algorithm can deal without the supervision of
human experts, as they convey only specific, typically restricted types of information
and knowledge. On the one end of the spectrum, there is USL, which describes
how a model can handle data structures without human intervention. The model
analyzes patterns in a data set and groups similar data points together using traditional
distance measures and statistical metrics. The most important representatives in USL
are clustering techniques (cp. Section 2.6) and, consequently, cluster analysis (cp.
Section 2.6.2). Furthermore, dimensionality reduction such as Principal Component
Analysis (PCA) as well as Linear Discriminant Analysis (LDA) is a considerable
technique in USL, where multi-dimensional data sets are processed to present a lucid
structure (cp. Section 2.8). Common dimensionality reduction strategies are often
used after clustering in cluster analysis to comprehend multi-dimensional clusterings
straightforwardly [Mar11; WX08; GMW07].
On the other end of the spectrum, many algorithms and models rely on human
supervision, such as classifiers (cp. Section 2.7). In SL, the human expert is pivotal
since models cannot learn and address from scratch in labeling real-world data. It is
necessary to provide manufactured training data as a ground truth for inputting the
SL models. The most established technologies deal with classifying unlabeled unknown
data sets, such as Support Vector Machines (SVM), K-Nearest Neighbor (KNN), or
decision trees, to name only a few of them. The main goal of SL is to approximate
the input data, which should be labeled using training data to the given ground truth.
While moderate human expertise is needed at the beginning of SL, human supervision
is reduced as more training data is available [Mar11].
Since creating satisfying training data can be tedious, further tasks in ML characterize
the procedure. Semi-Supervised Learning (SSL) lays in between SL and USL and
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requires a small amount of human-labeled data as input for the classification models.
Subsequently, an iterative process starts, in which unlabeled data is classified using
the human-labeled data as training data. Until a stable training data set is reached,
the training data is enriched with the most valuable results from the classification
step. SSL is an approach to quickly reach adequate training data, even though there
is no guarantee that all classes are covered coherently considering the quantity. Also,
the risk of over-fitting is given if the best-matching labeled data populates only a few
classes. The so-called self-training is a process to reduce human resources. However,
a fully automatic process is not recommendable since training progress should be
examined time by time so that extreme outliers can be removed and inadequately
represented classes can be refined specifically [EH19; Zhu08].
A particular case of SSL is called Active Learning (AL), an iterative learning strategy,
which can be seen in Fig. 2.2. In contrast to SSL, this approach focuses on a human
expert, the so-called oracle. Nevertheless, before the model can query the user with
data objects to be labeled, the oracle has to pick a few data objects that must be
manually labeled. After that, these labeled data objects enrich the training data,
which is used as input for the model to query the following unlabeled data objects. The
iterative process continues with the oracle, which has to label these objects manually
until all unlabeled data objects are labeled. In this approach, the oracle can precisely
control the training progress, especially if inadequately represented classes need to
be enriched with further training data. In contrast to SSL, AL needs more human
support, especially during the progress of training, while SSL needs human expertise,
especially in terms of supervision [Set10].

Figure 2.2: Active learning process from [Set10].
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After introducing two established areas of ML, including two in-between strategies,
Deep Learning (DL) is the following well-known big area in terms of ML. DL provides a
range of algorithms and models that can be used for data sets, including USL, SSL, and
SL. Neural Networks can classify data, and recent efforts to utilize DL for clustering
have yielded encouraging outcomes [Alj+18]. However, achieving the explainability
of the output data can be difficult. It is crucial to prioritize explainability when
constructing models, particularly during the initial stages where human expertise
is indispensable. Parameter tuning and a thorough comprehension of individual
algorithms are crucial for effectively utilizing DL.
Reinforcement Learning (RL) is a well-known area of research in ML that aims to
maximize the cumulative reward over all actions through an iterative decision-making
process. Although unsuitable for model-building, RL’s basic approach can be defined
as a Markov decision process based on Markov Chains. The Markov Model, based on
the same concept, is a promising approach for analyzing data sets. [SB18] and [Mar11]
provide insights into this approach, which will be discussed in Section 5.9.
Data Mining (DM) is not a part of ML but has a lot of similarities and intersections with
ML. Both areas focus on finding patterns in data sets, while in ML, well-established
patterns are discovered and found by algorithms. In contrast to the finding of well-
established patterns, DM concentrates more on statistical measures and the finding of
completely new structures and patterns in data sets. Especially data preparation and
preprocessing are kind of preliminary steps from the area of DM, which are needed
before typical ML algorithms can be applied to data sets [WFH11; HPK11]. Finally,
several areas of ML and DM are essential in this work, where the best matching and
suitable approaches and algorithms must be selected and combined in an adjusted and
consecutively way.
After introducing the main areas of ML, the individual steps of the approach, which
was introduced in Fig. 1.1 from Section 1.2, are classified as well, to comprehend
which steps need to be taken considering the approach presented in Section 1.2. Once
the whole pipeline of the approach is well-engineered, it is easier to manage completely
new data sets stemming from a new source, which needs to be analyzed.
At the beginning of the process, capturing the data sets and their targeted preparation
is essential, considering the preprocessing. This step is fundamental because a reputable
analysis is only possible with the knowledge of the features and unique characteristics
of the given data sets. The most important steps of preparation and preprocessing
include feature extraction, i.e., choosing the most valuable features; data cleaning,
i.e., dropping corrupt or incomplete data points; pruning, i.e., excluding specific data
points that are not relevant; standardization and normalization to prepare the data
set for the following steps by putting features in the same bounds and reduce the
skewness of outliers. These steps are quite important areas of DM [WFH11; HPK11].
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Moreover, learning the structure of data sets and their features to assign suitable labels
manually is also a significant step. This and preprocessing steps are often iterative
until satisfying results regarding fine-grained and well-structured user roles are reached.
This step of the approach presented in this thesis is dedicated to the area of DM,
while clustering, followed after the preprocessing, is an algorithm from the area of
USL. Moreover, manual labeling is a part of the strategies from AL and SSL.
Furthermore, after learning the structure iteratively, the benefits of the classification
hierarchy and the cluster analysis with a human review is the reduction of human
intervention for the following identification in the classification step, which is a part of
SL. The ability to adapt the strategy and model on different sizes of samples provides
a scalable mean-based probabilistic allocation process, which allows a combination of
them to gain more stability of single users and user roles, a representative assertion
if only a few samples are adduced and a possibility to reach a good coverage even
though data sets are pretty massive. Sampling strategies are well-known statistical
approaches in several areas of managing big data, such as political and social polls
and surveys [LZ20].

2.6 Unsupervised Learning: Clustering

As mentioned in Section 2.5, clustering is an USL ML technique to partition extensive
data sets into clusters of common characteristics. As already introduced in Section
1.2, clustering plays a very significant role in this work, as partitioning similar data
has significant benefits in terms of analyzing extensive and vast data sets regarding
fine-grained structures. However, it takes work to phrase a formal definition. So
[Lan+11] illustrated several phrases, like ”a cluster is a set of entities which are alike,
and entities from different clusters are not alike” or ”a cluster is an aggregate of points
in the test space such that the distance between any two points in the cluster is less
than the distance between any point in the cluster and any point not in it”. In the
history of clustering, several approaches qualify for different shapes of data sets. The
basic techniques will now be introduced and considered regarding their benefits and
drawbacks for specific data sets. In contrast, approaches used in this work will be
introduced later in Section 4.

2.6.1 Clustering Approaches

There are two traditional approaches of clustering techniques: partitional, also called
center-based, and hierarchical clustering. While partitional clustering needs a specific
predefined number of desired clusters as input to partition the clusters, hierarchical
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clustering encapsulates data points with a sequence of nested partitions from singleton
clusters until a cluster including all data points is reached. Besides those two traditional
clustering approaches, there are many further approaches developed in the last 20
years, such as model-based, known as distribution-based approaches, density-based
clustering techniques, and much more [WX08; GMW07].

2.6.1.1 Hierarchical Clustering

Hierarchical clustering can be divided into so-called agglomerative clustering or divi-
sive clustering techniques. While agglomerative clustering describes the bottom-up
technique from singleton clusters to a single cluster including all data points, divisive
clustering is defined as splitting up a single cluster including all data points until
each data point remains a single cluster. In both cases, the hierarchy is created by
using a proximity matrix. Considering hierarchical agglomerative clustering, which
is commonly used, the proximity matrix is created by calculating distances between
each data point to each other using several measures. Furthermore, many fusion
strategies exist, so-called linkages, which are needed to merge those two clusters in
each step with a minimum distance. The algorithms create a clustering hierarchy called
a dendrogram, where the clustering progress can be comprehended. At the top of the
dendrogram, the cluster comprises all data points, while at the bottom, each cluster is
represented by a single data point. Starting at the bottom, one can find out which two
clusters are proximal to each other, as well as the distance between the two clusters.
While hierarchical divisive clustering needs to consider 2N−1 possible subsets in each
cluster for N data points, hierarchical agglomerative clustering has only to compare
each data point to each other, which is less computationally intensive. Compared to
other clustering techniques, the complexity of O(n2) is relatively high and an apparent
drawback, especially in large data sets, which need a lot of time and resources. Besides
classical hierarchical clustering, there exist BIRCH and CURE, which also are a kind
of hierarchical clustering techniques that deal better with massive data sets but need
a lot more tuning in terms of hyper parameters, which makes it quite complex to find
a suitable configuration. Also, many final clusters have to be specified in advance, like
in partitional clustering, which needs several passes and more expert knowledge to find
the most suitable configuration [WX08; GMW07]. The algorithms, which are essential
for this work and used distance measures, will be introduced later in Chapter 4.
Fig. 2.3 shows the dendrogram of a hierarchical agglomerative clustering. As this is a
bottom-up approach of a quite huge data set, the dendrogram is pruned at the level
of 30 clusters due to lucidity reasons. In the dendrogram, one can trace the progress
of the cluster merges until all clusters are merged into one cluster.
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Figure 2.3: Dendrogram of hierarchical agglomerative clustering.

2.6.1.2 Partitional Clustering

After introducing hierarchical clustering techniques, the benefits and drawbacks of
partitional clusterings, such as k-means clustering, will be discussed. Partitional
clustering approaches are compared to hierarchical clustering and easier to manage,
especially in massive data sets as, e.g., k-means has a complexity of O(n · k · d) for n
d-dimensional objects, which should be clustered in k clusters. Partitional clustering
approaches converge against a (local) minimum by minimizing the variance of the
means of each cluster. In k-means, each data point represented as a vector is assigned
to randomly k predefined centroids. In contrast, some approaches do not concentrate
on the means of the clusters but on representative data points from each cluster (k-
medoids), also known as Partitioning Around Medoids (PAM), which has a complexity
of O(n3+k(n−k)2 ·i) for n data objects, which should be clustered in k clusters within
i iterations. Another benefit is that several distance measures can be used depending
on the data set’s specification. However, it is also a trial and error-influenced way to
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find the best specification. Moreover, the fact that the desired number of clusters has
to be chosen before the clustering process starts is a drawback, as the clustering has to
be started again using another k until a good and satisfying result is found. Another
drawback of partitional clustering is that clusters are built based on inertia, also called
the within-cluster sum-of-squares criterion. If clusters do not have a compressed convex
or isotropic structure but also have some outliers or have elongated or other manifold
structures or irregular shapes, partitional clustering pushes its limits. Moreover, they
do not work effectively in high dimensional data sets and are contingent on the initial
choice of the k cluster centroids. In this work, k-means clustering is the base for
an approach where normalization and standardization are prevented from saving a
lot of human and machine resources. The basic k-means clustering is adapted as no
traditional distance measure like the Euclidean distance is used, but a novel treatment
to weight each feature dimension in an identical way, which will be introduced later in
Chapter 3. Since k-means clustering works best for clusters with a structure, the use
cases presented later are preference-based skyline data sets, which are more structured
than raw data sets as only data objects are considered, a user favors in terms of a
recommendation scenario. Other data sets, which are completely unstructured, are
difficult to handle using k-means clustering [WX08; GMW07; ES00].

k-means Clustering For the purposes of the novel Borda Social Choice Clustering
approach from Chapter 3, the methodology of the basic k-means clustering as well as
the extension k-means++ is exploited. Thus, both approaches will be recapped in this
section. k-means clustering is presented as defined in [Jai10] as follows.

Definition 14 (k-means Clustering)
Given a set X consisting of n d-dimensional objects x and k user-desired clusters ci,
k-means works as follows:

1) Find an initial partition for the cluster centroids by choosing a random d-dimensional
object of X for each of the k centroids.

2) Calculate for each object the distances to all centroids by using a distance measure,
e.g., Euclidean distance, and subsequently allocate each object to the closest
centroid.

3) Recalculate each centroid by averaging the contained objects.

4) Proceed with Step 2) until two succeeding clusterings are stable, which means that
all clusters from the last iteration contain the equal set of objects as in the current
iteration.
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Compared to the classic k-means clustering, in k-means++, the initial partition is not
chosen arbitrarily by random, but by a randomized seeding technique. For finding a
more accurate clustering, the best centroids for the initial partition should be found.
Step 1) of the k-means algorithm is replaced as follows, cp. [AV07]:

Definition 15 (k-means++ Clustering)

1a) Arbitrary choose an object of the set X as first cluster centroid c0.

1b) For each further cluster centroid ci | i ∈ {1, ..., k − 1} choose x ∈ X with a
probability of

p(x) =
dist(x, ci)

2∑
x∈X dist(x, ci)2

(2.14)

where dist(x, ci)2 is the shortest squared Euclidean distance from a point x to
the already chosen closest centroid ci.

1c) Proceed with Step 2) of the k-means clustering algorithm.

2.6.1.3 Distribution-based Clustering

Distribution-based clustering focuses on probability models, where a probability to
each cluster is assigned for each data point. In contrast to centroid-based approaches,
the data points to cluster are not described by a centroid or a representative but by
a probability distribution, in most cases, the Gaussian distribution. For each cluster
k, this distribution is described by the centroids and a covariance matrix for all data
points in the cluster. A well-known approach is the Expectation-Maximization (EM)
algorithm by Dempster et al. [DLR77], which consists of 2 steps being iterated. The
first is the Expectation step, where probabilities of the feature vector of each data object
to each cluster are estimated for an initial Gaussian distribution for k clusters. The
cluster model is recalculated in the Maximization step by maximizing the parameters
given as a probability distribution. This distribution leads to an optimized model
until the model no longer improves. As EM delivers probabilities for each data point
to each cluster, clusters can be built by data points with the highest probability. It is
also possible that data points lie between 2 or more clusters; thus, there is no absolute
majority for one cluster. Those data points can be considered outliers. A drawback
of the EM approach is that, similar to centroid-based models, the number of desired
distributions, i.e., the number of desired clusters, has to be chosen before the clustering
starts. Several approaches, such as k-means, k-means++, or completely randomized
chosen centroids, can be considered. The complexity of O(n ·m · i) for n objects, which
should be clustered into n set of distributions in i iterations, is comparable to k-means
clustering. Moreover, EM converges to a (local) minimum, too, and depends on the
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initial allocation of the k clusters. Moreover, EM does not create clusters of similar
size but very compact clusters depending on the probabilities of the data points. Thus,
EM has similar problems to centroid-based approaches but can handle noise [WX08;
GMW07; ES00]. Distribution-based clusterings were initially used for the approach,
presented in Fig. 1.1 as it improves the primary k-means clustering and can handle
noise, which is prevalent in massive data sets stemming from social media.

2.6.1.4 Density-based Clustering

Density-based clustering approaches can capture dense areas in the data set and
distinguish them from areas with a lower density, i.e., data points outside clusters,
such as noise data points. Crucial for this approach is a threshold differing between
a dense area within a cluster for each data point and a noise area or area with no
data points. The algorithm groups data points with a lower density of adjacent data
points than a predefined threshold. The key to this approach is so-called core points,
those with at least a predefined number of other points in their neighborhood. This
density-reachability describes the data points directly reachable from another data
point within a predefined distance, and the density-connectivity describes transitive
connectivity between data points. Data points that do not fulfill the core points or
density reachable aspects remain as noise, which is not clustered. Thus, density-based
clustering approaches can cluster data sets with several structures in a d-dimensional
space. One of the most established density-based approaches is Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), introduced by [Est+96]. Compared
to centroid-based and distribution-based approaches, DBSCAN can determine a
suitable number of clusters without input for the number of clusters and has a good
complexity of O(n log n). Furthermore, the tuning of the hyper parameters considering
the number of minimum points in a neighborhood and the predefined maximum
distance to other points are very significant and time-consuming, as the cluster can
quickly get too big when setting both parameters to high or only less and relatively
small clusters emerge when setting both values too low. A further density-based
clustering approach is Ordering Points to Identify the Clustering Structure (OPTICS)
[Ank+99], distinguishing from DBSCAN by differing noise points and the periphery.
An optimization compared to DBSCAN is the possibility to define the radius of
the neighborhood more precisely by an upper bound. Moreover, candidate points
are ordered due to their core distance, enabling a kind of clustering hierarchy for
each cluster. Density-based clustering techniques have drawbacks in data sets with
a hierarchical structure within a cluster, i.e., the inner core of a cluster has a higher
density than the outer core or if there are various structures with differing densities
within a data set. This aspect often leads to the problem that smaller clusters cannot
be clustered, which remains as noise [WX08; GMW07; ES00; BS13]. The possibility of
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assigning a data point not wholly to a single cluster contradicts the classical definition
of clustering. Nevertheless, a density-based clustering approach is auspicious for this
work, where vast sets of multidimensional data sets are analyzed, and thus, overlapping
clusters are inevitable. Especially in terms of explainability, OPTICS may be another
worthwhile possibility, as the clustering hierarchy is given.

2.6.2 Cluster Analysis

After introducing the most common clustering techniques, it is also essential to
discuss the results of clusterings. In this thesis, the granularity of structures plays an
essential role. Thus, several traditional cluster evaluation metrics will be presented
and evaluated on several use cases due to their suitability for detecting fine-grained
structures. While in centroid-based clustering, the fixed number of desired clusters
has to be chosen beforehand, in hierarchical clustering, analysts must decide where to
cut off the clustering in the dendrogram to examine the specific clusters closely. Thus,
cluster analysis is a rather important area, as it guides the analyst, and time can be
saved. In clustering algorithms, the question of quality is a well-known problem, as
there is no ground truth knowledge. Cluster analysis metrics give a clue on clusterings,
which can be sufficient, as they primarily are based on statistical calculations to
describe the separation of clusters from others or the density of clusters. Nevertheless,
no perfect metric describes a specific clustering perfectly, as clustering depends on the
requirements of analysts and given scenarios. Thus, it is difficult to compare the results
of different approaches and to determine the quality of clustering methods [KP17].
To handle and analyze these clustering techniques, several well-known measurements
are presented. While all these metrics are statistic-based and work with traditional
distance functions, such as the Euclidean distance, the analysis in use cases such as
the Borda Social Choice Voting Rule in Chapter 3 but also using no distance-based
metrics in hierarchical clustering, e.g., Ward’s linkage, the traditional distance metrics
could reach their limits in terms of validity.

2.6.2.1 Silhouette Coefficient

The Silhouette coefficient is a fundamental and well-known internal cluster analysis
metric, which is described by comparing the tightness and separation of clusters all over
the whole clustering result by considering a single plot. So especially for partitioning
clustering techniques that do not rely on a hierarchy, finding a starting point for cluster
analysis is challenging. The Silhouette coefficient gives a good overview of clustering,
as it can show if data points lie within a cluster or in between other clusters.
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The Silhouette coefficient for a sample or the whole data set is defined as in [Rou87]:

Definition 16 (Silhouette Coefficient)

s(i) =
b(i)− a(i)

max(ai, b(i)
(2.15)

where a(i) is the mean distance between a sample and all other points in the same
cluster A and b(i) is the mean distance between a sample and all other points in the
next nearest cluster B.
The scores of s(i) are lying in between [−1, 1], as a value close to 1 describes the
case that the within dissimilarity of a(i) is much smaller than the smallest within
dissimilarity b(i), i.e., the clusters are well clustered and solid and are well separated
from the next nearest cluster. If s(i) has a value close to 0, a(i) and b(i) are almost
equal, i.e., i lies in between the two clusters A and B. If s(i) is close to -1, a(i) has a
much larger value than b(i), which means that object i is much closer to cluster B
than cluster A and thus object i got misclassified.

To sum up the Silhouette coefficient, it is a very straightforward technique to describe
structures of a cluster, as all kinds of clusterings, from well-separated dense clusterings
with of score of 1 over overlapping clusters, which have a score of 0 and utterly incorrect
cluster, which have a score of -1 are described [ES00]. To specify the values [KR90]
defined values for the Silhouette coefficient as follows. A silhouette value greater than
0.7 is defined as clusters with a strong structure, between 0.5 and 0.7 as clusters with
an adequate structure, and between 0.25 and 0.5 as clusters with a weak structure.
As previously defined, clusters that deliver a value lower than 0.25 remain as clusters
with no structures. The Silhouette is a valuable metric if data sets with well-separated
clusters are considered, but quite challenging to interpret if data sets with many
diverse and manifold features have to be analyzed. Furthermore, the calculation of
the whole data set is quite complex, as many computations are needed. Thus, the
Silhouette coefficient is often calculated on a sample.

2.6.2.2 Davies-Bouldin Index

As it is only possible to analyze clusters adequately by considering one single cluster
analysis metric, other metrics with different specifications deliver more manifoldness.
The Davies-Bouldin Index is compared to the Silhouette coefficient; the advantage is
that the computation is not that complex and is based on quantities and features.
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The Davies-Bouldin Index is defined as the average similarity of each cluster and its
closest cluster [DB79]:

Definition 17 (Davies-Bouldin Index)

Rij =
Si + Sj

Mij
(2.16)

where Si and Sj are the cluster diameter, i.e., the average distance between each
point and the cluster centroid of cluster i and j and Mij is the distance between the
centroids of the clusters i and j.
Thus, the Davies-Bouldin index DB for N clusters is defined as:

DB =
1

N

N∑
i=1

maxRij | i 6= j (2.17)

The Davies-Bouldin Index delivers values in [0,∞) whereas smaller values close to
zero are interpreted as well separated and compact clusters.

To summarize the Davies-Bouldin Index, it is easier to interpret the clustering than
using Silhouette. A drawback of Davies-Bouldin is that the value does nothing about
overlapping clusters or completely unusable clusters, which have a Silhouette value
around or below 0.

2.6.2.3 Calinski-Harabasz Index

Another well-known internal cluster analysis metric is the Calinski-Harabasz Index,
the Variance Ratio Criterion. Compared to the other two metrics presented in this
subsection, the focus is on the ratio of the sum of between-cluster dispersion and
within-cluster dispersion considering all clusters. The Calinski-Harabasz Index s for a
data set E of Size N , which should be clustered into k clusters is defined as in [CH74]:

Definition 18 (Calinski-Harabasz Index)

s =
tr(Bk)

tr(WK)
× nE − k

k − 1
(2.18)

where tr(BK) is the trace of the between group dispersion matrix and tr(Wk) the
trace of the within cluster dispersion matrix.

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T (2.19)
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Bk =

k∑
q=1

nq(cq − cE)(cq − cE)T (2.20)

where Cq is the set of points in cluster q, cq the centroid of cluster q, cE the centroid
of data set E and nq the number of points in cluster q.
Calinski-Harabasz delivers values in [0,∞), whereas higher values deliver well-separated
and compact clusters.

2.7 Supervised Learning: Classification

Classification is a very significant area in SL. While clustering delivers groups of data
points without knowledge of specific classes, classification’s primary goal is to assign
each of the given input data objects to a class. There are two critical steps to pave the
way for successful classification. First, each classifier needs a knowledge base, so-called
training data, to train the classifiers. As a first step, the manually labeled training
data functions as a ground truth to improve the prediction of the classifiers until they
work stable using the ground truth data both as input for the training data and the
data to classify. If stable training data is given, it is used to classify completely new
data sets in the second step, as they are assigned by their attributes to a class using
the trained classifier [ES00]. As mentioned in the contributions in Section 1.3 and
the allocation to areas of ML in Section 1.4, detecting fine-grained user roles plays a
significant role in this work. The basis for identifying user roles is clustering, where
users with similar features are structured. These clusters are now used as input for
the classification step to label each of them probabilistically using a representative
of the clusters, such as the mean, median, or other metrics, which will be discussed
later in Section 4.6. This probabilistic labeling is part of the foundation for the novel
Multi-Sampling and Combination Strategy for analyzing and detecting fine-grained
structures in several use cases, such as detecting user roles in Twitter and Telegram
data sets.

2.7.1 Popular Classification Approaches

In this section, the most common and well-known types of classifiers are presented and
discussed in terms of their usefulness for the approach presented in this thesis. There
are many types of classifiers, which all have advantages and drawbacks in different
use cases. One widespread approach is Bayes-Classifiers, which rely on classifying
conditional probabilities. For this approach, hypotheses need to be defined, whose
probabilities are optimized together with a priori probabilities and the given data to
reach a successful stable classification. This approach is used chiefly for classifying
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text and text snippets and needs a reliable estimation of the a-priori probabilities.
For this work, Bayes-Classifiers are not considered, as they are predestinated for text
analysis. In contrast, this approach concentrates on classification using a manifold
set of numerical features describing a user role by a vector [ES00]. Besides Bayes-
Classifiers, there are many further classifying techniques, such as Nearest Neighbor
Classifiers, Support-Vector-Machines, and Decision Trees, which will be introduced
briefly in this section, considering their suitability to this approach. The specification
considering hyper parameters will be discussed later in Section 4. As classifiers must
also be carefully evaluated, several important quality metrics will be introduced.

2.7.1.1 Nearest Neighbor Classifier

Compared to kernel approaches, a straightforward classification model considering the
Nearest Neighbor Classifier is KNN. Local density estimation by fixing the parameter
of k-nearest neighbors is used by finding an appropriate value for the volume of a
region V. To estimate the density around a data point, the radius of this sphere around
the data point continuously grows until k data points are within this sphere.

Definition 19 (k-Nearest-Neighbor Density Estimation)
Bayes’ Theorem is used to calculate the posterior probability of class membership. For
each class Ck and a data point x, the posterior probability is defined by

p(x | Ck) =
p(x | Ck)p(Ck)

p(x)
=
Kk

K
(2.21)

where the probability for a data point x to a class Ck is given by

P (x | Ck) =
Kk

NkV
(2.22)

the unconditional density is given by

p(x) =
K

NV
(2.23)

and the class priors are given by

p(Ck) =
Nk

N
(2.24)

To minimize the probability of misclassifying data points, a data point x is assigned
to a class having the highest possible posterior probability by dividing the number of
points Kk from a class Ck within the sphere V through all the number of points K in
this sphere.
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Thus, K is an essential parameter for the smoothness. The smaller the value of K, the
noisier the density model becomes, as higher values lead to a smoother distribution and
fewer distinct boundaries. A significant advantage of KNN is that only one parameter
is needed for calculating the posterior probability and, thus, is a straightforward model.
KNN is limited to data sets that have a low number of dimensions. Thus, the choice
of features is crucial for the success of this model. Another drawback is that the whole
training data set must be stored, which can be expensive for extensive training data.
Using additional computation by constructing tree-based search structures leads to a
more efficient search of nearest neighbors, especially in extensive training data [Bis06].

2.7.1.2 Support Vector Machines

SVM are kernel-based models, which rely only on sparse solutions, i.e., predictions of
new input data depend only on a kernel function evaluated on a subset of training data.
Since the determination of parameters of SVM focuses on an optimization problem,
a benefit of this approach is that each local solution also delivers a global optimum.
They work best in use cases considering a 2-class problem using linear models, as a
linear separation between two classes is possible in a finite number of steps, finding the
solution with the smallest generalization error. The margin is the smallest distance
between the decision boundary and the samples. The so-called support vectors are
maximized. If class distributions are overlapping, a precise separation is not possible.
Thus, the concept of SVM can misclassify some training points, i.e., data points can be
on the wrong side of the margin, by penalizing them using negative values depending
on the distance to the margin. Thus, it is easily possible to manage overlapping classes,
as exceedingly manifold data sets with many features often result in overlapping classes
if training data is not fully well-engineered. As SVM works only in a two-class problem
case, two solutions for a k-class problem are possible. One-Versus-The-Rest is an
approach in which, for each class, two sets of training data are needed. One set is the
training data for this class as a positive class; the other set consists of the training
data of all other remaining classes, which is the negative class. Thus, a SVM must be
trained for each class. A drawback of this solution is if unbalanced training data is
given, i.e., classes with quite a small amount of data points compared to the others.
The other solution is called One-Versus-One, where for each of the k classes k(k−1)

2
classifiers have to be created in terms of a Multi-Class-SVM. This approach leads to
higher complexity in terms of time for creating and executing the classifiers on new
data sets. A solution to reduce computation time is to organize the classifiers in a
directed acyclic graph, where only k-1 pairwise classifiers are needed for the execution
of new data points [Bis06].
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2.7.1.3 Decision Trees

As nearest neighbor classifiers do not deliver knowledge considering specific classes,
Decision Tree-based classifiers do so, as they use decision trees, which can be traced
easily in terms of knowledge discovery. A decision tree is a tree with attributes
represented by the tree’s inner nodes, by classes represented by the leaves of a tree,
and edges, which represent a test on the parent nodes attribute. A binary tree is used
in most approaches based on Decision Trees, but some implementations consider more
than two edges at a parent node. Each decision tree is built using training data to
classify new data by paving the way from the root to a leaf given by the decisions
at each node considering the attributes or features. Thus, each new data object to
classify ends up in a specific leaf node, which represents a class [ES00].

Gradient Boosted Decision Trees (GBM) The idea of Gradient Boosted Deci-
sion Trees (GBM) combines several decision trees into an ensemble. A decision tree
is a sequential model where attributes or values are compared hierarchically against
other attributes or threshold values. Starting from the root, one path ends in a leaf,
leading to a specific class. Using boosting has the advantage that single decision
trees, which do not consistently deliver stable and significant results, are combined
into more powerful and significant models. The boosting technique creates several
base models sequentially and improves each model based on the model created before
optimizing a cost function with the most negative gradient direction. For this work, the
implementation of XGBoost8 is used, as this approach enables a sufficient classification
even for classes with a low number of training data. Moreover, XGBoost copes with
overfitting problems even in small training data sets. Compared to single decision
trees, it is hardly possible to trace the classification process, as many decision trees
are combined [Bis06; Kot13; Fri01; CG16].

Extremely Randomized Trees (ET) Compared to GBM, not a cost function is
used to combine decision trees to an ensemble, but randomized decision trees. While
samples from the training data set create ensembles in random forests, the Extremely
Randomized Trees (ET) approach delimits from random forests by splitting the nodes
of the decision tree. Random forests use thoroughly randomly chosen features, a
subset, for the splits of the decision tree, as ET specify this process by considering the
whole learning sample, as well as choosing randomly generated thresholds for each
considered feature. In contrast, the best are chosen for the splitting in the decision tree.
Furthermore, for the prediction of the ensemble, an aggregation over all decision trees
using a majority vote is used to gain a more stable model. Also, exploiting the whole

8https://www.xgboost.ai
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training samples delivers a more stable classification than essential random forests,
as the variance is reduced, but the bias is slightly increased. Even though ET tends
to overfit, especially for classes with a small training data set, the approach classifies
generalized classes as more reliable as the variance is lower than in other techniques.
Both ET and GBM have their advantages in reducing variance and providing a better
generalization for smaller classes as building ensembles rely on a lot of combined
decision trees and thus are more stable compared to other classification approaches
[Bis06; GEW06; Kot13; Bre01].

2.7.2 Quality Evaluation

This work deals, among other things, with building training data for detecting fine-
grained structures. To evaluate and validate classification models as well as different
configurations considering hyper parameters built upon data sets, including fine-grained
structures, several well-known evaluation metrics are crucial for the performance of
successfully classifying user roles. A pool of manually labeled training data for each
class is needed for the evaluation, which serves as a ground truth. Moreover, each
classifier delivers probabilities for each cluster to each class, whereas the class with the
highest probability is adduced for the quality evaluation. Table 2.1 shows the structure
of the confusion matrix where the actual labels are on the y-axis and the predicted
labels are on the x-axis as defined in [SL09; Tha18]. The values on the diagonal are
the number of correctly classified data points, e.g., tpi,j are the number of data points
of class i which are correctly classified as class j, the so-called true positives, whereas
errk,l | k 6= l is the number of data points of class k which got classified as class l,
which are relevant for determining misclassified classes. False negatives fnl is the
sum of all data points that got misclassified in a class l fnl =

∑j
k=0 errk,l | k 6= l,

whereas false positives fpk describe all data points with an actual label k, which got
classified in another class l fpk =

∑i
l=0 errk,l | k 6= l.

Predicted Label

True Label

0 1 2 3 ... j
0 tp0,0 err0,1 err0,2 err0,3 ... err0,j
1 err1,0 tp1,1 err1,2 err1,3 ... err1,j
2 err2,0 err2,1 tp2,2 err2,3 ... err2,j
3 err3,0 err3,1 err3,2 tp3,2 ... err3,j
... ... ... ... ... ... ...
i erri,0 erri,1 erri,2 erri,3 ... tpi,j

Table 2.1: Confusion matrix for quality evaluation.
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Furthermore, in [SL09; Tha18], important evaluation metrics are defined for the set
of given classes C, where Precision Pi of a class i describes the amount of correctly
classified objects of class i dependent on all classified objects classes, which have the
actual label i and Recall Ri is defined as the amount of correctly classified objects
of class i dependent on all objects which got classified in class i. F1 is a measure
that combines both Precision and Recall in order to give a comprehensive evaluation
metric for classification. The amount of considered data objects is irrelevant for
these evaluation metrics and can influence the results positively and negatively when
considering only a small amount of data sets.

Definition 20 (Precision)

Pi =
tpi

tpi + fpi
, i ∈ C (2.25)

Definition 21 (Recall)

Ri =
tpi

tpi + fni
, i ∈ C (2.26)

Definition 22 (F1)

F1i =
2 · Pi ∗Ri

Pi +Ri
, i ∈ C (2.27)

The following macro evaluation metrics are appropriate to provide a general value for
all metrics across all considered classes, with equal weighting for each class. These
metrics require good support in each class, as classes with a small amount of support
would be soaked up by those with higher support.

Definition 23 (Precision Macro)

Pmacro =
1

|C|
·
∑
i∈C

(
tpi

tpi + fpi
) =

1

|C|
·
∑
i∈C

Pi (2.28)

Definition 24 (Recall Macro/ Balanced Accuracy)

Rmacro =
1

|C|
·
∑
i∈C

(
tpi

tpi + fni
) =

1

|C|
·
∑
i∈C

Ri (2.29)

Definition 25 (F1 Macro)

F1macro =
1

|C|
·
∑
i∈C

(
2 · Pi ∗Ri

Pi +Ri
) =

1

|C|
·
∑
i∈C

F1i (2.30)
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Moreover, weighted evaluation metrics can be beneficial, especially if some classes have
lower support, which may be given in the use cases of this work, as there are always
user roles with lower quantities in their training data sets. The following evaluation
metrics aid in getting more stable results in creating training data for the classification.

Definition 26 (Precision Weighted)

Pweighted =
1∑

j∈C |Cj |
·
∑
i∈C
|Ci| ·

tpi
tpi + fpi

=
1∑

j∈C |Cj |
·
∑
i∈C
|Ci| · Pi (2.31)

Definition 27 (Recall Weighted/ Accuracy)

Rweighted =
1∑

j∈C |Cj |
·
∑
i∈C
|Ci| ·

tpi
tpi + fni

=
1∑

j∈C |Cj |
·
∑
i∈C
|Ci| ·Ri (2.32)

Definition 28 (F1 Weighted)

F1weighted =
1∑

j∈C |Cj |
·
∑
i∈C
|Ci| ·

2 · Pi ∗Ri

Pi +Ri
=

1∑
j∈C |Cj |

·
∑
i∈C
|Ci| · F1i (2.33)

2.8 Dimensionality Reduction

To simplify the creation of representative training data for multidimensional data sets,
Dimensionality Reduction is a valuable strategy as it enables easy data visualization
in a reduced space. Two strategies discussed in the work of [Qah+15; Man08; HMT10;
SKT14; BNJ03; HBB10] will be introduced in this section, as they both provide helpful
aspects for this work.
Starting with PCA, the given data points are projected into a low-dimensional space
by maximizing their variance. The strategy behind the PCA is incremental, where
the new dimensions in the space, called principal components, are created by a
linear combination of the original dimensions and are orthogonal to all of the other
components. As the transformation progresses, each principal component explains
less variance than the previous one due to the orthogonality of the components. The
explained variance factor and the influence of the original dimensions are linked to
each principal component’s linear combination. In most cases, only a few principal
components are needed to explain the variance of the whole data set.
Another method for projecting the original data distribution into a linear subspace is
LDA. Unlike PCA, LDA does not involve exploration but requires prior classification
of data points. The main objective of this projection is to improve the differentiation
between various data points based on their class centroids while reducing the scatter

46
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within each class. One must be aware that while utilizing LDA for mapping a dataset
with k classes in a d-dimensional vector space, it is essential to note that the maximum
number of resulting dimensions is (d− 1). The organization of dimensions is based on
their relevance in distinguishing categories and is marked with descriptive labels for
clarity and consistency.
Consequently, PCA and LDA are distinct techniques for transforming data into a new
vector space, each with its own methodology. The effectiveness of these methods is
context-dependent, and thus, a case-by-case determination is necessary to identify
the most suitable approach for achieving the desired results. One major drawback
of LDA compared to PCA is that features cannot be reproduced, as the information
on feature quotas in the reduced components is missing. PCA is a valuable tool for
cluster analysis in multidimensional spaces, as with only a low effort, clusters can be
visualized and proved if the composition is satisfying. Especially for building training
data, where each class representative is chosen, dimensionality reduction is beneficial,
as the significance is better than using internal cluster evaluation metrics, as the latter
strategy has problems when the number of data points is relatively small. Moreover,
a visual depiction helps, especially in the building process of training data sets, as
outliers can easily be spotted and removed.
Another kind of dimension reduction is introduced in an entirely different use case in
Chapter 7, where whole graphs (nodes, edges) representing information cascades are
reduced, with Graph Embeddings being a valuable strategy to cluster them. In contrast
to the dimensionality reduction techniques presented in this Section, those techniques
are only used in building training data, while Graph Embeddings and Summarization
are preprocessing steps that clustering is even possible. Dimensionality reduction
can also be used as a preprocessing step before clustering in a KD based approach.
However, the effort would only be limited, and the explainability of features would be
lost. Thus, PCA and LDA will only remain for proving training data [Pau+11]. For
the purposes of this work, the implementation of scikit-learn will be used.
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Chapter 3

Normalization Avoidance by
Exploiting the Borda Voting
Rule for Clustering

Don’t stop believin’
Hold on to that feelin’
Streetlights, people

Journey - Don’t Stop Believin’

This chapter explains how the Borda Social-Choice voting rule can be
exploited as a distance function for clustering Pareto-optimal data sets
without requiring a time-consuming normalization and standardization
step. The chapter covers two approaches’ methodology, synthetic ex-
periments, and quality evaluation. Most of the work presented in this
chapter was previously published by the author in peer-reviewed papers
[KEK17; KE19] a technical report [KE17], a book-chapter [EKR18] and
a demo-poster [KRE19].



3 Normalization Avoidance by Exploiting the Borda Voting Rule for Clustering

3.1 Motivation & Contributions

The approaches presented in this chapter follow only a few steps of a typical Knowledge
Discovery (KD) process, which can be seen in Fig. 1.1 of Section 1.2. However, before
the approaches are introduced, a general motivation considering Pareto-frontiers and
the suitability of clustering such data will be discussed, and the research questions
will be introduced.

3.1.1 Motivation

Pareto-optimal data is striking in several use cases dealing with recommendations or
advertisements, as data sets are tailored to users’ requirements. Several steps of a KD
approach are needed to process data sets to those user’s requirements. Comparing the
approaches presented in this chapter to a traditional KD approach, most preprocessing
steps are no longer needed as much human effort is reduced to save time. Of course,
corrupt data has to be eliminated, but there is no need for any normalization and
standardization of the data. Since most use cases follow Pareto-optimal data sets,
sampling is undoubtedly unnecessary, as Pareto-optimal data sets are often narrowed
down to a fraction of the original data set. The clustering and cluster analysis are
the most essential KD related steps. Both approaches presented in this chapter
appropriate specific characteristics of Pareto-optimal data sets and use them together
in a k-means-based clustering approach. Considering cluster analysis, the approaches
follow traditional internal cluster analysis techniques. Indeed, a kind of classification
could be helpful for the approaches but was not considered. Pareto-dominant data sets
often only contain a few data objects, and the number of valuable clusters delivered
by both approaches is often relatively small. The overhead of creating training data
and a ground truth exceeds the benefit of classifying only a few data objects.
As introduced in Section 1.3 and 1.4, automation and reducing human involvement plays
a very significant role in Machine Learning (ML), as it brings benefits both in research
as well as in application-specific use cases in e-commerce such as recommendations as
well as micro-targeting. Popular streaming services like Netflix, Prime Video, Disney+,
or music-streaming services like Spotify or Deezer are acquainted instances that must
cope with continuously growing data. So it is challenging to keep track of the results
presented to the users, as unintended results overwhelm the users [RRS15].
A ubiquitous approach to minimize unwanted results is to exploit preferences of the
users to affect only some best matching suggestions using Pareto-frontiers, also called
Skylines, which are defined in [BKS01] as "those points which are not dominated by any
other point. A point dominates another point if it is as good or better in all dimensions
and better in at least one dimension". However, the more features are considered, the
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more the result set grows, as the set of Pareto-optima is built upon each data object
that is not dominated by another object considering each feature. To keep track of
the best matching results, clustering those objects afterward is a promising approach
to grouping similar objects, which are delimited from other objects, to gain a better
overview of Pareto-optimal objects. So it is possible to present only a few of those
best matching representatives to the user instead of the whole clusters [Jai10; SM14].
Consider a recommender system addressing people with similar tastes in movies and
series in the following use case.

Example 1
Assume user Bob wants to watch a movie. He prefers movies with a possible low
running time and a recent release year at the same time. The movies presented to Bob
are so-called Pareto-optima on a Pareto-frontier or Skyline, which can be seen in Fig.
3.1 as the blue points. In contrast, the skyline points dominate the red points, e.g., P4

has a more recent release year than P14 and a lower running time simultaneously. So
P4 dominates P14 in both dimensions at the same time w.r.t. Bobs preferences, while
P3, e.g., is dominated by P4 only w.r.t. the running time. As mentioned, clustering can
be a promising approach to compress and express this set with a smaller, appropriate
set of representatives. Another approach is to mask out noise points such as users like
P8 with a more recent release year but a very high running time.

Figure 3.1: Pareto-frontier of users with preferably lowest running time and preferably
recent release-year.

Addressing this use case, clustering like k-means is a very appropriate approach to
automatically group similar objects and separate them from other groups with similar
objects to gain a better overview of the data. As there are two dimensions with
different domain ranges, achieving a beneficial outcome without great efforts, such
as normalization and standardization from the area of preprocessing techniques, is
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impossible because the dimensions should be set into the same bounds so that they are
comparable using traditional distance measures. Considering the Example 1, setting
this range of minutes for the running time is circumstantial concerning only a smaller
range of release years. Thus, using the basic k-means clustering algorithm along with
the well-known Euclidean distance is insufficient, as user features and their range
can differ from use case to use case. To substantiate the aspect of clustering on a
Pareto-frontier, the Best-Matching-Only objects from Fig. 3.1 could be clustered as
can be seen in Fig. 3.2.

Figure 3.2: Pareto-frontier of users with a possible clustering.

Since preprocessing steps like normalization and standardization need much human
effort, as experts have to check each feature carefully, the first approach presented in
this chapter exploits the dominance criterion of Pareto-frontiers for cluster allocation
and thus does not need preprocessing as each feature dimension is ranked separately.
When focusing not only on two dimensions by selecting two features but, e.g., four or
even more features, the result set is also growing, as the following example shows.

Example 2
Bob wants to watch a movie. He favors timeless old-school movies of the late 70s, 80s,
and early 90s, prefers action-, adventure-movies and dramas. Since it is later in the
evening, he only wants to watch movies with a runtime between 90 and 130 minutes.
Furthermore, Bob prefers ambitious movies, so the user rating should be higher than
7 on a score from 0 to 10. The result of such a preference query (cp. [KEW11]) on
a movie data set, e.g., the Internet Movie Database9 (IMDb) could produce a large,
unclear result. In Example 1, the query would return 30 movies, cp. Table 3.1.

9https://www.imdb.com/
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Table 3.1: Sample result of Bob’s 4-dim. preference query.
ID movie rating runtime year genres

0 Star Wars Episode V 8.8 127 1980 Action, Adventure, Sci-Fi
1 Star Wars 8.8 125 1977 Action, Sci-Fi
2 Raiders of the Lost Ark 8.7 115 1981 Action, Adventure
7 Reservoir Dogs 8.4 99 1992 Crime, Drama, Thriller
8 Blade Runner 8.3 117 1982 Drama, Sci-Fi, Thriller
13 The Terminator 8.1 107 1984 Action, Sci-Fi
22 Back to the Future Part II 7.7 108 1989 Adventure, Comedy, Sci-Fi
23 Indiana Jones II 7.6 118 1984 Action, Adventure, Fantasy
27 Die Hard 2 7.1 124 1990 Action, Thriller, Crime
... ... ... ... ... ...

The use case from Example 2 is more complex to solve with a Pareto-dominant
clustering approach because more dimensions that result from the given features lead
to a more complex decision in the allocation process as for a growing number of
features, the possibility that no data object would dominate all other objects in all
dimensions is growing as well. Also, it is possible to tune the allocation process of the
clustering by weighting one or more favored dimensions in the case of two or more
Pareto-optima, but this does not solve the problem in each use case, as the approach
stretches to its limit when considering use cases with many features, such as those
from Example 2, which requires a more precise and effective decision criterion for the
allocation of objects to clusters. Also, considering the second or third-closest centroids
in each dimension in the case of a Pareto-optima does not sufficiently improve the
allocation process of the clustering and leads to a more complex approach.
While clustering Pareto-frontiers is not new [Hua+11; TB15; ESA12; MMB09; Kan+02;
WWP88; ZZX08; JNH07], in this chapter, two approaches are presented, which can
deal with unnormalized and -standardized data from Skylines automatically. The first
approach, introduced in this chapter, uses the Pareto-dominance criterion. Compared
to k-means clustering along with traditional distance measures like the Euclidean
distance, this approach creates more precise and stable clusters in terms of quality in
a sufficient runtime considering better-than relationships, unlike mapped Euclidean
distances, which have to be adjusted inconveniently for each use case. The second
approach, which exploits the Borda Social Choice Voting Rule, is a progression of
the Pareto-dominance approach as it can cope better and independently in higher-
dimensional spaces. The central aspect of this approach is considering each dimension
separately to circumvent the normalization and standardization process and thus
increase the degree of automation and reduce human involvement, as each feature
dimension has to be sifted through.
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Yet, clustering approaches like k-means provide a suitable solution for these large and
confusing sets, which are encapsulated and presented clearly to the user. However,
considering individual domain ranges of each dimension, traditional distance measures
used commonly in k-means, e.g., the Euclidean distance, stretch to their limits, as
already mentioned. Consider Example 2 again, the range of the dimension rating
in Bob’s query yields a range of almost 2 in the data set of Table 3.1, while the
range of the movies’ runtime is 28 minutes between the movies with the shortest and
longest runtime (ID 0 vs. 7). Similar challenges are noticeable for the remaining
dimensions release year and genres. The challenge in this use case is to set these quite
diverse domain ranges into an equal relation to each other, as, e.g., the release year
and running time would majorly influence the allocation in the clustering process.
Reaching a more useful clustering, adjusting the feature ranges before the clustering
process is inevitable (cp. [VSM15; MU13]). This adjustment might be challenging
due to various and versatile user preferences. Normalization and standardization are
possible, but the main question is whether to use the whole feature range of each
feature dimension considering each data object or to normalize only within the local
preference-based best-matching objects data set.
As k-means clustering focuses on minimizing the distances between each data object to
each cluster centroid, considering each distance in each dimension separately does not
deteriorate the complexity, as k-means calculates distances between each data object
and each cluster. The second approach presented in this chapter splits the distance
calculation to facilitate a sorting and weighting process in each dimension between
each data point to each cluster by exploiting the Borda Social Choice Voting Rule
(cp.[RVW11]) as a kind of voting process. This approach ensures that each dimension
is considered equally. In contrast, the Pareto-dominance-based approach only adduces
the closest centroids in each dimension, which minimizes the opportunity of more
than one suitable cluster for each data object. Moreover, using the Borda Voting
rule yields more balanced and smoother results than traditional distance measures,
such as the Euclidean distance, as each feature dimension is considered independent
of the size of their domain ranges. One more advantage of this approach is avoiding
any preprocessing step, such as normalization and standardization, as this is, in most
cases, a very time-consuming process. Only the selection of suitable features in terms
of correlation and the data-cleaning process has to be considered.

3.1.2 Contributions

After introducing the main idea of the approaches presented in this chapter, the
definition of clustering on a Pareto-frontier will be introduced and substantiated with
the main contributions.
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• When focusing on Pareto-frontiers, a specified data set consists of attributes not
dominated by other objects in any feature dimension and, thus, are equal to each
other in terms of importance. This Pareto-Surface is an excellent opportunity to
reduce massive data sets to user-adjusted use cases instead of classical sampling.
This data set is used as input for both clustering approaches. Considering a
data object, at least one feature dimension always dominates the other objects
and is simultaneously dominated by other objects in other feature dimensions.
This aspect is getting increasingly complex for a growing number of dimensions,
and thus, a subsequent clustering is realized on this set to group similar objects.
Thus, clustering is a mighty aid to reducing the number of candidates in high
dimensional use cases as the best case objects, which have dominating features
in common, are clustered together. This sequence of techniques helps to identify
potentially relevant data objects in a manageable and comprehensible way. It
limits human effort, as experts can save time in preprocessing steps.

• The Pareto-dominant and the Borda Social Choice-based approaches share
contributions, which this section will summarize and specify. When talking
about typical Data Science and KD pipelines, an essential step is preprocessing.
However, data cleaning is inevitable, as both approaches will not work with
corrupt data. Nevertheless, a very time-consuming step is standardizing and
normalizing the given data. A significant benefit of both approaches is the
avoidance of normalization and standardization, as each feature dimension will
be handled equally in the cluster allocation process. The more features are given,
the more experts need to analyze them regarding skewness and variance, which
can consume a lot of human knowledge and time. To reduce the overhead of
normalization and standardization where values are globally set into the same
bounds, a ranking-based cluster allocation technique is presented, where each
dimension is considered and ranked separately according to the given cluster
centroids. Thus, experts do not need to care about preprocessing and can invest
their time in more important topics such as cluster analysis. Consequently, the
degree of automation is also given, as no additional specifications compared to
the basic k-means clustering are needed.

• When talking about Pareto-frontiers and Best-Matches-Only sets, especially
in higher dimensional spaces, such as hotel booking, car purchasing, or other
scenarios in terms of e-commerce or recommendations in several streaming-
on-demand platforms, flooding effects in terms of the results are ubiquitous.
Both experts and users can hardly handle an unsorted and large result set, as
too much information can lead to indifferences. Both clustering approaches
handle such data sets lucidly and appealingly, as users can compare similar
results to each other. Additionally, representatives of each cluster group can
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be identified to present only a few results to the users. Especially the use case
of recommender systems is especially appealing, as recommendations suppose
a reduced set of objects, which should match the users’ desires perfectly. The
traditional approach of recommendations and Pareto-frontiers aim for a lucid
data set and thus coincide in this aspect as candidates are reduced to a minimum,
which is also associated with reducing human involvement.

• Pareto-frontiers form an approach that can also be compared to fine-grained
micro-targeting-based approaches, as both can handle different inputs with
various diverse and manifold feature dimensions. Both approaches are a kind
of personalization, but only preference-based Pareto-frontiers deliver the best-
matching results, while most micro-targeting approaches present results based
on crawled data and thus also deliver unwanted results, which mostly do not
match perfectly.

3.2 Methodology

Before introducing the methodology of the Pareto-dominance approach, which works
best for lower dimensional data sets, and the Borda-Social Choice approach as a
progression from two-dimensional to n-dimensional feature spaces, further background
knowledge needs to be introduced.

3.2.1 Further Background Knowledge on Preferences

First, a brief introduction to preference theory is given, as preferences can represent
desires for specific features in an order. This order is described with numerical values,
a significant part of clustering, as distances can be calculated easily. Furthermore, the
Pareto-frontier is one of the central application fields in this chapter, as it produces
Best-Matching-Only data sets, which are the starting point for all scenarios in this
chapter. Moreover, similarity measures, already introduced in Section 2.3, will be
discussed briefly as they are crucial for analyzing the novel approaches, as comparisons
to the basic k-means clustering are needed to substantiate the approach’s benefits. As k-
means clustering works with several distance measures, several of them were introduced
in Section 2.3. As a significant step in the proposed approaches, k-means clustering,
an iterative partitional clustering (cp. Section 2.6.1.2), is adapted. Furthermore,
k-means++, a version of k-means where the initial partition is adjusted with seeding,
was also reviewed, as it improves the results in the clustering process.
As the approaches presented in this chapter all focus on exploiting wishes, an order
has to be modeled. A suitable approach is to use preferences, which can map wishes
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in a numerical range. A preference can be described as “I like y more than x,” which
leads to a formal definition of x <P y. In theory, a preference P = (A,<P ) is defined
as a strict partial order on the domain of A, dom(A). To construct preferences, there
are several base preference constructors, as well as two complex preference constructors
published in [Kie02; KEW11]. The most helpful preference constructors are presented
in the following paragraphs.

Base Preferences The so-called base preferences, seen in Fig. 3.3, represent wishes
in a specific domain and are described as features. These constructors, introduced in
[Kie02; KEW11], are the base to build Pareto-frontiers intuitively. There are several
constructors that model numerical preferences for managing features like the running
time of a movie or year. Nevertheless, categorical constructors for managing sets of, e.g.,
genres or favored actors, can also be handled. Moreover, some further constructors also
can model geospatial preferences. Restricting the attention to LOWEST/HIGHEST
as input preferences, Pareto preference queries coincide with the traditional Skyline
queries introduced in [BKS01]. To handle categorical domains, such as data sets, there
are also preference constructors, e.g., LAYERED, where sets of values are defined
according to their most, second, etc., preferred values.

SCOREd

LAYEREDm

POS/POS POS/NEG

NEGPOS

SPATIALdEXPLIСIT

BETWEENd

HIGHESTd

AROUNDdMORE THANd LESS THANd

LOWESTd

WITHINd

BUFFERdONROUTEd

NEARBYd

Figure 3.3: Taxonomy of base preferences.

Pareto Preference For the approach presented in this chapter, the most important
preference is the well-known Pareto preference, which models equal importance where
base preferences are used to build Pareto preferences intuitively. A Pareto preference
P := P1 ⊗ P2 = (A1 × A2, <P ) with preferences Pi = (Ai, <Pi

) and tuples x =
(x1, x2), y = (y1, y2) ∈ dom(A1)× dom(A2) is defined as follows:

(x1, x2) <P (y1, y2)⇔ (x1 <P1
y1 ∧ (x2 <P2

y2 ∨ x2 = y2))∨
(x2 <P2

y2 ∧ (x1 <P1
y1 ∨ x1 = y1))

(3.1)
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Discussion w.r.t Sets Each domain relies on numerical values and sets of movies
or genres, so they must be processed before Preferences can be applied. The following
example shows the drawbacks of traditional distance measures like the Euclidean
distance in data sets with diverse feature domain ranges.

Example 3
Consider Example 2. Assume a clustering with k = 3 clusters is favored, and the
movies with the IDs (1), (7), and (23) are chosen as initial centroids. The movie with
ID (27) should be allocated to one of the clusters using k-means with the Euclidean
distance on the attributes rating, running time, release year, and genres.
The Jaccard coefficient from Section 2.3 is used to determine the distance for categorical
attributes like genre, e.g., J(genresID=1, genresID=27) = 1

4 for the movie (1) and (27).
Thus, the distance between the movie (1) and (27) is then given by

dist(1, 27) =
√

(8.8− 7.1)2 + (125− 124)2 + (1990− 1977)2 + (1− 0.25)2 = 13.2

and shows that the (large) domain range of the year significantly influences the distance
calculation. Finally, movie (27) would be allocated to the cluster with centroid (23)
because of the lowest distance of only dist(23, 27) = 8.5.

3.2.2 Pareto Dominance Clustering

After introducing further basic knowledge, the Pareto-dominance framework is de-
scribed in detail for two-dimensional use cases. While a Pareto preference determines
the importance of preferences, the Pareto-dominance in the proposed approach is used
to allocate an object to the possibly best cluster, which is not dominated by other
clusters w.r.t. the distances of the individual objects, by using the Euclidean distance
for one-dimensional distances. Furthermore, the Pareto-dominance can additionally
be used to find a representative of each cluster on the Pareto-frontier, which has the
closest distance to the calculated centroid of the cluster. This representative can be
used as a new centroid for the next iteration.

3.2.2.1 Cluster Allocation

Consider the Pareto-frontier from Fig. 3.4, presenting users w.r.t. a possibly high
music-matching score and a possibly close distance. The goal is to get three promising
clusters C1, C2 and C3. For initialization, the points P2, P5 and P8 are chosen as
cluster centroids, marked as violet diamonds. Continuing, for each point P1, ..., P10

the particular distances of both the x- and the y-dimension to the cluster centroids are
calculated, which can be seen in Table 3.2. Moreover, the y-dimension, representing
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the music-matching score, is chosen as more significant than the x-dimension, being
considered, if Pareto-optimal cluster centroids appear in the allocation process. This
so-called one-dimensional clustering realizes that a decision is made for each object at
the cluster allocation. Fig. 3.4 shows a clustering after the first iteration.

Figure 3.4: Clustering of users with the Pareto-dominance after the first iteration.

Table 3.2: Distances of each user to each cluster centroid. C1 := P2, C2 := P5, C3 := P8,
x-dim.: distance, y-dim.: music matching score.

dxC1
dyC1

dxC2
dyC2

dxC3
dyC3

P1 27.44 0.01 120.72 0.06 264.60 0.09
P2 0.00 0.00 93.27 0.05 237.16 0.09
P3 1.66 0.01 91.61 0.04 235.50 0.07
P4 41.27 0.04 52.00 0.01 195.89 0.05
P5 93.27 0.05 0.00 0.00 143.89 0.04
P6 141.27 0.06 48.00 0.02 95.89 0.02
P7 150.88 0.09 57.61 0.04 86.28 0.00
P8 237.16 0.09 143.89 0.04 0.00 0.00
P9 311.32 0.09 218.05 0.04 74.16 0.00
P10 323.08 0.10 229.81 0.06 85.92 0.02
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The fundamental rules will be explained in more detail after introducing the general
approach with a brief example.

• Users P1 and P3 are assigned to cluster C1 as the centroid of C1 has a closer
distance to the other two centroids regarding the distances in both dimensions.

• P4 has 2 Pareto-optima, because of the closer distance to C1 regarding the
x-dimension and to C2 regarding the y-dimension. Hence C1 and C2 are Pareto-
optimal w.r.t. to the x- and y-dimension. Now the one-dimensional clustering
tips the balance to C2.

• P6 and P8 are allocated to Cluster C2, because of the closer distances to the
centroid of C2 in both dimensions.

• P7 is closer to C2 concerning the x-dimension but has a smaller distance to the
centroid of C3 w.r.t. the y-dimension. This ensures that P7 is allocated to C3.

• P8 and P10 are allocated to cluster C3 because of the existence of only one
Pareto-dominant cluster centroid, namely C3.

To explain the proposed approach more in detail, the attention is drawn to Fig. 3.5,
which shows a snippet of the Pareto-frontier of Fig. 3.4. While P4 is assigned to C1

regarding the smaller Euclidean distance of 41.27, unlike a distance of 52.00 to C2,
the versatility of the Pareto-dominance approach is shown. The user can influence
the clustering by choosing one dimension as the more important at the appearance
of Pareto-optima. Choosing the x-dimension as more important, P4 will be assigned
to C2. Thus, each data point will be allocated to one and only one cluster to avoid
overlapping and imprecise clusters. This use case shows that a Pareto-dominant
clustering combined with a one-dimensional clustering at the appearance of Pareto-
optima tends to a kind of hierarchical clustering because users with similar scoring
values w.r.t. the music matching score are clustered together, unlike in the primary
k-means clustering. In particular, cluster C1 and C2 contain users with similar music-
matching scores, where the range between the two boundary points is petite, unlike
the k-means clustering approach. So if P7 is allocated to C2 and P4 to C1, the users
contained in the clusters are not as similar as in the proposed approach.
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Figure 3.5: Comparison of Pareto-dominance and Euclidean distance. C1 := P2, C2 := P4.

3.2.2.2 Cluster Centroids

As mentioned in Section 2.6.1.2, there are two main possibilities to determine the cluster
centroids. The primary k-means clustering calculates the centroids by averaging all
data points. For this implementation, an approach similar to k-Medoids, also mentioned
in Section 2.6.1.2 was also considered but did not significantly affect the results. After
allocating each data point to a cluster, the cluster centroids are recalculated considering
the contained users. For each cluster, the x-dimension and y-dimension are averaged
for all values, which can be seen in Fig. 3.4 as W1,W2 and W3.
For each cluster-centroid W1,W2 and W3, the closest Pareto-dominant user in each
cluster is selected as the new cluster-centroid for the next iteration. The particular
distances regarding the two dimensions are calculated to find these users, as shown in
Table 3.3. Fig. 3.4 shows the calculated centroids before assigning the new centroids.

• P2 is the new cluster centroid of C1, because of the closest distance of each x-
and y-dimension to W1.

• For cluster C2 P5 is allocated as a new centroid because of the closer distances
in both dimensions, too.

• P8 and P9 both are Pareto-optima for the allocation of the cluster centroid of
C3 because P9 is closer to W3 regarding the y-dimension and P8 regarding the
x-dimension. The one-dimensional clustering determined by Bob tips the balance
to P8 as a new cluster centroid.
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Table 3.3: Particular distances of recalculated cluster-centroids W1,W2,W3 to the points in
each cluster.

dxW1
dyW1

dxW2
dyW2

dxW3
dyW3

P1 18.848 0.010 — — — —
P2 8.595 0.001 — — — —
P3 10.253 0.010 — — — —
P4 — — 50.667 0.012 — —
P5 — — 1.331 0.002 — —
P6 — — 49.331 0.014 — —
P7 — — — — 104.730 0.004
P8 — — — — 18.451 0.004
P9 — — — — 55.709 0.003
P10 — — — — 67.4726 0.0120

3.2.2.3 Complexity

The implementation of the proposed Pareto-dominant clustering approach was realized
as a Java program and reaches a complexity of O(n · c · d) where n is the number of
d-dimensional points that should be clustered in c clusters. In each iteration, i for
every point n, the distances to each cluster c are calculated in O(c), and the best
centroid is chosen after the distance calculation. Compared to the basic k-means
clustering and k-Medoids clustering, a better or at least equal complexity is reached.

3.2.2.4 Discussion

This section introduced a promising solution for a two-dimensional use case. The
benchmarks showed that the proposed approach is competitive to the basic k-means
clustering along with the Euclidean distance. While the Pareto-dominance as a decision
criterion for k-means clustering works well in this use case, in higher dimensions, Pareto-
dominance is stretching to its limits because of a higher probability of occurring Pareto-
optima for a growing number of dimensions. As use cases exploiting user preferences
do not only focus on two feature dimensions, this approach is scarcely considerable,
as the proposed decision criterion in Pareto-optimal cases in the allocation process
only considers a predefined feature dimension. Thus, a distortion of the clustering can
occur. Thus, a more precise decision criterion has to be found for allocating each point
to one and only one cluster. The following section presents a more versatile approach
to handle this challenge more precisely. This approach works with an ordering process
and assigns votes according to this order in each dimension separately. Thus, no
predefined feature dimension is needed in the case of Pareto-optimal dimensions.
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3.2.3 Borda Social Choice Clustering

This section presents the novel Borda social choice clustering approach. Social choice
deals with aggregating individual preferences for managing social assessments and
ruling. The Borda social choice voting rule is omnipresent in political or other elections,
e.g., the Eurovision Song Contest. The Social Choice was founded in the 18th century
and was first published by Jean-Charles de Borda and Marquis de Condorcet [Sen99].
As mentioned in [Deb92], the Borda Social Choice Voting Rule is a very appealing
approach to considering each dimension in a multi-dimensional scenario equally. This
rule can be used for the allocation of objects to one and only one cluster and, therefore,
allows more influence on smaller domain ranges. The Borda Social Choice Voting Rule
is a promising method for the proposed approach because every candidate receives
equal weighted votes from each voter.
Given k candidates Ci, and d voters Vj , where each voter votes for each candidate.
Each voter has to allocate the voting vjm ∈ {0, ..., k − 1}, m = 1, ..., k, where all vjm
are pairwise distinct. After all, voters assigned their votes, the votes for each candidate
are summed up as it can be seen in Eq. 3.2, while the Borda winner is determined as
depicted in Eq. 3.3.

bordaSumCi
=

d∑
l=1

vli (3.2)

bordaWinner = max{bordaSumCi
| i = 1, ..., k} (3.3)

Suppose this rule is applied to the proposed clustering framework. In that case, the
candidates correspond to the available clusters and the voters to the dimensions of the
d-dimensional object, which should be allocated to a cluster. Then, for each dimension,
votes are assigned for the distances between the object and the centroids of the clusters.
While the closest distance receives a maximum vote of k-1, the second closest gets a
vote of k-2, etc., and the most enormous distance obtains a vote of 0, where k is the
number of desired clusters. After the voting, Eq. 3.2 determines the sum of all votes
for each cluster, and subsequently, Eq. 3.3 identifies the winner. Therefore, dimensions
that would not be equally considered because of a smaller or larger domain range,
e.g., using a distance measure like Euclidean, get equal weighted votes like the other
dimensions and significantly influence the clustering process. To clarify the principle
of the Borda Social Choice Voting Rule, Example 4 shows the allocation of an object
to other representatives of clusters.
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Example 4
Reconsider Example 2. Table 3.4 shows the Borda social choice cluster allocation for
the movie (27). The centroids of the initial clusters C1, C2, C3 are the movies with
the IDs (1), (7), and (23). The distances between movie (27) and the centroids are
calculated for each dimension. The Borda votes are depicted in parentheses, e.g., the
dimension rating is closest to C3 and therefore gets a vote of k − 1 = 2. The second
closest centroid is C2 with vote 1, and C1 gets the vote 0. Finally, C2 with movie (7)
as the initial centroid is determined as the Borda winner with a Borda sum of 5, cp.
Eq. 3.2 and Eq. 3.3. Compared to the Euclidean distance, more concise results for the
cluster allocation are obtained due to ranking the values in each dimension according
to their closeness. Note that a Jaccard coefficient of 1.0 is the best value for the genre.

Table 3.4: Cluster allocation for movie (27) with Borda voting rule.

Movie (27): Die Hard

Dimension C1 C2 C3

rating 1.70 (0) 1.30 (1) 0.50 (2)
running time 1.00 (2) 25.00 (0) 6.00 (1)
release year 13.00 (0) 2.00 (2) 6.00 (1)
genre 0.25 (1) 0.50 (2) 0.20 (0)∑

3 5 4

3.2.3.1 Borda Clustering Algorithm

The classic k-means algorithm from Section 2.6.1.2 is modified to realize a clustering
with the Borda Social Choice Voting Rule as a decision criterion for the cluster
allocation. For this, Step 2) of k-means is replaced by the Borda rule, where the
distances of each object to the available clusters are calculated and allocated afterward.
This allocation is described in Function 1, which finally returns the centroids id the
object should be allocated to.
For managing the Borda Social Choice Voting Rule, an object array votes[] is used
to save the centroid IDs and Borda values. As further information for each object
x = (x1, ..., xd) ∈ X, an identifier idlast of the allocated centroid from the previous
iteration is necessary.
In Line 2, the array votes[] is set to the bordaSum values from Equation 3.2. In
detail, in each dimension, the distances between the considered object x and each
cluster centroid of C are calculated, saved with the centroids id in an object-based data
structure, and appended to an object array. Once all distances in the current dimension
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Function 1 Determine Borda Winner

Input: d-dim. object x = (x1, ..., xd), centroids C, cluster-id last iteration idlast.
Output: id of the closest cluster for object x = (x1, ..., xd).

1: function getBordaWinner(x, C, idlast)
2: votes[] ←calculateBordaSum(x, C) //determine & sum up votes.
3: id= analyzeBordaWinners(votes[], idlast) //analyze all Borda winners.
4: return id
5: end function

are calculated, this object array is sorted ascending according to the distances to
assign the Borda votes from 0 to k-1. After the sorting, the votes for each cluster are
determined and summed up in the array votes[] overall dimensions.
Subsequently, the Borda winner(s) with the highest score in the array votes[] (Line 3)
are found, and afterward, the corresponding cluster id is returned in Line 4. If there
is more than one Borda winner, the winner is randomly chosen. After the object x got
allocated to the centroid with the identifier id, the clustering continues with Step 3)
of k-means. Note that this approach will be called Borda for further purposes. There
are some improvements w.r.t. the convergence, which will be discussed in the next
section.

3.2.3.2 Convergence

When discussing clustering, convergence is a major topic. In [Mac67; Jai10], it was
shown that k-means could only converge to a local optimum (with some probability
to a global optimum when clusters are well separated). The proposed algorithm is
based on k-means and only uses another kind of “distance measure”. Therefore, the
convergence proof is similar to the one of the k-means.

Proof of convergence. There is only a finite number of ways to partition n data points
into k clusters [Mac67; Jai10]. A new clustering based only on the old clustering is
produced for each iteration of the proposed algorithm. In addition, it holds that

1) If the old clustering is the same as the new, the next clustering will be the same
again. Thus, a kind of fixed point is reached.

2) If the new clustering differs from the old one, the newer one has a lower cost (due
to better overall voting).
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Since the algorithm iterates a function whose domain is a finite set, the iteration
must eventually enter a cycle. The cycle cannot have a length greater than 1 because,
otherwise, by 2), one would have some clustering, which has a lower cost than itself,
which is impossible.

Therefore, k-means using the Borda Social Choice Voting Rule converges in a finite
number of iterations to a local solution but does not permit eliminating the compelling
possibility that a point oscillates indefinitely between two clusters. Indeed, after some
preliminary tests, especially for higher dimensions and a higher number of clusters,
some problems regarding the convergence of the approach were noticed. To solve this
problem, a decision criterion for the cluster allocation was added if there is more than
one Borda winner.
In detail: For each iteration, the IDs of the cluster objects the object got allocated
to are saved. Assume there is more than one Borda winner in the next iteration,
the allocation to the centroid from the last iteration idlast (Line 3 of Function 1) is
consulted. If so, the object goes to the same cluster as in the last iteration. As the
benchmarks show, this solution ensures the clusters become stable in a few iterations.
Another problem concerns the initial partition, which could result in empty clusters.
If the first centroid was randomly chosen, the probability that a pretty similar object
to the first centroid would be chosen is minuscule but possible. Especially if there
are, e.g., different movies with almost the exact specifications, the possibility is given
that these movies are chosen as cluster centroids. Then, the order of the cluster
centroids decides that the first of the clusters will be occupied with objects, while
the following cluster with a similar centroid will stay empty. k-means++ minimizes
these problems and cares that the runtime and the number of iterations will decrease.
This comprehensive approach considering convergence and empty clusters is called
Borda++.

3.2.3.3 Complexity

The algorithm’s complexity is given by O(ndk ·k log(k)+k) where each n d-dimensional
object should be clustered in k clusters. The algorithm calculates the distances of the
dimension d for each object for each cluster k in O(ndk). Depending on the sorting
algorithm, the distances are sorted, e.g., by Quicksort in k · log(k) [Hoa61]. Finally,
the Borda winners are determined in O(k). Hence a complexity of O(nd · k2 · log(k)) is
reached. Compared to the basic k-means clustering, this approach reaches a different
complexity. In Section 3.3, the proposed approach will be evaluated against the basic
k-means clustering considering runtime and the number of needed iterations to show
the benefits even though the complexity does not.
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3.3 Synthetic Experiments

Experiments on several data sets are performed to validate the benefits of the ap-
proaches as they show competitiveness. Benchmarking is an effective procedure to
compare approaches against each other. In this section, the benchmark settings are
briefly described. Afterward, results of experiments regarding runtime, number of
iterations, and quality of the clustering approaches compared to the basic k-means
approach with traditional distance measures both for the Pareto-dominance clustering
approach and the Borda Social Choice clustering approach are presented.

3.3.1 Benchmark Settings

Both approaches of the experiments were performed on an Intel Xeon machine with
2.53 GHz and 44 GB RAM. To compare the runtimes, several synthetic data sets of
independent and anti-correlated multi-dimensional Pareto-optimal points were created
using a data generator, as described in [BKS01], as they form a unique use case in
terms of Pareto-optimal data sets. Clusterings were performed in test rows with 1000
repeats to gain averaged reliable data. Furthermore, the number of dimensions, the
number of data objects per set, and the number of desired clusters were also varied. The
main aim of the benchmarks was to evaluate both runtime and number of iterations of
the proposed approaches until a stable clustering is reached considering the following
clustering techniques.

3.3.2 Benchmarks Pareto-dominance

First, the benchmarks of the Pareto-dominance implementation are introduced and
discussed. The proposed Pareto-dominance clustering approach was evaluated against
the basic k-means clustering algorithm with Euclidean distance in terms of runtime
and needed iterations until convergence.

Runtime The benchmarks of the Java implementation in Fig. 3.6a show that
the approach using the Pareto-dominance is mostly similar regarding the runtime
compared to the basic k-means approach using the Euclidean distance. The average
clustering runtime is growing for both approaches for constant clusters and a growing
number of points. Whereas for constant numbers of points and growing clusterings,
there are some aberrations at k = 7 for 15000 data objects for both approaches.
Significantly, if points at the border of the cluster switch between two clusters, the
runtime grows. Overall, the clustering approach using the Pareto-dominance is nearly
as efficient as using the Euclidean distance.
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Iterations The number of iterations w.r.t., the number of desired clusters, and the
number of points can be seen in Fig. 3.6b. For both frameworks, the number of
iterations is similar. For a growing number of desired clusters, the number of iterations
is growing for both approaches, except for the sets of k = 5, 7 with 15000 points using
the Pareto-dominance. Contrary to the expectations for this experiment, the number
of points in the sets is independent of the number of necessary iterations to achieve a
stable clustering.

(a) Runtime. (b) Iterations.

Figure 3.6: Evaluation of Euclidean distance(Eucl.) vs. Pareto-dominance(P-d)

3.3.3 Benchmarks Borda-Clustering

Since Euclidean is the most common distance for k-means clustering, the main goal
to show is that the proposed approach terminates at least as fast as k-means and
needs the same or fewer iterations until termination. Furthermore, to consider also a
distance that inhibits a kind of normalization, Canberra distance was evaluated to gain
reference values, which should be dominated by them of the Borda approach w.r.t. the
runtime and the number of iterations. To receive a faster runtime and fewer iterations
until stable clusterings, the utility of k-means++ for the Borda approach w.r.t. the
runtime and number of iterations were also considered. The following settings for the
experiments were considered:

• Eucl.: k-means with Euclidean distance for cluster allocation.

• Canb.: k-means with Canberra distance for cluster allocation.

• Borda: k-means with Borda voting rule for cluster allocation.

• Borda++: k-means++ with Borda voting rule for cluster allocation.
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(a) Runtime w.r.t d=3. (b) Iterations w.r.t. d=3.

(c) Runtime w.r.t. d=5. (d) Iterations w.r.t. d=5.

(e) Runtime w.r.t. d=9. (f) Iterations w.r.t. d=9.

Figure 3.7: Evaluation of runtime and iterations for Borda Clustering.

Runtime In Fig. 3.7a the number of clusters (k = 3, 5, 7, 9) and the data size, i.e.,
5000, 10000, and 15000 input objects were considered, for the clustering were varied. In
this 3-dimensional case, increasing the number of clusters and the input data leads to
an increasing runtime. The Borda approach works in equal time compared to k-means
with Euclidean (Eucl.) and Canberra (Canb.) for small numbers of clusters. Because
of higher complexity, the Borda approach is slower for 7 and 9 clusters, independent of
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the number of input objects. The benefits of a faster runtime for k-means++ are hardly
recognizable in most cases considering Borda++. Fig. 3.7c presents the results on a
5-dimensional domain. For increasing numbers of dimensions, Borda reaches a better
runtime compared to Eucl. except for a high number of clusters. In some cases, Borda
terminates faster than Canb., e.g., the test series with 7 clusters, but Borda mainly
reaches an equal runtime in a 5-dimensional space. A similar behavior illustrates the
test series for a 9-dimensional set of objects in Fig. 3.7e. While both Borda and
Borda++ terminate in similar time compared to Canb. for 3 and 5 clusters, they are
a lot faster than Eucl.. The trends for growing runtimes w.r.t. the number of clusters
and objects can also be noticed in 9-dimensional space. Further experiments have
shown that the runtime increases with more objects and clusters in higher dimensions.

Iterations This section shows the number of iterations necessary to reach a stable
clustering, cp. Fig. 3.7b are considered. The experiments indicate that for an
increasing number of clusters and objects (cp. Fig. 3.7d and 3.7f), the number of
iterations until termination increases, too. However, Borda and Borda++ reach a
stable clustering in clearly less iterations than Eucl. and Canb. In higher dimensions
(d > 9), the number of iterations is increasing slightly for a growing number of objects
and desired clusters. Thus, the seeding performed with the k-means++ algorithm has
only a tiny effect on the number of iterations for Borda++ compared to Borda. In
summary, the Borda approach has a runtime similar to the classic k-means algorithm
but only needs a fractional part of iterations until termination for all test series.
Therefore, using traditional distance measures, Borda and Borda++ can be considered
competitive to k-means and k-means++.

3.3.4 Discussion & Comparison of the Results

The Pareto-dominance clustering and the Borda Social Choice clustering approach
have a similar idea considering the cluster allocation, as both approaches do not need
traditional distance measures in the allocation process. As the Pareto-dominance
approach has its drawbacks regarding a growing number of feature dimensions, the
Borda Social Choice clustering approach does not need to care about Pareto-dominant
distances in the allocation process, as they are sorted and weighted afterward. Thus,
a higher complexity is given for the Borda Social Choice clustering approach, and
unsurprisingly, the runtime is also growing when comparing the runtimes of the
Pareto-dominance approach, which was evaluated in a two-dimensional use case to
the experiments of the 3-dimensional use case considering the Borda Social Choice
clustering. A significant benefit is the number of needed iterations, which is only
marginally growing for a growing number of dimensions, data objects, and desired
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clusters. Compared to the Pareto-dominance clustering approach, the weighting and
careful seeding using k-means++ in the Borda Social Choice clustering assort well
together and deliver a more convenient approach.

3.4 Quality Experiments

In the context of clustering algorithms, the question of quality often arises. However, it
is difficult to compare the results of different approaches and to determine the quality
of clustering methods [Kni+12; KP17]. To evaluate quality, the clustering evaluation
indicators Silhouette and the Davies-Bouldin Index, which were already introduced in
Section 2.6.2, were considered to measure the internal quality, i.e., if a clustering has
a high intra-cluster similarity and a low inter-cluster similarity.

3.4.1 Settings

To test the quality, a movie recommender system was developed [KRE19] based on
the JMDb movie database, a Java-based alternative interface10 of the IMDb. The
prototype recommends clusters of movies based on the user’s preferences and allows
a comparison of the clustering techniques. This system was used to filter all movies
w.r.t. the following preferences:

• Scenario (S1): Action and comedy movies of the 2000s to the present day.
Running time between 60 and 120 minutes. Rating between 6 and 10.

• Scenario (S2): Drama, thriller and crime movies during the 90s and 2000s.
Rating between 8 and 10.

• Scenario (S3): Classic-movies of the 70s and 80s. Release year between 1975 and
1989. Running time between 90 and 150 minutes. Action-, adventure movies,
and dramas as genres.

The chosen scenarios were built on common user preferences considering movies of the
last 40 years. To determine valuable values for the Silhouette (Sil.) and Davies-Bouldin
Index (DB), the experiments were evaluated on k ∈ {3, 5, 7, 9} w.r.t. the results of
the scenarios. To reach a significant mean value for the experiments, 1000 runs were
performed for each scenario.

10http://www.jmdb.de/
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3.4.2 Execution

Note that the Borda clustering approach is not generally metric but uses an assignment
function. Therefore, no appropriate numerical distance measure for Silhouette and
Davies-Bouldin could be found for the Borda clustering approach. Both the Euclidean
and Canberra distances were considered in both indicators to evaluate the quality,
even though this needs to be revised for Borda and leads to a bias. Tables 3.5, 3.6
and 3.7 show the results for the scenarios (S1), (S2) and (S3).
The leftmost column in all tables represents the algorithm used for clustering, i.e.,
k-means++ with the Canberra (Canb.), Borda++, or Euclidean (Eucl.) measure. For
each algorithm, the Silhouette and Davies-Bouldin quality indicator, one time with
the Canberra distance, the other time with the Euclidean distance, were computed.
Unsurprisingly, Canb. performs best with the Canberra distance and Eucl. provides
the best internal quality using the Euclidean distance for all evaluated scenarios. This
is because the clusters are computed using the corresponding distance measure, and
therefore, the quality indicators also compute a high intra-cluster similarity.
For example, consider Table 3.5, where Silhouette leads to an internal quality of 0.484
(Canberra dist.) on the score of -1 to 1, and therefore k = 9 would be best in this
case. Also, Davies-Bouldin, having a value of 0.839, is best for k = 9. This is not
the case with Borda because neither the Euclidean nor the Canberra distance fits
the Borda assignment function. Nevertheless, the observations show that the internal
quality of Borda always gets values between Canb.. and Eucl. In addition, the Borda
approach reaches more reasonable values than Canb. using the Euclidean distance or
Eucl. with the Canberra distance. Thus, the approach is adequate for the intra-cluster
and inter-cluster similarity (Davies-Bouldin Index) as well as the coherence of the
clusters (Silhouette).

Table 3.5: Quality measures using Sil. and DB Index for Scenario (S1).
with Canberra dist. with Euclidean dist.

Alg. Indic. k=3 k=5 k=7 k=9 k=3 k=5 k=7 k=9

Canb. Sil. 0.430 0.470 0.479 0.484 -0.028 -0.119 -0.150 -0.153
Canb. DB 1.080 1.029 0.896 0.839 10.570 11.230 8.774 7.642

Borda++ Sil. 0.106 0.091 0.073 0.067 0.062 -0.003 -0.036 -0.050
Borda++ DB 2.171 2.163 2.279 2.295 2.627 2.784 2.804 2.815

Eucl. Sil. 0.135 0.038 -0.024 -0.060 0.457 0.405 0.411 0.421
Eucl. DB 3.850 4.552 5.115 5.878 0.775 0.881 0.836 0.799

74



3.5 Interpretation & Discussion of Results

Table 3.6: Quality measures using Sil. and DB Index for Scenario (S2).
with Canberra dist. with Euclidean dist.

Alg. Indic. k=3 k=5 k=7 k=9 k=3 k=5 k=7 k=9

Canb. Sil. 0.591 0.605 0.650 0.679 -0.050 -0.113 -0.171 -0.221
Canb. DB 0.602 0.567 0.531 0.501 15.003 18.256 18.195 18.837

Borda++ Sil. 0.090 0.001 -0.040 -0.065 0.141 -0.010 -0.086 -0.103
Borda++ DB 2.552 2.892 3.194 3.241 2.394 2.908 3.174 3.155

Eucl. Sil. -0.026 -0.087 -0.192 -0.308 0.592 0.562 0.547 0.531
Eucl. DB 7.070 13.879 15.768 16.541 0.513 0.551 0.606 0.618

Table 3.7: Quality measures using Sil. and DB Index for Scenario (S3).
with Canberra dist. with Euclidean dist.

Alg. Indic. k=3 k=5 k=7 k=9 k=3 k=5 k=7 k=9

Canb. Sil. 0.507 0.541 0.591 0.612 0.001 -0.024 -0.034 -0.020
Canb. DB 0.930 0.875 0.703 0.591 7.493 5.353 4.370 3.928

Borda++ Sil. 0.132 0.135 0.123 0.133 0.127 0.117 0.116 0.131
Borda++ DB 1.748 1.730 2.040 2.012 2.022 1.944 2.007 1.881

Eucl. Sil. 0.110 0.009 -0.072 -0.138 0.436 0.430 0.453 0.465
Eucl. DB 4.486 4.811 5.315 5.414 0.820 0.762 0.672 0.624

3.5 Interpretation & Discussion of Results

After introducing and discussing the results of the proposed approaches considering
synthetic and quality experiments, the lessons from both approaches are drawn. After-
ward, some use cases for the Borda Social Choice clustering approach are introduced
in more detail.

3.5.1 Interpretation of Results

As already discussed after the synthetic experiments, Borda Social Choice is the more
convenient approach, as it can handle use cases that focus on a higher dimensional
feature space superiorly. Considering the internal clustering indicators, the proposed
approach confirms a high quality. That means that Borda++ achieves a high intra-
cluster similarity, even between Eucl. and Canb. Note that the distance calculations
evaluate the quality indicators Silhouette and the Davies-Bouldin-Index using the
Euclidean distance and the Canberra distance. Therefore, it is evident that Eucl.
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gets a better quality by using the Euclidean distance and Canb. is better using the
Canberra distance. However, the Borda++-based allocation lies between both quality
measures and provides high internal quality.
Finally, Borda++ is a competitive alternative for cluster allocation in centroid-based
clustering algorithms like k-means due to similar runtimes, fewer iterations, and
the benefit that no normalization is needed before the clustering. Additionally,
comprehensive experiments considering the internal quality emphasize the advantages
of the alternative clustering approach.

3.5.2 Use Cases

As mentioned, a demo recommender exploiting the Borda Clustering to avoid domain
normalization, based on the IMDb, was introduced in [KRE19]. This recommender
effectively caters to user preferences by utilizing preference-based queries to identify
suitable movies based on key features such as running time, genres, actors, rating, and
release year. Considering Example 2 again, preferences are given, which can be seen
in Fig. 3.8. Clustering those results on the Pareto-frontier delivers comparable results
between two clustering scenarios, which also get evaluated using quality metrics to find
the most appropriate number of clusters. A possible result comparing the Borda++
as well as standard k-means++ with Euclidean distance can be seen in Fig. 3.911.

Figure 3.8: Preference-based movie selection in a recommender system.

11Images of the Demo Recommender contain contents of the OMDb API
(http://www.omdbapi.com/), which are licensed under CC BY-NC 4.0.
(https://creativecommons.org/licenses/by-nc/4.0/)

76



3.6 Related Work

Figure 3.9: Compare mode of the cluster results in movie recommender.

Another scenario presented in [EKR18] is clustering Pareto-optimal objects in data
streams. As stream data analysis is a prevalent topic both in research and the economy,
social media services such as Twitter provide an API for analysis. As data streams
often provide a vast data set when considering, e.g., sports events or political elections,
but also other areas such as network monitoring, infrastructure manufacturing, or
meteorological observations, preference-based stream processing provides many benefits
when learning from data streams. The approach combines a novel preference-based
query processing framework with the Borda Clustering presented in this chapter. This
approach shows that the Borda Clustering approach can deal with various data sets
from several data streams, such as Twitter, as both parts of the framework can work
with manifold and varying data sets based on stream data.

3.6 Related Work

Since clustering is a prevalent topic in Data Mining (DM) and ML, there are several
other approaches considering clustering and Pareto-dominance, which were published
years before the proposed approaches. Those and the development in recent years will
be recapped in this section and delimited to the approaches presented in this chapter.
A very early approach considering a Pareto-efficient clustering was published in [FB92]
where multicriteria objects for clustering were consulted, where only a few, but at
most, the probably best results appear. They focus on a modified relocation algorithm
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and a modified agglomerative algorithm, finding a Pareto-dominant clustering that
dominates all other clusterings. In [Hua+11], a k-means clustering-based technique was
published, where a so-called SkyClustering method works within a Skyline-computation
in SQL on a relational database to compress a large Pareto-optimal set of objects to
explore the diversity of a Skyline. [TB15] presents a supervised alternative clusterings
approach for handling Skylines by finding clusterings of good quality starting from
given negative clusterings, which should be as different as possible and, simultaneously,
a Pareto-optimal solution. Ebrahimi et al. [ESA12] provide a Pareto-dominant
clustering approach using a semi-supervised clustering where user-defined constraints
are considered. In contrast to this research, which focuses on integrating finding
Pareto-frontiers while the clustering process, both the Pareto-dominance and the
Borda Social Choice voting rule are included in the clustering approach, which uses a
specific criterion to allocate an object to a specific cluster. Both approaches separate
the process of building a Pareto-frontier and analyzing them, as the traceability is
much better. Another approach focusing on supervised learning combines Pareto-
optimal clusters as presented in [MMB09]. The authors use a fuzzy clustering-based
approach to yield a Pareto-frontier for a given data set. This set is used as training
data in a classification-based approach using Support Vector machines to allocate the
remaining data objects that are not Pareto-optimal. In contrast to this work, the
proposed approaches do not need supervision and focus on use cases where mostly
only Pareto-optimal objects must be clustered. Regarding specific use cases such as
Recommender Systems, it is also challenging to use Semi-Supervised Learning (SSL)
or Supervised Learning (SL), as it is needed to provide tailored knowledge for each
use case individually.
Much research is also considering extending the primary k-means clustering, as the
authors of [Kan+02] extended k-means and published an implementation, which filters
the data set with a kd-tree to ensure a better separation between clusters. Considering
multi-dimensional data sets are a general research area, hence [WWP88] published an
approach using hyperboxes for partitioning and forming clusters to reach fewer errors
compared to the ordinary k-means clustering, especially in higher dimensions. Zhang
et al. ([ZZX08]) published an approach that ensures the stability of k-means clustering
by adding a heuristic for finding optimal centroids during the cluster allocation. In
contrast, [JNH07] are using weighting for identifying subsets in k-means reaches better
results. Both [KA09] and [Ukk11] deal with chains as input for clustering algorithms
and, therefore, present solutions for the cluster allocation of chains using orders instead
of trivial distances. All of those approaches focus on extending and adjusting k-means
clustering, but none of those works considers focusing on avoiding the normalization
and standardization process. In contrast to their work, the approaches presented in
this chapter deal with an ordering process in the cluster allocation to improve quality
and benchmarking compared to the traditional k-means clustering.
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Also, weighting and selection of feature dimensions play a significant role in research,
as large sets of Pareto-dominant objects are avoided, such as presented in [Cha+06]
where only a few dimensions k are considered for the Skyline computation. This
approach attaches weight to less but more critical dimensions of objects. In [PHL04],
Subspace Clustering is considered to mask out dimensions in high dimensional data by
a so-called feature selection, which reduces the dimensions by removing irrelevant and
redundant ones, reaching overlapping clusterings in subspaces. Gong et al. published
a collaborative filtering recommendation algorithm in [Wei+12], which considers
clustering approaches for user and item clustering using similar ratings. Clustering
personalized music recommendations by setting favored music as centroids for the
clustering process is published in [Kim+07]. In contrast to their work, the approach
presented in this chapter exploits Borda Social Choice to weight the distances to
clusters in each dimension according to the distances for the cluster allocation for each
object. Furthermore, especially in the Borda Social Choice approach, no reduction of
feature dimensions or any filtering is needed, as the approach can cope easily with
various and diverse feature domains.
The work of Virmani et al. [VSM15] is worth discussing when examining normalization.
They proposed a k-means clustering approach, where a feature normalization is
integrated before the clustering process starts. Weights are assigned to each attribute
value to achieve a standardization. Also, Mohamad and Usman [MU13] discuss
the effects of domain range standardization. They found that selecting a specific
standardization procedure according to the data set is crucial to obtaining better-
quality results. In contrast to their work, no standardization or normalization is
needed in the proposed approaches before the clustering step. However, a kind of
normalization is performed in each step of the cluster allocation. In all these cases,
the question is how to find the proper weights and which standardization procedure
should be applied. Both approaches in this chapter subdue the normalization and
standardization problem by applying the Pareto-dominance and the Borda Social
Choice Voting Rule to allocate objects to clusters.
A recent approach to finding Pareto-optimal sets using a dual clustering approach is
presented in [Lin+21]. The authors propose a local density-based approach similar
to DBSCAN to find neighborhoods of local Pareto-optimal sets. Afterward, the non-
dominated objects are selected from the sets and clustered again using hierarchical
agglomerative clustering to reach a global Pareto-optimal set. A similar approach is
presented in [Li+22], where an offline and online objective reduction is proposed for
objective optimization. A Gaussian Mixture Model-based clustering is used to divide
a Pareto-frontier into several subsets, which are reduced with an offline and online
objective reduction method to determine the significant objectives for each cluster.
These very recent approaches show that clustering Pareto-optimal sets is still a relevant
research topic. Several diverging clustering approaches show that Pareto-frontiers
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can quickly be processed beyond k-means clustering prosperously. The success of the
approaches is encouraging for adapting, especially the Borda Social Choice Voting
Rule, to other clustering approaches.

3.7 Conclusion & Outlook

In this chapter, on the one hand, a novel Pareto-dominance-based clustering framework
on Pareto-frontiers for two-dimensional use cases was introduced. This framework
provides several reasons for using this to manage large, confusing sets of tuples
with explicitly different domains. First, one can influence the clustering result by
attaching a weight to a more critical dimension to cluster at least over one dimension
at the appearance of Pareto-optima. Second, tuples can now be clustered over better-
than relationships to avoid adjustments for utilization in different use cases. Third,
benchmarks show that a Pareto-dominant clustering can be realized quickly. The
quality of the proposed approach is satisfying because the stable clusters distinguish
from them the basic k-means clustering but are still as similar as possible, especially
regarding the affiliation of similar points w.r.t. the one-dimensional clustering. As
discussed previously, the drawbacks of the Pareto-dominance approach occur mainly
in higher dimensional feature spaces, as the allocation is stretching to its limits if
Pareto-dominant distances considering the dimensions are occurring. One-dimensional
clustering may help in a two- or three-dimensional space but is no solution in higher
dimensions as the clustering results are influenced too much. Thus, the whole clustering
process is sophisticated and only advisable for low-dimensional feature spaces.
On the other hand, a novel clustering framework exploiting the Borda Social Choice
Voting Rule was introduced. Especially in high-dimensional applications, the proposed
framework handles large and dizzying sets of objects. The users do not need to care
about normalizing the domain ranges because Borda Social Choice for the cluster
allocation consults each dimension equally by weighting the distances to the clusters.
The experiments show that the approach terminates in comparative runtime to k-
means clustering with traditional distance measures but needs fewer iterations until a
stable clustering is reached. Furthermore, comprehensive quality experiments verify
the benefit of the proposed approach in the context of a large and multi-dimensional
environment, namely the IMDb movie recommender from [KRE19]. The Borda
Clustering framework can manage various multi-dimensional preference-based use
cases with diverse domains, e.g., movie search, hotel booking, or car purchasing.
However, the Borda Social Choice clustering approach has some drawbacks. Even
though this approach does not need normalization, hyper-standardization is possible,
as the distances in each dimension are sorted by their closeness to the centroids.
Assuming there are a lot of very close objects and some objects that have more
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considerable distances in one dimension, the effect of allocating weights may lead to
standardized values independent of their closeness to the centroid.
Another worthwhile discussion considering centroids is using actual data objects as
centroids for both approaches. This approach’s benefit is that Pareto-dominant objects
are always considered centroids, and finally, for each cluster, a representative is given
after termination. This approach may work well, as k-Medoids is an established
approach. However, the fewer data objects are given, the clusters may be shifted
compared to the basic k-means clustering if the distances between the cluster centroid
and the surrounding data objects are large. Both approaches in this chapter were
evaluated similarly to k-Medoids but did not deliver significant improvements consid-
ering quality and benchmarking results. Nevertheless, using representatives as cluster
centroids in each step may be a possible solution for larger data sets.
In summary, both approaches presented in this chapter are promising because of the
satisfying results of the experiments. Since Pareto-dominance works well for clustering
objects in smaller dimensions, Borda Social Choice is more convenient for use cases
with at least three dimensions. However, the synthetic experiments show that both
approaches are competitive to basic k-means clustering w.r.t. running time and number
of needed iterations until termination. However, more is needed to prove the quality
of large data sets. As k-means clustering tends to find local minima, it hardly handles
noise, and thus, centroids can be shifted a lot; both proposed approaches may have
problems in massive data sets.
For future work, minimizing the empty cluster problem by choosing a better initial
partition, e.g., populating the centroids initially with the most preferred movies of the
users, could be a very appealing approach. Furthermore, since the Borda clustering
approach provides concise results for the Borda winners at the cluster assignment,
investigating weighting dimensions by user preferences is worthwhile. In addition, the
integration of the Borda Social Choice Voting Rule into other clustering techniques like
X-Means, EM-Clustering, Hierarchical agglomerative, or a density-based clustering
algorithm like DBSCAN to identify the behavior of Borda are encouraging projects,
as k-means is not always the best clustering solution.
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Chapter 4

Structure Discovery of
Fine-Grained User Roles in
Social Media

Und ich gebe dir einen Namen
Damit du weißt, dass du wirklich existierst
Und wir bauen uns eine neue Welt
Bewohnt von Geschöpfen
Die du Monster nennst

Callejon - Mary Shelley

This chapter introduces the novel Knowledge Discovery (KD) based
approach step by step, which was introduced previously in Section 1.2
and substantiates it with definitions, metrics, and algorithms introduced
in Chapter 2. Before presenting several Sampling strategies, Clustering
techniques, and Cluster Analysis metrics, a recap including motivation
and contributions of the methodology is given. Further steps, such
as manual class labeling, and classification, are introduced before the
probabilistic combination of the novel Multi-Sampling and Combination
Strategy is proposed. These steps of the general KD approach were
already published in peer-reviewed papers of the author [KF21; KF23].



4 Structure Discovery of Fine-Grained User Roles in Social Media

4.1 Motivation & Contributions

Based on the general contributions from Section 1.3 and the assignment of them
to areas of machine learning in Section 1.4, they will be brought into line with the
general approach, which was already introduced in Section 1.2. Also, the proposed
approach will be recapped and presented in more detail, focusing on the crucial
steps, substantiating with essential background knowledge from Section 2. Moreover,
robust algorithms and techniques will additionally be introduced in this section to
augment the general background. In particular, the discovery and explainability of
fine-grained structures, such as fine-grained user roles, will be performed with the
approach introduced in the following chapter. In Chapters 5 and 6, the suitability
of the approach’s application will be investigated and evaluated on two diverse use
cases, i.e., Twitter data sets as a representative of traditional social media services and
a Telegram data set representing a more contrary use case of an instant messaging
service. Moreover, parts of this approach will also be applied to an entirely different
use case in Chapter 7 where clustered shapes of information cascades will be evaluated.
Pointing to the first contribution from Section 1.3, dealing with providing a framework
for fine-grained structural analysis for data sets from social media, it is essential
to learn and understand the structure of user roles and groups. Remembering the
definition of a user role from Section 2.1.2 and the related work detecting them from
Section 2.1.2, the focus is often only on finding coarse-grained structures and roles. The
main goal of the approach presented in this chapter is dealing with a more fine-grained
structural analysis, as the following example motivates the benefits.

Example 5
Assuming a Twitter data set consisting of several user messages such as tweets, retweets,
and comments considering a sports event such as the Olympic Games 2012 over several
weeks. Some users are interested in the whole event and tend to comment on each
competition. Moreover, users who interact with others but are only interested in
a few sports are recognizable when looking through the data set. So many various
features characterize users and their behavior, which leads to grouping similar users.
Distinctions are observable when looking into a coarse-grained group of users, such
as less active users. Some users only consume other users’ content while creating
their own content is hardly recognizable, but also users who restrain from sharing and
forwarding other users’ content. In contrast, the amount of creating their own content
is less, too. These observations create an impression of the existence of fine-grained
user roles as a kind of refinement of coarse-grained structures from related work.

Finding fine-grained user roles is a very challenging problem, as multiple Machine
Learning (ML) approaches need to be combined appropriately from the KD approach
presented in Fig. 1.1. Starting with clustering providing an unlabeled classification
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tree for fine-grained structural analysis, finding the sweet spots of clusterings in
cluster analysis is an established area in Unsupervised Learning (USL). The approach
presented in this thesis concentrates on a novel Multi-Sampling and Combination
Strategy to ensure a kind of probabilistic hierarchical clustering. It provides an effect
size-based cluster analysis, finding fine-grained structures by identifying significant
feature deviations in a depth-first search. This approach finally leads to finding stable
groups of similar users who distinguish well from other groups and can also be found
in other data sets.
Starting with the first contribution of providing a framework for fine-grained structural
analyses, adapting ML techniques with less effort is crucial to saving resources and
human interventions from a stable and elaborated framework. Recognizing patterns
and structures considering user groups and roles is easily adaptable and transferable
over various known and unknown data sets stemming from the same source. Moreover,
topical deviations, as well as time variations, can be handled with little human effort.
Not only the application of single steps such as preprocessing, sampling, clustering,
and cluster analysis, as well as building and applying a classifier to (entirely) new
data sets is valuable in terms of reducing human effort and expertise but also the
portability of the comprehensive approach, plays a significant part in this work.
Human intervention is minimized by considering the second contribution of adapting
the proposed approach to a variety of new unknown data sets. Clustering only needs
little human intervention. In contrast, feature engineering and cluster analysis need
more attention, as features w.r.t. their selection in Feature Engineering and the
significance of features in cluster analysis are iterative steps with some tuneables. The
need for human intervention is also cut short in the Classification step. However,
building entirely new training data and a ground truth needs time. Regardless, once a
pool of training data and ground truth is available, clustered samples of new data sets
stemming from the same source can benefit from carefully built training data. Also,
temporally and topically distinct data sets can be classified, as training data can be
reused or combined with other training data sets. Moreover, existing training data
sets can be used to build an entirely new training data set for those kinds of data sets
that deviate significantly from the existing training data sets as part of a validation
process. In the best case, only little amendments must be made, such as enriching
existing training data sets.
Finally, this approach ensures that fine-grained user roles can be detected in aspects
of certainty and stability independent of the size of the data sets. Small and massive
data sets can be sampled and combined easily after clustering, cluster analysis, and
probabilistic classification.
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4.2 Methodology

In Section 1.2, a brief and compact overview of the methodology of this chapter was
already given to ensure a comprehensible motivation of the proposed approach in
terms of a classic KD process. In this section, the main steps of the approach will
be introduced more precisely, introducing and emphasizing both the steps and their
interaction to reveal the novelty and benefits as well as answering the questions from
the contributions in Section 1.3. Considering Fig. 1.1 again, the approach consists of
5 main steps, namely Feature Engineering, Sampling, Clustering, and Cluster Analysis,
as well as Classification and Combination, which will be compared to a more high-level
overview of the model in Fig. 4.1.

Figure 4.1: Detailed flowchart of the KD approach.

Starting with user messages as a Raw Data Set, that was recorded from a social
media service, e.g., Twitter, in the first step Feature Engineering of a KD process
(cp. Fig. 1.1) relevant features to capture various properties of users are determined
and processed. In this approach, Feature Engineering is capturing both the Feature
Selection, as well as Feature Preprocessing, in Fig. 4.1. However, before features can
be processed, the raw user messages need to be aggregated for each user over the whole
time captured by the data set to build a feature vector, representing several user-based
features as well as aggregated features from the raw user messages, as the basis for
further analysis in the KD approach. So, unique feature characteristics, such as total
messages or number of replies, can be derived from the raw messages for each user.
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The main focus is on features that rely on widely available data and are easy to
compute even for large-scale data w.r.t. complexity and runtime. Moreover, this work
concentrates only on individual user messages and not complex structures between
users, avoiding the need for an entire social graph. Feature Selection is only essential
if entirely new and unexplored data sets stemming from social media services such as
Twitter or messaging groups from instant messaging services such as Telegram are
considered. Beyond that, this step can be skipped if data sets are already explored,
and knowledge of suitable features is given. Features should be selected according
to their manifoldness, as features that are too similar tend to correlate too much.
Narrowing the number of chosen features is often an iterative step, as the impact of
the correlation coefficient presented in Section 2.2.1 sometimes can only be evaluated
after the clustering step. Thus, providing a fully automatic approach is challenging,
especially for distinct social media data sets, as the features have to be carefully chosen
and examined each time. In turn, only minor adaptions are needed for data sets from
the same social media.
After choosing the relevant features, they need to be preprocessed to suit the re-
quirements of the following clustering and classification methods, including but not
necessarily limited to outlier removal, corrupt data, and normalization, as well as
standardization. Pointing to Chapter 2 again, there are several effective techniques
in the process of preprocessing (cp. Section 2.4), such as data standardization aiding
to balancing the asymmetric distribution of a data set, caused e.g., by outliers, while
data normalization helps to adjust the bounds of all features equally and to reach
a more symmetric distribution around the mean value, without affecting standing
out patterns too much. As most clustering techniques work with traditional distance
measures, preprocessing is an inevitable step to reaching good clusterings because
of the presence of different deviations and skewness in each data set. In Summary,
Feature Engineering is one of the most essential steps in the proposed approach, as it
significantly affects the following steps.
The challenge of achieving scalability, dependability, and explainability for fine-grained
roles is confidently addressed by the proposed Multi-Sampling and Combination
Strategy. While sampling is not a traditional step in KD, it has become more and more
essential in typical KD approaches, such as in Fig. 1.1 in the last ten years as the size of
data sets became larger. The aspects of Sampling were also introduced and discussed
in [FPSS96] and more consolidated in [ZAL14], as sampling, approximation, and
parallel processing are inevitable for handling massive data sets. Pointing again to this
thesis works’ aspects, even large data sets can be processed precisely and flexibly using
sampling, as costly clustering methods such as hierarchical agglomerative clustering
are performed on each sample separately. By gradually expanding the coverage
of representative samples with a controllable overlap, the analysis can be turned
from an overall discovery of the general role structure in the data set to a complete
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assignment of all users to roles. Moreover, tuning this strategy is possible by evaluating
several sampling strategies against each other. Finally, the novel Multi-Sampling and
Combination Strategy underpins the detection of fine-grained user roles.
The most significant benefit of the proposed approach is facilitating a hierarchical
Clustering with fixed cluster assignments (cp. Section 2.6.1.1) creating sets of ex-
plainable candidates for user roles in the hierarchy aiding a probabilistic user-role
assignment when combining several clustered and classified samples. In contrast to
typical KD steps, the following cluster analysis deals with finding a possibly best
clustering by exploiting an entirely new strategy. While typical cluster analysis deals
with analyzing internal structures of clusters, this new approach can cope better with
finding well-separated clusters by comparing feature variances in a depth-first-search,
compared to traditional internal cluster analysis methods from Section 2.6.2.
In this approach, the Cluster Analysis is followed, correspondingly in traditional KD
pipelines, by the Classification step (cp. Section 2.7), providing user-role probabilities
for each cluster. While in the beginning of building a classifier, manual class labeling
is vital, in the further steps, Active Learning (AL) and Semi-Supervised Learning
(SSL) are worthwhile strategies to build and enrich training data sets with only less
human supervision. The benefits of an automatic classification prevail, as trained
classifiers can be used for all data sets stemming from the same source the classifier
got trained for. For testing purposes, a ground truth for clustered labels has to be
found manually, which deals with creating training data and evaluating the training
data against the ground truth.
After classifying the clusterings, the competing labels of individual users are combined
to produce a Probabilistic Role Assignment. This strategy advances a clear recognition
of the core users of clusters, which got the same role assignment in all samples they
are occurring, and users who receive different labels in the samples they got covered,
leading to unstable user roles. Since some users do not get covered by the novel Multi-
Sampling and Combination Strategy or occur only once when combining the samples,
several sampling strategies can solve these problems as the coverage is maximized,
which will be introduced later in this chapter.
This Multi-Sampling and Combination Strategy is a very substantive approach, enrich-
ing the hierarchical agglomerative clustering with aspects of probabilities, as several
clustered and classified samples are combined by averaging the probabilistic classi-
fication vector per user in the last step Probabilistic User Combination. Thus, the
benefits of traceability from hierarchical clustering and probabilities from Density-
based clusterings are combined and present in this approach, as uncertainties of user
role allocation can be captured on the fringe between groups.
The Probabilistic User Combination is the last step of the novel Multi-Sampling and
Combination Strategy, laying the foundation for analyzing user roles within single
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data sets and the evolution of user roles over time. The significant benefit of reaching
fine-grained user roles in this combination strategy arises from the combination of
reasonably chosen samples, the explainability of hierarchically clustered and thoroughly
analyzed groups of user roles, and the probabilistic classification of the clusters. The
further sections of this chapter deal with the specification of the individual steps of
the proposed approach, while the analysis of specific data sets will be performed in
Chapters 5, 6, and 7 for the specific use cases.

4.3 Sampling

As already mentioned in Section 4.2, sampling plays an essential role in this approach
as part of the novel Multi-Sampling and Combination Strategy and thus is a very central
contribution to this work, as massive data sets can easily be handled. Nevertheless,
sampling does not come along without issues, as complete coverage and a suitable
overlap must be found. Thus, different sampling strategies, which will be presented in
the following section, were evaluated and compared on different data sets. Furthermore,
representativity plays an essential role in all sampling strategies, as samples need to
meet the expectations of the whole data sets considering features and a close deviation
of representatives from similar users [D’E14]. The representativity of a sample can
be proved with several statistical measures such as the pooled Cohen’s d (cp. Section.
2.2.2), which comprises both means and the standard deviation in the calculation.
In particular, the Multi-Sampling and Combination Strategy aids in investigating both
the change of distribution of user roles for an increasing number of samples and the
certainty and stability of user roles, covering users more than once, generally aiding
a full coverage of the data sets. In addition, the effects of oversampling and weak
probability support will also be investigated to prove the suitability of several sampling
strategies. The main goal of sampling is to obtain more structured samples and thus
reach a better coverage and a sufficient overlap of users, ensuring more stability, as data
points can be selected multiply. The strategies presented in the following section will be
characterized briefly by balancing the pros and cons w.r.t. their costs, representativity,
selection, and influence of drawn objects, and straightforward feasibility.
Most well-known sampling strategies are based on a random seed, which is the input
and delivers completely random or pseudo-random generated subsets of a data set.
The following section presents several strategies, such as wholly randomized techniques
and approaches that partition the input before samples are built. The advantages
and drawbacks of the strategies can be seen in Table 4.1 and will be presented and
discussed more in detail in the following sections, w.r.t. costs for implementing and
running the strategies but also aspects of representativity and verifiability.
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Table 4.1: Overview on sampling strategies.
Advantages Drawbacks

Random Sampling

Easy to implement Only first random is selected
Low costs No influence on drawn data objects
Representative samples

Linear Sample Expansion

Low costs Hardly related work available
Easy to implement No library implementations
Simple to draw Increased sample sizes
Easy to verify

Systematic Random Sampling

Moderate costs Only first random is selected
High internal/external validity Missable important characteristics
Simple to draw
Easy to verify

Stratified Random Sampling

All groups represented Need of accurate stratum proportion information
Assumptions about strata characteristics possible Possible indivisibility of strata into proportional sizes
Better representativity than Systematic Divisibility of population
Easy to verify Higher preparation costs of strata lists

Quota Sampling

Quicker & easier to conduct than Stratified Harder calculation of sampling error
Easy exploration of distinctions in subgroups Possible sampling bias
More variations compared to strata sampling Misrepresent. of populations for non-suitable groups

4.3.1 Random Sampling

For testing purposes in an early stage of the development of the approach, random
sampling is a fast strategy to get a representative subset of the original data set. This
strategy is suitable as the effect size (cp. 2.2.2) shows only minimal effects for all
given features between subsets and data sets for random sampling. For this approach,
the implementation of Python is used, which draws upon [Dow]. Random sampling is
especially suitable if a representative assertion of a data set is needed, as there is less
effort in creating some samples. A minor drawback of the random sampling strategy
is that the analyst does not influence how often users are represented when combining
the samples again after classification and thus can hardly influence the coverage of
the whole data set. Moreover, it is also quite challenging to reach complete coverage
using random sampling. Random sampling is deterministic, using the output of the
first random as input for the following number to draw. A seed initiates the process,
generating a pseudo-random result list.
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4.3.2 Linear Sample Expansion

This sampling strategy is not a basic sampling strategy from the literature but a
specifically developed strategy to increase the coverage of all data points to 100 %. As
predominantly random sampling leads to many overlapping data points when merging
a set of randomly sampled data points, this strategy is a suitable starting point if
the coverage decreases when adding new samples. Thus, a saturation of distinct data
points arises. This strategy (cp. Fig. 4.2) can be defined in three steps as follows:

Definition 29 (Linear Sample Expansion)

1.) For a given dataset D consisting of di data points, a set of samples S, consisting
of si samples, is created using, e.g., the random sampling strategy.

2.) Create a distinct set of data points to find which data points from the whole data
set are already covered and which are not.

3.) Distribute the remaining data points evenly over all samples.

First Sample Second Sample
User #5

User #4

User #10

User #8

User #9

User #7

User #6

User #3

User #6

User #2

User #3

User #1

Unsampled

Figure 4.2: Methodology of Linear Sample Expansion from [Mac23].

Linear Sample Expansion has low costs because of its linear complexity, is easy to
implement, simple to draw, and easy to verify in terms of representativity. On the
other hand, this strategy is difficult to compare to approaches as it is specifically
developed, is not included in libraries, and significantly increases the sample size. The
latter aspect increases runtime and memory in clustering, as hierarchical clustering
approaches are more complex. Suppose this sampling strategy is used based on a
suitable amount of samples stemming from the random sampling strategy. In that case,
the new samples can easily be verified regarding representativeness, as the samples do
not change too much [Ach+13]. Like the Random Sampling strategy, this sampling
strategy fulfilled a valuable degree of representativity as the pooled Cohen’s d showed
fewer effects over all features in the tested data sets. Thus, this strategy delivered a
satisfying quality but needs at least a medium degree of drawn samples to reach an
adequate overlap and a good coverage.
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4.3.3 Systematic Random Sampling

While the first two strategies are based on kinds of random sampling and thus have a
high degree of representativity, Systematic Random Sampling introduced in [Dan11;
Mah+20; Ber20] only has a random seed, which is used to shuffle the data set as can be
seen in Fig. 4.3. This shuffled data set is now used to draw the data points. Before the
sampling process can start, one has to choose how many samples are desired because
the whole data set is partitioned equally so that each sample has the same amount
of data points. Considering n samples, each n− th element is allocated to the same
sample starting from the beginning. Finally, the whole data set is partitioned so that
each user is allocated exactly once to a sample. If multiple coverages of data points
are needed, this process can be repeated with another seed, leading to a different
shuffling of the whole data set. Partitioning the data sets is relatively straightforward
and reaches higher coverages than the original. However, there are also two anomalies,
as there are only a limited number of other samples after drawing a sample without
shuffling the data set. The second anomaly arises because each data object is assigned
to precisely one sample, creating an extreme test case.

User #8

User #9

User #7

User #6

User #3

User #5

User #4

User #10

User #2

User #1

Starting
Point

Every
n-th

Element

First Sample
User #8

User #9

User #7

User #6

User #3

User #5

User #4

User #10

User #2

User #1

Second Sample

Figure 4.3: Methodology of Systematic Random Sampling from [Mac23].

The benefit of this strategy is that full coverage can be reached easily as the complexity
of this sampling strategy is straightforward in terms of memory and runtime, and
only one run is needed for partitioning. Moreover, this strategy has a high internal
and external validity; samples are easy to draw and verify regarding representativity.
A drawback of this strategy is the missing randomness, as only the first data point
is chosen by a random seed. Thus, the representativity may not be given as in the
strategies before.
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4.3.4 Stratified Random Sampling

Compared to basic and systematic random sampling, a more algorithmic-driven
sampling approach is Stratified Random Sampling, visualized in Fig. 4.4 and presented
first in the work of [Dan11; Ber20], which aims at grouping the whole data set into n
groups, each for one of the n samples, the so-called strata. From each stratum, randomly
chosen data points are allocated to the same sample each time. One of the main goals
of improving sampling strategies is the increase of covered users; this strategy can
cope better with this problem as users will be removed from the strata once they get
allocated to a sample. Moreover, the essential Stratified Random Sampling will be
adjusted to create more samples; the strata should stay dynamic. So, after creating a
sample, the strata will be updated after each drawn sample.

User #8

User #9

User #7

User #6

User #3

User #5

User #4

User #10

User #2

User #1

First Stratum

Second Stratum

User #8

User #7

User #4

User #1

First Sample

Second Sample

Figure 4.4: Methodology of Stratified Random Sampling from [Mac23]..

Stratified Random Sampling is not just a partitioning of the whole data set, as
randomness is given because the objects allocated from the stratum to the samples
are drawn with the same probability within each stratum. Compared to systematic
random sampling, on the one hand, the probability of reaching 100 percent coverage
is inferior but possible when choosing suitable strata. On the other hand, Stratified
Random Sampling is not as extreme as Quota Sampling, which will be introduced
next. The advantages of this approach are that more representative samples are drawn,
this strategy is easy to verify considering representativity, and there is knowledge
about the characteristics of the strata. Drawbacks of this strategy include the need
for accurate information to reach balanced samples, the possibility that the original
data set is easily divisible, and the higher costs for the groups’ calculations.
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4.3.5 Quota Sampling

A progression of the Stratified Random Sampling is Quota Sampling (cp. Fig. 4.5),
where two categories as strata are created, from which the samples are drawn. In
contrast to Stratified Random Sampling, a sample is created by merging candidates
from both strata, a stratum with already allocated candidates and a stratum with
candidates who have not already been allocated to a sample, which helps to create a
coverage of 100 percent. While the categories can easily be adjusted after a sample is
drawn, the number of objects per sample from each of the two groups is predefined
and helps reach complete coverage. Thus, finding a suitable percentage of the two
strata is essential to prevent extreme cases such as an almost non-random sampling or
results that simulate an utterly random sampling.

User #8

User #9

User #7

User #6

User #3

User #5

User #4

User #10

User #2

User #1

First Stratum

Second Stratum

User #8

User #10

User #6

User #1

First Sample

Second Sample

Figure 4.5: Methodology of Quota Sampling from [Mac23].

As mentioned, Quota has much in common with Stratified Random sampling. However,
it defines itself with the possibility to draw from 2 different strata, which enables a
variable strategy depending on sample sizes and specifications of data sets. Moreover,
quota sampling has lower complexity, and subgroups can easily be explored due to
distinctions. Drawbacks of Quota results because of their non-probability property,
as possible sampling errors, are incalculable since they can only be detected for
probability-based sampling strategies. Verifying samples created with the Quota
strategy is thus possible by evaluating the portions of the whole data set due to their
representativity with metrics or with additional statistics, which will be introduced
later when finding suitable percentages for the specific use cases. Moreover, sampling
biases and misrepresentations can also occur. Regardless, it can easily be avoided by
adjusting the percentage for the different groups, which makes quota a worthwhile
strategy due to their flexibility [Mos52; YB14].
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4.3.6 Linear Cluster Expansion

Since some of the strategies from this section can hardly reach complete coverage as
combined samples reach saturation at a specific point, where only a few new objects are
covered, the Linear Cluster Expansion is a strategy to cover the non-allocated objects.
This is not a sampling strategy and has nothing in common with the Linear Sample
Expansion. Nevertheless, it is a helpful supplement as it facilitates that, combined
with the previously introduced strategies, coverage of 100 percent can be reached
easily. So, it is possible to detect the saturation points of each sampling strategy after
combination and then start the Linear Cluster Expansion, where non-allocated users
are assigned to user roles. For this assignment, the user roles are built upon the users
from the classified clusters due to their majority. No clustering and classification is
needed for each non-allocated user, as only the distances to representatives of each user
role are calculated. This strategy has a lower complexity and, thus, a lower runtime,
as the allocation process is linear.
It can be compared to a k-means clustering with only one iteration, as the distances
between each non-allocated object and the representative of a set of users, which belong
to a user role, act as an allocation criterion. Strategies that work with representatives
for clustering, such as k-means clustering, as well as other clustering techniques forcing
a point-assignment strategy like CURE, which exploits aspects of hierarchical and
point-based clustering or BFR, an extended version of k-means were anticipated but
tend to distort the results of the hierarchical clustering and make the aspects of
traceability void. This strategy is novel and thus cannot be found in related work or
literature; therefore, several hypotheses will be tested later in Section 5.5.3.

4.4 Clustering & Cluster Analysis

The following section presents a detailed explanation of Clustering and Cluster Analysis,
which are the next steps of the proposed approach shown in Fig. 4.1. As previously
mentioned in Section 2.6, clustering is a widely used ML technique that partitions
data into distinct and well-separated clusters. The input for the clustering step are the
normalized and standardized samples from the Feature Engineering step, with well-
established and unquestionably explainable features. Even though a feature reduction
using dimension-reduction techniques such as PCA and LDA would reduce the distance
calculation between pairs of data objects and thus would also reduce the running time
of the clustering as stated in [Pau+11], the influence will only be slightly remarkable
by reducing from 12 to 4 or 5 dimensions. Furthermore, the explainability aspects in
the following cluster analysis will be futile, as significant feature deviations cannot
be identified clearly to outstanding features due to information loss after dimension
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reduction, leading to inadequate clusterings. This explainability loss also proceeds in
the following steps of building the classifiers. Thus, this work focuses solely on pure
features selected and identified conscientiously in the Feature Engineering step.
Several clustering approaches, which rely on techniques presented in Section 2.6, were
considered and tested with the data sets to identify the structure and (sub)-groups
among the user data, such as approaches based on partitioning (e.g., k-means12),
density (like DBSCAN 13, OPTICS14) and probability distribution (e.g., EM 15). While
centroid-based clustering approaches, such as k-means and variations, did not perform
well on multi-dimensional data sets due to the lack of structure, and thus, clusters
are built in regular shapes as the number of desired clusters has to be chosen in
advance (cp. Section 2.6.1.2), distribution-based methods can handle noise more easily.
However, they still face similar challenges with these data sets as discussed in Section
2.6.1.3. Moreover, partitional clustering techniques require the number of desired
clusters as input in advance and tend to build clusters in regular shapes.
Density-based approaches such as DBSCAN and their specification OPTICS (cp.
Section 2.6.1.4) delivered halfway beneficial results as they can distinguish noise from
core points and handle a clustering without the need for a predefined number of
clusters. However, hierarchical structures within clusters and different densities within
a data set, leading to different sizes of clusters, cannot be handled thoroughly as in
traditional hierarchical clustering techniques. Hierarchical clustering16 turned out
to be most suitable, as it can capture complex, irregular shapes without requiring
a fixed number of clusters. Unfortunately, hierarchical clustering does not provide
probabilities like distribution-based approaches. However, the proposed approach
based on a Multi-Sampling and Combination Strategy delivers a kind of probability,
as several data objects are considered more than once and may have a different
classification in different samples. Moreover, the hierarchy is served as an unlabeled
classification tree, the so-called dendrogram, on which feature differences explain the
variations between user roles.

4.4.1 Hierarchical Agglomerative Clustering

This work evaluated several hierarchical-based clustering approaches on the same data
sets, such as divisive and agglomerative clustering, along with several linkage criteria.
Nevertheless, only the Hierarchical Agglomerative Clustering delivered relevant and
comprehensive results.

12https://scikit-learn.org/stable/modules/clustering.html#k-means
13https://scikit-learn.org/stable/modules/clustering.html#dbscan
14https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
15https://scikit-learn.org/stable/modules/mixture.html
16https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
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The Hierarchical Agglomerative Clustering is defined as follows [WX08]:

Definition 30 (Hierarchical Agglomerative Clustering)

1) Start with N singleton clusters and calculate the proximity matrix for N clusters.

2) Search the minimal distance D(Ci, Cj) = minl≤m,l≤N,m6=lD(Cm, Cl) in the prox-
imity matrix using a distance function and combine Ci and Cj to Cij .

3) Update the proximity matrix be computing the distances between Cij and the
other clusters.

4) Repeat steps 2 and 3 until only one cluster is remaining.

As mentioned in Definition 30, several cluster distance functions, the so-called linkages,
can be used to perform Hierarchical Agglomerative Clustering. For this work, the
most common functions were evaluated on data sets to find the most suitable. There
are graph methods like single, complete, or average linkage and geometric methods like
centroid, median, or Ward’s linkage. Single linkage is defined as the smallest possible
distance between 2 clusters, i.e., the distance between 2 points of each cluster, which
delivers the smallest distance. This distance is also called the nearest neighbor. A
drawback of this method is the chaining effect, where data points are clustered in an
elongated way, which can cause clusters with blurry features because of noise in chains.
Another distance measure is the complete linkage, which uses the farthest possible
distance between two clusters in contrast to the single linkage. This technique works
well in most cases, especially if data points are well separated from each other, and
delivers, in most cases, small clusters. (Weighted) group average linkage is defined as
the average distance of all data point combinations between the two clusters (divided)
through the number of data points. All these linkage functions work with several
distance methods, e.g., the well-known Euclidean distance.
As mentioned, there are also geometric methods like the centroid or median distance,
where the shortest possible distances of the mean or median of each cluster are adduced.
A more specific case is Ward’s method, also known as the minimum variance method.
This approach minimizes the within-class sum of squared errors between clusters, which
is generally similar to k-means. In contrast to k-means clustering, where distances
between all objects and cluster centroids are minimized in each iteration, leading to
convex clusters, Ward’s minimum variance is considered at each step when two clusters
are merged, considering only two subsets of all data objects. This aspect does not
prevent the generation of convex clusters. However, it diminishes the feasibility as
core clusters sharing the slightest variance are generated first and merged with other
clusters having a more significant variance in the last steps of the dendrogram. In
most cases, the most common distance function is also the Euclidean distance [WX08;
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GMW07]. Since all of the considered data sets are multi-dimensional, geometric linkage
methods, in particular, Ward’s worked best. The Error Sum of Squares (ESS) of a set
of data points C is defined as in [GMW07]:

Definition 31 (Error Sum of Squares)

ESS(C) =
∑
x∈C

(x− µ(C))(x− µ(C))T (4.1)

where µ(C) is defined as the mean of set C:

µ(C) =
1

| C |
∑
x∈C

x (4.2)

If there are k groups C1, C2, ·, Ck given in one level of the clustering, the information
loss is defined as the sum of ESS:

ESS =

k∑
i=1

ESS(Ci) (4.3)

At each step of the hierarchical clustering, the union of each pair of groups is determined.
Finally, the pair is chosen, whose fusion results in the minimum increase of information
compared to the unfusioned clusters.
Hierarchical Agglomerative Clustering requires careful consideration of the datasets’
characteristics. Depending on their characteristics, only certain linkage methods and
distance measures are effective for specific datasets. In most cases, the analyst must
trial and error until one or more suitable approaches are found. Ward’s linkage was
chosen for the proposed approach, as it works with a minimum increase of information.
In other words, while traversing through the dendrogram of clusterings, the aspects of
traceability and explainability came out best for Ward’s linkage, as feature changes
can be read off from dendrograms easily.
Clustering methods that follow a hierarchical approach have a few issues. Firstly,
they can be computationally expensive in terms of CPU and memory usage, even
for moderately large data sets, due to their O(n2) scaling. Secondly, most popular
clustering approaches only support "hard" clustering, meaning a data point can only
be assigned to one group. However, users may have multiple roles to varying degrees
in reality, making a soft and probabilistic assignment more accurate and meaningful.
Addressing both of these issues, the sampling/ensemble-based approach introduced
in Section 4.3 is an excellent opportunity, as reducing the sample size allows one
to quickly discover the structure while drastically reducing the cost compared to
clustering the whole data set. A linear cost increase is noticeable by incrementally
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drawing more samples while allowing a parallel execution that provides a faithful data
representation. With overlapping clustering results from several samples for the same
user, a majority role or the probability for specific roles can be chosen. Likewise, the
stability of the role recognition can be recognized. The number of samples becomes a
tuneable, trading off the effort of computation and labeling with the coverage of users
and the amount of support for the roles.

4.4.2 Cluster Analysis

A key question when identifying user groups and, thus, roles by clustering is the actual
number of such groups. While hierarchical clustering avoids the issue of having to
provide a fixed number of clusters beforehand as, e.g., k-means or EM require, the
classification tree produced by the clustering, often represented as a dendrogram, allows
for an extensive range of cluster numbers between 1 and the number of input values,
as the cluster candidates are aggregated along the hierarchy.
Traditionally, this issue is tackled by computing internal quality metrics such as
Davies-Bouldin, Silhouette, and Calinski Harabasz, introduced in Section 2.6.2. All
of those metrics determine a valid point where to look inside a clustering, as they
deliver for each number of clusters a value in this metric space. Those metrics did
not work well, as Ward’s linkage is based on the Error Sum of Squares, while those
traditional metrics are built upon traditional distance metrics such as the Euclidean
distance. Thus, the linkage of the dendrogram was also considered more in detail, as
the pairwise fusion of clusters depends on distances. An up-and-coming method to find
visual abstractions when considering the boxplots of the clusters is the elbow method,
which relies on the acceleration of distances. Following the approach of [Zam16], which
relies on the distances of the dendrogram as a metric and refining the elbow with the
acceleration of these global and local distances, more valuable insights were given.
This approach yielded valuable but only partially satisfactory results as generalized,
coarse-grained main groups could be determined reliably, which is a starting point for
more detailed analysis.
The Elbow, based on the acceleration, is defined as:

Definition 32 (Elbow)

k̂E = 2 + arg max{di−2 − 2di−1 + di} | i ∈ [2, N ] (4.4)

where d is a set of distances in the dendrogram starting at 0 until N-1.

The Elbow function delivers clusters where distances to other clusters are rather
significant, i.e., they are well separated and, on the other side, also compressed. Fig.
4.6 shows the Elbow function (blue line) as well as the acceleration (orange line) of
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the dendrogram in Fig. 2.3. One can see that the acceleration has its highest value
at 4, which means that at least 4 clusters are found that have a high distance to the
fusion cluster in the next merge and thus are well separated from each other.

Figure 4.6: Elbow function and acceleration for dendrogram in Fig. 2.3.

This generic approach was augmented with a domain-specific methodology based on the
insight that user roles often can be refined by apparent differences in specific features,
not just on general, global metrics. Intuitively, comparing specific characteristics of
boxplots such as the means, median, and quartiles in the manual labeling process led
to determining features whose differences explain the characteristics of subgroups. To
formally express and discover these differences, statistical measures were considered, as
they can cope best with geometric linkages such as the consideredWard’s linkage, which
relies on variance changes. In particular, effect sizes such as (pooled) Cohen’s d [Saw09],
which was already introduced in Section 2.2.2, were used to capture significant feature
deviations. Cohen’s d is the difference between the means of two sets divided through
the standard deviation. In contrast, the pooled standard deviation [Coh88] allows
dealing with cluster candidates of different sizes, so smaller clusters with significant
features can be detected reliably. Otherwise, smaller clusters representing prominent
user roles tend to get absorbed by more significant clusters. Furthermore, pooling is
less sensitive to feature drift.
The refinement process is modeled using a depth-first search covering the subtrees in
the dendrogram forming the generalized roles, which can be seen in Definition 33. At
a search step, the process compares in a pairwise fashion the measures for each feature
of the current cluster to those of its two direct descendants, which are the refinement
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candidates. This search continues as long as there are significant effect changes, leading
to a possible cutoff for refinement in this particular path finding salient features. The
most challenging aspect was finding a suitable significance criterion for the cutoff
based on finding at least a predefined number of occurring effects considering effect size
from Section 2.2.2. Both a general cutoff at the deepest point, where significant changes
could be observed, and a distinct non-uniform cutoff after the last significant change
in each step of the depth-first search were considered. The most suitable outcome
for this strategy was reached using the non-uniform cutoff, as a general cutoff would
lead to a refinement in each cluster and thus lead to blurry clusters. In contrast, the
non-uniform cutoff reached more distinct clusters, which were also confirmed by the
following classifications. Moreover, the number and the degree of considered effects
for features remain tuneable, as different data sets deliver different effects and have to
be adjusted.

Definition 33 (Depth-first search based effect size analysis)

1) Define significance by the number of desired effects, e.g., at least two medium or
one large effect.

2) Start a recursive depth-first search at the root of the dendrogram.

3) As long as there is no significant change in a row of two effect size comparisons,
i.e., whether there was significance or not, calculate effect size pairwise between
the parent node and the two offspring nodes for each feature and determine the
significance of the whole feature vector.

4) If a child node falls below a predefined threshold, the child node is returned as a
final cluster.

5) Return the clusters, w.r.t their significance changes.

Considering how clusterings are used in the overall approach, no perfect fit for the
cluster number is necessary. Instead, a slight overestimation and, thus, a specification
of the number of clusters is manageable, avoiding an early cutoff that would lose
possible user groups. The spurious groups will be merged during the manual class
labeling or by the trained classifier, as shown in the following section. A graphic
tool was implemented for evaluation purposes, depicting the effect size calculations
for each pairwise feature vector in the dendrogram and the boxplots, which will be
introduced in Section 5.4.2 for the Twitter use case and also utilized in Section 6.4.3
for the Telegram use case.
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4.5 Manual Class Labeling

A central point in this work’s approach is themanual class labeling of clusters, especially
at the beginning of analyzing entirely new data sets. Though not traditional w.r.t. a
classical KD approach, manual class labeling is significant before classification is even
possible, as it catalyzes the building and verification of training data. As an interface
between cluster analysis and classification, manual labeling also addresses tuneables
for a further intermediate step: Cluster analysis.
The first use case is realized right after the clustering process in the early stage of
analyzing an entirely new data set, where creating an entirely new ground truth is
unavoidable. As understanding the structure of a dendrogram and searching for fine-
grained structures starting at the top of the dendrogram is a significant contribution to
this thesis, manual labeling helps to find anchors. By exploiting the effect sized-based
depth-first search for cluster analysis, introduced in the previous section, these anchor
user roles help to adjust tuneables for the stopping criterion. Thus, manual class
labeling is vital to identify fine-grained user roles within the cluster hierarchy. The
graphic tool from Fig. 5.9, mentioned in the section before, can display feature changes
within the hierarchy and visualize them as boxplots to identify user roles by their
deviations from parent and sibling clusters. So, a manual correction is essential to
ascertain the tool’s functioning.
Moreover, a second use case for manual class labeling arises in creating and validating
training data as a part of an AL and SSL process, which was introduced in Section
2.5. This use case is essential when analyzing data sets from already known sources.
Thus, suitable training data regarding topical and close-in time-related data sets were
(partially) created before. In this case, the manual labeling process is only needed as a
kind of catalyst to fill the training data set initially as part of the SSL and AL-driven
building process, which was introduced in Fig. 2.2 from Section 2.5. With the aid of
the training data, the model suggests queried data to the human supervisor, who can
accept or decline suggestions to incrementally enrich training data. In terms of this
thesis, further metrics such as the pooled Cohen’s d to evaluate effects for features to
the suggested class training data were considered. The first essential part of creating
training data deals again with a manual analysis by labeling boxplots of clusters within
a dendrogram. Also, deviations to the features of the entire data set and to siblings
and parent clusters help find suitable user role labels from literature for each cluster
manually, similar to the first use case of tuning the tool. The second part focuses on
dimensionality reduction strategies such as PCA or LDA (cp. Section 2.8). Relevant
user features are highlighted by a composition of principal components, leading to
a diminishing number of dimensions. These insights help to validate training data
at irregular intervals, as candidates for training data can be manually observed by
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visualizing the cluster means in a 3D space. PCA and LDA are worthwhile strategies
to identify feature drifts and changes in user roles within single training data sets and
across data sets.
The iterative process of manually labeling classes for all mentioned use cases involves
proposed stopping heuristics that effectively narrow down the clusters to a manageable
15-30 candidates. The analyst is guided through the dendrogram from the top, while
other heuristics, such as feature distributions and deviations from the boxplots and
the effect sizes, provide support throughout the manual class labeling process. Early
identification of generalized user roles serves as a foundation, while distinct fine-
grained user roles act as an anchor. The refinement process concludes when no further
clusters can be identified distinctly, and the proper clusters are determined through
the coarsening or combining clusters.
To summarize the process of manual class labeling, user roles are first identified and
mapped to candidates from the literature. In further investigating user roles, the
strategy also helps find entirely new user roles, which lie in between two or three
established user roles. Manual labeling is a very tedious process as it is hardly scalable
and suffers from reproducibility issues, as human assessments tend to be of a subjective
nature. Expert knowledge is rare but unavoidable as this process initially needs a
mapping from user roles from the literature to clusters, which is part of all Supervised
Learning (SL) approaches such as AL or SSL. The effort of manually labeling clusters
is rewarded with a high quality of well-described user roles, which can be used as
ground truth and training data for building classifiers. Manual labeling is mostly only
essential at the beginning of creating training data and a domain-specific ground truth
or adjusting the effect size-based depth-first search cluster analysis tool and thus can
be skipped once training data and ground truth are created. Thus, manual labeling
economizes human intervention and time in further steps of the approach, even though
it has a high human effort in all cases, it is vital as it is the starting point for a
successful classification. In this work, two use cases concentrating on labeling user
roles in social networks are present: Twitter users in Section 5.4.3 and Telegram users
in Section 6.4.3, while in Section 7.4 a manual labeling of entirely different classes in a
completely new use case is applied.

4.6 Classification

After the manual labeling process of several cluster-means, an eminent step for
creating training data for classification, the sampled and clustered data represented
as an unlabeled hierarchical classification tree deals as an input for the Classification.
Even though classifying pure unclustered users would cut the clustering process short,
this approach will not work, as the classifiers would produce blurry output for most
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users, as many users must be represented in the training data. Moreover, choosing
representatives of each cluster is way more suitable, which will work more suitably for
training classifiers and produce better results as only whole clusters will be classified.
Thus, representatives such as the cluster mean representing an average feature vector
of all users within the cluster tended to be most suitable as input for the Classification.
The main goal of the proposed approach is to allocate a multi-class label representing
user role probabilities as a probability vector to each user as part of a cluster. This
step will be repeated for each sample, capturing many users for satisfying coverage
and gathering users multiple times for more stability in the Multi-Sampling and
Combination Strategy, which was introduced in Section 1.2 and will be presented
explicitly in Section 4.7. As users may be present in more than one sample, each
user can receive a set of probability vectors to all current user roles, which will be
averaged in the combination step and prepare the foundation for the probabilistic
allocation of users to user roles. Moreover, as the Classification step is one of the
most time-consuming steps, w.r.t. expert knowledge and thus demands a lot of human
intervention and effort, the focus is also on transferring knowledge from previous
analysis of other data sets in terms of topical or time semblance as stated in section
1.2. Thus, not for each data set, a distinct training data set for the Classification
step must be created, as the focus is on reusing training data for several topical or
time-related data sets, cutting short the time for creating training data.
Nevertheless, when talking about classification, several preparations have to be made
before the users can be classified. Independent from the different classification tech-
niques introduced in Section 2.7, both ground truth and training data must be specified.
The whole Classification process has things in common with the well-known procedures
SSL and AL, which were already introduced in Section 2.5 and 4.5, as training data
must be created. The AL process is a rather substantial part of building a classifier,
as it can cut short the whole process and thus reduce human intervention and effort.
Since different use cases were addressed in the questions in the introduction, a distinc-
tion between complementary scenarios has to be made w.r.t. the degree of exploration
of data sets, as they require different quantities of human involvement. Considering
entirely or partly new data sets without or with little training data need further human
involvement, while well-analyzed data sets have a well-established training data set.
This distinction is emphasized in the program flow chart in Fig. 4.7, which guides
this section. While in the first use case considering the Twitter data sets (Chapter 5),
terms of explainability through the whole process had priority, and thus the whole
training data building process was nearly manually driven, for the Telegram use case
the mentioned AL approach was utilized to automatize the building of the training
data and cut short human involvement and intervention to reduce the effort. The
steps involved in the preprocessing of the raw dataset, which include normalization
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and standardization techniques, as well as sampling and clustering of data, remain the
same for both scenarios. The only difference lies in the Classification process.

Figure 4.7: Flowchart of the classification process considering the scenarios.

1) If only data sets such as a new social network or not yet comprehensive training
data are available, groups of similar users and their hierarchical relationship are
discovered by the clustering and cluster analysis, thus providing candidates for user
roles. The analyst will then assign role labels to these groups to manually build
new training data or enrich already available training data. He/she is aided by
quality metrics, visualizations, and dimensionality reduction like Linear Discriminant
Analysis (LDA) and Principal Component Analysis (PCA) to inspect the assigned
labels. In turn, these manually provided labels form the input for a classifier that
captures this knowledge and can be cross-validated on this data set.

2) If sufficient training data from the same social network with the same features are
available for a classifier, this tedious labeling process can be cut short by providing
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candidate labels for the clusters in a new data set. The existing training data
sets and additional manual labels may be cross-validated to ensure the quality of
the model. The analyst can evaluate these candidates within the new dataset or
compare the roles across the datasets, which will be shown in a later analysis. Also,
causes of mislabelling and methods to adapt them were explored.

In the beginning, with many unknown data sets, manual labeling is a very tedious and
time-consuming process, as analysts have to pick out data objects with outstanding
features. Nevertheless, if enough training data is available at a specific point, the
Classification step can be cut short, as training data can be reused for similar data
sets. That means, on the side of the spectrum, data sets that encompass a similar
period of time as the training data set can be classified as the most reliable. On the
other side of the spectrum, topically related data sets such as sports events also benefit
from the transferability of training data on new data sets.
After classifying each cluster in each sample, and thus each given user, the probability
vectors of distinct users across the samples can be combined into a single probability
vector by averaging them, which will be discussed later in Section 4.7. The main
reason to consider whole probability vectors was to reveal stability and the certainty
of user roles. If only the user roles with the highest probabilities for each user were
considered, uncertainties for users at the fringe of two or more user roles could not be
captured, and valuable information would get lost, such as users with no majority for
a user role. Moreover, variances in samples may lead to differing clusters, w.r.t the
composition of clusters, which are all representative but may lead to slightly different
user role allocation, as in samples, only relative user behavior can be observed. The
facet of relative user behavior strengthens the need for a probabilistic classification,
as accuracy for borderline users can be improved when users are grasped in several
samples with differing compositions.
Pronounced issues in human labelings, such as the tedious process with limited
scalability and reproducibility due to human subjectiveness, were handled by utilizing
classifiers trained with several samples of one data set by composing the means of
cluster feature vectors. This training data can determine user role labels on clusters
from further data sets expressing an n-class problem.
After introducing the general classification process and the motivation for a probabilistic
classification, the different classification techniques considered in the approach and
already introduced in Section 2.7 are now more detailed. An appropriate classifier is
chosen for each technique, helping to evaluate a broad range of different classification
techniques against each other to find the most suitable for each use case. As part of
the K-Nearest Neighbor (KNN) classifiers, the implementation of scikit-learn17 is used

17https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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together with the Ball Tree data structure, which is a fast indexing structure for finding
the nearest neighbors efficiently. To also consider Support Vector Machines (SVM)
classifiers, the implementation of scikit-learn18 is used, which relies on the One-Versus-
One approach. As part of the Decision Tree bases Classifiers, the implementation of
XGBoost19 is used for the Gradient Boosted Decision Trees (GBM) as well as the
implementation of scikit-learn20 for Extremely Randomized Trees (ET).
Each of them needs training data and ground truth for the evaluation process. At a
specific point when the classifiers deliver results close to the ground truth, the training
data has reached a stable point and thus can be utilized in the following classifiers.
Also, the aspects of training the classifiers are very significant, as most of the classifiers
have a lot of tuneable parameters. In Section 5.4.4, the initial process of building a
classifier upon manually analyzed data sets from Section 5.4.3 for the Twitter data sets
is described, while in Section 5.5.1 optimization steps using a grid search for finding
possibly best parameter configurations for the classifiers are explained. In contrast
to this initial application of classifiers, in Section 6.4.4, the knowledge gained from
the insights of the Twitter data sets was applied to the Classification process of the
Telegram data sets.

4.7 Multi-Sampling & Combination Strategy

This approach’s central and novel aspect is the probabilistic combination of the
clustered and classified users from the given samples as part of the Multi-Sampling
and Combination Strategy. After classifying the clusters of each sample, each of the
consisting users got a probabilistic vector consisting of probabilities for each present
user role. Depending on the sampling strategy, users may occur more than once, which
yields more stability and certainty of user roles, as an aggregation of the probability
vectors of each user is affected by averaging the probabilities, as can be seen in Fig.
4.8. When analyzing the aggregated vectors, each user can get a hard label resulting
from the role with the highest probability, depending on the use case and the following
analysis. Since one main contribution was to guarantee a fine-grained structural and
comprehensible analysis of user roles, this novel Multi-Sampling and Combination
Strategy delivers a probabilistic allocation of user roles for each user. It ensures the
certainty and stability of mapped user roles for each user.

18https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
19https://www.xgboost.ai
20https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
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Figure 4.8: Process of Multi-Sampling & Combination Strategy.

This probabilistic combination of hierarchically clustered and classified users is a
worthwhile alternative to distribution-based clustering (cp. Section 2.6.1.3), as each
user in the data set receives a probability for each of the present user roles. While
evaluating hierarchical clustering manually, only a single label to each cluster and the
contained users can be mapped; the following classification enables a probabilistic label
for each cluster as a probability vector comprising each user role. When combining
distinct users from several classified clusters, with less effort, user roles can quickly be
stabilized and assured by tuning the sampling strategy, the size of samples, and the
number of samples, influencing the whole Multi-Sampling and Combination Strategy.
Thus, the stability and certainty of user roles can be easily improved by clustering
and classifying more samples while diminishing the sample size. This affects the
stability and the certainty of user roles, but also the technical side, as reducing the
sample size has a powerful impact on runtime and needed memory due to the higher
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complexity of hierarchical clustering. In contrast, an enhancement of the number of
samples has a linear increase. However, distribution-based clusterings are superior to
hierarchical clusterings in terms of complexity, but hierarchical clusterings have the
side effect of a comprehensible built hierarchy. Moreover, parallelization for hierarchical
clustering of multiple samples can cut needed memory and run time short compared
to distribution-based clustering. Covering most of the given user more than once in
varying but representative compositions of the sampling strategy delivers different
insights on the data sets, as a user may get a slightly deviant allocation, w.r.t variable
picked users from the sampling strategies while clustering a whole data set only once
delivers each time the same result. Finally, this approach is the starting point for
further investigations, such as analysis of single or across data sets, which will be
discussed later in Chapter 5.

4.8 Related Work

Clearly, identifying user roles has been one of the textbook examples of classifier
algorithms, yet the application to social networks has been limited to particular
aspects. Often, the studies focus on detecting specific roles or describing only a small
number of coarse-grained classes. Considering the negative dynamics of many social
networks, most researchers focus on identifying specific malicious users. Examples
include the detection of bots [Chu+10] or spammers [Li+17], identification of aggressors
in the context of cyber bullying [Cha+17; Kao+19] or, of particular interest recently,
the discovery of instigators and spreaders of fake news [Shu+19; ECR20]. In contrast,
the proposed approach’s goal is to comprehensively assign all users to roles. Multi-role
approaches such as Varol et al. [Var+14], Rocha et al. [Roc+11], and Lazaridou et
al. [LNN16] limit themselves to identify a small number (often 3-5) of primary, coarse-
grained groups, roughly corresponding the upper levels of the detection hierarchy in this
approach. Du et al. [Du+16] provide a somewhat higher number of rules, which is still
lower than the number of rules in this approach, but only gives generic descriptions. All
of these previously mentioned methods are constrained to just detecting the structure
by unsupervised learning such as clustering via k-means [LNN16], EM [Roc+11]
or topic models [Du+16], leaving the analysis entirely to human experts. In terms
of classification, Varol et al. [Var+14] entirely rely on such human expertise, using
similarity matrices and handcrafted rules. In contrast, qualitative work like Tinati
et al. [Tin+12] or Java et al. [Jav+07] provides a comprehensive overview of fine-
grained roles and their semantics but considers only general rules on how to detect
them. An alluring, complementary direction is the work on content communities/web
forums, often exploring complex temporal models, e.g., [Fu19]. It should be noted
that all of these works, with the exception of [Du+16] (Weibo, 12K users), [Kao+19]
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(Instagram, 18K users), and [Fu19] (Stack Overflow) solely rely on Twitter due to
the limited availability of data from other services. A recent work by Hacker et
al. [HR21] comes closest to the approach presented in this thesis while tackling the
more constrained problem of user role identification in Enterprise Social Networks.
Like this work, it follows a process-based approach involving and aiding human
analysts in discovering and interpreting user roles. It applies a broad set of user
features and employs clustering to identify user group candidates. The authors
recognize that their problem is less challenging due to the smaller scale and better
observability, allowing for more expressive metrics and more well-defined and less
context-dependent roles. Furthermore, a more extensive process by incorporating a
classifier to perform knowledge transfer of user roles between data sets is provided,
and a Multi-Sampling and Combination Strategy for probabilistic role assignment
and better scalability is employed. While probabilistic clustering is well-established
for centroid methods [DLR77] and recent work presents probabilistic density-based
methods with constraints (Lasek et al. [LG19]), hierarchical clustering is not covered
well regarding the probabilistic assignment.

4.9 Conclusion

The proposed approach presented more in detail in this section is based on a typical
KD approach introduced in Section 1.2. The main steps examined in Section 4.2 such
as Feature Engineering, Sampling, Clustering and Cluster Analysis, Manual Class
Labeling, and the building process of the Classifier, were introduced explicitly in this
section to lay the methodology knowledge for the initial application of the pipeline in
the Twitter data sets’ use case in Chapter 5 and the transfer to a new data sets such
as the Telegram data set use case in Chapter 6. The central aspect of the proposed
approach, the combination of samples to gain stable and explicit user roles, will be
investigated by expedient experiments for both use cases, substantiating the suitability
and transferability of the approach. Moreover, the central aspects of this approach,
the Clustering and Cluster Analysis, will also be applied to an entirely new kind of
data set in Chapter 7, approving the adaptability and suitability of both steps.
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Chapter 5

Analyzing Fine-Grained User
Roles in Twitter

Hope for the hopeless
A light in the darkness
Hope for the hopeless
You’ve got one life, one shot
Give it all you got

Parkway Drive - Vice Grip

While the general Knowledge Discovery (KD) approach was introduced
in the previous chapter, this chapter addresses a use case dealing with the
application and transfer of the KD approach to several Twitter data sets.
Besides analyzing fine-grained structures after clustering, the creation
process and transfer of training data are central aspects of this chapter.
Moreover, the impacts of a plethora of sampling strategies and further
tuneables are investigated on the stability, certainty, and coverage of
user roles. The last aspect covered in this chapter deals with building a
threshold-based transition model arising from the long-term analysis of
user roles, addressing to economize time and human effort by simulating
and predicting known and new data sets. Parts of this chapter were
already published in peer-reviewed papers of the author [KF21; KF23].



5 Analyzing Fine-Grained User Roles in Twitter

5.1 Motivation & Contributions

The social media service Twitter is a well-known and favored platform for consuming
news and exchanging attitudes on several daily life topics, e.g, political discussions,
sports events, or tragic incidents. The users’ structure reveals inspiring research
aspects for analyzing fine-grained user roles by several aspects of user behavior such
as posting tweets, and retweets, as well as influential reactions and answers on other
users’ content.
To accomplish this challenging analysis, the KD approach presented in Chapter 4 will
first be applied to a single data set. The scope in this chapter addresses the whole
KD pipeline from Chapter 4 applying all steps from a traditional KD pipeline as parts
of the novel Multi-Sampling and Combination Strategy to find explainable fine-grained
user roles. Once user roles are defined in one data set, the aim is to transfer the
whole strategy to other related data sets stemming from the same data source to
approve the suitability of a conceptual transfer and to find fine-grained user roles in
an explainable way again. Twitter users develop unique communication behaviors that
may evolve or shift over time, with or without a specific topical reason. Being a very
significant topic in the present work, this approach takes another path. Addressing the
evolution of users as well as user roles, a comprehensive analysis of a plethora of data
sets considering shifts and drifts of user role quotas and distinct users is performed.
Analyzing related data sets over a longer time span enables the construction of whole
role chains explaining migrations of users between data sets. The latter steps in this
chapter are the foundation for a dynamic threshold-driven model-building approach,
creating transition models for simulating and predicting user role changes from data
set to data set. This process is applied and evaluated for two data set series, covering
a period of ten years for each use case, aiming to investigate if this process can cut
short the whole KD pipeline when analyzing additional data sets for the time series.
Finally, in this chapter, several research questions are discussed and substantiated
with experiments and analyses:

• Is it possible to enable a fine-grained structural analysis framework to explore
intuitively stable and precise fine-grained user roles?

• Can the framework be adapted to other related data sets stemming from the
same source?

• Can the framework be adapted to entirely new data sets stemming from the
same source?

• To which extent is user (role) movement beyond data sets w.r.t. feature drifts
and shifts explorable?
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• Can a model-building process cut short the analysis of entirely new data sets?

5.2 Background on Twitter

Before specific data sets are presented, and the KD pipeline introduced in Chapter
4 is applied to Twitter data sets, some more specific details about the social media
service Twitter, enriching the general definition from Section 2.1.1, will be presented
in this section.
Fig. 5.1 presents an introductory message called Tweet in the social media service
Twitter. Each registered user can post tweets, which are shared with all users from the
network. As mentioned previously in Section 2.1.1, Twitter was one of the first social
media services to provide the possibility to mention users with the @ sign as well
as including hashtags starting with the # sign enabling a global search of all tweets
including the desired hashtag. Moreover, in Fig. 5.1, a snippet of replies is shown
below the original tweet, enabling lively discussions on specific tweets within a thread.

Figure 5.1: Sample Tweet - Twitter.

Fig. 5.2 shows two tweets from the Olympics 2012 official account. The first Tweet had
a total of 29 replies, while 205 Retweets were made. The second one represents such a
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retweet, defined as forwarding another user’s tweet. This opportunity is worthwhile,
as information can be easily forwarded to followers to spread information and start
discussions.

Figure 5.2: Sample Retweet - Twitter.

Moreover, Twitter has a unique follower-followee system, which is not based on a
traditional bidirectional friendship system like Facebook. Each user can choose the
accounts to follow, while the followed user can decide to re-follow or not, creating a
unique use case, as users’ popularity can be defined by their followers and followees.

5.3 Data Sets & Preparation

As already mentioned before in Section 2.1.1, data sets from Twitter are very suitable
for the KD approach presented in Chapter 4, as Twitter is a very established social
media service, present in day-to-day life and due to their availability over Twitters
Streams API and Search API21.
The availability of user activities such as messages, including creating new content
(Tweets) and responding to and forwarding messages, made recording and extracting
whole data sets possible but worthwhile. Also, the broad availability of further
information considering basic user profile features and reactions to social network
content substantiated the suitability of Twitter data sets for this approach. Thus,
data sets from the last ten years until the beginning of 2023, where the API of Twitter
was disabled for crawling new data sets, were considered.
Pointing now to the strategy of crawling data sets, it is helpful to capture specific
topics, such as major sports events or other happenings of primary public interests,
by filtering messages using commonly proposed hashtags for the specific events. While
the long-term goal is to recognize user roles over miscellaneous data from various

21https://developer.twitter.com/en/docs/twitter-api
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social media, this initial analysis concentrates on well-defined data sets that contain a
substantial but manageable number of users.

Table 5.1: Overview on Twitter data sets.
Data Set Messages Users Time Period Category

Olympic Games 2012 13.68M 2.27M Aug. 2012 sports event
Olympic Games 2014 14.58M 1.96M Feb. 2014 sports event
Olympic Games 2016 38.05M 4.76M Jul./Aug. 2016 sports event
Olympic Games 2020 119.02M 6.08M Jul./Aug. 2021 sports event
Olympic Games 2022 43.76M 3.05M Feb. 2022 sports event
FIFA World Cup 2014 109.00M 10.40M Jun./Jul. 2014 sports event
2015 Paris Attacks 6.77M 0.74M Nov. 2015 tragic incidence
NFL Super Bowl XLVII 2013 3.20M 0.64M 3. Feb. 2013 sports event
NFL Super Bowl LIV 2020 8.89M 0.89M 2. Feb. 2020 sports event
NFL Super Bowl LV 2021 10.36M 1.11M 7. Feb. 2021 sports event
NFL Super Bowl LVI 2022 12.51M 1.23M 13. Feb. 2022 sports event
2016 Berlin Truck Attack 0.66M 0.15M 19. Dec. 2016 tragic incidence

In order to transfer knowledge on user role detection, several classes of events were
considered. Major sports events are repetitive and predictable, with numerousmessages
and users covering significant spans. Investigating both user roles in events with a
shorter and extended period, the Super Bowl, which has 3-5 days around Super Bowl
Sunday, and the Olympic Winter Games, with a period of 2-3 weeks, are suitable
candidates. In contrast, events like the Summer Olympics and Football tournaments,
which have a period of 4-6 weeks, complete the analysis, as the challenge of user role
recognition in different types of events considering the period is a worthwhile attempt
transferring the approach. Moreover, different types of sports provide an albeit limited
thematic variance. These data sets are complemented by those of two major disasters,
which also tend to have a strong yet very different topic focus and different interaction
patterns. All in all, a plethora of specific events (cp. Table 5.1), such as sports events
like the Olympic Games, the FIFA Worldcup or American Football, especially the Super
Bowl but also tragic incidences such as the Paris Attacks 2015 or the Berlin Truck
Attack 2016 were considered for this approach. Finally, the approach was applied to
the Twitter sample stream instance to assess a data set without a strong topic focus.

5.4 Adapting the Methodology

After introducing the selected data sets and their specifications, in this section, the
single steps of the primary approach, introduced in Fig. 1.1 of Section 1.2 and specified
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in Fig. 4.1 of Section 4.2 will be performed initially on one of the Twitter data sets,
which were introduced in Table 5.1 Section 5.3. The execution of the proposed pipeline
will be explained based on the Olympics 2012 data set, while particular amendments
considering the data sets will be elucidated based on changes. The focus of this section
is to initially find patterns and structures and improve standing-out characteristics to
build a model that can label user roles (semi-) automatically.

5.4.1 Feature Engineering

The first aspect of the proposed pipeline is Feature Engineering, a significant part
of the Preprocessing step, which includes feature selection and the aggregation of
the messages considering the distinct users, which was introduced in more detail in
Section 4.2. This section introduces all the meaningful steps needed before the novel
Multi-Sampling and Combination Strategy.

Followers
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Offtopic 
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Retweets

Tweets
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done
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Reaction Rate
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Figure 5.3: User feature classification - Twitter.

All records are delivered as JSON data with several different features. Some features
can efficiently be utilized in their pure status, while others must be processed and
chosen due to several aspects mentioned at the beginning of Section 4.2. Furthermore,
features were chosen which are well established in the literature [Roc+11; LNN16;
Cha+17]. The selected features can be seen in the Venn diagram in Fig. 5.3, which
highlights the classes and instances of features, while a more detailed explanation can
be seen in Table 5.2.
Static user properties expressing a (self-) description, such as the verified status
of a user, are traditionally reserved for celebrities or influencers. The next class user
activity is characterized by the number of original tweets of each user, which deal
with the context of the event. Also, the amount of topically non-related tweets a user
writes during the whole event is considered (offtopic messages) describing a user’s
behavior more precisely. Moreover, activities considering other users’ tweets, such as
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replies and retweets within the recorded topic, and mentions of other users give
valuable insights into specific user behavior within the data set. Considering network
positions, the number of followers and followees of a user at the time the data
set is recorded are significant features and substantiate the potential to exert influence
in the network. Also, the ability to trigger other users’ reactions in the network is
modeled by the ratio of tweets to replies and retweets and the frequency of being
mentioned in messages, giving a worthwhile insight into the ability to influence other
users and their standing within the social network.

Table 5.2: Overview on Twitter features.
Feature Description

followers The most recent number of users subscribed to users’ content
feed.

followees The most recent number of users the user is subscribed to.

tweets The number of newly created tweets of a user during the record
of the data set. Describes the activeness of a user.

retweets The number of topic-based retweets of a user. Describes the
diffusion of information.

replies The number of topic-based replies of a user. Describes the
communicativeness of users.

offtopic messages Number of all kinds of messages(tweets, retweets, replies) of a
user during the recorded period unrelated to the given event.

verified Status if a user is verified on Twitter. These users are real persons
or organizations.

reaction rate reply Percentage of how many users’ tweets got at least one reply.
reaction rate retweet Percentage of how many users’ tweets got at least one retweet.

been mentioned The number of times a user has been mentioned in other users’
tweets.

mentions done The number of times a user mentioned other users in a tweet.

Despite various additional features being evaluated and investigated from these classes,
they delivered no additional value as they were correlated or had little discriminative
power, such as a user having a URL. Also, complex network-based metrics like centrality,
spatio-temporal features [Var+14] or content-analysis-based features [Cha+17; Kao+19]
were not considered as, e.g., graph data is only available up to a certain extent or has
a higher complexity in terms of computation. In turn, the crawling strategy for data
sets provides a particular topic focus, so there is no need for partial social graphs.
As feature selection is a very significant part of the Preprocessing step, it is also
essential to validate features by metrics, such as their correlation to each other (cp.
Section 2.2.1) but also ensure domain variance and skewness, which is inevitable for
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later steps such as clustering because of the need of unified feature-spaces and fair
feature comparison, w.r.t to feature-drifts across data sets.

Figure 5.4: Correlation matrix for Twitter user features.

Investigating the correlation of the features described in the last paragraph, pairwise
features in a symmetric heat map can be seen in Fig. 5.4 for the Olympics 2012 data
set. Other data sets were also investigated in terms of correlation. Regardless, as
they all showed a similar correlation, the following investigations are presented based
on the Olympics 2012 data set, the initial data set for all analyses. The bar on the
right-hand side visualizes if pairwise features have a high negative correlation (deep
blue), no correlation (white), or a high positive correlation (deep red). As most feature
pairs have no correlation or only a weak positive or negative correlation, the features
followers and followees are the most correlated, as popular users show gains in
either dimension. Nevertheless, changes in their ratio evolved a discriminative feature
for specific groups, which led to considering both features. Likewise, some feature
pairs with moderate positive correlation, e.g., mentions done and tweets, offtopic
messages and retweets as well as followers and offtopic messages were also
considered as they amend each other in hierarchical clustering.
Reducing the feature space is essential for clustering, but the data sets are also flooded
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by many users, who occur only once in the recorded data set. To circumvent this
effect, only active users with at least two messages are considered, preventing massive
data sets due to complexity issues in the further steps. After reducing the number of
features and the number of messages, the aggregation leading to feature vectors for
each user can be performed.
Given the number of various features in social media exhibiting significant skew and
value domain variation, the need for individual standardization(cp. Section 2.4) and
normalization(cp. Section 2.4) of each data set is necessary, to reduce extreme outliers
and set comparable bounds for all features within a data set. Before a suitable technique
can be chosen, the raw features must be analyzed by exploiting characteristics such
as mean, median, skewness, and standard deviation to estimate the suitability and
effectivity of normalization and standardization techniques. More specifically, the
skewness is reduced by using a logarithmic transformation that compresses extreme
outliers, followed by a Min-Max normalization to bring the values into a range of 0 to
1. Miscellaneous other normalization methods discussed in [Osb10; FPT04] were also
considered, e.g., inverse transformation, square root, cube root, box-cox, percentile,
and rank transformation, but neither resulted in more balanced results. Moreover,
standardization methods such as division by greatest value and z-score normalization
analyzed in [ZC18; MC88] were also considered. The first technique guarantees a
value range between 0 and 1, but the domain is not utilized entirely, while the latter
technique does not provide a specific range. In addition, those techniques had issues
with the following clustering techniques, resulting in blurry and not well-separated
clusters that were difficult to analyze. Furthermore, each data set is standardized
and normalized disconnected individually, independent from knowledge of future data
sets, capturing the relative distribution differences and tracing feature drifts when
comparing them in chronological order.
Table 5.3 as well as the boxplots in Fig. 5.5a and 5.5b show the properties of the
Olympics 2012 data set features before and after the normalization and standardization
process. Like the correlation investigation, the other data sets delivered a similar
outcome considering the feature statistics. Thus, the normalization and standardization
are only presented based on the initial data set.
Most of the original features in Table 5.3 excluding offtopic messages, reaction
rate for retweets and replies and the verified status contain strongly right-skewed
data represented by either higher median values reaching the high 99th percentile and
maximum (followers, followees) or a high amount of outliers beyond the upper
whisker in the boxplots in Fig. 5.5a, depicting the raw data set with a log y-axis even to
show extreme outliers. Besides the features of followers and followees, offtopic
messages and been mentioned have similar effects considering the standard deviation,
as a symmetric deviation around the mean values are not given. Some features do
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not have a box, e.g., reaction rate retweet, reaction rate reply, or replies,
but the standard deviation has lower values, showing a proper deviation around the
means. Examining the standard deviation and skewness is essential as they represent
a powerful indication of the necessity of standardization and normalization when
combined, leading to almost balanced skewness, standard deviation, and median values
in equal bounds, smoothing out outliers without affecting the characterization of
features too much (cp. Fig. 5.5b). Furthermore, preprocessing helps to unify feature
spaces, gaining comparability across data sets revealing feature drifts, discussed more
in detail in Section 5.6 when comparing the individual data sets against each other.

Table 5.3: Original feature statistics Olympics 2012 - Twitter.
Features Median 99% Max Skew StD

tweets 2 19.00 16621 543.97 20.72
retweets 1 13.00 3780 331.82 4.26
replies 0 3.00 759 204.19 1.23
offtopic messages 59 3790 107484 13.28 879.53
mentions done 0 8.00 7802 723.10 6.89
been mentioned 0 3.00 141086 1017.85 110.13
reaction rate retweet 0 0.75 1 2.55 0.18
reaction rate reply 0 0.33 1 8.67 0.05
verified 0 0.00 1 22.62 0.04
followers 172 9520 15769360 229.46 35271.96
followees 231 2908 583595 74.67 1958.20

Table 5.4: Normalized feature statistics Olympics 2012 - Twitter.
Feature Median 99% Skew StD

tweets 0.11 0.31 0.72 0.30
retweets 0.08 0.32 0.75 0.29
replies 0 0.21 2.52 0.16
offtopic messages 0.35 0.71 -0.19 0.18
mentions done 0 0.25 2.26 0.23
been mentioned 0 0.12 6.73 0.02
reaction rate retweet 0 0.75 2.55 0.18
reaction rate reply 0 0.33 8.67 0.05
verified 0 0 22.62 0.04
followers 0.31 0.55 -0.07 0.09
followees 0.41 0.6 -0.97 0.09
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Generally speaking, the relative feature distributions after normalization varied only
slightly over time from 2012 until early 2023, with minor changes: users tend to
move slightly more into reactive behavior of forwarding than content generating or
mentioning, while the verified status is now much more prevalent. Overall activity
increased moderately, and forwarding actions became more widespread.

(a) Raw user features. (b) Normalized and standardized user features.

Figure 5.5: Boxplot comparison of features.

5.4.2 Cluster Analysis

Clustering and Cluster Analysis are very central matters in this work, finding groups
of user roles, as unsupervised learning can witness structures of similar objects as
already introduced in Section 1.4 and 2.5. Pointing to the general methodology from
Chapter 4 in Section 4.4, the way from coarse to fine-grained clusters is familiarized
more in detail, which is the foundation for the manual class labeling in Section 5.4.3.
A very central question was utilizing clusters of users and detecting user roles using
hierarchical agglomerative clustering22 with Ward’s linkage, attaining a hierarchical

22https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
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structure of users and encouraging an easier explainability among the cluster hierarchy.
Mentioned in Section 4.4, a broad range of clustering techniques was evaluated, but
neither worked as well as hierarchical clustering with Ward’s linkage. An essential issue
of hierarchical clustering arising from the technical side is the complexity of O(n2)
requiring longer running times and higher memory costs, which is counteracted using
the Multi-Sampling and Combination Strategy, as randomly drawn samples can be
clustered faster and combined probabilistically afterward. Aspects considering tuning
this strategy as well as reasoning and experiments will be introduced more in detail in
Section 5.5.2 and 5.5.3 by reasoning coverage and certainty with experiments w.r.t.
several sampling strategies, sample sizes and the number of samples for combination.

Figure 5.6: Example with dendrogram and boxplots for Twitter.

Focusing now on the analysis of a 10% sample from the Olympics 2012 data set, which
can be seen in Fig. 5.6, one can see the structure of a dendrogram. As part of the
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cluster analysis, introduced in section 4.4.2, internal quality metrics play a significant
role in finding the most valuable point to look inside the hierarchical clustering. In
the very beginning of analyzing entirely new data sets, internal quality measures such
as the Silhouette Coefficient (Section 2.6.2.1), Davies-Bouldin Index (Section 2.6.2.2)
as well as the Calinski Harbasz Index (Section 2.6.2.3), help to find an anchor of
coarse-grained structures in the analysis.
As internal quality measures did not provide a significant mutual deflection for one
clustering but rather several deflections for varying samples, a fully automatic approach
for analyzing clusterings cannot build upon those metrics. Thus, a suitable approach
for cluster analysis was presented in Section 4.4.2 relying on the elbow and a depth-first
search investigating effect size changes of features in the cluster hierarchy.
Focusing now on analysis metrics depicting a broad range until 40 clusters, the
Silhouette values in Fig. 5.8a continually show values below 0, which has hardly
explanatory power in terms of cluster analysis, while the best values are delivered for
clustering with 3 clusters. When examining those clusters, generalized user roles can
be determined, which do not satisfy the contributions of providing fine-grained user
role detection. Also, reckoning the Calinski-Harabasz Index in Fig. 5.8b indicates
the best clustering for 6 clusters. Compared to the Silhouette values, slightly more
clusters, and thus some more fine-grained clusters, are delivered, but this result is
not satisfactory. Likewise, the Davies-Bouldin Index furnished similar results, as the
possibly best clusterings were those with 3 or 5 clusters. Inspecting other samples,
similar observations can be made when varying sample sizes. In most cases, the internal
quality metrics delivered higher deviations from each other, considering the number of
clusters. Those provided cluster candidates cannot be interpreted as fine-grained user
roles and can hardly be used automatically to find the most suitable clustering.
A more structural and heuristic-driven analysis already introduced in Section 4.4.2,
forces to assign fine-grained user roles automatically, as internal quality metrics
primarily tend to deliver coarse-grained user roles. Regardless, before this is even
possible, specific representatives of user roles from the literature have to be found by
manually inspecting the boxplots through the dendrogram. Focusing again on the
results of the internal cluster metrics, the boxplots of, e.g., 5 clusters and their feature
deviations from the boxplot of the whole sample reveal only some generalized roles,
which deviate only in fewer features. In Fig. 5.7b a boxplot for the clustering with 5
clusters can be seen, while Fig. 5.7a shows the boxplot for the whole sample.
The Elbow method (cp. Section 4.4.2) from Definition 32 provided for most samples
a more precise starting point for locating generalized roles in clusterings than the
analysis using the internal quality metrics such as Silhouette, Davies-Bouldin Index or
Calinski-Harabasz, showing good separations, w.r.t distances from the linkage matrix,
as, e.g., the 10% sample in Fig. 5.8d has its highest acceleration (orange line) at 3
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clusters. Generally, the Elbow method delivered between 3 and 5 generalized roles for
all samples, being a good starting point for a depth-first search (cp. Definition 33
from Section 4.4.2) finding fine-grained user roles.

(a) Boxplot of the 10% sample. (b) Boxplot cluster 0.

Figure 5.7: Example boxplots for Twitter.
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(a) Silhouette of 10% Oly12 sample. (b) Calinski-Harabasz of 10% Oly12 sample.

(c) Davies-Bouldin of 10% Oly12 sample. (d) Elbow for 10% Olympics 2012 sample.

Figure 5.8: Comparison of several cluster evaluation metrics.

In contrast to the results of the Elbow method, internal cluster metrics sometimes
also delivered suitable clusterings with a number of clusters between 3 and 5 clusters
but had a scattering when analyzing the samples, making them hardly appropriate
as the starting point for the depth-first search. The direction can now be set more
on tuning the significance criteria in the pairwise feature comparison of effect sizes to
find a possibly best clustering, which will be discussed later in Section 5.6.
Focusing again on both the boxplots as well as a tool, which analogizes pairwise
feature-deviations using the effect size in Fig. 5.9, one can see several colored dots in
the dendrogram, indicating the highest occurring effect size considering all features
in a pairwise comparison. Moreover, in this tool, the boxplots are illustrated and
highlighted in those colors to show the degree of the effect size, which is a vital strategy
to substantiate the manual class labeling in the following section.

5.4.3 Manual Class Labeling

The discussion in Section 2.1.2 clearly states that there is no agreement on the types
of user roles or precise definitions or models in social media. Only descriptions of user
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roles were defined, as already clarified in related work of Section 4.8. As established in
the previous Section 5.4.2 Cluster Analysis, the cluster hierarchy, as well as the tools
for the analysis, provided indications on an approximated number of clusters and their
separation within a refinement process from clusters representing coarse-grained user
roles to those representing fine-grained user roles.
The Manual Class Labeling process for the Twitter use case will be performed as
already introduced in Section 4.5 by analyzing clusters with differing sample sizes from
the data sets. Thus, clusters and their deviations within the hierarchy and suitability
w.r.t. fine-grained structures were evaluated and labeled manually with user roles
from the literature. As part of a student’s project and thesis with around three to
four weeks in total, this manual class labeling strategy was pursued iteratively without
any use of tools until user roles could be allocated unequivocally to the clusters by
inspecting and comparing boxplots against each other. Of course, this time-consuming
strategy includes several reallocations and comparisons as supposed clusters from
distinct samples may differ more than expected. The insights gained from this strategy
were precious for further analysis and building training data for the classifiers, as they
gave a sense for manual class labeling.
Pointing back to the boxplot from Fig. 5.7b and the central boxplot in Fig. 5.9
relying on the clustering with 5 clusters at a distance of 40. At this point, mostly
3-5 generalized user groups can be found, which all are expressed by different feature
values, which can be seen in Table 5.5 and rely on the dendrogram from Fig. 5.6.
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Figure 5.9: Effect size-based feature changes across the dendrogram.
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Table 5.5: Significant feature changes for coarse-grained user roles.
Cluster Description Significant features

Cluster 0 trigger strong re-
actions

high tweets, retweets, replies, being mentioned, reaction
rate retweet

Cluster 1 passive users weak network positions (follower, followees) tend to more
offtopic messages

Cluster 2-4 variations of inter-
mediate users higher offtopic messages,

The first substantial group (green) shows users that can trigger strong reactions
have more retweets, replies, and tweets and are being mentioned more often, the
second (red) shows passive users with relatively weak network positions (followers,
followees), while the group(s) in between show various degree of moderate activity
and impact. A strong motivation for fine-grained roles can be glimpsed even further
down the tree (cp. boxplots in Fig. 5.6). With the aid of the effect size-based cluster
evaluation tool from Fig. 5.9, a more structural fine-grained user role detection is
realized starting from the generalized user roles, which will be examined more in detail
in this section dealing with manual class labeling as already stated in Section 4.5.
The two complementary approaches mentioned in Section 4.5 ensure the mapping of
user roles from the literature to the unlabeled clusters, namely the manual-driven
analysis of boxplots and the proving of training data with the aid of dimensionality
reduction. For the first approach concentrating on a manual analysis of the overall
structure of the clustering by focusing on feature deviations in boxplots within the
cluster hierarchy, Fig. 5.6 depicts the feature deviations between the parent cluster
and their two child clusters, reaching user roles like Semi-Stars or Amplifiers. The
second approach focuses on dimensionality reduction strategies, such as PCA or LDA,
forcing the exploration process of user roles in several ways (cp. Section 2.8) shows
that correlated features in the reduced dimensions of a PCA are evident, while a LDA
cannot gather conclusions on considered features. This aspect makes the PCA more
valuable. Finally, feature drifts and changes in user roles across multiple data sets can
be accurately identified using LDA and PCA.
The iterative analysis strategy for analyzing boxplots and their feature deviations
within the dendrogram introduced in Section 4.5 is applied to the data sets to first find
well-defined user roles from literature as an anchor. Well-studied user roles like Star
users, which have a large number of followers, almost always a verified status,
and a generally high impact despite relatively low activities in the social network,
can easily be matched on the given aspects, as those roles are portrayed well in the
literature. All aspects are mapped to user roles when possible. However, other stable
user roles, which match precisely those from the literature but occur often enough,
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are considered as they lead to more specific user roles or thoroughly new user roles in
between the roles defined in the literature.
Pointing again to the dendrogram from Fig. 5.6 3-5 subtrees can be found in the
dendrogram representing the coarse-grained clusters from Table 5.5. The coarse-
grained user roles are present in several samples across the data sets, also with a
varying number of users, delivering three major generalized user roles, which can
be seen in the Venn diagram in Fig. 5.10. The user roles are defined as follows:
Besides the Star user, there were a lot of other action-triggering user roles such as
Semi Stars or Idea Starters, which are similar to Semi Stars but obtain popularity
in the network by creating more content and triggering higher reactions. Amplifiers
are well-networked users pushing and spreading predominantly (existing) trends and
content, while Rising Stars are gaining a more impressive number of followers as
they are more active in the network and thus are receiving significant reactions on
retweets but not yet at the high level of Stars or even Semi Stars. Thus, the latter
two user roles fit in the generalized user role of intermediates. Intermediate users
mostly rely on the Average User role, which can hardly be distinguished considering
feature deviations and statistical indicators compared to the whole data set. This role
is also the most prominent representative in each sample. There are also user roles of
Spammers, which have mostly a high activity in the network but are not as popular as
the action-triggering users; Daily Chatters, which are not as active and more moderate
compared to Spammers and Commentators, who define themselves as Daily Chatters
by creating more own content, a higher rate in retweeting, triggering more reactions
considering replies and thus being more active in the network.

Average 
User

Star

Semi Star

Idea Starter

Loner

Spammer

Commentator

INTERMEDIATES

ACTION 
TRIGGERING

PASSIVE
Listener

Forwarder

Daily Chatter

Rising Star
Amplifier

Figure 5.10: User roles - Twitter.
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The third generalized group are Passive users, such as Forwarders, who are defined as
Average Users with a better connection in the social network but only tend to forward
content and finally receive only common reactions in the network. Listeners are users
who primarily only consume content instead of creating their own content and thus
hardly trigger other users. Furthermore, they have a weak connection in the network
and are only underbid by the user role Loner, whom almost inactive users represent.
Table 5.6 recapitulates now the insights from the evaluated user roles from Fig. 5.10
as well as the feature descriptions from Table 5.2 by describing the user roles with
remarkable feature characteristics, in particular, more substantial feature deviations
from the average, and comparing them to other similar user roles (second column).
Furthermore, in the third column, quota values for each user role over all samples were
evaluated, resulting in a dominance of passive users, excluding the Loner role, while
action-triggering users like Stars, Semi Stars, Idea Starters, and Amplifiers tend to
occur rarely in the data sets. Except for the Commentator, the quotas for Intermediate
users lie primarily between the Action-Triggering and Passive users.

Table 5.6: User roles and their characterization: ≈ shows closeness to other roles, ↓/↑
feature deviation from close role/whole data set, ↘ /↔ /↗ changes over time

Role Characteristics Frequency

ac
ti
on

tr
ig
g. Star followers > followees, verified,

↓ activity, ↑ mentioned 0.2–0.8%

Semi Star ≈ Stars, ↓ followers, mentioned,
↑ react. (re)tweet, retweets, replies 0.2–1.4 %

Idea Starter ≈ Semi Star, ↓ followers, ↑ reactions 1–4%

Amplifier ≈ Idea Starters, Semi Stars,
↑ followers, followees 0.5–5%

in
te
rm

ed
. Rising Star ≈ Semi Star, Idea Starter, Amplifier ↑ followers,

(re)tweets, replies 1.5–5.5%

Daily Chatter ≈ Average User, Spammer, ↓ (re)tweets, offtopic 5–15%
Commentator ↑ replies, offtopic, reactions 0.3–2%

Spammer ↑ (re)tweets, replies, offtopic
↓ followers, followees, reactions 1–7%

Average User offtopic > tweets, retweets 8–30%

p
as
si
ve Forwarder retweets > tweets, ↑ offtopic, followers, followees.
↓ reactions 25–65%

Listener ↓ (re)tweets, reactions 6–20%
Loner � tweets, offtopic, followers 0–1.5%

Finally, manual class labeling in this use case helped to initially detect and define
prominent user roles with aid from literature, which could be mapped on clusters.
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Starting with coarse-grained user roles, manual class labeling paved the way for
detecting a plethora of fine-grained user roles, which are essential for building and
verifying classifiers. Furthermore, the elaborated user roles represent a good foundation
when transferring the whole approach and the knowledge of fine-grained structural
user roles to other use cases, such as the Telegram use case in Chapter 6.

5.4.4 Building a Classifier

The next step in the KD pipeline from Section 4.6 deals with classifying user roles and
building a suitable classifier to automatically label clusters based on the insights from
the manual labeling process presented in the previous section. With a carefully built
classifier, it is uncomplicatedly possible to transfer knowledge on user roles starting
from existing data sets or samples of the identical data set, which have already been
labeled, but also from topically related or close-in-time data sets. Based on Section 4.6,
where the main characteristics and challenges of classification were already conveyed,
several particularities will be presented in more detail.
Essential for classification success are two types of input: Firstly, the training data
itself consisting of partially manual labeled cluster means, whose finding process was
clarified in Section 5.4.3, and secondly, unlabeled clusters, which should be classified
with user roles. To build valuable training data for the classification process in this
use case, a more manual-driven approach (cp. Section 4.5) was pursued instead of an
Active Learning (AL) strategy as aspects of explainability within the whole approach
was pursued. Even though the effort is higher as much human intervention is needed, it
helps to comprehend the whole creation process of training data. To handle this aspect,
the best practice is to enrich training data with striking clusters by adding whole
feature vectors to the training data representing not single users but whole clusters. As
mentioned in Section 4.6, the enrichment of training data at the beginning of building
a classifier is aided by a ground truth from the manual labeling process, evaluating
deviations between classification results and the ground truth for each user role. The
foremost goal is to devise a strategy that has the potential to ensure scalability and
user role probabilities for each user. This goal will be attained by recognizing and
scrutinizing crucial features and their deviations as exemplified in Fig. 4.8. Further
experiments considering certainty, stability, and coverage of user roles revealing the
suitability of a probabilistic classification as part of the novel Multi-Sampling and
Combination Strategy will be discussed in Section 5.4.
The second input for the classifier are the clustered and analyzed representative samples,
resulting in a set of unlabeled clusters. Manual labeling of clusters is inadequate as
it usually assigns only one or two user role labels per cluster, which can be unclear
due to blurry user roles. In contrast, the classification process is superior as it assigns
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a probability vector to each user in the cluster, indicating the likelihood of the user
fitting each possible user role based on cluster means in the training data sets.
Due to their significant features, the most notable and distinctive cluster means were
selected and verified from the manual labeling process described in Section 5.4.3 to
obtain the most optimal training data set for each user role. Furthermore, an iterative
enrichment process was applied to these clusters, supporting dimension reduction
techniques like Principal Component Analysis (PCA) or Linear Discriminant Analysis
(LDA). For most of the data sets from Table 5.1, training data sets were created, while
in this section, the process based on the Olympics 2012 data set will be demonstrated.
Fig. 5.11 shows the training data set with reduced dimensions utilizing PCA. This
iterative process of creating training data was time-consuming as clusters needed to be
selected at the most suitable spot due to their quality and feature significance, as well
as a manual classification to map each of those clusters to the most fitting user roles
from literature to gain meaningful and well-separated representatives of user role.

Figure 5.11: PCA of clustered samples from Olympics 2012 data set.

The PCA was visualized in a 3-dimensional coordinate system with additional specifi-
cations such as marker size, style, and alpha channel to depict the most significant
components. Table 5.7 shows each component’s percentage of the total variance and the
top 3 correlated features. The three axes represent more than 85% of the summed-up
total variance, and the features reaction rate retweet, followers, and verified
and offtopic messages are the most correlated features in the top 3 components.
The complexity reduction in the multidimensional cluster means of the training
data from the Olympics 2012 dataset is clearly shown in Fig. 5.11 using the PCA.
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The training data reveals distinct clusters for each user role, indicating successful
simplification. There are user roles that are very well-separated from others, like the
Star User or Semi Stars, but also user roles that lie close to each other, such as AVG
Users vs. Forwarders vs. Daily Chatters. This aspect emphasizes the importance
of creating training data thoroughly, precisely, and consequently, to reach the best
classification results possible. The LDA delivered a similar outcome and proved the
appropriateness of the training data set, which can be seen in Fig. 5.12.

Table 5.7: Variances and Top 3 features of the six present components in PCA of Olympics
2012 training data set.

Component Variance Top Features

x-axis 50.07% reaction rate retweet, verified, followers
y-axis 22.32% verified, reaction rate retweet, followers
z-axis 14.37% offtopic messages, followees, verified

marker size 6.72% reaction rate reply, followees, verified
marker style 4.67% followees, offtopic msgs, followers
alpha channel 0.87% tweets, mentions done, replies

Figure 5.12: LDA of clustered samples from Olympics 2012 data set.
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The training data set of the Olympics 2012 itself consists of clusters from varying
sample sizes (16 5% samples and 10 10% samples) with 507 manually analyzed clusters.
Table 5.8 shows the distribution of the user roles in the training data set, whereas user
roles such as Average User, Forwarder, and Listener are unsurprisingly represented
more dominantly, as they place the most dominant clusters in the data sets. The
remaining user roles are almost equally represented in the training data.

Table 5.8: A priori distribution of user roles in the Olympics 2012 training data set.
Average User Star Semi Star Idea Starter
87 (17.16%) 26 (5.13%) 45 (8.88%) 30 (5.92%)

Listener Spammer Daily Chatter Forwarder
54 (10.65%) 22 (4.34%) 43 (8.48%) 81 (15.98%)

Amplifier Commentator Rising Star Loner
33 (6.51%) 27 (5.33%) 30 (5.92%) 29 (5.72%)

Since dimensionality reduction works well for creating and validating well-separated
training data sets, it led to issues when reducing the original features before the
clustering process. As many various features are given, dimensionality reduction is no
option before clustering, as already discussed in Section 4.4 due to a potential loss of
quality and explainability of features. After clustering, the effect size-based depth-first
search for cluster analysis would not give valuable insights into the cluster analysis, as
conclusions for feature deviations cannot be drawn clearly. Furthermore, the trade-off
between classifying individual users instead of whole clusters was investigated, too, but
led to lower classification performance. The whole clustering process could be skipped,
but the inherent noise of individual users, especially outliers, did not lend well to
training and classification. This was the main reason to focus on training a classifier
with representatives of clusters, such as the mean feature vectors. Furthermore, the
median and a boosted technique where means were enriched with pooled Cohen’s d
values were also considered. Means tended to provide better separation than medians,
while the pooled Cohen’s d can capture the temporal evolution of features.
In Section 4.6, several well-known classifiers were introduced, all considered for ex-
periments to cover several specifications of the training data sets. Since some of the
clustered data sets are relatively small and skewed, the support for those classes is
low. To counteract these specifications, methods based on ensembles of decision trees,
e.g., Gradient Boosted Decision Trees (GBM) or Extremely Randomized Trees (ET),
multi-class Support Vector Machines (SVM), or K-Nearest Neighbor (KNN) turned
out to be most suitable.
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5.5 Instantiating & Assessing the Classifier

The previous section initially utilized the methodology from Section 4.2 with all
the parts starting with Feature Engineering, Sampling, Clustering, Cluster Analysis
until the Classification. The first clustering results gave valuable insights into the
approach’s suitability, but optimizations are possible and may lead to favorable results.
On the one hand, the classifiers work but have not been adjusted yet considering
the parameters. Moreover, several sampling strategies will be evaluated due to their
suitability w.r.t. stability of user roles and coverage of the data sets.

5.5.1 Hyperparameter Tuning

After demonstrating the process of manually labeling and building a classifier for most
of the data sets from Table 5.1, the classifiers need to be trained and validated. The
setup to build and validate training data sets utilized repeated stratified cross-validation
with three splits, where one was left out due to the small amount of data, and three
repetitions with different permutations to cater for possibly missing groups. Both
feature means and enrichment with pooled Cohen’s d were considered for each classifier
mentioned at the end of the previous section. To prove the quality of the training
data, F1-macro (cp. Section 2.7.2) was used as a metric to compensate for class
imbalance and prevent focus on either precision or recall. Furthermore, a grid search
was applied to tune the parameters of each classifier. As each classifier has specific
parameters, a broad range of possible parameter spaces was considered to find the
top 3 configurations for each classifier, ensuring a high degree of robustness. The grid
search itself was applied to the Olympics 2012 data, while for additional data sets,
the established configurations from the grid search were applied and evaluated with
the aid of the ground truth.
All investigated classifiers learn and generalize well, leading to a 94-96% score in
validation and 96-99% score in training sets with no stronger or weaker candidates,
w.r.t. over and underfitting effects proved by an insignificant standard deviation as
can be seen in Table 5.9. The objective for each classifier was to identify the single
best configuration and enable greater flexibility for adjusting classifiers on new data
sets. Thus, the top 3 configurations for each classifier were figured out using a grid
search. In Section 5.6, the created training data for other data sets from Table 5.1 will
be utilized to train and validate the classifiers with the knowledge suggested in this
Section, while in Section 5.7 several classifiers with variable training data will be used
to classify diverging as well as entirely new data sets.
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Table 5.9: Results of top 3 configurations for the classifiers.
Mean Mean & Pooled Cohen’s d

Top 1 Top 2 Top 3 Top 1 Top 2 Top 3

G
B
M

avg. validation score 0.9400 0.9400 0.9400 0.9459 0.9459 0.9459
std 0.0120 0.0120 0.0120 0.0094 0.0094 0.0094

avg. train score 0.9866 0.9866 0.9866 0.9896 0.9896 0.9896
std. 0.0054 0.0054 0.0054 0.0036 0.0036 0.0036

E
T

avg. validation score 0.9507 0.9507 0.9507 0.9486 0.9484 0.9482
std. 0.0131 0.0126 0.0134 0.0152 0.0148 0.0160

avg. train score 0.9660 0.9674 0.9675 0.9698 0.9633 0.9657
std. 0.0049 0.0055 0.0055 0.0035 0.0034 0.0049

S
V
M

avg. validation score 0.9525 0.9525 0.9525 0.9496 0.9496 0.9495
std. 0.0071 0.0071 0.0071 0.0112 0.0112 0.0112

avg. train score 0.9723 0.9725 0.9723 0.9753 0.9753 0.9753
std. 0.0031 0.0035 0.0031 0.0042 0.0042 0.0042

K
N
N

avg. validation score 0.492 0.9486 0.9484 0.9425 0.9407 0.9400
std. 0.0062 0.0098 0.0099 0.0139 0.0132 0.0112

avg. train score 0.9630 0.9616 0.9606 1.0000 0.9561 0.9554
std. 0.0039 0.0050 0.0040 0.0000 0.0058 0.0061

5.5.2 Stability & Coverage of User Roles

Having built and optimized the classifier in Section 5.4.4 and 5.5.1, it is now possible
to investigate several questions considering user distributions. In the creation process
of manual training data in Section 5.4.3, several user roles from the literature were
mapped on clusters, revealing a still loose distribution of user roles, which can be
seen in Table 5.6. This distribution, as well as the following questions, will now be
answered in this section:

• Does varying sample sizes and the number of samples influence the coverage?

• Do multiple captured users impact the stability and certainty of user roles?

• Is a correlation of user roles stemming from the same generalized role w.r.t.
second best user roles noticeable?

Starting from the Olympics 2012 data set samples, the trained classifiers labeled each
sample to determine how user roles are distributed among the samples. Overall, in
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the Olympics 2012 data set, 12 roles, which are also described in Table 5.6 and Fig.
5.10, were encountered. Note that these user roles are not strictly defined for all data
sets but pretend to be a good starting point for evaluating all further data sets.

Influence of Sampling on Coverage The roles’ coverage and certainty were
analyzed after combining the clustered and classified user data from random samples.
The outcomes for the Olympics 2012 and Super Bowl 2020 data sets with varying
sample sizes (5% vs. 10% and 10% vs. 20%, respectively) were demonstrated in the
subfigures of Fig. 5.13, delivering a highly reliable and valuable outcome.

(a) Olympics 2012 5% samples. (b) Olympics 2012 10% samples.

(c) Super Bowl 2020 10% samples. (d) Super Bowl 2020 20% samples.

Figure 5.13: Coverage comparison Random Sampling for full data sets.
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When increasing the number of samples and thus the number of individually classified
users, the number of role assignments per user improves. As a result, the number
of users without any role assignment (red bar) drops quickly, while the number of
users with multiple, mostly consistent role assignments (green bar) grows rapidly.
Furthermore, the number of users that only see a single role assignment (orange
bar) becomes smaller, enabling them to perform actual probabilistic assessments on
the assignment certainty. In turn, the increasing relative majority part (yellow bar)
gives insights on users that are not well identified as the most emerging user role
has no absolute majority, - which is data set-dependent. When utilizing bigger, yet
fewer samples (Fig. 5.13b and 5.13d) compared to the combination of smaller samples
(Fig. 5.13a and Fig. 5.13c) for the same number of users, the quality of the results
tends to be slightly better (in particular for the Super Bowl 2020 data set), yet at
much higher resource requirements due to the quadratic complexity for clustering.
Hence, opting for smaller yet more frequent samples is typically the better choice as
creating and clustering smaller samples grows linearly in complexity.

Stability and Certainty of User Roles Focusing more on specific use roles as
the general evaluation of the influence of sample size and number samples showed
insights on the whole data set, user roles including Spammer, Loners, Commentators
or Daily Chatter (cp. Fig. 5.14a) have both higher values for users who occur once
having a relative majority (yellow bar) as well as occurring multiple times having a
relative majority (dark orange bar). In contrast, stable roles such as Stars or Semi
Stars (cp. Fig. 5.14b), users with absolute majorities both for users occurring once
(green bar) and multiple times (light orange bar) are dominating. Considering all those
users, who have only a relative majority from Fig. 5.13a and 5.15b, the gap to an
absolute majority is relatively close for both the Olympics and Super Bowl data set. It
becomes closer for a growing number of samples as Fig. 5.15a reveals high percentages
for most users as the green bar representing a relative majority with values beyond
40% is dominating. Also, for specific roles such as the Daily Chatter (cp. Fig. 5.14c)
and the Semi Star 5.14d, the number of users who have a relative majority have only
a close gap, which stays almost stable for a growing number of samples. Focusing
only on users who occur once and have a relative majority, e.g., the Daily Chatter (cp.
Fig. 5.15c), for a growing number of samples, the gap to an absolute majority is also
getting closer as the green bar is growing. Thus, for most roles, the percentage for the
most decisive role is between 40 and 50%, which is also a very persuasive value in a
12-class classification problem, showing that most of the user roles are stable or very
close to stable roles. Moreover, the fact that for a growing number of samples, the
probability of capturing a user more than once is also growing, especially for 30 or
40 samples 25% respectively, almost 40 % of users are captured at least three times,
improving and stabilizing the user probabilities as Fig. 5.16a reveals.
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(a) Daily Chatter. (b) Semi Star.

(c) Rel. majority D. Chatter. (d) Rel. majority Semi Star.

Figure 5.14: Coverage in Random Sampling for user roles of Oly12 5% samples.

Correlation of User Roles As there is also a small number of users who are not
stable at all, the user role probabilities are investigated more in detail to visualize the
belongings to multiple user roles. In particular, the distances from best to second-best
user roles will be examined to show the correlation in terms of originating from the
same generalized user role. The distance between the best and second-best user role
is generally low, substantiating the significance of second-best ones in the proposed
Multi-Sampling and Combination Strategy. In Fig. 5.15d, the distance amounts
between best and second best roles for all users in the Olympics 2012 data set with
5% reveals a rather high amount (over 60%) of users who have only a lower distance
until ten percentage points the best role for all given samples. As the best role
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usually dominates with an absolute or close to an absolute majority, an immensely
strong second-best role exists for multiple users in the data set. The matrix in Fig.
5.16b shows the correlation of second-best to best roles and reveals that second-best
roles principally originate from same generalized user roles compared to the best role.
Further, increasing the number of samples does not significantly decrease the share of
those users, indicating that these are not artifacts of sampling. Fig. 5.16a shows the
number of distinct users for a growing number of samples and reveals an amount of
40% for users who occur three times when combining 40 samples. Overall, the scaling
works well, thus validating the approach.

(a) Oly12 5% Rel. majority full. (b) Super Bowl 2020 20%.

(c) Oly12 5% Once rel. majority D. Chatter. (d) Oly12 5% second best roles amounts.

Figure 5.15: Detailed coverage analysis for random sampled user roles.
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(a) Oly12 5% samples user amount.

(b) Oly12 5% samples second best roles matrix.

Figure 5.16: User amount & second-best roles for 5% random samples of Oly12.

Summary The evaluation of the clustered and labeled samples (in total 507 clusters)
with the classifiers mentioned in Section 5.4.4 achieved suitable results, as the leftmost
data points in Fig. 5.24b show. The substantial variance in the feature distribution
present in the boxplots (Fig. 5.6) also shows why training and classifying individual
users instead of clusters yields inferior results. Using the Multi-Sampling and Combina-
tion Strategy, the effect of mislabeling or misclassification is dampened by the fact that
the first role is - in most cases - very dominant or - in cases of no majority - either has
a significant distance to the second-best role or stems from the same generalized user
role. The results demonstrate the effectiveness of both clustering and classification
methods. While expert knowledge is required to interpret the dendrogram and assign
roles, this knowledge can easily be applied to new data sets and their respective clusters.
Furthermore, the questions introduced at the beginning of this chapter showed that
both sample size as well as the number of samples influence how fast a whole data
set can be covered, depending on the given resources, delivering stable and certain
user roles, which impress largely by an absolute majority considering one user role
and simultaneously have a high distance to the second best user role. Decreasing user
roles shows a correlation between best and second-best user roles stemming mainly
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from the same generalized user role. Further experiments dealing with even smaller
sample sizes revealed only conditional suitable results, as a coverage of the whole
data set is hardly reached with the random sampling strategy. Thus, vast data sets
outline a tough challenge for this approach, even though creating a lot of small samples
influences the complexity of clustering only linearly. In these cases, splitting the data
set into temporary slices, e.g., group stage and knockout stage for data sets dealing
with football or week-wise splits for Olympics data sets, would be suitable.

5.5.3 Tuning the Sampling Strategy

The experiments considering user role stability and certainty in the previous Section
5.5.2 revealed the benefits of the proposed novel Multi-Sampling and Combination
Strategy-based approach. The results showed that samples should be chosen as small
as possible due to the quadratic complexity of clustering while creating more samples
results in linear growth of running time and memory consumption. Moreover, a sweet
spot for the number of randomly created samples was found for the Olympics 2012
data set at around 30-40 5% samples, which cover around 115K users. For other
data sets, the number of covered users was chosen similarly due to the comparability
of tuning operations of sampling strategies on several data sets (cp. Table 5.10).
Nevertheless, the random sampling-based strategy has some issues, such as rarely
reaching the full coverage of users. Some users were considered three times or more,
leading to oversampling effects, while others were not considered, resulting in a weaker
probability support. Reaching full coverage would need many more samples or even
bigger ones, degrading the random sampling due to an overflowing usage of resources
because of the quadratic complexity of clustering. As the kind of sampling is the most
straightforward and thus expendable step in the whole strategy, several strategies
will now be evaluated against the random sampling strategy, which will serve as the
baseline strategy in this section. The following inquests, also discussed in Section
5.5.2, will be discussed again in this section to validate the success of the sampling
strategies.

• Are sample sizes limited due to resource costs and representativity?

• How do the number of samples and the sample size affect the coverage of users
in the sampling strategies?

• Which impact do the sampling strategies have on the stability and certainty
of users and user roles, w.r.t absolute and relative majorities considering their
probabilities?

• Does sampling size and the number of samples influence the occurrence and
interference of oversampling effects and probability support?

142



5.5 Instantiating & Assessing the Classifier

Finding the most suitable strategy and the sweet spots in dependency of both the
sample size and the number of considered samples is the primary goal of this chapter.
However, the comparability has to be guaranteed. Besides the amount considering
user frequencies, the optimal point of the baseline with 40 10% samples revealed the
aptitude as the best approach, as both coverage and distribution of users were reliable.

Table 5.10: Sample sizes of several data sets for optimization of sampling strategies. Olympic
Games: Oly, Super Bowl: SB, Paris: Par, Berlin: Ber

Data Set
Oly12 Oly14 Oly16 Oly20 Oly22 -

Small Sample 5% 5% 3% 2.5% 4% -
Big Sample 10% 10% 5% 3.5% - -

SB13 SB20 SB21 SB22 Par15 Ber16
Small Sample 15% 10% 10% 10% 20% 10%
Big Sample 30% 20% 20% - - -

Limitations of Sample Sizes When talking about efficiency and resources, the
size of samples has to be chosen sagely as on the one side of the spectrum; samples
have to be as small as possible to describe a representativity of the whole data set.
In contrast, on the other side of the spectrum, the upper bound for sample sizes is
determined by the performance of the machines. The extensive sample sizes from
Table 5.10 represent the maximum that could be clustered on the machines available
on an 8-core partition of an AMD Epyc 7401. A small data set like Berlin 2016 may
still be clustered entirely, yet a sample can be generated almost instantly, as seen in
Table 5.11. Complete clustering is impossible for large data sets, while samples fit well.
The cost is almost entirely consumed by creating the linkage matrix, so refinement and
exploration steps are interactive in all variants. Pointing now to the Cluster Expansion
from Section 4.3.6, this strategy comes along with a higher but linear growing runtime
when expanding a more extensive set of not observed users, which emerges mainly
at a low number of considered samples. Thus, it is a suitable strategy that can be
deployed at almost every stage of the combinations of samples.

Table 5.11: Clustering runtime & memory of samples, full data, and approximated(*).

Oly12 5% Oly12 10% Oly12 100% Ber16 10% Ber16 100%

runtime 19 min 136 min 226 h* 10s 38 min
memory 94 GB 375 GB 375 TB* 1.2GB 184 GB
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Influence of Sampling on User Coverage As already introduced in Section
4.3, several promising sampling strategies were discussed due to their benefits and
drawbacks, improving the standard random sampling strategy to gain better results
such as full coverage and stable and characteristic user roles. All strategies were
evaluated considering the coverage, i.e., covering enough users with an appropriate
number of samples and observing the impact of oversampling and probability support.
As most strategies may reach a point of saturation considering the addition of totally
new users when adding new samples, the combination of sampling with an expansion of
users, who still need to be incorporated, is also considered. As an expansion does not
need the whole process of clustering and classification, runtime and memory resources
can be economized. Outgoing from the sweet spots of saturation when combining
the clustered and classified users from the samples, the cluster expansion should not
distort role distributions. To prove all of the strategies regarding randomness, the
random sampling deals as baseline to evaluate the benefits and drawbacks by analyzing
expected user frequencies against the achieved ones from the strategies.

(a) Coverage 5% samples Oly12. (b) Relative majorities 5% samples Oly12.

Figure 5.17: Coverage comparison for Systematic Random Sampling.

Focusing on reaching full coverage, depending on the sample size, several samples
are needed for Systematic Random Sampling, introduced in Section 4.3.3 and Quota
Sampling (cp. Section 4.3.5, which is also dependent on the quota, i.e., users in the
samples, which were already considered. In theory, for 5% samples, the Systematic
Random Sampling would need 20 samples to reach full coverage, while Quota(50),
resp. Quota(25) would need 40, resp. 80 samples. Linear Sample Expansion (cp.
Section 4.3.2) does not need to be validated, as the required scope is achieved for each
desired number of samples in the implementation. Comparing these strategies to the
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baseline of the Random Sampling with 5% samples from the Olympics 2012 data set
in Fig. 5.13a the Systematic Random Sampling (cp. Fig 5.17a) reaches a full coverage
at 40 samples instead of 20 estimated samples. This issue occurs due to creating
more samples than needed; in theory, one would expect an ordered combination of the
samples, like in the creation process, while in reality, the constellation and the order
of sample fragments are shuffled during the clustering process. Thus, some users may
be considered twice in an early stage of the combination, while some users may be
considered first in a later stage after combining 20 samples in the combination process.
Compared to the baseline, Systematic Random Sampling has an improved coverage to
Random Sampling, reaching a stable coverage between 30 and 40 samples, while the
baseline approach needs between 40 and 60 samples.

(a) Coverage 5% samples Oly12. (b) Relative majorities 5% samples Oly12.

Figure 5.18: Coverage comparison of Linear Sample Expansion.

A minor improvement compared to the baseline can also be noticed in the Linear
Sample Expansion in Fig. 5.18a as a strategic expansion is more suitable than doubling
the 5% samples but is not able to compete with Systematic Random Sampling or
Quota, as the role distributions are not as precise when comparing the distributions
to the baseline approach using 40 10% randomly created samples. Pointing to the
Quota(50) strategy (cp. Fig. 5.19a), the estimated number of samples for full coverage
is as expected. Nevertheless, the gap between users occurring multiple times in the
baseline and Quota(50) is almost hardly noticeable. In contrast, the users who occur
only once have a relatively small gap to probabilities representing an absolute majority.
All in all, the three strategies can cover all users in an adequate number of samples.
However, only Systematic Random Sampling and Quota(50) Sampling are competitive
candidates for further investigation, while Linear Sample Expansion also has the
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drawback of a longer running time, as the samples are enriched with already covered
data. Stratified Random Sampling from Section 4.3.4 may be a good candidate, too,
but was outperformed by Quota in all aspects and will not be considered further.

(a) Coverage 5% samples Oly12. (b) Relative majorities 5% samples Oly12.

Figure 5.19: Coverage comparison for Quota(50) Sampling.

Influence of Sampling on Stability and Certainty In this paragraph users
with only a relative majority for the Systematic Random Sampling (cp. Fig. 5.17b),
Linear Sample Expansion (cp. Fig. 5.18b) and Quota(50) (cp. Fig. 5.19b) will be
investigated. Starting with the Systematic Random Sampling, one can notice a high
degree of users getting captured only once until 30 samples, as well as a growing
number of users having a relative majority, especially between 30 and 40 combined
clusters. Even though a higher number of users do not have an absolute majority,
over 80 % of those users are close to an absolute majority in each step of combining
up to 40 samples. The fact that 80 % of users in the Systematic Random Sampling
reach an absolute majority for one best user role underpins the suitability of this
approach in terms of stability and certainty of user roles. A similar effect for users
having a relative majority can also be noticed for the Linear Sample Expansion. In
contrast, the number of users captured only once is constantly high over all samples.
Systematic Random Sampling outperforms Linear Sample Expansion when focusing
on users with only a relative majority in terms of closeness to an absolute majority.
Moreover, Systematic Random Sampling also dominates the other techniques in the
number of users having an absolute majority, reinforcing the merits of Systematic
Random Sampling made in the previous paragraph of the coverage. Quota(50) is
comparable to the Linear Sample Expansion when focusing on coverage, even though
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the users who got captured once have a higher amount. Having a closer look at users
with only a relative majority Quota(50) is also an adequate strategy. A similar number
of users has a close gap to the absolute majority compared to the Linear Sample
Expansion. Finally, all three strategies reach well-pronounced user roles regarding
stability and certainty. Systematic Random Sampling and Quota(50) show the best
suitability when combining the benefits of stability and certainty with the coverage
from the previous paragraph.

Influence of Sampling on Oversampling and Probability Support Focusing
again on the insights from the strategies, the sample size also plays an important role
when reaching full coverage. If data sets with a nominal size are considered, the sample
size has to be adjusted to guarantee representative samples. However, the possibility
of oversampling is growing when considering a lot of more extensive samples. This
effect of oversampling can be seen in Fig. 5.20a and 5.20b for the Paris 2015 data set
with 20% samples for Quota(50) and Systematic Random Sampling, where saturation
of covered users is noticeable between 20 and 30 samples for both strategies. Most
users occur more than once and have a stable absolute majority. In contrast, the
users with relative majorities have a close gap to an absolute majority, considering
the probabilities of the best user role. Thus, there is no adverse effect of oversampling
noticeable, making both strategies valuable.

(a) Paris 2015 20% samples Quota(50). (b) Paris 2015 20% samples Systematic.

Figure 5.20: Coverage comparison: Quota vs. Systematic Sampling.
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Compared to the baseline, there were several effects of oversampling noticeable, es-
pecially for specific user roles, where probabilities of relative majorities deteriorated
for a growing number of samples. Nevertheless, in most cases, one must also consider
that the number of users who only have a relative majority is decreasing for a growing
number of samples. Thus, those plots must be treated with caution, as those amount
of user roles with only relative majorities must be placed concerning all remaining
users when analyzing the growing number of samples.

Further Observations Thus, depending on the strategies, the shuffling effect while
the clustering process also has consequences on the user amounts, i.e., how often
users are considered when analyzing the number of observed samples. For a growing
number of samples, the baseline approach in Fig. 5.16a receives higher probabilities
for users covered at least 3 or 4 times. At the same time, the baseline receives values
of almost around 40%, resp. 20% for 40 samples, while strategies that are not wholly
randomized do not show aspects of varying frequencies. The Quota strategy (cp. 5.21a)
has a relatively similar graph compared to the baseline but does not have as high
accumulations of users who occur 3 or 4 times. In contrast, the Systematic Random
Sampling in Fig. 5.21b strategy reaches only users who occur twice, as the whole data
set is partitioned to cover it precisely two times.

(a) Quota(50) Sampling. (b) Systematic Sampling.

Figure 5.21: Comparison of user amounts for 5% samples Oly12.

Detecting the best strategy Table 5.12 shows for 4 data sets with varying sample
sizes(columns) as well as a growing number of combined samples(rows) the best
sampling strategies considering their closeness of aggregated mean role distributions
to the baseline. Furthermore, the cluster expansion and the number of users added
at the specific stage of combining samples were scrutinized for each strategy. While
Quota(50) works well for mostly fewer amounts of combined samples, especially for
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data sets with small sample sizes or small absolute numbers of considered users, both
for a growing number of considered and combined samples, as well as a growing number
of sample size the Systematic Random Sampling (Syst.) outperforms Quota(50) in
stages where more samples are combined, or the sample size is chosen higher. The
number of added users with Cluster Expansion is relatively high when combining
smaller samples; a good trade-off can be reached when a saturation effect of stable
user roles is reached. For smaller sample sizes, e.g., Olympics 2012 5%, this step is
reached way later than for bigger sample sizes such as 10% or even 20 % samples. A
striking observation is that Cluster Expansion (marked bold) mostly only provides an
added value to the Systematic Random Sampling considering aggregated mean role
distributions to the baseline.

Table 5.12: Most suitable sampling strategies for specific data sets w.r.t sample sizes &
number of samples (left). Amount of users added by Cluster Expansion (right).

Number of Samples
5 10 20 30 40

D
at
a
S
et
s Oly12 5% Quota 77% Quota 60% Quota 36% Quota 21% Syst. 13%

Oly12 10% Quota 59% Quota 35% Syst. 12% Syst. 4% Syst. 1%
Ber16 10% Quota 59% Quota 35% Quota 12% Quota 4% Syst. 2%
Par15 5% Syst. 38% Syst. 11% Syst. 1% Syst. 0% Syst. 0%

While the means of user roles are hardly affected by cluster expansion, when considering
the mean role drift over the complete data set, individual user roles can significantly
be affected, such as the Star User, which has a compact constellation of fewer users
and is well separated to other user roles. Users from the roles of Commentators, Daily
Chatters, Semi Stars, and Spammers commonly have a higher distance to their second-
best user role. Thus, they are not affected as Star Users by the Cluster Expansion.
All in all, the distinct user roles are expanded almost uniformly.
To sum up, the analysis of various sampling strategies has shown that Quota(50) and
Systematic Random Sampling are highly advantageous for enhancing the coverage and
certainty of user roles compared to Random Sampling, which serves as the baseline.
These options have no adverse effects, such as oversampling or insufficient probability
support. While Quota works well for smaller sample sizes and a smaller amount of
combined samples, Systematic Sampling has its benefits and vice versa. Although both
strategies reach full coverage as well as certainty faster than Random Sampling, Cluster
Expansion is a valuable extension, as fewer samples need to be created, clustered, and
classified because even for a smaller amount of combined samples, Cluster Expansion
delivers steady results without negatively affecting the enriched cluster means in terms
of feature drifts. To pick out a strategy that works well for all kinds of data sets
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due to a fair and beneficial comparison in time series, Systematic Random Sampling
delivered persuasive results for all data sets. In contrast, Linear Cluster Expansion
only worked well for earlier data sets, such as the Olympics 2012 data set.

5.6 Multiple Individual Data Sets

While the first step of the experiments and analysis in Section 5.5.2 dealt with the
initial application of the approach from Section 1.2 on single data sets, the second
step focuses on analyzing several data sets individually with the given approach to
understand if it is more widely applicable individually over a wide variety of data sets
stemming from the same social network, as claimed in the contributions of Section
1.3. Besides the question of the applicability of the approach, several other questions
dealing with user roles and their evolution will be discussed in this section:

• Is the approach applicable to a wide variety of data sets?

• Do the same or similar user roles reappear among topically similar data sets?

• Do user roles evolve over time w.r.t. quotas?

• Do user roles change over time w.r.t. feature drifts?

Applicability of the Approach Applying the approach to new data sets means
applying all steps mentioned in Section 4.2 in principle, such as Preprocessing, Feature
Engineering, Clustering, Cluster Analysis, Classification, and Sampling, but with
significant conceptual and practical simplifications and savings. When dealing with
multiple data sets stemming from the same social media, the preprocessing and feature
engineering methods will be the same for all sets. Additionally, the hierarchical
agglomerative clustering using Ward’s method produced satisfactory results for each
data set and will not be impacted. The clustering cutoff as part of the cluster analysis
may need to be adjusted slightly to ensure accuracy, as the suggested approach
exploiting a feature comparison based on pairwise effect size within the depth-first
search may yield varying levels of significance. In addition, a suitable significance
criterion for aborting the depth-first search has to be found which can deal with
all data sets. With the aid of the tool presented in Fig. 5.9, insights over all data
sets delivered the following criteria for the significance changes of effect size for the
approach from Definition 33: At least two large effects, one very large effect or one
huge effect delivered suitable results for all clusters. In addition, the difference between
the average Cohen’s d overall features between parent and child nodes was determined.
Another criterion for significance changes was found if this distance is greater than
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0.1. Thus, not only are deviations in a few features decisive for significance changes,
but minor changes in overall features are also considered, capturing clusters more
precisely. The only time-consuming step is the building of new training data covering
a plethora of different aspects such as type of events, e.g., sports, politics, or tragic
incidences, the recording period, e.g., only a few days vs. several weeks or the point
of time, as social networks and their users may develop over time considering their
behavior. Considering the building process of new training data, the analyst can resort
to well-elaborated user roles to cut the process of creating new training data sets short.

Reappearance of User Roles After addressing the general application of the
approach on various disconnected data sets, the applicability will witness if the same or
similar roles are present in data sets varying in time and topic and how they evolve over
time. While the focus in Section 5.5.2 was on coverage as well as certainty and stability
of user roles in general, the focus in this section is to analyze user roles more widely
in terms of possible feature drifts leading to slightly different characterizations of user
roles beyond data sets. As all features in each data set have the same bounds after
normalization and standardization, a more in-depth analysis considering user role drifts
is possible. This aspect is consequential, as data sets are preprocessed individually,
i.e., the normalization and standardization are applied for each disconnected data set
individually. Thus, feature stability from one to other data sets over chronological time
is also a significant position aiding a robust recognition of user roles, even though slight
feature deviations cannot be prevented as users and their written messages in the data
sets may differ after preprocessing. Nevertheless, the stability of user roles described
by features is an influential significance criterion for role recognition. Moreover, user
role evolution, arising from possibly noteworthy feature drifts, i.e., changes in user
role distributions, is another beneficial area that will be discussed in this section.
As already mentioned in Section 5.4.3, which is the basis for building classifiers, most
observations of both generalized and specified fine-grained roles were observed in
most samples as well as in other data sets (cp. Table 5.1), so the whole manual role
assignment process consisting of evaluating dendrograms and the deviations of single
features in clusters, represented by boxplots, was applied across those data sets by
comparing and evaluating clusters against each other and finding correlations between
labeled roles. Some roles could be identified more easily as matching descriptions from
literature are present. In contrast, other roles need more manual evaluation, as roles
from the literature do not match perfectly, or user roles may differ from roles detected
in previously analyzed data sets. Tracking user roles across data sets with varying
topical aspects as well as time deviations manifested concept shifts and drifts among
them, as the frequency and probability of user roles or feature distributions were
revealed using PCA or LDA, as these strategies facilitate the comparison of similar

151



5 Analyzing Fine-Grained User Roles in Twitter

cluster-means due to fewer dimensions to observe. Considering all data sets, at least
10-15 distinct candidate classes could be observed, showing up in varying frequency
across the data sets but also disappearing completely in specific data sets, as a topical
variation is noticeable or trends over time changed.
The 12 user roles identified on the Olympics 2012 data set are also present and
well-separated in the other data sets, though -as the rightmost column of Table 5.6
shows- the frequency for the training data (in percent) varies over data sets and over
time. In addition, the experiments from Section 5.5.2 yielded more precise frequencies
for each user role over all Olympic data sets, proving most of the frequencies and
trends from the training data sets, which can be seen in Table 5.13.

User Role Quota Changes Upon conducting a thorough analysis of the optimal
methods for sampling and combining in the last Section, Table 5.13 provides a clear
representation of the distribution of user roles examined with the Systematic Random
Sampling strategy for all Olympics data sets between 2012 and 2022. While the top 5
roles stay constant, w.r.t. their position in each data set, Forwarders become more
present after the Olympics 2016. Almost all other user roles have a decreasing amount
of users over time. Especially Average Users, Listeners, Daily Chatter, and Rising
Stars forfeit users. At the same time, Commentators, Semi Stars, and Stars, all roles
with a smaller number of users, stay almost stable or increase their number of users.

Table 5.13: User role distribution for Olympics. Position of role in data set in brackets.
Oly12 Oly14 Oly16 Oly20 Oly22 Trend

Forwarder 31.73% (1) 38.55% (1) 55.41% (1) 58.12% (1) 53.88% (1) ↑
AVG 28.73% (2) 22.89% (2) 18.98% (2) 19.44% (2) 21.96% (2) ↓
Listener 12.53% (3) 13.70% (3) 9.08% (3) 8.07% (3) 8.42% (3) ↘
Daily Chatter 8.78% (4) 9.74% (4) 6.11% (4) 5.94% (4) 5.02% (4) ↘
Rising Star 5.08% (5) 2.31% (8) 2.47% (6) 1.71% (6) 1.42% (9) ↘
Idea Starter 3.62% (6) 2.45% (7) 1.83% (7) 1.33% (7) 1.61% (7) ↘
Amplifier 3.58% (7) 2.62% (6) 1.36% (8) 1.29% (8) 2.54% (5) ↔
Spammer 2.56% (8) 4.71% (5) 2.95% (5) 1.80% (5) 0.60% (11) ↘
Loner 1.17% (9) 0.31% (12) 0.17% (12) 0.13% (12) 0.73% (10) ↔
Commentator 1.12% (10) 1.19% (9) 0.37% (11) 0.67% (10) 1.71% (6) ↗
Semi Star 0.91% (11) 0.90% (10) 0.90% (9) 1.05% (9) 1.56% (8) ↗
Star 0.19% (12) 0.60% (11) 0.38% (10) 0.44% (11) 0.55% (12) ↗

The data sets for the 2014 Olympics (278 clusters) and the 2014 FIFA World Cup (193
clusters) show that there are minimal changes within close time periods in topically
related data sets considering sports events. However, the occurrence of Average User
and Loner decrease, while Forwarder and Listener appear more frequently.
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User Role Feature Drifts The first significant feature changes occurred in the
Olympics 2016 data set (355 clusters), while changes in user role quotas were noticeable.
The PCA in Fig. 5.22, showing cluster centroids of the training data, provides a salient
concept drift for many user roles between the Olympic 2012 data set (pipe symbol |)
and the Olympic 2016 data set (crosses X). In particular, Semi Stars also tend to
cover a space much closer to Stars, as the verified status was more freely distributed
by Twitter. There is a noticeable trend among users to retweet content instead of
generating original material. This trend has resulted in a rise in the frequency of both
Average Users Loners and Forwarders. This phenomenon has been recognized and is
ongoing. The reasons for those drifts can be traced back to changing user behavior in
different events, resulting in alternating user features. However, meaningful changes
in the social network, e.g., the allocation of the verified status reserved only for star
users before 2012 to a broader group of users, are proven reasons for drifts.

Figure 5.22: PCA of clustered samples from Olympics 2012 vs. 2016.

Feature deviations are possible reasons for user role drifts and shifts already discussed
based on the PCA. Nevertheless, looking into dimension-reduced plots, single feature
deviations cannot be found. Thus, line plots manifest those changes better as the
line plots of Semi Star Users (cp. Fig. 5.23a) as well as Stars (cp. Fig. 5.23b) show.
While the Star user stays mostly stable w.r.t. feature changes in all three data sets,
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the Semi Star has several considerable deviations between the Olympics 2012/2014
and 2016 data sets, as the blue line reveals. The PCA plot clearly reflects the latest
feature deviations, particularly in the verified status, retweets, and the reaction
rate of retweets. Much more difficult to prove is the influence of normalization
and standardization on feature deviations. As preprocessing is an essential step
for clustering, sacrificing normalization and standardization is no option. Moreover,
restarting the whole pipeline for each new data set forcing a global normalization is
also pointless due to clustering the whole data sets again. Thus, the analyst should
carefully inspect line plots to observe feature deviations. Despite minor changes in a
few features, the user roles in the training data sets remained remarkably consistent.
However, there were a few exceptions, such as the Semi Star.

(a) Lineplot describing features of Semi Star. (b) Lineplot describing features of Star.

Figure 5.23: Line plots for user roles of Olympics 2012-2016 training data sets.

The primary user role shift trend continues for the Super Bowl 2020 (345 clusters) data
set, which is otherwise, despite the different sports and the time difference, somewhat
similar to Olympics 2016. The 2015 Paris Attacks (160 clusters) data set covers a very
different topic and distinct interactions as there are fewer offtopic messages and
more retweets. Some user roles are not present, such as Commentator or Loner, yet
most of the overall trends match the picture of the sports events: forwarding instead of
content creation becomes more dominant both as features and as roles, corresponding
to the broader trend in all social media. In turn, influencer roles become pronounced,
where the Semi Star may have to split into two separate sub-roles.
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Summary The only exception where the approach could not be applied was the
random Twitter Sample Stream, as features based on topics lose their usefulness. Re-
garding the initial inquiry, utilizing the same attributes can facilitate the establishment
of uniformly recognizable user roles. Significant changes in the distribution of user roles
were observed, and interdependent relationships between these roles were discovered,
extending beyond the confines of the data sets. However, at this step, the effort of
labeling samples of each data set manually is a limiting factor.
All in all, the transferability of the proposed approach is possible with some limitations
but delivers convenient results. Both clustering and classification work well as the
user roles are reoccurring in each data set with slightly different characterizations and
varying portions, which lies in the nature of the evolution of social networks w.r.t.
different user behavior, interaction, and social trends. Focusing on the varying trends
of user roles over time delivered by the Olympic Games data sets from Table 5.13, a
similar development of user roles can be observed in the Super Bowl data sets, even
though the data sets have entirely different properties considering the recorded period
and thus the number of messages and users. For all data sets beginning with those
from years ago, e.g., Olympics 2012 or Super Bowl 2013, to the most recent, such as
Olympic Games 2022 or Super Bowl 2023, the evolution of both feature drifts and
user role shifts is conspicuous.

5.7 Applying Models to New Data Sets

The previous section indicated that applying the approach to new data sets from the
same social network is possible but needs many resources, especially in the manual
labeling process and the building and optimization of classifiers. So the third step
is targeting the question from Section 1.3 if gathered knowledge on user roles from
well-understood data sets can be transferred to new data sets.
To show this aspect, the following questions will be answered in this section:

• Is a transfer of role knowledge possible by assessing the quality and effort
involved?

• How do feature variation and drift impact the process of transfer knowledge
w.r.t limitations?

Fig. 5.24a and 5.24b show the F1 scores when classifying the data sets based on the
Olympics 2012 as the reference data set, as it provides the most prolonged prediction
period. While the weighted values in Fig. 5.24b depict the quality of frequently
represented user roles, the macro values in Fig. 5.24a support the overall performance
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of the classifiers. Overall, one can see a gradual degradation over time in the sports
events, as the classification methods do not explicitly capture the drifts observed in
the previous section but still generalize the roles over time. Nevertheless, the best
methods achieve a 0.85 F1 score for late sports events. The 2015 Paris Attacks data
set sees the most extensive degradation, showing topic and interaction differences have
a more profound impact than time. When comparing all these results to the slightly
worse macro values, one can see that small groups are captured well, while larger
clusters tend to be somewhat “blurry”.
kNN and SVC keep up well for short intervals but tend to lose ground on longer
distances. ET holds a slight edge over GBM, while the latter stays competitive and
incurs much lower runtime costs. Both strategies benefit from enriching the data sets
with the pooled Cohen’s d values.

(a) Macro Average F1. (b) Weighted Average F1.

Figure 5.24: Information retrieval measure F1 for classifiers.

The confusion matrices for the Olympics 2012 (Fig. 5.25a) Olympics 2016 (Fig. 5.25b)
and Super Bowl 2020 (Fig. 5.25d) data sets show how roles that were either not
well separated in the Olympics 2012 data or drifted significantly are most affected.
However, these misclassifications often lead to adjacent roles, e.g., Average Users as
Listener and Forwarder, Daily Chatter as Forwarder and Average User or Semi Stars
as Stars. Specifically, the scores for the Super Bowl 2020 data set emphasize the drift
to forwarding content and the rise of influencers from Semi Stars to Stars. Only in the
Paris 2015 data set (Fig. 5.25a) some more misclassifications are noticeable due to
the topical different training data. Thus, the F1 scores actually understate the quality
of the result, as they do not consider the adjacency of roles.

156



5.7 Applying Models to New Data Sets

(a) Olympics 2012. (b) Olympics 2016.

(c) Paris 2015. (d) Super Bowl 2020.

Figure 5.25: Confusion matrices of classifying data sets with Oly12 training data.

The data set of the 2016 Berlin Truck Attack (Christmas market) that was not
evaluated in the previous stages provides topic similarity to 2015 Paris Attacks
while being close to the Olympics 2016 in time. This data set provides an excellent
opportunity to assess the impact of different training data sets: in addition to the
baseline of the Olympics 2012 and close sets (Olympics 2016, 2015 Paris Attacks) as
well as the Super Bowl 2020 data set as a small, recent data set, two combinations
of training data were evaluated: Olympics 2012 and Super Bowl 2020 for the full-
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time range and 2015 Paris Attacks with those two as a mix of time range and topic
proximity. As Table 5.14 shows, these combined data sets provide the best results,
matching manual classification or producing misclassifications to close roles. 2015
Paris Attacks seems too small to provide a sufficiently general model but can boost
the full-time range model.

Table 5.14: Classification of the Berlin 2016 data set using several training data sets. Comb1:
Oly12 & SB20, Comb2: Oly12 & SB20 & Par15

Classifier Oly12 Oly16 Par15 SB 20 Comb1 Comb2

XGB 0.58 0.59 0.51 0.70 0.78 0.92
ET 0.74 0.63 0.56 0.73 0.77 0.82

The experiments show that a transfer of labeling knowledge is effective with certain
limitations: meaningful topic differences or long-time differentials diminish the useful-
ness, yet a good choice of reference data can mitigate this effect. Finally, applying
classifiers using acquainted training data is possible if a pool of manifold training data
is given. Experiments showed that even the classification is suitable primarily for data
sets that are topically not related perfectly or have deviations in time.

5.8 Evolution of User Roles Over Time

After optimizing several parts of the approach in Section 5.5 as well as transferring
and applying the approach to several data sets in Sections 5.6 and 5.7 the analysis
of user roles considering their movement together with their long term evolution will
be analyzed and discussed in this Section. In Section 5.8.1, a central aspect is the
analysis of user role movement over time, analyzing the distributions of users changing
their roles as well as non-observable users and their implying issues in terms of user
role movement. In contrast, Section 5.8.2 focuses on whole role chains over a while,
generally finding specific patterns occurring multiple times. Both aspects are eminent
foundations for building models and simulating existing and completely new data sets,
which will be introduced later in Section 5.9.

5.8.1 Analysis of User (Role) Movement

A series of comparable data sets are needed to evaluate and analyze user roles, single
users, and their evolution and movement over time, i.e., data sets with a similar topic
focus, such as the Olympics or Super Bowl. For each data set, a disconnected analysis
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is done, e.g., the user role quotas for individual datasets are examined as in the
previous section (cp. Table 5.6). Also, the training data in Table 5.8 and initial trends
in user role changes, such as those found in the Olympics datasets shown in Table
5.13 were analyzed and gave valuable insights on behavioral changes of users. These
aspects lay the foundation for a more extensive analysis of user (role) movements by
chronologically building whole chains between events for single users.

Figure 5.26: Example of a user role chain.

A role-chain can be seen in Fig. 5.26, representing a single user in terms of this
work consisting of several user role statuses over time t1, ..., tn, modeling the user role
changes of a user.
Considering those aspects, the following questions are examined in this section:

• Which impact have users who dis- or reappear in data sets?

• How many users change their behavior w.r.t. a specific user role?

• Which amount of users stay in the same (generalized) user role?

When analyzing user role movements across data sets over time, a central point is so-
called non-observable users, who impede the whole analysis. Non-observable users are
users who entirely or temporarily disappear and thus cannot obtain a role when absent.
While users who reappeared and thus already got allocated to a specific user role in
an event before, users who emerged first after the first event in the observed period
may be harder to allocate to a role, as they did not deliver any information about
their behavior in the social network, yet. Starting from the optimized Multi-Sampling
and Combination Strategy for each data set using the Systematic Sampling strategy,
specific observations can be made, which reveal user roles for each user. Thus, pairwise
user role transitions between two data sets and even longer chains are possible.
Focusing now on events over a while, such as the Olympic Games between 2012 and
2022 as well as the Super Bowl between 2013 and 2022, a lot of user movement can be
observed in the data sets pairwise in chronological order as Table 5.15 shows. Only a
small number of users in the social network stay in the same role, the same generalized
role, or a different generalized role for both time series. For closer gaps between events
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and recent events, the number of users who stay is growing for all three mentioned
statuses. Moreover, there is a lively exchange considering leaving and re-entering users
in both data sets, amplifying the issues of non-observable users. The last row shows
the number of unavailable users dependent on all observed users in the Olympics and
Super Bowl data series, calculated by the union of the appropriate data sets.

Table 5.15: User role changes starting from Olympics 2012 and Super Bowl 2013.
Oly14 Oly16 Oly20 Oly22 SuB20 SuB21 SuB22

Same Role 3.90% 3.07% 4.89% 21.86% 1.04% 8.97% 10.49%
Same Generalized 4.05% 2.54% 3.06% 7.60% 1.20% 4.13% 6.17%

Different Generalized 5.87% 3.30% 3.32% 8.20% 1.42% 4.12% 6.14%
Leaving 88.03% 78.38% 84.35% 82.61% 94.90% 78.48% 74.78%

Returning - 14.61% 7.32% 5.96% - 5.90% 9.09%
Not Available 86.18% 91.09% 88.73% 62.34% 96.34% 82.78% 77.20%

It is essential to remember that the distribution of roles in each event, as indicated in
Table 5.13, is closely tied to changes in user roles. The top 5 frequently appearing
user roles are most susceptible to role switching. Hence, one must be cautious of these
patterns when examining the data. While disappearing after an event is quite likely
for each role, the changes to a generalized role or a not generalized role balance each
other for most of the investigated data sets. When observing the whole chain starting
with the Olympics 2012, almost every user (99%) who was active in the first data set
disappeared at least once. Especially for the Olympic Games, which alternate between
Summer and Winter Olympics, individual interest in only winter or summer sports
is a possible reason for rejoining but not the only reason, as only 11% of Summer
Olympics fans from 2012 rejoined in 2016. The longer the observation period, starting
with the Olympics 2012 as the initial event, the probability of rejoining in 2016 or
later users is contracting to 11.2% (2016), 2.8% (2020 ), and 0.5% (2022 ). To sum
up these observations, 85% of users who became inactive never returned, while 15%
who came back are relevant enough for further investigations. The relatively big gap
between Super Bowl 2013 and 2020 also shows a significant pool of core users (5%)
who return in the following events after leaving the social network.
As enough significant users participate in more than one event considering the event
series, their user roles, and possible user role changes are of interest. Concentrating
only on users who rejoin at least once and thus are observable in at least two events,
users who rejoin with at least a similar behavior in a generalized user role are further
investigated in both the Olympics and Super Bowl time series to consider variable
gaps between events. The analysis showed that both for short periods of one year
as well as more extended periods, the number of users who reappear in another user
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role lies between 70% and 75%, which shows that user behavior evolves generally. As
each data set was classified with a trained classifier close to the given events, feature
drifts of user roles are also considered and substantiate the nature of evolving user
behavior. Finally, the observations of role switches in this section show the need to
abstract user role changes represented by role chains, displaying eminent patterns for
the model-building process. Thus, pairwise transitions of user roles between two data
sets will be the central point for the long-term analysis, which will be introduced more
in detail in Section 5.8.2.

5.8.2 Long Term Role Chains of User Roles

As user role movement was analyzed in the previous section, the attention will now
be drawn more to finding specific patterns in role chains, which result from user
role changes across data sets in time series. In related work (cp. Section 5.10.2),
such as voter migration in politics and document analysis in medicine, a long-term
analysis of existing data is a well-known strategy to enrich several types of models
with suitable data. In this work, exploring long-term role chains is quite a powerful
way to analyze user behavior over an extended period. A role chain consists of several
states representing user roles and their most likely changes across a series of data sets.
To handle and specify this case, for each user present in at least 2 data sets, the user
roles for each data set are ascertained. The role chains for each role in the data set can
be grouped to identify the most frequently occurring user role chains. Experiments
showed that many users over all user roles are represented by the same user role chain
as Fig. 5.27 reveals, displaying the quotas of the five most frequent role chains for each
user role. While the most frequent role chain has an amount of around 25% for Star
Users, the user roles of Listeners and Loners are represented by the most frequent
chain, around 80%. Overall data sets, most users are covered by the top 5 user role
chains. This aspect shows that users are well clustered and classified across all data
sets, as they share not only a similar behavior w.r.t to features in single data sets. Of
course, the absence of users substantially influences role chains, as the probability of
leaving the social network for all roles is relatively high. However, only some roles
are likely to leave the social network after being present in one data set as, e.g., Stars
tend to stay more likely in the data sets than Loners. Focusing on the role chains
again, Spammers and Star users tend to have the most extended activity chains in the
observed time series. In contrast, users from more passive user roles like Spammers
or Loners tend to leave the social network entirely after the first event they were
present. Another worthwhile observation is users’ active role chain lengths concerning
interests in specific events such as the Summer or Winter Olympics. Investigating
only users active in the Summer Olympics, only minor improvements (1-2%) for a
more prolonged activity in this time series are noticeable for some roles such as Semi
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Stars, Daily Chatters, or Forwarder. At the same time, Stars, Amplifier, or Spammer
tend to leave the social network after one event as the number of users deteriorates
slightly by 1-2%. Also, the significant gap of 4 years between the Summer Olympics,
instead of 2 years, affects the behavior negatively, w.r.t. leaving the social network.

Figure 5.27: Quota of the five most frequent chains per role.

Summarizing the results of user movement, especially leaving and rejoining, is a
significant observation that affects almost each user role. Disregarding users who
were not available in at least one event can set the focus on user role movement and
behavior for specific roles on one side of the spectrum, as active users tend to stay
more likely. However, on the other side of the spectrum, it lies in some user roles’
nature, such as the passive generalized roles, to leave and rejoin the social network
after being absent from an event. Observations for the Olympic Games and the
Super Bowl series showed that user role movement delivers a significant and valuable
outcome. Nonetheless, more data sets covering a longer or shorter time are inevitable
for more precise long-term trends. As a consequence of these observations, building
a probabilistic model upon role chains similarly is a worthwhile strategy to simulate
user role changes correctly, which will be discussed in the next section.

5.9 Model Building

After applying the tuned Multi-Sampling and Combination Strategy to a series of data
sets in the previous section 5.8, building a model that can succinctly describe the
evolution of user roles across data sets in a time series is of particular interest. To do
this, user-role chains, introduced in Section 5.8.1, are a valuable strategy to expedite
the building of models. A role chain of a user describes the role transitions from one
data to another data set of each user. Creating whole transition models arises from
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the strategy to group distinct role transitions between pairwise user roles to create a
transition table for all user roles between data sets.
To do this, Clustering and Classification of data sets need to be performed, which
are time-consuming due to their resource-intensive nature. Clustering has quadratic
complexity, while Classification requires well-elaborated training data sets. Therefore,
the model-building process should prioritize creating a non-stationary role-change
model that can capture and predict role evolution without requiring extensive knowl-
edge of the underlying data sets. The foundation for the model-building process is
well-elaborated and stable user roles arising from the fine-grained user role analysis
and role transitions forcing evolution patterns.
The Olympic Games and the Super Bowl data sets were analyzed using the optimized
Multi-Sampling and Combination Strategy, leading to an expedited model creation
process. Furthermore, role chains were established and analyzed in depth. As for each
user role, probabilities for user role changes can be investigated using the proposed
approach; the drawback is that this requires much time and resources. Building a
model using information from a plethora of events for simulating and predicting data
sets is the primary goal of this chapter. First, some basic information about model
building using Markov Chains and the adaption of the analyzed data sets creating a
general model design are introduced. Afterward, this model is used to discuss event
pair proximities and role shifts. Furthermore, based on those results, both a naive
model and an algorithm were designed to create suitable Markov Models. Simulations
can be generated using transition models, replicating existing data sets, and enabling
predictions about future events based on Markov Models developed from past events.

5.9.1 Background on Markov Models

After describing the suitability of user role chains and their possibility to create
a transition model between topically related data sets within a time series, the
applicability to exploit Markov Models to create an automatic model-based approach
will be presented in this section. As the purposes of user roles and their transitions to
other user roles are described with probabilities, a model exploiting a general Markov
Chain is possible, as the number of states is always firm. A particular challenge
is the time factor, as the data sets considered do not precisely meet the condition
of a discrete-time model, with intervals each having the same amount. In addition,
the transitions of user roles between different data sets make it difficult to create a
completely static model.
For the model-building process, a widespread approach to depict states, as well as
transitions to other states, is a Markov Model. Markov Models are stochastic models
based on traditional finite state machines to depict pseudo-random changes, whereas
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future states depend only on the current state. Several models were investigated in the
past, depending on several properties. Observability of states and manual adjustments
based on observations play significant roles in the process.
Starting with traditional Markov Chains, where states are fully observable as the whole
system is autonomous, a Markov Chain is a random process generating a sequence
of states S = {S1, ..., Sn} over some time as discrete-time model consisting of several
snapshots or time-slices, whereas each interval has the same amount. A transition
model is defined between the states, describing transition probabilities from one state
to another from a previous point in time to the current state. In contrast, transitions
depend only on the previous state P (Xt = Sj | Xt−1 = Si). [RN21].
Different approaches, such as the Hidden Markov Model, do not meet the given
constraints’ expectations, as the models’ states need to be visible and observable at
each time. Moreover, it is almost impossible to model observations in each state, as
there is only the information of a user role as a label for each user. Albeit, in the
very beginning for each user, a probabilistic assignment for a role resulting in an
absolute or relative majority for the best role could be a pertinent observation, but
as this information is lost after simulating the first transition to another role from
one to another data set, a Hidden Markov Model is no suitable solution for the given
problem. Also (partly observable), Markov Decision Processes are unsuitable for the
given constraints, as each state has a set of actions and a reward function needed,
resulting in a decision-maker-led process. In contrast, the simulation of role changes
for specific users from one data to another should take part fully autonomous [RN21].

5.9.2 Transition Tables

Starting from the definition of Markov Chains in Section 5.9.1, a state machine is
defined by a set of states and edges, which model transitions between those states.
Transferring the insights regarding varying transitions probabilities for user roles
of pairwise data sets from Section 5.8 to such a state machine, there would ini-
tially be a state for each role of each data set, such as {AV GOly12, AV GOly14, ...,
AmplifyerOly12, ..., NotAvailableOly22} as well as the pairwise transition probabil-
ities as edges together with the probabilities such as {(AV GOly12, AV GOly14), ...
(LonerOly20, NotAvailableOly22)} for consecutive data sets such as Olympics 2012
and Olympics 2014, Olympics 2014 and Olympics 2016. By using the insights on role
switches and chains from Section 5.8, it is possible to create role transitions for pairs
of user roles across consecutive data sets.
Table 5.16 displays the pairwise percental drifts of combined user roles from all possible
event pairs, focusing on whole user role shifts. For instance, it compares the drift of,
e.g., all Semi Stars between the Olympics 2012 and 2014 transition to the drift of
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Semi Stars from 2014 and 2016 using the weighted Manhattan Metric from Definition
7 in Section 2.3. This comparison allows to consider the number of affected users
within a transition by probabilistically comparing differences in several user roles
without losing the aspect of sizes of user roles.

Table 5.16: User role transition distances between Olympic data sets.
Pair Semi Star Star I. Starter Amplif. Rising Star D. Chatter

Oly12/14 → 14/16 4.86% 7.27% 2.70% 8.21% 1.92% 7.40%
Oly12/14 → 16/20 8.04% 5.15% 0.91% 5.08% 1.74% 5.54%
Oly12/14 → 20/22 9.23% 5.60% 1.23% 4.75% 0.24% 7.79%
Oly14/16 → 16/20 3.39% 3.12% 2.01% 2.47% 0.93% 1.96%
Oly14/16 → 20/22 3.51% 10.65% 3.44% 3.68% 2.22% 2.42%
Oly16/20 → 20/22 2.19% 6.26% 1.71% 1.06% 1.48% 1.3%

Pair Comment. Spammer AVG Forward. Listener Loner
Oly12/14 → 14/16 5.59% 5.19% 5.40% 14.28% 4.16% 3.68%
Oly12/14 → 16/20 1.77% 4.13% 3.57% 12.16% 3.12% 1.08%
Oly12/14 → 20/22 0.69% 11.75% 1.70% 7.50% 2.80% 7.43%
Oly14/16 → 16/20 5.55% 2.84% 1.63% 3.59% 1.91% 1.71%
Oly14/16 → 20/22 5.77% 5.05% 4.85% 5.04% 4.13% 2.96%
Oly16/20 → 20/22 2.24% 7.62% 2.84% 6.81% 2.62% 4.46%

In the manual building process and the analysis, some drifts for specific user roles
could be observed over time. Especially until the 2016 Olympics, specific user roles
had a more considerable drift, while most user roles stayed largely stable after 2016
until data sets to the present day. Considering the percental drift again, there are
user roles that are hardly or only moderately affected, such as Idea Starter, Rising
Star, AVG User, Listener, or Loner, but also user roles that shift over the whole
time series, such as Stars, Semi Stars, Spammers or Forwarder. In contrast, some
user roles are only shifted over some specific periods, e.g., Daily Chatter between the
pairs 2012/2014 and 2014/2016 or Commentator between the pairs 2012/2014 and
2014/2016, 2014/2016 and 2016/2020 as well as 2014/2016 and 2020/2022, while
receiving only more minor shifts in the other event pairs.
Focusing on generalized user role shifts from Table 5.17 especially from the very
beginning to several intermediate steps, and the end can be noticed for all generalized
roles. In contrast, in later event pairs, the shifts are less affected than some of the
fine-grained roles from Table 5.16. In Table 5.16, the rightmost column shows how all
users in an event pair compare to others when using the weighted Manhattan metric
(Definition 7), taking into account the number of users affected by a shift. One can see
more considerable shifts between the data sets, especially for the first pair (Olympics
2012/14 ) to all others, while the distance to the last data set (Olympics 2020/22 )
is becoming smaller again. The distances are relatively small for all other data sets,
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which can also be noticed when calculating the average of all data set pairs and their
distances to them. When leaving out the Olympics 2012/14 data set pair in the
average calculation, the distances to this new average are relatively small and even
(cp. Table 5.18). Finally, this confirms the observations made in the manual building
process when comparing the application to other data sets stemming from the same
social network in Section 5.6. This observation affirms the need for several states for
each role and each considered data set, as there are noticeable shifts of user roles
between data sets. However, later data sets reveal only more minor shifts, which
makes several approaches with fewer states possible to consider in the model-building
process in the next section.

Table 5.17: User role transition distances between Olympic data sets.
Pair Action Triggering Intermediate Passive All

Oly12/14 → Oly14/16 7.22% 9.02% 7.49% 9.57%
Oly12/14 → Oly16/20 5.88% 7.23% 6.57% 8.26%
Oly12/14 → Oly20/22 5.06% 9.28% 6.03% 5.54%
Oly14/16 → Oly16/20 2.02% 3.32% 3.02% 2.90%
Oly14/16 → Oly20/22 3.77% 3.29% 1.37% 4.77%
Oly16/20 → Oly20/22 1.83% 1.89% 2.33% 5.13%

Table 5.18: User role transition distances between Olympics data sets and averages.
Oly12/14 Oly14/16 Oly16/20 Oly20/22

AVG 5.51% 3.96% 3.30% 2.30%
AVG w/o Oly12 7.48% 2.14% 2.67% 2.81%

5.9.3 Model Building Process

By analyzing the transition tables, valuable insights can be obtained to enhance the
development of modeling strategies that consider noticeable role changes in data sets.
This knowledge can be utilized effectively to create models that deliver excellent results.
Both a naive manual-based approach creating several strawmen by exploiting the
knowledge of transition tables and an algorithmic approach aiding in designing suitable
Markov Models were considered. Markov Models are beneficial for simulating user
role changes over time, especially for simulating and predicting users of entirely new
data sets. Thus, this section will focus on model building and experiments evaluating
the simulations and predictions outcome against the strawmen and the actual data
created with the aid of the Multi-Sampling and Combination Strategy.
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In the following chapters, experiments were carried out utilizing the following strawmen
models that simulate various specifications of the innovative non-stationary high-level
threshold model:

• The Average Over All (AOA) model combines all user roles probabilities from
each event, performing a weighted average depending on the user roles percentage
in a data set, resulting in a more coarse-grained model consisting of 13 states.

• The As Granular as Possible (AGAP) model forces no aggregation of events but
focuses on concatenating all transition tables for all user roles, resulting in a
more fine-grained model with 52 states.

• The Threshold Cutting (TC) model is similar to the Average Over All model
but separates the first event (Olympics 2012 ) from the others and concatenates
them with the average of all other events as striking role shifts are outgoing from
the first to the following events as figured out in Section 5.9.2 providing a more
accurate prediction using 26 states.

• The Outlying Role (OR) model is similar to the Threshold Cutting model but
separates the Star User from the average calculation of each event as it has a
massive impact on the transition tables, resulting in 28 states.

• The Threshold Model (TM ) is an algorithmic approach using several thresholds
to approximate the As Granular as Possible model using a low threshold, an
intermediate case, and a high threshold approximating the coarse-grained Average
Over All Model.

Before focusing on experiments considering all of the transition models from above,
the Threshold Model will be introduced in more detail as follows. All of the steps
creating the Threshold Model can also be tracked in Fig. 5.28.

Current States

Star12
AVG12,14
Forwarder12

    ...

AVG16

Iteration Subject

1) Find State Closest in
Time with Same Role

2) Temporary State:
Closest Found + Iteration Subject

AVG12,14,16

3) Check Distances:
Temporary State to Constituents

AVG12,14,16 AVG16

AVG12,14,16 AVG12

AVG12,14,16 AVG14

4) New States

AVG12,14,16

AVG12,14

AVG16

< Threshold

> Threshold

dist

dist

dist

Figure 5.28: The Threshold Algorithm’s combine step from [Mac23].
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Definition 34 (Threshold Algorithm)

1.) Start in the first event and create for each role a separate state, e.g., AV G12.

2.) Iterate in a breadth-first search over all other events states for each user role
and determine a temporary combination of the closest subsequent user role to
a (combined) state, e.g., AV G16 and AV G12,14 to AV G12,14,16 or AV G20 and
AV G14,16 to AV G14,16,20.

3.) Create a new combined temporary state, e.g.,AV G12,14,16 when focusing on AV G16

to add, and check if all of the following constraints are fulfilled considering a
predetermined threshold thresh.

a) The distance between the currently considered state and the temporary state
undercuts the predetermined threshold using the Euclidean distance:

| rolecur − statetemp |< thresh (5.1)

e.g, | AV G16 −AV G12,14,16 |< thresh

b) For each component roleevent of the closest state stateclosest the difference
between the currently considered temporary state and the roleevent has to
undercut the threshold:

for all roleevent in stateclosest :

| roleevent − statetemp |< thresh
(5.2)

e.g, | AV G12 −AV G12,14,16 |< thresh and | AV G14 −AV G12,14,16 |< thresh

c) Focusing again on the context of handling transitions with targets, sources,
and probabilities. For each transition, where source roles represent the current
subject, the probabilities to all targets have to undercut the threshold due to
an altering targets effect also caused by many smaller shifts.

for all rolesrc, roletar, event :

| roletar,rolesrc,event
− roletar,statetemp

|
roletar,statetemp

× Prolesrc(roletar,event) < thresh
(5.3)

where the fraction indicates the percentage of the source role movement to the
target, and P represents the target role probability stemming from the source
role in the event,
e.g, |StarAV G,12−StarAV G,12,14,16|

StarAV G,12,14,16
× PAVG(Star, 12) < thresh

for assuring that transitions from AVG as a source to Star users are shifting
the Star users below the threshold.
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4.) Replace the closest subsequent state with the temporary state if all constraints
are fulfilled, e.g., AV G12,14 → AV G12,14,16 else revert the temporary state to the
previous closest subsequent state AV G12,14 and create a new one for the currently
focused state AV G16

5.9.4 Preparation & Execution of Experiments

After introducing all models, they need to be verified before they can be used for
simulating and predicting (future) events. Regardless, the Threshold Model must
be approximated to the strawmen models before the analysis starts. While the As
Granular as Possible model, with the most achievable states, and the Average Over All
model, with the least viable states, are both extreme cases and frame the other models,
both the Outlying Role as well as the Threshold Cutting models aim to approximate
the As Granular as Possible model by separating both single events as well as roles.
The general simulation process to verify the models using previous known information
from the clustered and classified data sets is as follows. The process starts with,
e.g., the user role labels resulting from the highest probability of each user of the
Olympics 2012 data set, simulating the Olympics 2014 by drawing a random variable,
determining which transition path is chosen in the models, and approximating all of
the other events in chronological order using the interim results until reaching a final
simulation for, e.g., the Olympics 2022 data set. At each interim step, the results
can be compared to the baseline, represented by the actual data sets, as all of them
have been analyzed with the general Multi-Sampling and Combination Strategy from
Chapter 4, to ensure the effectiveness of the simulation by evaluating the Average
Prediction Error, i.e., the amount of false simulated users. In contrast to a simulation,
predicting new data sets is also possible. When assuming a new data set, e.g., Olympics
2022 should be predicted, the model-building process takes the Olympics 2012-2020
data sets into account, while the simulation starts with the Olympics 2012 until 2021,
as mentioned before, adding another final simulation step.
Firstly, the manually designed models (strawmen) are evaluated against the baseline
considering the percentage of wrongly assigned users, Quota and Standard Deviation
of specific roles, and most substantial role drifts. In contrast, the second step focuses
on validating the algorithmic approach approximating the manually created models.
As the models’ number of possible states represents the granularity of the model, the
influence on the assignment process, w.r.t. to wrong assigned users, is a good quality
characteristic evaluating the models’ simulations against the actual data sets.
In Table 5.20 for both the simulated time series of the Olympics between 2012 and
2022 as well as the Super Bowl between 2013 and 2022 can be seen for all manual
models as well as Threshold Models with several thresholds approximating several
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models between the Average Over All and the as Granular as Possible model, using
thresholds of 0.4, 0.6 and 0.8, as Table 5.19 reveals. One can see that the low TM
with a threshold of 0.4 is close to the As Granular As Possible model, the medium
TM (0.6) lies between the AGAP and the TC as well as the OR model, while the
high TM (0.8) is closer to the TC and OR model.

Table 5.19: Number of states for all models and both event time-series simulations.
AOA AGAP TC OR TM(0.4) TM(0.6) TM(0.8)

Olympics 13 52 26 28 51 49 41
Super Bowl 13 39 26 27 39 36 29

When discussing probability-based models, all mentioned models can deliver a different
outcome in the simulations. A promising approach is to multiply simulate each step
and compare the Standard Deviation against each other for counteracting role drifts
in several directions. This approach comes with linear growth of runtime, including
finding the best result for each event with the aid of the Standard Deviation. As the
runtime for a single simulation for one event needs only about 5-7s and ten simulations
need about 60 - 70s, the effort is quite profitable, as the best simulations are found.

5.9.5 Comparison of Model Approaches

After introducing the general Process of creating Models in Section 5.9.3 as well as
focusing on the preparations of experiments in Section 5.9.4, in this Section, a plethora
of experiments will be performed and evaluated to discuss following aspects.

• Are the threshold models built upon related data sets able to simulate user role
transitions more precisely than static model (strawmen) simulations?

• Is it possible to successfully transfer the whole model-building process from one
data set series to another?

• Is it possible to successfully simulate user role transitions exploiting a model
built upon another topically related data set?

• Is it possible to successfully predict user roles for an entirely new data data set
with a model built upon older related data sets?

Table 5.20 gives a compact overview of all experiments conducted in this section for
simulating both the Olympics and Super Bowl Data sets with the aid of models built
from related data sets (first two segments), the simulation of the Super Bowl data
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set with models built from the Olympics data sets, as there is a topical as well as
temporal correlation (third segment) and the prediction of the latest Olympics data
set exploiting the model built with the aid of the older evaluated data sets analyzing
the Average Prediction Error of all models.

Comparison between Threshold Model and Strawmen The Average Over
All model delivers the highest percentage of wrongly assigned users for all event steps
in both event series (first two segments). While the Threshold Cutting and Outlying
Role models furnish good results within the first simulation step, the following steps
decline as they deliver more wrongly assigned users. Only the As Granular As Possible
model has a consistently low share of wrongly assigned users. When observing the
results of the Threshold models, all models deliver better results than the Average
Over All, the Outlying Role, and the Threshold Cutting model. At the same time, only
the Threshold Model with a threshold of 0.4 is an almost perfect approximation to the
As Granular As Possible model for all steps of both event simulations. These insights
make both latter methods the most suitable for further simulations.

Table 5.20: Average Prediction Error of the models for simulation and prediction.
AOA AGAP TC OR TM(0.4) TM(0.6) TM(0.8)

Simulation with Olympics Model
Oly14 10.98% 0.07% 0.05% 0.09% 0.05% 0.10% 0.38%
Oly16 5.67% 0.02% 3.65% 3.70% 0.04% 0.06% 0.33%
Oly20 7.47% 0.03% 4.12% 4.13% 0.01% 0.03% 1.75%
Oly22 6.81% 0.05% 4.32% 4.26% 0.03% 0.10% 0.26%

Simulation with Super Bowl Model
SB20 17.43% 0.05% 0.07% 0.06% 0.05% 0.22% 0.47%
SB21 8.05% 0.07% 3.70% 3.59% 0.11% 0.72% 0.90%
SB22 6.23% 0.07% 3.39% 3.37% 0.10% 0.60% 0.90%

Simulation with Olympics Model
SB21 13.07% 15.85% 16.09% 16.14% 15.86% 15.30% 15.77%
SB22 11.15% 10.71% 12.65% 12.75% 10.68% 10.16% 10.29%

Prediction with Olympics Model
Oly22 9.04% 6.18% 6.49% 6.50% 6.23% 6.23% 5.93%

When considering user role drifts for the first two segments of Table 5.20, Table 5.21
shows for each model and each data set, the most affected role in terms of the average
prediction error together with the deviation from the original values created with
the Multi-Sampling and Combination Strategy. Especially the Spammer, Loner, and
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Commentator have relatively high deviations when simulating with manually created
models except for the As Granular As Possible model. Both the Outlying Role model
as well as the Threshold Cutting model show that improvements, w.r.t. granularity
for both role states as well as event states can be reached, as drifts for Stars can be
cut short compared to the drifts between the other events as well as the whole drift
between the first and the second simulation deviates for both event-series simulations.
Focusing on the Threshold models, it stands out that the Spammer’s role is not well
simulated in the models with a threshold of 0.6 and 0.8 in the Super Bowl event
series. When pointing to Table 5.13, the trend for the user role Spammer is strongly
decreasing for later events such as the Olympics 2022. As the latest Super Bowl data
sets were recorded in the same period as the Olympics 2022, the amount of Spammers
is logically decreasing until the beginning of 2020. However, the high deviations in the
later Super Bowl data sets cannot be explained solely by the substantial decrease in the
user role of the Spammer between 2013 and 2020. A closer look at the development
between 2020 and 2022 reveals that the role of the Spammer is increasing again very
strongly, which can pose problems even for the Threshold Models. Only the Threshold
Model with a threshold of 0.4 copes very well with this anomaly. When focusing on
weaker roles or those with anomalies such as the Spammer in the Super Bowl data
sets between 2020 and 2022, the Standard deviation between the original data sets
and the simulations also shows higher Standard deviations, as a difference of only a
few users is noticeable. Nevertheless, the more simulations were done, the weaker user
roles or those with anomalies could benefit from finding more stable results.

Table 5.21: Biggest user role drifts of the models’ simulations for both time series.
AOA AGAP TC OR TM(0.4) TM(0.6) TM(0.8)

Oly14 Spammer Loner Loner Star Loner Star Semi Star
42.34% 1.37% 1.49% 1.31% 1.08% 3.80% 11.15%

Oly16 Comment. Star Comment. Comment. Rising Star Semi Star Semi Star
192% 0.95% 185% 184% 0.50% 3.85% 5.91%

Oly20 Loner Loner Loner Loner Star Star Spammer
198% 1.56% 210% 214% 0.49% 1.22% 8.35%

Oly22 Spammer Loner Spammer Spammer Comment. Star Semi Star
436% 0.59% 316% 317% 0.53% 13.03% 9.99%

SB20 Spammer Star D. Chatter Star Spammer Semi Star Spammer
3.12% 1.24 1.30 1.15% 1.45% 18.03% 284%

SB21 Loner Loner Loner Loner Rising Star Spammer Spammer
90.26% 1.30% 172% 168% 0.89% 12.88% 15.38%

SB22 Spammer Amplifier Spammer Spammer Semi Star Spammer Spammer
88.96% 1.27% 185% 179% 0.82% 50.88% 94.45%
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The results of the two first segments show that a dynamic threshold model can be
built straightforwardly and dominate the results of several static approximations w.r.t.
Average Prediction Error. Moreover, it is easily possible to transfer the dynamic
model-building process from one data set series (Olympics) to another topically similar
data set series (Super Bowl), validating the first two research questions.

Exploiting a Topically Related Model A further step into analyzing new data
sets with the aid of existing topical and temporal-related models can be seen in the
third segment of Table 5.20. The model exploited in the first segment, was used to
simulate user role transitions, starting with the role labels of the Super Bowl 2020 data
set, simulating the events in the following two years. Comparing the average prediction
error of the two events, 2021 and 2022, to those of the second segment, one can see
that the prediction is possible. Unsurprisingly, a close match to the average prediction
error is impossible, as a comparison between long-term events ,e.g., the Olympics and
short-term events, e.g, the Super Bowl may affect the simulation. However, between
85% and 90% of users were estimated correctly, showing the benefits of using an
algorithmic-driven non-stationary model instead of clustering and classifying samples
as part of the whole Multi-Sampling and Combination Strategy, reducing the runtime
from days to a few minutes and thus saving many resources. Even though some
unpopular roles were not predicted precisely for the strawmen and non-stationary
models, popular user roles were determined successfully. Comparing the prediction
error of the strawmen against the non-stationary models shows the validity and the
benefits of the novel algorithmic model-building approach, as all strawmen, except for
the Average Over All model, are outperformed by at least one non-stationary model.
The inaccuracies of the predictions arise from the lack of additional data sets, which
could be improved by adding more Olympics and Super Bowl data sets (cp. Table
5.1), which are currently unavailable.

Prediction of entirely new Data Sets After demonstrating and evaluating effects
and observations in simulations of related data sets and topically and temporally
related data sets, the logical next step is to predict a completely new data set using the
proposed non-stationary model. Focusing on the prediction of the Olympics 2022 data
set, the Markov Model is created with the transitions of the Olympics data sets between
2012 and 2020, sparing the 2022 data set out, as assumed to have no knowledge of
this data set. Predicting the Olympics 2022 data set, a whole simulation starting with
the 2012 data until reaching the 2020 data set is performed, always reaching the latest
possible state, e.g., AV G20 for each user in the Markov Model. When trying to predict
the outcome for each user in the following transition, the outcome for the 2020 data
set is simulated once again, which means that the simulation performs the transitions
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from the last iteration ending in the same latest possible states again. This prediction
can now be compared to the original sampled, clustered, classified, and combined
data set and the simulation outcome with the model, including the transition model
inclusive of the data set to predict. The benefit of the prediction is saving a lot of time
and resources for clustering, classification, as well as sampling, and combination; as a
whole, prediction can be performed within a few minutes, whereas the whole pipeline
process consumes about 20 minutes only for clustering a single 5% sample from the
Olympics 2012 data set. The prediction method outperforms the pipeline approach
consistently, even when executed in parallel.
Pointing to the results of the simulation (last row in the first segment) and the
prediction (last segment) of all models in Table 5.20, one can see that the prediction
of the strawmen models except for the As Granular As Possible model are relatively
close to them of the simulated model. At the same time, the algorithmic approach at
least outperforms the strawmen but is not that close to the simulated results. Having a
closer look at the Threshold Model (0.4) in Table 5.22, the quota values, which describe
the difference counts between the original data and the counts of simulation/prediction
concerning the counts of the original data set are very critical. Both the Average
Error and several user roles, especially the Spammer, deviate compared to the original
data set, which comes along from the anomaly effects described prior in this Section.
Unsurprisingly, the simulation performs better than the prediction for all user roles
regarding Quotas and Standard Deviation. However, the prediction still shows good
Quota and Standard Deviation for Forwarder, Average User, and Semi Stars.

Table 5.22: Biggest User role drifts of the Threshold Model (0.4).
Original Simulated Prediction
Counts Counts Diff. Quota StD Counts Diff. Quota StD

Forwarder 1645582 1644363 1219 0.07% 0.07% 1672365 26783 1.63% 0.05%
AVG 670866 672113 1247 0.19% 0.12% 618701 52165 7.78% 0.10%

Listener 257290 256652 638 0.25% 0.12% 217391 39899 15.51% 0.21%
Daily Chatter 153425 153825 400 0.26% 0.28% 222396 68971 44.95% 0.26%
Amplifier 77496 77522 26 0.03% 0.28% 43130 34366 44.35% 0.27%

Commentator 52342 52330 12 0.02% 0.37% 18617 33725 64.43% 0.22%
Idea Starter 49208 49154 54 0.11% 0.27% 38315 -10893 22.14% 0.31%
Semi Star 47531 47465 66 0.14% 0.54% 51189 3658 7.70% 0.34%
Rising Star 43246 43245 1 0.00% 0.52% 59184 15938 36.85% 0.57%

Loner 22227 22305 78 0.35% 0.42% 2999 19228 86.51% 0.29%
Spammer 18191 18470 279 1.53% 0.44% 84932 66741 366.89% 1.69%

Star 16921 16881 40 0.24% 0.63% 25106 8185 48.37% 0.91%

Avg Error 0.06% 6.23%
Avg StD 0.02% 0.02%
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The remaining roles had some more significant drifts, e.g., the user role of the Spammer,
which was affected in most of the previous simulation analysis (cp. Table 5.21) but also
was affected in the analysis of the Olympic Games (cp. Table 5.13), as significantly
the Quotas show more considerable deviations. At the same time, the Standard
Deviation is not affected too much, which shows that the prediction approach is
primarily pointing in the right direction. Markov Models are an ideal opportunity to
uncover trends quickly. However, this approach is not yet robust enough to replace a
whole clustering, classification, and combination strategy, as results remain not precise
enough. Finally, the algorithmic approaches, such as the TM with a threshold of
0.4 but also 0.6 and 0.8, representing a less granular model, perform an adequate
prediction with similar Average Errors and partly persuasive outcomes for some user
roles. In contrast, the manual models, excluding the As Granular As Possible model,
are outperformed by the algorithmic ones.

5.10 Related Work

This chapter introduces further approaches on top of the Multi-Sampling and Com-
bination Strategy, which were not yet discussed in Section 4.8. Further related work
dealing with model building as part of long-term user role analysis will be discussed.

5.10.1 Fine-grained User Role Analysis

The way after the probabilistic combination of clustered and classified users included
several aspects of long-term user role tracing across several data sets, leading to
algorithmic steps of model building. When studying the evolution of users along
roles, the approaches usually only cover short periods of continuous observations
while retaining the scope of coarse-grained groups: Varol et al. [Var+14] present
an analysis of user behavior spanning a month, whereas Antelmi et al. [AMS19]
investigate the tracking of user role evolution for approximately four months. In turn,
approaches targeting multi-role allocation, e.g., Rocha et al. [Roc+11] and Lazaridou
et al. [LNN16], are still limited to coarse-grained user groups, while the user role
detection in this work focuses on a plethora of fine-grained user roles.

5.10.2 Model Building & Long-Term Analysis

While in social media, the detection of internal threats is a widespread use case, as
Legg et al. [Leg+15], Pannell et al. [PA10], and Kim et al. [Kim+19] focus on the
detection of user behavior over time finding and detecting changes caused by stolen or
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compromised user accounts, this work focuses more on the general evolution of fine-
grained user roles caused by typical pervasive evolutionary drifts of user roles. As the
focus in this work is the detection of user roles changes of fine-grained user roles, based
on tracing and aggregating the behavior of single users, Yu et al. [YHL15] propose a
Bayes-model based approach focusing more on anomalies of general groups instead of
single users, inferring user roles from input data and possessing a dynamic extension
over some time, as the complete user role tracing and model building approach is
based on a separate evaluation of disconnected data sets. Model-building approaches
forcing the analysis of evolutionary data is a prevalent practice in medicine, classifying
and analyzing documents, forcing decisions, such as the work of Sonnenberg et al.
[SB93], Komorowski et al. [KR16], Sato et al. [SZ10] as well as Yi [YB09]. In contrast,
approaches to tracing user role evolution using models still need to be elaborated.
Regardless, classifying and labeling documents is related to analyzing user behavior
by their messages. A further similar approach to user role migrations is addressed
by Thurner et al. [Thu+21]. They evaluate and predict election results for political
parties in electoral districts over voting periods to trace migrations of voters between
political parties, non-voters, and first-time voters. With the aid of these transition
models and further specifications of voters and their behavior, hybrid models specified
in Klima et al. [Kli+17] can be created to estimate the quotas of political parties.
When discussing Markov Models, only a few approaches adjusted on constraints, such
as dealing with dynamical models covering states in several years, were published,
especially in the early 2000s. The work of [ZHH02] suggests aggregating web pages
having a similar action into single states, forcing them to simulate past activities and
predict future clicks. Markov Chains were also exploited in the work of [MAB09]
dealing with dynamic systems in the use case of calculating reputations of websites
aggregating similar states in terms of a Bayesian Information Criterion. While both
approaches rely on a plethora of data points, the model-building approach in this
work shows remarkable results even with a small amount of data sets, resulting in
a similar learning process for both events and roles using a more dynamic kind of
aggregation. The work of [MAB09] relies on Machine Learning (ML) techniques
dealing with abundant nodes evolution in time series forcing an approach dealing
with fewer states but many dimensions. The use case of this approach would result
in concatenating multiple chains due to 13 roles in 5 events in contrast to the more
suitable merges presented in the transition tables section 5.9.2. While Fu [Fu19]
works on tracking users in forums such as Stackoverflow using a time-aware model
and only examining two distinct user roles, On-at et al. [Oa+16] applied a time-aware
social-profiling model to investigate user-interest evolution over time in the social
media service Twitter in an ego-centric network. A further approach by Wang et al.
[WZZ15] dealing with the user role evolution in an online health community-based
use case focuses on creating user roles with social support types forcing a pairwise
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short-term (2 months) observation of user roles with the aid of a transition model for
future predictions.

5.11 Conclusion

The methodology discussed in Chapter 4 was utilized and applied to a single dataset.
Later, the same approach was applied to multiple disconnected datasets, whereas
all steps of the proposed approach delivered suitable, traceable, and comprehensive
results. Starting with Feature Selection and Preprocessing, followed by Clustering and
(manual) Classification, the same fine-grained user roles were detected across all given
data sets. As manual classification at the beginning is inevitable and a bottleneck
considering time management, while analyzing samples of data sets, training data
is built for several disconnected data sets, forcing a less time-consuming process in
analyzing user roles. Reducing the size of samples and simultaneously increasing the
number of samples has a considerable benefit on the runtime and needed resources of
the quadratic complexity of clustering. As in most cases, massive data sets are hardly
possible to cluster the novel Multi-Sampling and Combination Strategy improves the
certainty and stability of user roles by considering users multiple. Each user observed
in more than one sample is combined probabilistically, leading to an averaged user role
vector consisting of all observations.
As each step is applied to several data sets stemming all from the same source with
fewer adjustments and minor manual checks, the traceability and certainty of user
role detection are given in each step. Moreover, several optimization steps considering
the sampling and classification lead to improvements w.r.t. the coverage of users and
the stability and certainty of user roles. Transferring the knowledge of manually built
classifiers to completely new topic-related or close time-related data sets stemming
from the same social network also led to promising results. Also, combining several
training data sets resulted in an auspicious outcome, reducing the necessity of creating
training data sets for each new data set.
After processing the novel Multi-Sampling and Combination Strategy on each data
set, tracing of user roles, their movements, and evolution are strained, observing both
transitions of a user from role to role as well as users leaving and returning in observed
time series, constituting a peculiar challenge in terms of model building, as knowledge
for at least two transitions are missing. The observations considering the transitions
tables showed that a stable tracing of user roles over time is possible, as only a few
role chains represent the most occurring transitions for each role. This degree of user
role stability made a model-building process possible: An algorithmic threshold-based
model approximating several degrees of granularity was evaluated against several
static models, so-called strawmen from coarse to fine-grained. With these models’ aid,
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user role evolution simulations can easily be applied over various data sets and time
approximating the actual outcome from the clustered and classified data sets serving
as a ground truth. The experiments and the observation showed that the algorithmic
model-building process could deliver the most widely satisfying results, except that
conspicuous anomalies across data sets are hardly graspable.
Moreover, the experiments showed that models could simulate topical and temporally
related and predict completely new data sets without clustering and classifying whole
data sets. Especially clustering is an acquainted bottleneck due to the quadratic
complexity w.r.t runtime and needed memory. In particular, a model-based prediction
is an extraordinary opportunity to rapidly assess user role evolution, as the ground
truth results were mainly achieved in the experiments. All in all, both the simulation
of known data sets as well as the prediction of new data sets using the algorithmic
threshold models showed that the results of the ground truth are accomplishable, but
several improvements considering anomalies due to feature drifts, need to be further
incorporated, receiving more resilient models.
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Chapter 6

Analyzing Fine-Grained User
Roles in Telegram

Oh, but I’ll take my time anywhere
Free to speak my mind anywhere
And I’ll redefine anywhere
Anywhere I roam
Where I lay my head is home

Metallica - Wherever I May Roam

After applying the general Knowledge Discovery (KD) approach to the
Twitter use case, this section addresses the initial conceptual transfer of
the pipeline to an entirely new data set with new features. The Telegram
use case presented in this chapter covers all steps of the novel Multi-
Sampling and Combination Strategy to prove the general application of
the approach. In addition, an initial analysis of the stability and certainty
of user roles completes this chapter.
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6.1 Motivation and Contributions

Compared to the social media service Twitter, presented in Section 5.1, Telegram
is more of an instant messaging service and thus very popular as fast communica-
tion between two individuals is possible. Nevertheless, Telegram also enables group
conversations, distinguishing from Twitter, having an entirely different structure as
a global stream, and allowing retweets and forwards within a single thread but no
isolated groups. Moreover, hashtags are not an essential issue in Telegram, compared
to Twitter, where hashtags are substantial to organize and structure content. In
contrast, structures in Telegram are modeled as groups or channels, where users
provide interested users with information or address intense conversations between
people. These aspects make Telegram a hybrid between classic messengers and social
media services like Twitter. Furthermore, groups, especially with massive numbers
of users, are valuable communication and information diffusion benefits. Especially
the considerable rise of Telegram in the last few years, establishing communities for
conspiracists, alternative media consuming, radicalizing, and safety-conscious people,
due to the lack of supervision of administrations or corporations such as Google or
Meta yields data for attractive analyses, as the data is broadly available due to the
Telegram API 23. Thus, the community of Telegram is very active in creating and
spreading content and information within their community and concentrates primarily
on this messenger. The general scope in this chapter concentrates mainly on the
universal applicability of the KD pipeline, particularly the first stages, and the analysis
of fine-grained user roles. Most of the steps of the approach presented in Chapter 4
were applied to the Telegram data set, while the aspects of Sampling and Combination
are currently at an early stage and need further investigation, as the entire application
was not yet accomplished. More data sets are essential for long-term evaluation and
model building. Thus, those aspects and a more detailed analysis of the Multi-Sampling
and Combination Strategy remain future work.
Finally, the following research questions for the Telegram data set arise from those of
Twitter as follows:

• Is it possible to find similar fine-grained user roles as in the Twitter data sets?

• Can the KD pipeline from Chapter 4 applied to the Telegram data sets straight-
forwardly?

• Can the insights gained in Chapter 5 cut short the application of the KD pipeline
approach?

• How does the user behavior in the Telegram data set define from Twitter users?
23https://core.telegram.org
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6.2 Background on Telegram

Before the pipeline considering the KD approach presented in Chapter 4 and firstly
executed on the Twitter data sets in Chapter 5 will be performed on a data set from
the instant messaging platform Telegram, more specific details of Telegram, based
on the general definition of social media and networks from Section 2.1.1, will be
presented to show the suitability of the approach with several contributions.
In Fig. 6.1, a general taxonomy of Telegram can be seen, including all types of possible
entities and relationships extracted from the API. In addition, Fig. 6.2 shows the
possible types of communication in Telegram. A chat can be a direct chat representing
direct messages (Fig. 6.2, left) between two users. In addition to direct messages
between two users, channels (Fig. 6.2, middle) and groups (Fig. 6.2, right) exist.
A channel is also a type of chat where only one user - the owner - sends messages
to an unknown set of subscribers, always flagged as a Broadcast. Neither the owner
nor the subscribers know who follows this channel, but each channel can be linked
to a comment group where comments on posts stemming from the channel can be
discussed. A group in Telegram consists of several users who can communicate freely
with each other. There are also several groups’ specifications, such as Megagroups and
Gigagroups, which are Channels with specific flags representing groups with different
amounts of users who can join.

Figure 6.1: Relationships objects - Telegram from [End21].

For this work’s data set, groups and channels are the most suitable conversation
methods, as many distinct users and their behavior can be captured. While channels
only represent one user being active, the group behavior approximates user behavior
from Twitter, as direct intercommunication between users is likely possible. As channels
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can have group chats and their administrators may also participate in other groups,
the decision to grab them was straightforward because of possibly changing features.
In contrast to groups, direct messages between two individuals are unavailable to grab
due to privacy reasons. There would be no benefit, even if possible, as typical user
behavior can be indicated better in groups.

Figure 6.2: Types of communication - Telegram from [End21].

6.3 Data Sets and Preparation

As mentioned in Section 6.1, Telegram is a somewhat controversial instant messaging
service. Especially during the coronavirus pandemic, Telegram enjoyed a more specific
clientele, as hoaxes considering the pandemic, vaccines, and other famous conspiracy
theories were massively spread in social media. In contrast to most social media
services such as Twitter, Facebook, or Instagram, where most of the content was
moderated and deleted, and users were banned, Telegram tolerated that clientele,
leading to a boom in this service. All these aspects made telegram a beneficial service
to analyze, as various groups of several users can be scrutinized.
For an initial study in this thesis, several well-known German conspiracy theorists and
their activity in groups and channels were examined during the Coronavirus pandemic
due to aspects of activity and interconnection of all participants. The data set has
13254 users who wrote 580201 messages between 03.07.2021 and 19.07.2021. Only
450813 messages were sent by actual users, while moderated groups sent the remaining
messages. Compared to the Twitter data sets in Section 5.3, this data set was recorded
only over a limited period and thus had fewer messages and users. Furthermore,
as Telegram provides no hashtags to find only related messages to a specific topic,
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several conspiracist-related groups and channels were picked out manually. As the
single groups are relatively small and thus not representative at all, those groups were
considered as one extensive data set. Like in the Twitter data sets, the aggregation
process of building feature vectors considered only users who were active at least
twice, i.e., wrote two messages at minimum (also in different groups and channels),
aiding a data set with mainly active and connected users. This data set serves as a
first approach to apply the whole pipeline from Twitter to Telegram, while further
investigations with additional Telegram data sets are planned in the future.

6.4 Adapting the Methodology

As the data set was introduced in the previous section, the essential steps of the
proposed approach from Section 4 will likely be applied as in Chapter 5 for the Twitter
data sets. Starting with Feature Engineering, the process of the KD approach proceeds
with Clustering, Cluster Analysis, Manual Class Labeling, and Building the Classifier.

6.4.1 Feature Engineering

Like in Section 5.4.1, the first step of the proposed approach is Feature Engineering
from Section 2.4, comprising several significant steps of Preprocessing such as Feature
Selection, Aggregation of user messages and Preprocessing, resulting in feature vectors
for each distinct user.
Similar to the execution of the Twitter data sets, all messages are also provided as
JSON data composed of various features. While some features can easily be transferred
entirely from the raw data set, others must be processed, as mentioned in Section 5.4.1.
As the features from Twitter delivered a satisfying outcome in terms of clustering and
classification, the choice for user features followed mainly those from Twitter, but also
new features were considered as Telegram provides several different features. Thus,
most of the features from Telegram were also established in the literature mentioned
in Section 5.4.1, while Telegram-specific literature considering user roles and features
is currently unavailable.
Fig. 6.3 shows the chosen features as a Venn diagram, while Table 6.1 briefly describes
each feature. In contrast to the features established in Twitter, where following
relationships between users were established, the Telegram features do not provide any
following relationships. The number of channels a user participated in was tested as
a network-position-based feature, but it was dropped as it had almost no correlation
with other features and negligible impact on the cluster hierarchy. Thus, there is no
overlap in User Activity, Network Position, and Network reaction feature areas.
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Figure 6.3: User feature classification

Focusing on User Activity-based features, there is the most considerable overlap of
similar features to the features chosen in the Twitter data sets. total_messages
describes the number of messages a user sends in groups or channels. At the same time,
replies is the number of replies to other users’ messages, and forwards is the number
of forwarded messages proportional to all messages a user sent. Mentioned delineates
the number of additional users mentioned in all messages a user wrote, and media
describes the percentage of media used in messages. As many memes, pictures, and
videos are shared within an instant messaging service, this feature may describe users
more precisely. These features describe a user’s behavior in creating new content or
replying to and forwarding existing content, making it possible to distinguish between
different types of users considering their messaging activity. Pointing to Network
Reaction-based features, forwarded characterizes the forwarded number of messages of
a user being forwarded by other users, replied the number of messages being a reply
to a user’s message from other users, and mentioned the number of user mentions
affected by other users. These features describe the ability to trigger reactions in the
instant messaging service Telegram, as some users are somewhat active in reacting to
other users’ messages, as content can be forwarded, replied to, or users even mentioned
by others, describing the standing and popularity of users.
Network-Position and User Profile features were present in Twitter but could not be
investigated in the Telegram data set, as features such as profile reputation, the number
of channels a user is a member of, or activity of users within several time slots all over
the day, were too correlated and dropped. In an early iteration of feature engineering,
many other features were considered but dropped as they were too correlated and
influenced the clustering negatively or had little discriminative power. Besides features
defining the number of messages written at a specific time over the day (morning,
afternoon, evening, night, business hours), also features describing the amount of
mentioning users with unknown usernames, the number of different channels and
groups a user is participating and a profile reputation, where several features such
as name, the number of uploaded pictures as well as the fact if a user is a bot were
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considered, were dropped. As feature engineering for this use case also focused on
a straightforward calculation like in the Twitter use case, complex network-based,
spatio-temporal, or content-analysis-based features were not considered.

Table 6.1: Overview on Telegram features.
Feature Description

total_msgs The number of newly created messages of a user during the record
of the data set. Describes the activeness of a user.

forwards The number of messages, forwarding a message of another user.
Describes the diffusion of information.

replies The number of topic-based replies of a user. Describes the commu-
nicativeness of users.

replied Percentage of how many users’ messages got at least one reply.
forwarded Percentage of how many users’ messages got at least one forward.

mentioned The number of times a user has been mentioned in other users’
messages.

mentions The number of times a user mentioned other users in a message.
media Percentage of messages consisting of media such as images or videos.
mentions_unknown Percentage of messages consisting of mentioning unknown users.

After choosing suitable features according to the features used in the Twitter data
sets, the Telegram features were validated to prove their suitability and usefulness,
utilizing the correlation of features to each other and ensuring the variance of domains
and skewness. The Feature Engineering process commonly involves iteration, as the
success of the clusters can only be assessed during the clustering stage. Occasionally,
comparable clusters emerge in different subtrees only differentiated by a feature or
two. Consequently, solely features with minimal positive or negative correlations were
examined, as the interplay between numerous features usually produced more distinct
user profiles. Starting with the correlation matrices in Fig.s 6.4 and 6.5 displaying the
iterative feature engineering process, one can see that the time-based user features
are rather non-correlated to the other features, but have a relatively strong anti-
correlation to the other time-based features such as time_morning_frac. Also, the
feature profile_reputation and different_channels had almost no correlation to
any other feature and yielded an unsuitable combination of clusters.
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Figure 6.4: Correlation matrix - Step 1.

Figure 6.5: Correlation matrix - Step 2.
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Stronger positive correlations can be noticed between the features total_msgs,
replied and mentioned, mentions and mentions_unknown, whereas replies have
a medium anti-correlation to forwards, media, and unknown_users. Finally, the
features in Fig. 6.5 were chosen as they delivered the most satisfying outcome after
the clustering, leading to suitable clusters in the hierarchy, which will be discussed
later in Section 6.4.2.

Table 6.2: Original feature statistics for Telegram data set.
Features Mean Median 99% Max Skew StD

total_msgs 33.34 5.00 351.94 114679 111.67 1006.29
replied 4.14 1.00 55.0 840 21.01 20.36
mentions 10.97 0.00 64.47 95546 114.47 831.46
mentioned 0.09 0.00 1.0 450 104.35 4.05
forwarded 0.57 0.00 11.0 282 28.27 4.78
replies 0.37 0.25 1.00 1.0 0.49 0.39
forwards 0.54 0.00 2.00 2.0 0.99 0.76
media 0.04 0.02 0.14 0.14 0.83 0.05
mentions_unknown 0.23 0.00 1.00 1.00 1.28 0.42

Having found appropriate features, feature normalization (cp. Section 2.4) as well
as feature standardization were applied to the data set, alterations of features and
their influence on skewness and domain variation between the raw data set and
the normalized and standardized data set can be visualized. As the logarithmic
transformation worked well in the Twitter data set, reducing strongly right-skewed
data, the deviations of skewness between the raw features in Table 6.2 and the
standardized and normalized features in Table 6.3 show also the benefits for the
Telegram data set. Especially for total_msgs, mentions, and mentioned, which
all have an extremely high maximum value, the 99th percentile has an increased
distance to the maximum, showing the need for standardization as it leads to reducing
significant outliers. The skewness was decreased for all features to a minimum, except
for mentioned showing an advance, too. While mean and median values only show
hardly noticeable deviations except for total_msgs, mentions, as well as replies, the
Standard deviation was reduced a lot for total_messages and mentions. In contrast,
the other features already showed a low standard deviation in the tables.
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Table 6.3: Normalized feature statistics for Telegram data set.
Features Mean Median 99% Skew StD

total_msgs 0.09 0.07 0.45 1.64 0.11
replied 0.12 0.10 0.60 1.46 0.14
mentions 0.03 0.00 0.36 2.94 0.08
mentioned 0.00 0.00 0.11 14.54 0.03
forwarded 0.03 0.00 0.44 4.46 0.09
replies 0.37 0.25 1.00 0.49 0.39
forwards 0.27 0.00 1.00 0.99 0.38
media 0.29 0.12 1.00 0.79 0.34
mentions_unknown 0.23 0.00 1.00 1.28 0.42

(a) Raw user features. (b) Processed user features.

Figure 6.6: Boxplots comparison for Telegram data set.
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More insights showing the need for Data Preprocessing can be seen when pointing
to the boxplots in Fig.s 6.6a and 6.6b showing the raw respectively standardized
and normalized features. The most eye-catching insights in the raw data sets are
the highly high mean values for total_msgs, replied, and mentions, lying outside
the box, and the high amount of extreme outliers for total_msgs and mentions,
which are depicted again with the aid of a log y-axis. Nevertheless, features like
replies, forwards, media, and mentions_unknown already show satisfying skewness
and standard deviation. Furthermore, the boxplot and the table for the preprocessed
features show the effectiveness and necessity of normalization and standardization, a
potent indicator for further steps such as clustering. Outliers are smoothed out again,
but the characteristics of the features are maintained and set into equal bounds to
facilitate a fair comparison of features with diverse domains.

6.4.2 Cluster Analysis

Clustering and Cluster Analysis are some of the most significant aspects of the pipeline
presented in Chapter 4. The insights gained in Section 5.4.2 for the Twitter data sets
play a central aspect in analyzing further data sets stemming from other social media
services, e.g., Telegram. A transfer of the methodology from Twitter to Telegram can
easily be realized. For the Telegram data sets, the approach’s step from Section 4.4.2
was applied and yielded similar results as for the Twitter data sets when choosing the
same configurations for clustering, as hierarchical agglomerative clustering enables
aspects of traceability and explainability of data sets. Moreover, Ward’s linkage showed
the most suitable structure in the dendrograms for the Telegram data sets because of
their multi-dimensional characteristic, and thus, outstanding roles could be mapped
without significant cost to clusters. Even though the data sets can be clustered in
their whole size, sampling and a probabilistic combination of samples is essential, as
stability and explainability in hierarchies remain vital.
Representative samples using Random Sampling with varying sizes were created as
part of the novel Multi-Sampling and Combination Strategy, addressing certainty and
explainability of user roles as the data set in this use case is even smaller than the
two dealing with tragic incidences from Twitter (cp. Table 5.1). The insights from
Section 5.5 for choosing sample sizes were applied in this use case. On the one side
of the spectrum, the lower bound is represented by terms of representativity of data
sets, while the upper bound guarantees a valuable overlap in sampling, reaching a full
coverage not too early. Thus, after some preliminary experiments, the sample size for
the Random Sampling was determined to be 40% as it worked well.
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Figure 6.7: Dendrogram with boxplots for Telegram.

Pointing now to Fig. 6.7 showing the dendrogram of a 40% sample of the Telegram data
set, one can see the structure of the dendrogram as well as feature deviations, which
is a substantial aspect for the granularity of finding structures and their evolution,
which is a central aspect for the analysis of clusterings. For further cluster analysis,
the whole data set and several 40% samples of the data set were analyzed to verify if
significant feature changes and patterns could also be found in the samples. As the
Telegram data set is relatively small compared to most of the Twitter data sets from
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Table 5.1, the samples have to be chosen more carefully than those of the Twitter
data sets from Table 5.10, to gain representativity as well as stability and certainty of
user roles when combining the samples. Moreover, a set of varying samples is vital for
building and verifying training data, as training data sets need an adequate amount
of tuples. Furthermore, a ground truth is required.
Finding possible best clusters starts again with the analysis of internal quality metrics
as in Section 4.4.2 focusing on the Silhouette Coefficient (Section 2.6.2.1), Davies-
Bouldin Index (Section 2.6.2.2) as well as the Calinski Harabasz Index (Section 2.6.2.3).

(a) Silhouette of 40% sample. (b) Calinski-Harabasz of 40% sample.

(c) Davies-Bouldin of 40% sample.
(d) Elbow for 40% sample.

Figure 6.8: Comparison of several cluster evaluation metrics in Telegram.

As already figured out in the Twitter data sets, the internal cluster analysis is not
suitable enough, as the Silhouette (Fig.6.8a) as well as the Davies-Bouldin Index
(Fig. 6.8c) provide best values for 2 clusters, whereas the Silhouette score always is
below 0, indicating a low explanatory power. In contrast the Calinski-Harabasz Index
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(Fig. 6.8b) has its peak at 7 clusters and several local maxima at 12 and 15 clusters,
indicating a slightly better explanatory power in terms of cluster analysis. Even the
Elbow method in Fig. 6.8d provides only the starting point for the analysis as only
two generalized clusters are delivered (cp. dendrogram in Fig. 6.7).
The focus for the cluster analysis is purely on the effect size based feature analysis
within the depth-first search, presented in Section 4.4.2 (cp. Definition 33) and further
discussed in the analysis of the Twitter data sets in Section 5.4.2 and 5.6. In contrast
to Twitter, the significance criteria for the Telegram data set finding the most suitable
configuration was adapted as follows. While in the Twitter data set, the significance
criteria were finding at least two large effects or, one very large or one huge effect or
an average Cohen’s d more significant than 0.1, the analysis for the Telegram data set
delivered better results when only considering the average Cohen’s d, as the deviations
in distinct features were not as significant as in Twitter. Several thresholds were
examined, resulting in varying results w.r.t. the number of clusters. Choosing the
average Cohen’s d smaller delivers more clusters, as a value of 0.2 delivers 31 clusters,
while an average Cohen’s d of 0.6 delivers only 13 clusters. A significant change can
be detected between an average Cohen’s d of 0.2 and 0.3, which results in a refinement
testing more samples. Finally, setting the average Cohen’s d to 0.1 delivered the most
suitable results, as fine-grained user roles for all evaluated samples were provided.
The requirements for finding more significant deviations in only one or two specific
features did not deliver the best results for all tested samples. Furthermore, the lower
bound in the depth-first search was reduced from 5 to 1 compared to the Twitter data
sets, stopping the search when going beyond this threshold, as significant changes were
observed below, tracing those significant changes back to the nature of the Telegram
data set. This aspect avoids creating too many small clusters in the subtrees.
Finally, the effect size-based depth-first search in the Telegram data set delivered
similar results as in the Twitter data sets. Even though several parameters need to be
adjusted for all of the tested samples, a suitable cutoff in the dendrogram, leading
to well-separated clusters, could be found, making this approach the most valuable
compared to traditional cluster evaluation metrics.

6.4.3 Manual Class Labeling

Once a fitting configuration is identified during the Cluster Analysis stage, the Manual
Class Labeling can confidently be executed. For this step, several 40 % samples were
analyzed with the aid of the Cluster Hierarchy Analysis Tool (cp. Fig. 5.9) as well as
the Depth-First Search approach from Definition 33. Similar to the analysis of the
Twitter Data (cp. Fig. 5.10 and Table 5.6), sets of well-separated user roles from the
literature were delivered for the Telegram use case. In particular, only some of the
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established roles could be adopted entirely, as user behavior in Telegram is somewhat
different than in Twitter, while others had to be redefined or were completely new.
The general strategy, introduced in Section 4.5 for analyzing clusters in the Telegram
data set, did not distinguish much from the process for analyzing Twitter data sets
in Section 5.4.3. However, it was cut short, as findings from the Twitter data sets’
analysis paved the way for both adjusting the cluster analysis tool from Fig. 5.9 as well
as creating and validating training data, reducing human involvement at least partially
in the initial step of finding user roles in an entirely new data set. Nevertheless, as
most of the features from the Twitter data sets (cp. Fig. 5.3) are present in the
Telegram data set, a mapping of the roles from Twitter to Telegram is easily possible.
To achieve the desired outcome while considering fine-grained structures in all samples,
the ideal number of clusters is between 15 and 35. This range is based on manual
class labeling insights from the Twitter use case discussed in Section 5.4.3. Like the
Twitter data sets, the dendrogram mostly delivers between two and five subtrees with
generalized user roles again, depending on the samples. In Fig. 6.7, most of the
occurring user roles in the subtrees are similar and stem from a generalized user role
with some exceptions, such as the clusters describing the Media-Forwarder or Star
users. These generalized user roles can be mapped due to their allocation into three
coarse-grained user roles, which can be seen in Fig. 6.9 and Table 6.4.

Average 
User

Star

Semi Star

Superuser

Loner

Informer

Commentator

INTERMEDIATES

ACTION 
TRIGGERING

PASSIVE
Listener

Forwarder

Broker
Reporter

Media- Forwarder

Figure 6.9: User roles in Telegram.

User roles in the Action Triggering group can be classified as Star users, Semi Stars,
and Superusers. Star users have higher feature values than the average, especially
for total_msgs, mentioned and the reply rate to other users’ messages, but tend
to refrain from forwarding or replying to messages. Semi Stars are similar, have
more total_messages, and are more active in forwarding and replying, but are not
mentioned as often as Star users. Superusers, describing a completely new user role,
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are usually admins or moderators, have the most messages and mentions, and often
forward content, including media. The observations made for the Twitter data sets
are similar, whereas the quotas are slightly higher. Compared to the Superuser, the
Reporter is similar but triggers fewer reactions, sharing similarities with the Action
Triggering and Intermediates group. Moreover, Reporters tend to forward many
messages and media, whereas their content is rarely forwarded.

Table 6.4: User roles and their characterization: ≈ shows closeness to other roles, ↓/↑
feature deviation from close role/whole data set, ↘ /↔ /↗ changes over time

Role Characteristics Frequency

ac
t.

tr
ig
ge
ri
n
g Star ↓ replies, forwards ↑ mentioned, replied 0.5–2%

Semi Star ≈ Stars, ↑ total_msgs, replied 3–5%

Superuser ≈ Semi Star, ↑ total_msgs, replied, forwarded,
forwards, media 1–2%

Reporter ≈ Super-User, Semi Stars,
↑ total_msgs, replied, mentions, forwards, media 2–4%

in
te
rm

.

Broker ≈ Commentator, Reporter ↑ replied 4–6%
Commentator ≈ Reporter, Broker ↑ replied, total_msgs, replies 8–12%

Informer ≈ Average User ↑ replies, media 10–15%
Average User ≈ Informer ↑ replies ↓ total_msgs 4–8%

p
as
si
ve Forwarder ≈ Media-Forwarder ↑ forwards, mentions, ↓

replied 8–12%

Media
Forwarder

≈ Forwarder ↓ replied, mentioned, forwarded ↑
forwards, media 10–15%

Loner ≈ Listener � total_msgs, replied 8–12%
Listener ≈ Loner ↓ total_msgs 20–23%

Addressing the second coarse-grained group of Intermediates, Brokers, Stars, and
Semi-Stars send similar amounts of messages, with Brokers receiving an adequate
amount of replies. However, Brokers receive fewer forwarded messages and media.
They are more active and frequently mentioned than other users, giving them a more
prominent network position. Commentators have a slightly higher amount of written
messages and a high amount of replies. They forward fewer messages and produce
less media content but trigger more replies.
Focusing now on user roles between Intermediates and Passive Users, the Average
User perfectly represents the average boxplot. Total messages are low, with a higher
amount of replies and lower amounts of forwards and media messages. Informers
are similar to Average Users w.r.t. to written messages and replies, whereas
messages of Informer have a high amount of replies and media. Representatives
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of the Intermediates, such as the Commentator and Informer, are user roles with
a higher increase in the Telegram data set than in the Twitter use case. While the
Average User was the most represented user role in the Twitter data sets, they tend
to be less frequent in Telegram.
Pointing now to the group of Passive user roles, Forwarders are characterized by their
immense amount of forwarded messages, the ability to trigger hardly other users, and
cause little attention. Similar to the user role of the Forwarder is the Media-Forwarder,
characterized mainly by a very high amount of media in their (forwarded) messages.
In contrast to those two user roles, the following two are the most passive in the
data set. While Listeners produce at least a below-average amount of messages and
generate some replies to their messages, Loners tend to mainly consume content
and refrain from reacting and participating in other users’ content. While only the
Forwarders and Listeners were omnipresent in the Twitter data sets, almost all passive
user roles are equally present in the Telegram data set.
Unsurprisingly, Telegram differentiates from Twitter, as the user behavior in Telegram
is more defensive than Twitter’s. Channels, where only individuals deliver content to
their subscribers, dominate the data set. In addition, there are also groups where many
users can share their thoughts. The insights of the Twitter user roles analysis delivered
for almost all samples a comprehensible hierarchical structure from coarse to fine-
grained user roles. Focusing on the results of the Telegram analysis, several samples
did not have a comprehensible structure at all, as some fine-grained user roles appear
in non-related subtrees representing coarse-grained user roles. These observations were
also confirmed in some samples’ classification processes. Nevertheless, most of the
user roles were comprehensible, and the classification results in Section 6.5 confirm
the insights of this section for the Telegram use case.
In order to construct a dependable classifier, it is imperative to conduct a thorough
examination of user roles. While this task may be arduous and time-consuming, it is
an essential step that establishes the groundwork for the classifier and supplies the
requisite training data for classification. Due to the necessity of expert insight during
the initial trials, it is impossible to circumvent the manual analysis and preparation
stages required for constructing a classifier. Compared to the pipeline of the Twitter
data sets, the manual analysis and preparations for building the classifier cannot be
cut short, as initial trials always need expert knowledge.

6.4.4 Building a Classifier

As outlined in Section 4.6, classification is the next significant step in the pipeline
presented in Chapter 4. Since the Telegram data sets are entirely new, a new classifier
must be established for automatic classification. The foundation for building and

195



6 Analyzing Fine-Grained User Roles in Telegram

proving the suitability of a classifier was laid in the previous section 6.4.3, where
clusters were labeled manually with the aid of user roles from literature and those
established for the Twitter data sets. In contrast to the analysis of the Twitter data sets,
where a more manually-driven approach was performed for creating training data in an
explainable way, for the Telegram data sets, the focus was on using Semi-Supervised
Learning (SSL) and Active Learning (AL) to relieve the analyst in the incremental
creation process with the insights gained from the Twitter use case. Moreover, ground
truth helps to validate the training data, as outliers can be separated more easily when
ground truth labels and prediction diverge.
Four representative 40% samples, already evaluated and manually labeled in the
sections before, were considered for the training data set as a starting point for the
classification-building process. The feature vector representing the mean of all data
points for each considered cluster was calculated and incorporated with a user role
ID into the training data set. In contrast to the process of building training data
for Twitter data sets, where most of the suitable cluster means were added manually
and proved with cross-validation and dimensionality reduction techniques such as
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), for
the Telegram data, a more AL and SSL driven approach, which was introduced in Fig.
2.2 of Section 2.5 was considered, to cut short the human effort and intervention in
the manual-driven steps of the approach.
To complete this task, the KD process was utilized to cluster a sample initially and
analyze it with the depth-first search presented in Def. 33 using the specifications
gained in Section 6.4.2 and label it using the initial training data. While a broad range
of classifiers were used to classify the Twitter data sets, only the most suitable from
the grid search for the Twitter data were considered for the Telegram data set, leading
to using the Support Vector Machines (SVM) classifier, as it provided the best results
for the Telegram data. In addition to the mainly manual-driven approach presented
in Fig. 4.7, further useful tools, such as distance calculation between cluster means of
the training data set, maximizing the distances between clusters were used to improve
the training data creation process. Moreover, the Standard deviation and the pooled
Cohen’s d for features are also estimated to decide if a cluster fits the training data.
After several steps of the AL approach, the clusters with representatives of the training
data set have to be analyzed if there are outliers. To accomplish this task, the
distances to the mean of each cluster are calculated, and any outliers with high
distances are eliminated from the training data set. In contrast to the Twitter data
sets, where data points were mainly eliminated after visualizing the training data set
by dimensionality reduction techniques, the process for the Telegram data sets was
aided more methodologically. Cross-validations are performed after several steps to
prove the suitability of the training data, examining if the accuracy is growing. Also,
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consistently reviewing the training data with dimensionality reduction techniques is
very helpful in spotting possible outliers in the training data.
For creating valuable training data, in total, 20 samples were created. In contrast to
the approach for the Twitter data set from Section 5.4.4, where all of the samples were
manually labeled in advance, this approach does not need as much human intervention
as only initial samples need to be tagged, and the further decisions of the classifier
need only to be validated in case of need with the tool from Fig. 5.9, leading to
faster and more automatic creation of training data. Moreover, the insights for the
classifiers gained in Section 5.5 for the Twitter data set helped to cut short the process
of instantiating and assessing the classifier, as no parameter tuning is necessary.

Figure 6.10: PCA of training data from Telegram.

The PCA and LDA in Fig.s 6.10 and 6.11 show the enriched training data after
evaluating and adding 20 samples. One can see that most of the user roles are pretty
well separated, such as the Reporter, Superuser, Semi-Star, Informer, or Star. At the
same time, Forwarder or Media-Forwarder is split into two sets. These observations
lead to breaking the respective user roles into two separate ones.
The PCA was again visualized with the aid of a 3-dimensional coordinate system
underpinned with additional specifications such as marker size, marker style, and alpha
channel representing the most significant components in each dimension, which can be
seen in Table 6.5. Again, the first three components representing the 3D coordinate
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system combine more than 90 % of the total variance, whereas the top correlated
features are to_unknown, forwards, and replies.

Table 6.5: Variances & top 3 features for six components in PCA of training data set.
Component Variance Top Features

x-axis 58.75% to_unknown, forwards, replies
y-axis 18.91% to_unknown, forwards, replies
z-axis 11.95% media, replies, forwards

marker size 4.69% replied, total_msgs, to_unknown
marker style 4.19% forwards, media, replies
alpha channel 1.09% forwarded, replied, total_msgs

Figure 6.11: LDA of training data from Telegram.

The final training data set contains 202 cluster means representing the following
distribution in Table 6.6. In comparison, Forwarder and Average User were represented
dominantly in the Twitter data set(cp. Table 5.8), while a more balanced distribution
is given for the Telegram data set.
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Table 6.6: A priori distribution of user roles in the training data set
.

Listener AVG Forwarder Media-Forw. Loner Informer
20 (9.90%) 15 (7.43%) 20 (9.90%) 20 (9.90%) 16 (7.92%) 20 (9.90%)

Commentator Superuser Star Semi-Star Reporter Broker
20 (9.90%) 18 (8.91%) 12 (5.94%) 17 (8.42%) 16 (7.92%) 8 (3.69%)

As the training data set is built, it has to be validated. In Fig. 6.12, the matrix shows
the validation of just six samples at the beginning of the training process. While
the labels in the columns describe the actual classes, the labels in the rows represent
the classes a cluster got allocated to a specific user role by the classifier. While the
precision values, which can be seen at the end of each row for all of the user roles,
except for the Average User, receive rather high values, the recall values do not yet
receive high values, as the Average User, Informer, Star, and Semi Star need to
be improved. Nevertheless, the classifier already has quite a high rate of correctly
classified user roles of 84.14%, showing that the insights gained from building training
data sets for the Twitter data sets can be transferred straightforwardly to Telegram.
The matrix in Fig. 6.13 shows the classification results of a more specified classifier,
including training data from 20 samples. The clusters from those 20 samples show a
relatively similar overall ratio of correctly classified users of 85.03% as in Fig. 6.12 can
be seen. Especially the precision values for the user roles, except for the Listener, Loner,
and Broker, show adequate values. In contrast, Average Users were often classified as
Listeners, Forwarders as Loners, and Forwarders as Brokers. Also, the recall values
are for most classes quite good except for the user roles AVG Users and Broker, as
Average Users are often classified as Listener and Broker as Media-Forwarder.
Finally, the classifier delivers good results for most of the classes. Only a few refinements
are needed for the training data to get more precise results, as already mentioned in
the analysis of the training data using PCA. Also, the creation process of training
data was optimized compared to the creation of training data for Twitter data sets,
as an AL and SSL approach was utilized. While, especially in the beginning of the
building of a classifier, much manual labeling was essential for the Twitter data sets,
only a few samples needed to be classified manually, cutting the process short. The
main work of an expert remains now only for corrective purposes, as only suggestions
need to be accepted or declined.
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Figure 6.12: Confusion matrix using the initial Training data set.

Figure 6.13: Confusion matrix using the final training data set.
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6.5 Analysis of User Roles

After building and training the classifier in Section 6.4.4, they can work precisely
for most user roles in the clustered samples stemming from the same data set as the
training data. While the manual labeling process delivered the quotas of user roles
(cp. Table 6.4), stable percentages can be gained when using the classifiers on a set
of samples, which are combined afterward as stated in the novel Multi-Sampling and
Combination Strategy from the KD approach introduced in Chapter 4.
To show the benefits of the novel Multi-Sampling and Combinations Strategy, the
following questions, which were also discussed for the Twitter data sets, are answered
in the following section:

• Influence of sample sizes and number of samples on the coverage.

• Impact of multiple captured users on stability and certainty of user roles.

• Correlation of user roles stemming from the same generalized role w.r.t. second
best user roles.

In addition to the 20 samples used for creating the training data from Section 6.4.4,
20 more samples were created using the Random Sampling strategy. All further
steps, such as clustering, cluster analysis, and classification, were applied to the 40
samples described in the previous sections. Afterward, the combination of users will
be performed to analyze the questions.

Coverage of the Data Set As the Telegram data set is relatively small, the sample
size has to be chosen more carefully than in the Twitter data sets to guarantee the
samples’ representativity. A good comparison to the random samples of the Telegram
data set is samples from the Paris 2015 Twitter data set (cp. Fig. 5.20a and Fig.
5.20b) even though two other sampling strategies were chosen. The general observation
in Fig. 6.14a shows that full coverage is reached quickly between 10 and 20 combined
samples. Also, the number of considered users is growing pretty fast for a growing
number of combined samples. Focusing only on users who got at least considered
twice, the amount for users who got considered twice is very prevalent when combining
five samples as Fig. 6.15 shows. 80% of the users are considered at least six times
when combining 20 samples. In comparison, 80% are considered at least 14 times
when combining 40 samples, indicating that the degree of stability is reached at
about 20 samples. This observation overlaps mostly with the considerations made in
analyzing the Twitter data sets, even though this experiment did not consider tuning
the sampling strategies. A complete coverage is reached fast while tuning the sampling
strategy is currently optional.
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(a) Telegram 40% Random Sampling. (b) Telegram 40% relative majorities.

Figure 6.14: Coverage of 40% samples from Telegram data set.

Figure 6.15: Telegram 40% user amounts for Random Sampling.

Stability & Certainty of User Roles While the Twitter Paris 2015 data set
(cp. Fig. 5.20) reaches a high amount of stable users having an absolute majority,
those with only a relative majority are even close to an absolute majority. In contrast,
the amount of users having an absolute majority is lower in the Telegram data set,
as Fig. 6.14a reveals. Beyond that, the number of users with an absolute majority
stagnates between 10 and 30 and even decreases between 30 and 40 samples, showing
a degree of saturation. Users captured multiple times after 20 sample combinations, as
in Fig. 6.15, indicate stability and certainty. In Fig. 6.14b, most users with a relative
majority are close to achieving an absolute majority, shown by the green and yellow
bars representing over 80% for increasing sample sizes.
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As the entire data set revealed promising results for stability and certainty over the
whole data set, the focus is now on specific user roles. As described, some user roles
did not have outstanding results in the clustering process, such as the Average User,
Broker, or Star. Concentrating on Average Users, Fig. 6.16a shows that they have
no absolute majority when combining more than 20 samples. In comparison, some
users have an absolute majority but only got captured once when combining up to
20 samples. Furthermore, Fig. 6.16c shows that some users are not that close to an
absolute majority. Still, most users (almost 50%) have adequate quotas for the best
user role, showing that the classification generally works but needs another iteration
for the average user to classify them more precisely.

(a) Telegram AVG User. (b) Telegram Forwarder.

(c) Telegram AVG User relative majorities. (d) Telegram Forwarder relative majorities.

Figure 6.16: Coverage of 40% Random Sampling from Telegram for several user roles.
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Similar behavior can also be observed for Brokers, Stars, and Loners. In contrast
to Average Users, Forwarder, Commentator, Informer, Listener, Media Forwarder,
Reporter, Semi Star, and Superuser show compelling results, as can be seen in Fig.
6.16b for the Forwarder. The behavior is similar to the whole dataset (cp. Fig. 6.14a
and 6.14b), but the number of users with an absolute majority is lower than in some
Twitter datasets. However, users with only a relative majority are close to an absolute
majority, as in Fig. 6.16d. These aspects can also be found in the other user roles
with pretty good classification results in Fig. 6.13. Nevertheless, the overall score of
the classifier can be reflected in the plots, as both absolute and relative majorities
show the presence of stable user roles.

Correlation of Second Best User Roles The third question, considering the
correlation of the second best user roles stemming from the same generalized user role
as the best user role (cp. Fig. 6.9), will now be answered. In the previous section, the
precision and recall revealed misclassification for Average Users classified as Listener,
Forwarder as Loner, and Broker, as well as Broker as Media-Forwarder, showing that
those misclassifications arise mainly from generalized user roles. Focusing on the
combined samples again, the general quotas of the second best user role show almost
stable values when increasing the number of samples to incorporate. While only 30
percent of users second best roles have a higher distance of 0.2 between the best and
second best user role, a higher amount of each 30% has only a distance of up to 10%
respective up to 20% between the first and second best user role as Fig. 6.17a shows.
Even closer distances can be monitored for the Average User in Fig. 6.17b.

(a) Full data set. (b) AVG user.

Figure 6.17: Comparison of second best user roles of 40% samples with Random Sampling.
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Even though the classifier works adequately for the Average User but needs improve-
ment, the matrix in Fig. 6.18 shows that Average Users tend to have a second-best
user role from the same generalized user role as Informer and Listener are the most
represented user roles. The user role of the Broker shares more similarities with the
user role of the Semi Star and Average User, showing that this user role needs refine-
ment. Also, Reporters who have the role of the Media-Forwarder as the second-best
user role and Stars who have the role of the Listener as the second-best user role show
unexpected results. For all other user roles, the highest quotas of the second-best user
role correlated with the best user role stemming from the same generalized user role.
Finally, a refinement of specific user roles of the classifier can counteract these effects.

Figure 6.18: Telegram 40% second best roles.
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6.6 Related Work

This chapter analyzed a data set from the instant messaging service Telegram. As
the focus on Telegram was led in the last few years during the Coronavirus pandemic,
less related work has been published. Work concentrating on general user behavior
representing Telegram data sets has not been published yet. Work such as the
publications of Lazaridou et al. [LNN16] or Chu et al. [Chu+10] focused on data
sets from Twitter. In addition, this work adapted several strategies for analyzing
user behavior, leading to fine-grained user roles. In general, there is work analyzing
political parties triggering user behavior in social media, published by Gim et al.
[Gim+18] who examined the influence of the German political party Alternative
für Deutschland during the elections for the German Bundestag in 2017, resulting
in an increasing impact triggered by the party. This work found that political
discussions are omnipresent in social media services. Telegram has widely been used
for (political) discussions related to fake news and disinformation in scientific work, e.g.,
the Coronavirus pandemic, as discussed in the work of [NL20]. Moreover, analyzing
hate speech (Wich et al. [Wic+21]) and political extremists (Yayla et al. [YS17]) are
also widespread phenomena in Telegram. While Hashemi et al. [HZC19] investigated
the quality of Telegram groups w.r.t. user role behavior, this work focuses on a more
fine-grained analysis of distinct user roles. Further related work, such as Dargahi et
al. [DN+20], concentrate on exploring viral messages, while Sutniko et al. [Sut+16]
and Hoseini et al. [Hos+20] focus on feature exploration in Telegram. Other work,
such as Baumgartner et al. [Bau+20], or Urman et al. [UK20], concentrate more on
exploring retrieval of Telegram data sets as online social movements, protests, political
extremism, and disinformation is part of their work.

6.7 Conclusion

Finally, the core part of the methodology introduced in Chapter 4 was successfully
applied to the Telegram data set. Almost all steps of the KD approach pipeline were
executed as in Chapter 5, showing that an application is easily possible. Starting
with Feature Engineering, consisting of Feature Selection, in iterative steps, the most
suitable features were found, normalized, and standardized equally as in the Twitter
data sets, focusing on an adequate degree of correlation, Log-standardization, and
Min-Max normalization. After Clustering and Cluster Analysis exploiting the same
techniques as for the Twitter data sets, manual analysis was applied, understanding the
specifications of the data set and laying the foundation for the following classification
process. Compared to the Twitter data sets, the classification process was changed by
exploiting an automatic AL and SSL-driven approach, where human supervision is
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mainly essential at the beginning of the building process of the classifier and a suitable
ground truth for the validation process.
Also, the sampling strategy exploiting Random Sampling was applied, as several
distinct samples are needed for training data. A combination of the samples was
also performed. Even though it is a tough choice to create representative samples
for smaller data sets, samples with a size smaller than 40 % are almost not suitable
due to small clusters arising after the clustering step. The results of the analysis and
the most widely confirmation of the research questions presented in Section 6.5 show
that the whole pipeline is also very suitable for Telegram data sets even though the
classifier needs another iteration for refining the user roles.
Finally, each step can be cut shorter, as much knowledge was gained when proceeding
with the Twitter data sets. While Feature Engineering depends on the features and the
characteristics of the data sets, Normalization and Standardization techniques could
be easily adapted from the Twitter data sets. Also, clustering and cluster analysis were
straightforward, only tuning the parameters for the effect size in the depth-first search.
The most elaborate step was building an entirely new Classifier, as the Telegram data
set was entirely new. However, with the knowledge from the Twitter analysis, the
same configurations were tested and delivered suitable results. Moreover, refining and
tuning the whole classifier-building process helped cut short the entire process. Most
of the fine-grained user roles elaborated in the Twitter data sets could also be found
in the Telegram data set, enriching them with more specific user roles and showing
that the proposed approach applies to entirely new data sets.
As this chapter covered a use case in an early stage of Chapter 4s approach, some
steps were only applied, while some needed sharpening and others needed to be
performed entirely. While the classification needs only refinement in terms of user
roles, the classifiers application to a variety of further data sets needs to be performed
to examine the suitability of the classifier and the detection and precision of the user
roles examined in this chapter across data sets. Moreover, the data sets’ small size
allows only preliminary results for the novel Multi-Sampling and Combination Strategy.
Thus, the strategies’ suitability in terms of stability and coverage of user roles across
a variety of topically related but also non-related as well as larger data sets needs to
be proved. Also, trends of user role evolution over time, as well as the model-building
process, are fascinating areas to pursue for the Telegram data sets use case.
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Chapter 7

Analyzing Cascade Shapes from
Twitter Data Sets

Träumen Androiden von Datenkraken,
Oder dann doch nur von elektrischen Schafen?
So vernetzt und doch allein,
Du musst das Leben nicht verstehen,
Kauf einfach ein!

Callejon - Die Fabrik

In contrast to the both use cases before, this chapter addresses the
application of parts of the pipeline from Chapter 4 to an entirely new
use case. Analyzing information cascades in terms of graph embeddings
is the central point of this chapter. As features are hidden due to the
embedding techniques, they are compared against another strategy for
summarizing graphs with collapsing and well-known graph metrics.

7.1 Motivation and Contributions

While the previous two Chapters 5 and 6 covered conceptually similar problem settings
with the structural analysis of fine-grained user roles based on the approach presented
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in Chapter 4, the use case in this chapter dealing with analyzing graph embeddings, is
an entirely different use case from the area of graph analysis. In particular, the analysis
of graph embeddings deals with entirely different features, being not interpretable or
comprehensible as they are latent over the whole process. Moreover, the number of
features remains tuneable as the dimensions in the embedding technique are not fixed.
Furthermore, in this chapter, the analysis of fine-grained structures is central, but the
focus is not on user roles but on shapes of cascades in terms of information diffusion
displayed as graphs.
A better understanding of information diffusion can be gathered by studying the
patterns and relationships within the data sets describing user behavior and interaction.
Information diffusion in social media and social networks is a viable and well-established
approach to investigating the influence of messages and content on other users. Since
news may be spread within only a few minutes around the world and trigger other users,
whole cascade shapes and the containing users in those cascades are of research interest
in the work of Guille et al. and Taxidou and Fischer [Gui+13; TF13; TF14]. Analyzing
information cascades can be accomplished with the aid of graphs and analysis. As
graph analysis is a well-known research area, graph embedding is an innovative strategy,
targeting to describe whole information cascades into single vectors. The mapping
into single vectors is the basis for the further steps of the Knowledge Discovery (KD)
process from Chapter 4.
Fig. 7.1 shows two sample graphs, each representing a retweet cascade from the
social-media service Twitter. Each of the graphs has a root node (red), representing
the source of the cascade, i.e., the original Tweet, while the further colors yellow, green,
blue, and black represent the shortest path from the root to the specific node for a
path with a length of one, two, three and greater than three representing the diffusion
of the original tweet.

Figure 7.1: Graphs representing retweet-cascades in Twitter.
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For this work, data sets from the social media service Twitter are investigated,
providing plain messages and information about retweet status. Thus, a cascade
structure must be created, visualizing the flow of information considering the influence
of users. Considering cascades, each node represents a user, while the edges visualize
the messages of the social graph the users got influenced. Furthermore, retweet cascades
in Twitter data sets have a root, representing the message’s creator. From this root,
the message can be forwarded by one or more users, leading to nodes of the forwarders.
Moreover, both initial and forwarded messages can be forwarded inductively, creating
a complex information cascade as a social graph with distinct graph structures.
Depending on the number of users and their behavior, a cascade can have a more solid
structure when messages are spread evenly only from the root, representing a star-like
shape. In contrast, a message can be forwarded repeatedly, leading to chains. Also,
several in-between structures where chains and stars can be combined are possible,
leading to several complex structures that can be challenging to investigate. There can
be quite trivial but also complex structures, including many nodes and edges, forming
different shapes of graphs, also leading to high costs for graph analysis. A suitable
solution to handle this problem is graph embedding, where whole cascades can be
visualized in a low-dimensional space. Fine-grained graph analysis can be affected
with the aid of graph embeddings, as several manifold graph shapes exist in this use
case. As analyzed in Chapter 5, several distinct user roles exist within a data set.
Information cascades arise, w.r.t. the users and their roles creating the initial messages,
as well as the users the messages got retweeted. Thus, many different manifold graph
structures exist. While the approach in this chapter deals with the analysis of such
graph structures, the correlation between user roles and graph structures remains a
worthwhile research topic for future work.
The analysis of such embeddings became a well-known research area starting in 2015
until now. A central aspect of graph analysis is to describe graphs as vectors so they
can be clustered and analyzed. Two central approaches were investigated in the last
years, describing graphs with a summarization of graph metrics or embedding nodes,
edges, or whole (sub)structures of the graphs to create a compact characterization in
the form of a vector.
As there are several different strategies to analyze information cascades, a strong
motivation was to adapt the proposed approach from Chapter 4 on graph cascades.
For the use case in this chapter, three different strategies to analyze information
cascades were investigated due to their suitability to the approach to encapsulate
similar structures using clustering. While two strategies entirely rely on opaque
features, one deals with analyzing traditional graph metrics as a comparison. The
creation process of cascade shapes and the transformation into a vector can be seen as
a preprocessing step. In addition, in further analysis, clustering and cluster analysis
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play a pivotal aspect in this use case. As the last step, manual classification of the
clustered graph structures was performed, being a good starting point for further
investigations such as classification.
For further analysis, the following research questions are discussed and analyzed in
this chapter:

• Is a fine-grained structural analysis possible when inspecting retweet-cascades?

• Is the general KD approach successfully applicable for each embedding technique?

• Does the lack of explainability influence the KD approach?

• Is the general approach transferable to new data sets?

7.2 Background

After motivating and introducing the main idea and the contributions in this section,
further background on graphs, cascades, and graph embedding techniques are presented.

7.2.1 Graphs & Cascades

A graph G = (V,E) with a set of vertices V = {v1, v2, ..., vn} and edges E =
{e1, e2, ..., em} will be embedded into a d-dimensional space with the condition d ≤| V |.
A graph itself can be visualized by a d-dimensional vector representing the embedding
and a combination of several d-dimensional vectors, whereas each vector represents a
specific part of the graph, such as vertices, edges, or whole substructures.
Considering the creation process of such cascades, reaching graphs, they must arise
from a root, e.g., the original tweet, which was the starting point for the information
diffusion. As already introduced in Section 7.1, cascades are visualized as graph
structures, where users are represented as nodes and the retweeted messages as edges,
stemming from the original social graph, resulting in graphs like those from Fig. 7.1.
A homogeneous graph is given, where each node is represented by a distinct social
network user and connected by directed edges, whereas edges have no weighting. In
particular, in this use case, a user can influence no users, being a leaf in the graph or
one or several other users, leading from chains to star-like structures. Of course, a
user can also be influenced by more than one user simultaneously, leading to several
influence paths in a graph.
Creating graphs using the social graph of a data set, the following example describes
the process, which can be seen in Table 7.1 and Fig. 7.2 representing the visualized
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graph. Each entry is described by a Cascade ID, representing all (re)tweets belonging
to a cascade, whereas each Tweet has a distinct TweetID, which belongs to a distinct
user named the influencer. There is always one user whose ID is only present in the
Influencer column, representing the root user, i.e., the creator of the original tweet.
For each entry, there is another user ID describing the influenced user, resulting in a
connection from the Influencer node to the influenced user node and a message ID
representing the edge of the connection in the graph. Moreover, each node also has a
timestamp to comprehend the creation process of the graph.

Table 7.1: Overview on a cascade - Twitter.
Cascade ID Tweet ID Influenced Influencer Timestamp

231398451722731520 231412774088105984 43865921 52440296 1344008079000
231398451722731520 231451209997905920 488463165 52440296 1344017243000
231500021734977536 231412774088105984 475894591 475894591 475894591

Figure 7.2: Example of a Retweet cascade from Twitter Oly12.

Graph Metrics with Summarization A first attempt to describe graphs as a
vector is Graph metrics with Summarization from [Kha17; KS16], a technique in graph
analysis to describe graphs with well-known graph metrics to build a feature space for
clustering and classifying them afterward. On the one hand, the features to consider
are metrics from the original graph, which got pruned to handle unconnected nodes
successfully. On the other hand, the dynamic collapser method is used to create a
graph summarization, where aggregated node metrics and the same graph metrics
as the original graph were also determined to weigh the graph’s structure. Using
only graph metrics was not suitable enough to describe a whole graph, so dynamic
collapsing was performed on the graphs to reduce the graphs only to comprehensible
characteristics. Uninfluential nodes, such as leaves were, collapsed recursively, whereas
the weights of the remaining nodes increased when merging leaf nodes into them until
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only significant (sub)structures of the whole graph, such as bridges or stars, remained,
describing the core structure of graphs. In Fig. 7.3 on the left-hand side, a pruned
graph can be seen, whereas the figure on the right-hand side shows a collapsed graph.

Figure 7.3: Graph Collapsing from [KS16].

Also, for this collapsed graph, graph metrics were evaluated and combined with those
of the original graph to get a meaningful graph specification. All of the considered
metrics can be seen in Table 7.2. Basic graph metrics, e.g., number of nodes and edges,
degrees and root connectivity, path-length dependent metrics, e.g., minimum path length
and diameter (maximum path length), aggregated metrics such as arithmetic average,
median, variance, slope, and the average number of aggregated nodes were investigated.
Moreover, same-level ratio metrics, which are calculated on the same graph level, i.e.,
collapsed level or original graph level, such as the density describing the ratio between
nodes and edges, but also two-level rations describing metrics between the original
and the collapsed graph, such as node and edge ratio, but also outdegree ratio and
diameter ratio were considered. In addition, relational metrics combining previously
mentioned metrics from the original and collapsed graph, such as sum, difference,
multiplication of nodes, edges, outdegree and diameter were evaluated.
This step in Graph Summarization is a traditional Feature Engineering step, as features
were chosen by their correlation in an iterative KD similar approach. After Feature
Engineering, clustering is performed, while afterward, the results are evaluated to
prove the suitability of the chosen features and whether features need to be reduced,
achieving better clustering results evaluated with internal clustering metrics and the
Elbow technique. While the graph metrics are relatively easy to interpret across each
step of the approach, the metrics are partially expensive in terms of calculation. Even
though the data sets and the cascades are considering only a few weeks, the Graph
Summarization has a clear drawback in the metrics calculation.
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Table 7.2: Overview on graph metrics.
Metric Description

Number of Nodes Number of the Nodes (count) from a Graph
Number of Edges Number of edges (count) from a graph
Degree Avg. overall node in- and outdegree, describing node position and structure.
Root Connectivity Amount of the root’s outdegree to all edges in the graph.
Minimum Path Length Shortest path in the graph.
Diameter Maximum shortest path in the graphs.
Arithmetic Average Avg. over the number of nodes, edges, outdegree, and path length.
Median Median of average path length.
Variance Variance of the path length.
Slope Linear regression of path length.
AggNodes Average number of aggregated nodes in the graph.
DensityO Ratio between the original graph’s number of nodes to edges.
DensityD Ratio between the dynamic graph’s number of nodes to edges.
NodeRatio Ratio between the dynamic graph’s number of nodes and the original’s
EdgeRatio Ratio between the dynamic graph’s number of edges and the original’s
OutRatio Ratio between the dynamic graph’s average outdegree and the original’s
PathRatio Ratio between the dynamic graph’s max. path length and the original’s
NodeSum Sum of nodes for the original and collapsed graph.
NodeDiff Difference of nodes between original and collapsed graph.
NodeMulti Multiplication of nodes for the original and collapsed graph.
EdgeSum Sum of edges for the original and collapsed graph.
EdgeDiff Difference of edges between original and collapsed graph.
EdgeMulti Multiplication of edges for the original and collapsed graph.
OutSum Sum of average outdegree for the original and collapsed graph.
OutDiff Difference of average outdegree for the original and collapsed graph.
OutMulti Multiplication of average outdegree for the original and collapsed graph.
PathSum Sum of diameter for the original and collapsed graph.
PathDiff Difference of diameter for the original and collapsed graph.
PathMulti Multiplication of diameter for the original and collapsed graph.

7.2.2 Embedding Techniques

In [CZC17], several kinds of embedding techniques are presented, which can be seen
in Fig. 7.4. The basic embedding techniques, as well as two specialized approaches,
will be presented in this section. A graph can be embedded in several ways, such
as embedding just nodes of a graph, the edges of a graph, and an embedding of
complete substructures, including nodes and edges. Moreover, whole substructures can
be embedded into a Whole-Graph-Embedding. All these kinds of embeddings result
in a low-dimensional space delivering a vector representing nodes and edges of the
original graph. After introducing the general idea of embeddings, several strategies
leading to mapping graphs into a vector are introduced in the following paragraphs.
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Figure 7.4: Embedding techniques for graphs from [CZC17].

Graph2Vec In contrast to the Graph Summarization technique, Graph2Vec is an
approach originally stemming from language models from the area of Natural Language
Processing (NLP) and Deep Learning based on Deep Graph Kernels from Yanardag
and Vishwanathan [YV15]. Starting with cascades represented as a graph, they will be
partitioned into several subgraphs. At the same time, a similarity function is defined.
All existing combinations of substructures of a graph will be enumerated and compared
to those of other graphs using the similarity function. Thus, the similarity of two
graphs is defined by the number of similar subgraphs. An alternative is the length
of shortest paths and the neighborhood set in the graph, generating a co-occurrence
matrix, representing substructures occurring in both graphs.
In the further steps of this approach, Deep Learning algorithms such as Continuous
Bag-of-Words and Skip-Gram are exploited to generate and train a learning model
aiming to generate graph embeddings. The general approach can be seen in Fig.
7.5, where for each current word of the Continuous Bag of Words (CBOW) model,
a prediction is stated by the surrounding words within a given window, while the
Skip-gram model maximizes co-occurrence probabilities for all words within a given
window for a current word.

Figure 7.5: Deep Graph Kernels approach from [YV15].
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In addition to Deep Graph Kernels, Narayanan et al. [Nar+17] modified the approach
by refining the term of a neighborhood by adding neighbors of neighbors until a specific
degree representing substructures as a vocabulary for the Skip-gram technique (cp. Fig.
7.6). This extension aims to enhance the probability that embeddings of two graphs in
a low-dimensional space exhibit greater proximity when sharing similar substructures.

Figure 7.6: Graph2Vec approach from [Nar+17].

A common drawback of this approach is the aspect of transferability to unknown graphs,
as learned embeddings cannot easily mapped on entirely new graphs not present in
the training data set. In contrast to Graph Summarization, no complex graph metrics
need to be calculated. Only for corrective purposes in an early stage of application,
graph metrics are valuable to validate the outcome after the clustering as reasonable
features in the graph2Vec approach are not apparent. Depending on the embeddings’
number of requested dimensions, the runtime for the embeddings calculation can also
grow. Thus, the feature space for the dimensions was limited between 4 and 128.

UGraphEmb After introducing the benefits and drawbacks of the Graph2Vec
approach in the previous paragraph, UGraphEmb, another worthwhile Whole-Graph-
Embedding technique, will be presented in this paragraph, which was introduced first
in [Bai+19]. The strategy of the approach can be seen in Fig. 7.7.
First, for each node of a graph, node embeddings are generated, fulfilling aspects of
inductivity and permutation invariance describing that embeddings can be adapted
on entirely new graphs, not present in the training data and that permutations of
nodes in a graph always deliver the same embedding. Graph embeddings are generated
after processing the node embeddings, gathering structural differences for various
scaling factors enabled for similarity metrics such as the Graph Edit Distance (GED).
Neighbor Aggregation is also a significant aspect in UGraphEmb, allowing information
flow to neighbors, and for further aggregating layers also an inductive information
flow to neighbors of neighbors but also running into danger of information loss when
aggregating too often. UGraphEmb solves this problem with the so-called Multi-Scale
Node Attention Mechanism (MSNA), as for each aggregation layer, the information
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of all existing layers is considered and not only the result of the last layer. Also,
the training of the Embedding functions has several iterations, where the squared
difference between Graph Edit Distance and the distance between the Embeddings
among themselves is minimized.
Before UGraphEmb can start the learning process after step (c) in Fig. 7.7, the
information of the similarity metrics of the graphs from the test data needs to be
calculated using the Graph Edit Distance. The Graph Edit distance (GED) is defined
as the minimum needed costs to transfer a graph into another by inserting, deleting,
and replacing nodes and edges. The GED is a bottleneck as it is very costly compared
to UGraphEmb, but a worthwhile strategy, e.g., the diameter, which is the longest
possible shortest path between 2 nodes in a graph, delivered qualitatively inferior
results. With the aid of this external data, UGraphEmb creates a matrix, which is
essential for further steps of UGraphEmb.
For the generation of the embeddings, the last three layers of the neural network
are essential for generating the embeddings. While in the approach of [Bai+19], a
256-dimensional vector was evaluated, for the purposes of this approach, further
embeddings with lower dimensions such as 16, 32, 64, and 128 were also evaluated.
As the leaps in reducing the dimensions in the layers were relatively high for smaller
dimensions and thus had a higher influence on previously generated layers, some in-
between layers were added, having a broad number of possible nets for each generated
embedding in each dimension.

Figure 7.7: UGraphEmb approach from [Bai+19].

7.3 Data Sets & Preparation

After introducing further background on graphs and embedding techniques, the data
sets and further preparation will be discussed in this section. For the application of
the pipeline in this chapter, a selected subset of high-quality retweet cascades of the
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Olympics 2012, 2014, and 2016 were created, which can be seen in Table 7.3 as only
information on the social graph was available for these three data sets. These are
excerpts of the same data sets as in Section 5.3.

Table 7.3: Overview on data sets - Twitter cascades.
Data Set Cascades Time Period Category

Olympic Games 2012 4703 Aug. 2012 sports event
Olympic Games 2014 2603 Feb. 2014 sports event
Olympic Games 2016 11170 Jul./Aug. 2016 sports event

In the creation process of cascades, only those with at least five messages, while in
terms of occurring gaps in the social graph, only the connection containing the root
node are considered for further analysis. Having created the retweet cascades as graphs
from the social graph as described in Section 7.2.1, they need to be processed with
the three strategies introduced in Section 7.2.2, leading to plain vectors representing
each information cascade, which will be presented in the following section.

7.4 Adapting the Methodology

After introducing the data sets and the strategies considering embedding, the main
goal is also to find similar structures within the data sets exploiting the proposed
approach from Section 1.2, which was introduced more in detail in Chapter 4. Applying
the methodology on entirely new data sets, which have, depending on the technique,
completely uninterpretable features, some steps will distinguish from them of the
proposed KD approach, while others are relatively similar. Pointing again to Fig. 4.1
visualizing the flowchart of the proposed approach, the steps and their adjustment
to this use case will be briefly introduced before the most significant steps will be
presented in more detail in the following sections.
Starting with retweet-cascades as raw data sets, introduced in the previous section,
only for the Summarization method a feature selection as part of the Feature Engi-
neering step is needed, as the other embedding techniques provide several dimensions,
depending on the specifications, and UGraphEmb additionally also for each neural net.
An aggregation of the raw data set is performed when creating the retweet cascades as
a graph, but not after the embeddings are created, as each message of a user who got
influenced is part of a cascade. As the embeddings deliver feature values in the space
[−1, 1] for each dimension, only minor adjustments in Terms of Feature Preprocessing
are needed to perform better in the clustering step, as a better cluster assignment
can be forced if the bounds are equal. Thus, the feature values must only be set into
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equal bounds for all the embedding and summarization techniques, using a MinMax
normalization reaching a feature space of [0, 1]. Furthermore, for relatively small data
sets such as those from Table 7.3, a sampling is hardly needed and possible in this
use case, as the representativity would suffer and lead to tiny clusters being hardly
expressive for interpretation and analysis. Thus, clustering and cluster analysis will
be performed on the entire data set. As that step is somewhat similar to the proposed
approach’s flowchart, it will be presented in more detail in the following section.

7.4.1 Clustering & Cluster Analysis

After the retweet cascades were built and the embeddings were performed, clustering
can cut short the process of analyzing types of cascade structures. While in most of
the related work approaches that were investigated in the survey paper of Cai et al.
[CZC17], k-means clustering is favored and approved to process and analyze node
embeddings, choosing the number of clusters in advance is a well-known challenge in
clustering and cluster analysis. Furthermore, the aspects of explainability are infeasible
when choosing partition-based clustering techniques. Thus, Hierarchical Clustering
from Chapter 4’s approach, applied successfully on the Twitter and Telegram data
sets, this technique was selected for this approach, too. Also, the choice for the most
suitable linkage fell in favor of Ward’s linkage, showing the best results again, as
clusters showed uniform structures with well-separated clusters.
During the evaluation of various clustering techniques for Summarization, several meth-
ods were tested, including k-means, DBSCAN, Mean Shift, BIRCH, and Hierarchical
clustering using Ward’s, Complete, and Average linkage. Among these, Hierarchical
clustering using the Average linkage was found to be the most appropriate approach.
Moreover, a further clustering step is performed for the UGraphEmb technique for
outlier detection and elimination. DBSCAN is used to reduce the data set by elimi-
nating unusable cascades, as some outliers were noticeable in the data set. in contrast
to the data sets from the use cases of Twitter in Section 5.3 and Telegram in Section
6.3, this use case relies only on very small data sets, where outliers can distort the
clusters easier, as they have a more significant influence. After eliminating, results for
the Hierarchical clustering delivered better results for clusters, as remarkable graphs
were no longer visible when inspecting the plots of the graphs.
Initially, the Olympic Games 2012 data set was used to prove the suitability of the
proposed KD approach to cope with information cascades of the three given techniques.
Once the data sets were clustered, they must be analyzed to find a suitable number
of clusters. The analysis using internal cluster evaluation metrics such as Silhouette,
Davies-Bouldin, and Calinski-Harabasz and the Elbow method is applied to the data
sets to enable a fair comparison between the approaches. Moreover, the effect size-
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based depth-first search was utilized to find more fine-grained shapes, as well as the
adaptability on further data sets.
In contrast to Graph2Vec and UGraphEmb, the Summarization technique does not
provide varying dimensions. Thus, the internal evaluation metrics vary only for a
specific number of clusters. The Elbow method, as well as the Silhouette score and
the Calinski-Harabasz score, delivered the best clustering, with Hierarchical clustering
having a peak at 4 clusters for the Summarization technique, showing only a good
separation for coarse-grained structures. Compared to analyzing the use cases for user
roles in Twitter and Telegram, similar behavior can be observed when using internal
quality metrics in this use case.

7.4.2 Analysis of Cascade Shapes

After introducing the methodology in terms of clustering and cluster analysis, a coarse-
grained structural analysis is applied to the Olympics 2012 data set to enable a fair
comparison of the three techniques. However, before the general application of the KD
approach from Chapter 4 will be evaluated and analyzed, a coarse-grained analysis
is performed to identify structures in the following paragraphs. Afterward, the steps
from coarse-grained structural analysis to fine-grained results are stated.

Coarse-grained Structural Analysis The first research question deals with terms
of explainability of the embedding techniques. Starting with a coarse-grained structural
analysis of retweet-cascades using the previously mentioned three embedding techniques
leads to a fair comparison between those techniques, as the cluster analysis should
be comparable in terms of clusters to analyze. Thus, the best strategy in terms of
internal quality metrics is chosen for further fine-grained analysis.
Before analyzing the other embedding techniques compared to the Graph Summariza-
tion, the cluster results of the Graph Summarization will be analyzed by their shape.
Thus, some representatives of the clustered graphs were chosen, as shown in Fig. 7.8.
The first of the four clusters delivered a small, sparse set of star-like structures with
high root connectivity and a diameter greater or equal to 2. A star shape describes
a graph where information spreads almost entirely from the root. A very similar
structure to the first cluster can be found in the second cluster. In contrast to the
star-like clusters from cluster 1, denser stars can be found, as the number of nodes
and edges is much higher. An entirely different structure to the first two clusters can
be found in the third cluster, representing structures with way more nodes and edges
as part of longer chains with several children and dense cascades. Chains describe
parts of graphs where information is not spread from the root but from other nodes
all over the graph. The fourth cluster comprises graphs with many edges and nodes
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with big and dense structures and higher node edge and outdegree ratios leading to
big and dense cascades with mainly diameters equal to 1. The representatives of
the fourth cluster are short, dense, and big stars and not chains. The results of the
Summarization technique can be interpreted easily as the features allow terms of
explainability, answering the third research question from Section 7.1.

(a) Graph cluster 1. (b) Graph cluster 2. (c) Graph cluster 3. (d) Graph cluster 4.

(e) Graph cluster 1. (f) Graph cluster 2. (g) Graph cluster 3. (h) Graph cluster 4.

Figure 7.8: Graphs for clusters 1-4 of Graph Summarization from [Kha17].

Focusing on the embedding techniques, starting with the Graph2Vec technique, a
higher state-space arises, as the number of dimensions and clusters can vary. First,
the Elbow method was used to indicate the best number of clusters for clusterings
using Graph2Vec with 8 and 16 dimensions. A suitable number of clusters for both
embedding variants delivered 4 and 8 clusters for the 8-dimension variant, while the
16-dimension variant delivered only a peak at 2 and another close one at 4 clusters. Due
to the comparability to the Graph Summarization technique, the number of clusters
was set to 4. For all possible dimensions in the Graph-Embedding the Silhouette and
Calinski-Harabasz scores were evaluated, as can be seen in both subfigures of Fig. 7.9.
The Silhouette score of around 0.5 for the Graph Summarization technique, delivers
a better result than the graph2vec technique for all varying dimensions between 4
and 128. In contrast to this approach, the Calinski-Harabasz score reaches only
better results for 4 dimensions, while for a growing number of dimensions, the score
constantly decreases and falls below the Summarization techniques’ score. This
comparison shows that a coarse-grained structural analysis is generally possible for
both approaches. A further evaluation comparing the 4 clusters of both approaches
delivered similar results. Having a look at the heatmaps in Fig. 7.10, the comparison
between Graph Summarization and graph2vec using the Jaccard score shows only
medium-high similarities for 2 cluster pairs, as the number of consisting cascades
diverges a lot. When creating the same graph metrics from Graph Summarization
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for graph2vec, the comparison of boxplots showed that clusters were similar but not
similar enough to show an equal significance w.r.t. to coarse-grained structures.

(a) Silhouette of embedding techniques. (b) Calinski-Harabasz of embedding tech-
niques.

Figure 7.9: Comparison of several cluster evaluation metrics for all embedding techniques.

The most suitable configuration considering the preferred neural net must be chosen
before the UGraphEmb technique can be evaluated against the other two approaches.
For almost all dimensions, net 4 delivered the best results, especially for 16 and 64
dimensions, leading to only comparing the embeddings using net 4 overall dimen-
sions against the other two techniques. Focusing now on the comparison of internal
clustering quality metrics for the UGraphEmb technique, one can see that the Sil-
houette scores in Fig. 7.9a dominate the graph2vec results and are almost as good
as the Graph Summarization result for all varying dimensions. Also, the results of
the Calinski-Harabasz show the benefits of the UGraphEmb technique as it dominates
both approaches for all tested dimensions.
Looking closer at the heatmaps in Fig. 7.10, UGraphEmb shows relatively high
similarities for 2 of 4 clusters compared to Graph Summarization. In contrast, the
differences between the cluster pairs of UGraphEmb and graph2vec are moderately
high, as no cluster pair has a reasonably high similarity. The comparison of all three
approaches led to the choice of the UGraphEmb technique as the most suitable for this
approach. Even though the features both in graph2vec and UGraphEmb are hidden,
the lack of explainability can be compensated by evaluating several graph metrics
from Table 7.2 on the clusters by creating and analyzing boxplots as a kind of reverse
feature engineering. Fig. 7.11 shows a boxplot of the whole Olympics 2012 cascades
data set with hidden features embedded with UGraphEmb in 32 dimensions and net 4.
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(a) graph2vec vs. Summ. (b) UGraphEmb vs. Summ. (c) UGraphEmb vs. graph2vec

Figure 7.10: Heatmaps for cluster comparison of embedding techniques.

Figure 7.11: Boxplot embedded Oly12 with hidden features - UGraphEmb, 32 dim. net 4.

To reverse engineer the clustered data sets’ features, several graph evaluation metrics
from Table 7.2 such as number of nodes, number of edges, indegree, outdegree, minimum
shortest path and diameter, were used to describe the clusters. The boxplots in Fig.
7.12 show graph metrics for the clusters and reveal significant deviations, indicating
the suitability of interpreting hidden features successfully. This strategy is vital for
manual class labeling, as the features deliver no suitable information on how clusters
are built. With this aid, the third research question can be approved with limitations.
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(a) Number of nodes (b) Number of edges (c) Out-degree

(d) Indegree (e) Minimum shortest path (f) Diameter

Figure 7.12: Boxplots with graph metrics for UGraphEmb 32 dim. net4.

Fine-grained Structural Analysis After choosing the UGraphEmb technique as
the most suitable approach by evaluating internal cluster metrics leading to coarse-
grained structures, the existence of fine-grained structures is proved for this use case
as well. The results of the UGraphEmb technique delivered a similar significance w.r.t.
coarse-grained user roles from the Graph Summarization technique. Further analysis
exploiting the Effect-size-based depth-first search showed relatively strong effects when
plunging into the subtrees of the dendrogram. Setting the significance criterion to at
least two large effects, one very large or one huge effect the dendrogram in Fig. 7.13
delivers significant subclusters, which are marked from 1-11 in the dendrogram and
Table 7.4, whereas the first adjective always describes the graphs size w.r.t. nodes and
edges, while the rest of the description characterize the graphs’ shape.
One can see 4-5 coarse-grained groups when looking at the dendrogram. The first
group consists of cluster 1 representing huge stars, while the second group (clusters 2-4)
mainly consists of variations of big and large stars, with some variations considering
chains and subsidiary centers. Subsidiary centers are a mixture of chains and star
structures, where information is spread almost evenly from the root, but some chains
create new subcenters spreading the information again, like in star structures. Clusters
5-7 describe the next coarse-grained group consisting mainly of tiny and small stars
with some variations considering doubled stars, subsidiary centers, and occasional
chains, while clusters 8 and 9 deal with medium stars and variations considering
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occasional small chains and subsidiary centers. The last coarse-grained group (clusters
10 and 11) mainly describes small stars and variations dealing with occasional small
chains and subsidiary centers.

Figure 7.13: Dendrogram of UGraphEmb net 4 with 16 dimensions.

Table 7.4: Graph shapes for clusters of UGraphEmb net 4 with 16 dimensions.
Number Count Description

1 357 huge stars
2 272 large stars
3 318 big stars
4 250 big stars, occasional chains, subsidiary centers
5 384 tiny stars
6 261 tiny stars, doubled stars, subsidiary centers, occasional chains
7 475 small stars
8 241 medium stars, occasional small chains, subsidiary centers
9 591 medium stars
10 653 small stars, occasional small chains, subsidiary centers
11 612 small stars

The hierarchy is primarily built upon the sizes of the graphs, as the first groups
consist of huge, the second big and large, the third tiny and small, while the fourth
and fifth groups deal with medium and small graph structures. When diving deeper
into the dendrogram, each coarse-grained structure is divided into subgroups, such as
star-shaped graphs, graphs with subcenters, or many graphs characterized by chains.

226



7.4 Adapting the Methodology

Finally, the motivation for fine-grained structures in this scenario is given, too, as
manifold graph structures are built with the approach presented in Chapter 4. The
results presented in this paragraph dealing with finding fine-grained structures in the
use case of retweet cascades confirm the first research question from Section 7.1.

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

(f) Cluster 6. (g) Cluster 7/11. (h) Cluster 8. (i) Cluster 9. (j) Cluster 10.

Figure 7.14: Graph structures for clusters 1-11 for UGraphEmb.

Application of the Approach The second research question, dealing with the
general application of the approach, will be examined after successfully investigating
the aspects of a fine-grained structural analysis. All of the three approaches, Graph
Summarization, graph2vec, and UGraphEmb, can be adapted with minor adjustments
as already stated in Section 7.4. While Feature Engineering is only needed in Graph
Summarization, the other two techniques deliver hidden features for the clustering
process. Only the number of dimensions for the embeddings can be chosen, being some
Feature Engineering, even though the analyst does not influence the features as they
remain latent after applying the embedding techniques graph2vec and UGRaphEmb.
Focusing on clustering and cluster analysis, a contrast between Graph Summarization
and the two other embedding techniques can be observed regarding the explainability
of features and, thus, the interpretability of results, as features can only be tracked
successfully in Graph Summarization. For the two other approaches, a workaround
with a subsequent evaluation of graph metrics for the clusters is suitable but rather
expensive. Thus, metrics from Table 7.2 were chosen to support the analyst in the
manual labeling process of the clusters. Once a data set was evaluated successfully
with those graph metrics and the analyst obtained a sense for analyzing latent features,
a transfer to other data sets is possible.
Also, applying the classification of clusters and knowledge transfer is feasible in this
use case but not reasonable as the data sets are currently relatively small. Finding
suitable and representative cluster means for training data is challenging due to
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the small size of the data sets, as representative samples cannot be drawn quickly.
Furthermore, the effort in manual labeling for creating training data sets iteratively
would be costly. A manual analysis by observing the plots of the graphs is sufficient
at this point while building a classifier would be valuable when investigating larger
data sets or transferring information from one to another data set. Also, applying
the novel Multi-Sampling and Combination Strategy is possible but makes almost no
sense in small data sets, as representativity is no longer guaranteed when choosing
the sample size. Furthermore, this strategy makes only sense when utilizing a fully
automatic classification process and thus remains for future work.
Finally, the results in the previous paragraphs show that a successful application of
parts of the process is possible even in an entirely new use case, exploiting latent
features. The most prominent challenges were choosing the features for the Graph
Summarization technique, the aspects of interpretability and explainability for the
Summarization techniques due to the lack of original features, and the step from coarse
to fine-grained graph shapes. In comparison with the use cases of analyzing user roles
from Twitter (Chapter 5) and Telegram (Chapter 6), the human effort is higher, as
there are several strategies for mapping graphs to a vector with a lot of preprocessing
and tuneables. Moreover, performing and evaluating several clustering techniques and
the cluster analysis with internal graph metrics and the novel Depth-First Search
Approach, requiring some tuneables for cluster analysis, were also time-consuming. The
application of this approach until the manual labeling step and the results showed that
the second research question dealing with applying the KD approach, stated in Section
7.1, can easily be confirmed, while the steps of classification and the Multi-Sampling
and Combination Strategy remain future work.

Transferability to new Data Sets After reasoning the adaptability of the general
approach to an entirely new scenario considering information cascades on the Olympics
2012 data set, the aspects of transferability within data sets stemming from the same
source and thus having a similar feature space was one of the main contributions when
proving in the user roles scenario of the Twitter data sets in Chapter 5. In contrast to
the Twitter data sets for discovering user roles, the features in this scenario are entirely
latent. Thus, it is more challenging to understand the cluster’s results, especially as
they are dependent on the embedding. When using UGraphEmb as the most suitable
embedding result, choosing the nets appropriately is essential. Finally, it is possible
to transfer the approach to each of the other two remaining data sets, also receiving
valuable results after the clustering and the cluster analysis. With the insights from
these research questions, several aspects for future work can be pursued.
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7.5 Related Work

To define from clustering information cascades regarding graphs being a pivotal point
in this chapter, much related work has been published in the last 20 years. Work
from van Dongen [Don00] dealt with graph clustering and cluster analysis in general,
while Schaeffer [Sch07] specified graph clustering by focusing on vertices. Moreover,
McGlohon et al. [McG+07] focused on clustering blog entries in a dynamical use
case as they concentrated on evolution over time, while the first steps considering the
Social Media service Twitter in terms of graph clustering were made by Kafeza et
al. [Kaf+14] as they worked on information diffusion of tweets by concentrating on
linguistic features. The direction of research went on to analyze structural patterns in
information cascades with the work of Zang et al. [Zan+17] concentrating on a small
set of metrics describing information cascades and their correlation to each other. All
of the mentioned work paved the way for graph analysis with the aid of clustering to
find patterns of cascades exploiting graph metrics as features.
Moreover, not only is graph analysis vital for the approach presented in this chapter
but also embedding and summarization techniques for graphs are essential for the
success of this use case as they need to be processed before clustering is possible.
Tian et al. [THP08] provided a summarization technique dealing with grouping nodes
based on user attributes and relationships between users, while the work of Koutra
et al. [Kou+15] focused more on the explainability of edges leading to predefined
overlapping subgraphs with graph structures such as stars or chains. In contrast
to those explainable features, Narayanan et al. [Nar+17] focused on exploiting
unsupervised learning techniques, presenting their graph2vec approach to transform
graphs into embeddings, where no information on manually labeled graph structures is
needed. As the results of the embeddings are dependent on the training data they were
created on, Bai et al. [Bai+19] focused more on an inductive approach, UGraphEmb,
which is an advancement on graph2vec, which also works on unfamiliar data sets.

7.6 Conclusion

The results presented in this chapter showed that the application of the approach
from Chapter 4 is possible to an entirely new use case dealing with retweet cascades
instead of user roles, which were the central components of the use cases in Chapter
5 for the Twitter data sets and Chapter 6 for the Telegram data set. The possible
application of parts of the KD pipeline, in particular, a relatively different kind of
preprocessing and especially the hierarchical clustering with Ward’s linkage delivered
similar to the other use cases coarse-grained structures when analyzing clusters with
internal cluster metrics. The further application of the effect sized based depth-first
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search from Definition 33 paved the way for fine-grained structural analysis, finding
different kinds of cluster shapes as coarse-grained shapes could be elaborated. Also,
the transferability to new data sets within this use case showed the suitability of the
application as clusters with similar fine-grained shapes could be found. Finally, all
of the stated research questions from Section 7.1 were confirmed by applying the
proposed approach to this entirely new use case.
For future work, it is interesting to apply the approach to more data sets with bigger
sizes and also apply the novel Multi-Sampling and Combination Strategy to this use
case. Furthermore, when dealing with more and more extensive data sets, providing
an automatic classification of clusters is essential. Thus, the Active Learning (AL)
approach must also be applied for creating training data to classify data sets. The
first steps of manually labeling classes were already performed in this section, being a
good starting point when dealing with new data sets. As the cascade data sets from
this use case were created with the social graph from the Twitter data set evaluated in
Chapter 5, it is also of particular interest if there is a correlation between user roles
and cascade shapes. In particular, distinct user roles may occupy specific positions in
retweet cascades w.r.t. creating and forwarding content and thus influencing other
users in several ways in the social media service.
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Chapter 8

Conclusion

Wer kann schon sagen was mit uns geschieht,
Vielleicht stimmt es ja doch?
Dass das Leben eine Prüfung ist,
In der wir uns bewähren sollen

Die Toten Hosen - Paradies

In this thesis, a novel Knowledge Discovery (KD)-based approach was established to
capture and analyze fine-grained structures in large-scale user-generated data sets.
Various major contributions, introduced in Chapter 1 and conceptually refined in
Chapter 4, were addressed, namely, the reduction of human effort and the explainability
within each step of the approach. The KD pipeline was extended with several steps,
such as a novel Multi-Sampling and Combination Strategy and explainable labeling
to ensure a knowledge transfer to other data sets in various use cases and applied
and evaluated on three complementary use cases, Twitter in Chapter 5, Telegram in
Chapter 6 and Cascade-Shapes in Chapter 7. Moreover, in Chapter 3, a somewhat
orthogonal approach exploiting the Borda Social-Choice voting rule to reduce human
effort by avoiding normalization was introduced. The following sections summarize
the goals, the contributions, and their results in detail.



8 Conclusion

8.1 Structure Discovery of Fine-Grained User Roles
in Social Media

The contributions of the approach presented in Chapter 4 address the detection and
analysis of fine-grained user roles in large-scale user-generated data sets, whereas several
well-known Machine Learning (ML) techniques, such as clustering and classification,
are encapsulated in a novel Multi-Sampling and Combination Strategy. The main
contributions introduced in Section 1.3 address the provision of a KD approach for
detecting and analyzing fine-grained structures in an explainable and comprehensive
way, i.e., user roles, which is also applicable to other data sets stemming from topical
and temporal related and non-related data sets from the same and diverging sources.

8.1.1 Analyzing Fine-Grained Users in Twitter

The first use case considered in this thesis applied and evaluated in Chapter 5, dealt
with data sets from the Social Media service Twitter. The conceptual application
of the approach was successful on the initial data set - the Olympics 2012 data set
- as it paved the way from coarse-grained user roles to explainable and discernable
fine-grained ones with the aid of comprehensive experiments and analyses answering
the first contribution dealing with a complete application of the pipeline to the initial
Twitter data set.
Addressing the second research question, the application and analysis of the novel
approach to a variety of several other topical related and non-related data sets, such
as several other sports events like the Olympics Games over a period of 10 years and
a short-term event over several years like the Super Bowl, but also topically diverse
data sets focusing on tragic incidences was confirmed. The knowledge of fine-grained
structural user roles gained from the initial data set was transferred successfully to a
variety of new data sets, whereas the human effort in adjusting steps of the approach
was pared down to a minimum. Most of the same user roles appeared again in all the
data sets, with varying quotas paving the way for long-term analyses, as both feature
shifts and drifts were noticeable for the investigated user roles.
Further sub-contributions dealt with stability and coverage of fine-grained user roles,
providing insights on tuneables in the novel Multi-Sampling and Combination Strategy,
such as the influence of sample sizes, in due consideration of representativity. Moreover,
several further experiments and analyses considering the certainty and stability of
user roles, and also the correlation of best and second-best user roles, due to the
probabilistic nature of the approach, proved and substantiated the eligibility of the
novel sampling and combination strategy-based KD approach for finding fine-grained
user roles. Addressing the novel strategy, in particular, several tuneables considering
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sampling were investigated for finding the best sampling strategy fitting to varying
data sets in terms of sizes and, thus, the number of samples and sample sizes.
The long-term analysis of two time series, the Olympic Games and the Super Bowl,
answered several questions dealing with the impact of dis- and reappearing user roles
and the change of their general and fine-grained user-role-based behavior, leading to
the intention of building whole models for long-term user role change analyses. The
suitability of a dynamic Markov-based threshold model was successfully evaluated
regarding the precision of user roles to a variety of static models. Moreover, applying
the whole conceptual model to the second time series showed valuable results. In
addition, further experiments proved that the transfer of knowledge for simulating
known data sets and predicting new data sets works for topically related data sets.
These aspects substantiate again the main contribution of saving human resources,
as for new data sets, the model building can cut short the whole process by sparing
almost the entire KD pipeline.

8.1.2 Analyzing Fine-Grained Users in Telegram

After transferring the application of the proposed approach to several other data
sets stemming from the same source for the first use case, the conceptual transfer
of the whole KD pipeline to data sets stemming from another source, the instant
messaging service Telegram represents the second use case from Chapter 6. The main
contribution also addresses the general application for finding fine-grained user roles
in an explainable and specific way, as well as some additional sub-contributions.
The general application of the approach presented in Chapter 4 was successfully adapted
to Telegram, as some known fine-grained user roles from the Twitter use case and
further new ones were detected and analyzed in a comprehensible and explainable way.
Only the steps of preprocessing and classification from the KD approach needed to be
adjusted for this use case, showing that human effort can be economized, and thus, time
can be saved even when transferring the whole approach from one detail-elaborated
use case to another similar use case. Especially the Active Learning (AL)-driven
approach for building classifiers delivered an added value compared to the Twitter
use case, as much time was saved due to a minimized human intervention. Also first
experiments considering the novel Multi-Sampling and Combination Strategy showed
valuable outcomes, as the stability and certainty of user roles were substantiated. In
addition, a discussion and analysis of similarities and differences between the two use
cases and the occurring user roles delivered party different user behaviors between
Twitter and Telegram. Some limitations were noticeable in the building and evaluating
the classification step and the following Sampling and Combination strategy due to
the sparse number and small size of data sets.
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8.2 Analyzing Cascade Shapes from Twitter Data
Sets

Last, one entirely different use case to the previous two use cases was addressed in
Chapter 7, answering again the research question of transferring and applying the
pipeline to a different data set for finding fine-grained structures. For this challenging
attempt, Feature Engineering was cut short, as Feature Selection and Preprocessing
were not necessary due to the appropriate output of the embedding techniques, whereas
tuneables in the embedding strategies needed to be adjusted. Only the clustering,
cluster analysis, and manual class labeling steps were considered. At the same time,
the Multi-Sampling and Combination Strategy was not yet necessary due to the small
size of the data set. Also, the AL-driven approach of building training for classification,
and thus the classification step, was not yet considered due to the small data set.
Analyzing graph shapes in the context of information cascades from the social media
service Twitter shows the KD approach’s versatility from Chapter 4, as not only the
general application of parts of the KD approach was successfully transferred, but also
fine-grained structures were detected. Due to the nature of embedding techniques,
the challenge of analyzing the opaque features of the clusters comprehensively and
explainably was accomplished successfully with a workaround by applying well-known
graph metrics on the clusters. Further experiments on data sets demonstrated the
application of other sports data sets, substantiating the reduction of human effort in
this entirely new use case. Furthermore, the time effort in reducing human intervention
by applying parts of the KD pipeline to this entirely new use case was confirmed.

8.3 Borda Social Choice Voting Rule

Both approaches addressed in Chapter 3 dealt with reducing the result sets in Pareto-
optimal use cases such as advertising and recommendations by exploiting user prefer-
ences. To summarize similar results, these Pareto-optimal data sets were clustered
with two extended partitional clustering approaches presented in Chapter 3, exploiting
both the Pareto-dominance criteria and the Borda Social Choice Voting Rule for a
k-means-based cluster allocation to prevent the need for the eminent preprocessing
step of Normalization and Standardization. While the first approach is more suitable
for a lower number of dimensions, the latter also works in higher dimensional spaces,
as the comprehensive experiments showed the competitiveness to the basic k-means
clustering w.r.t. runtime and number of iterations.
Considering the main contributions introduced in Section 1.3, the application of
the clustering approach, and thus a complete KD pipeline to manifold sets of data
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sets is possible, such as advertising and recommendations in a movie-based use
case, online-dating and much more. Eliminating normalization and standardization
in Preprocessing significantly improves runtime and reduces the need for human
intervention, resulting in greater efficiency and cost savings. Limitations for both
approaches are the application of massive data sets due to the weak points of partitional
clustering. Even though clustering exploiting the Borda Social Choice Voting Rule
would work in data sets with a high-dimensional feature space, the data sets in the
use cases of Chapter 5 and 6 are too large. Moreover, explainability for the cluster
composition of k-means clustering is impossible, complicating the cluster evaluation. In
summary, both approaches are worthwhile clustering strategies, which can be adapted
currently to data sets of small to medium size.

8.4 Summary

In this thesis, many use cases were considered to propose applying an extended KD
pipeline to comprehensively and explainably analyze fine-grained structures in user-
generated data sets. A plethora of comprehensively realized experiments and analyses
proved the suitability of the approach as a valuable alternative to a traditional KD
approach. The novel Multi-Sampling and Combination Strategy is an added value as it
is scalable for many manifold data sets from medium to massive sizes. Moreover, the
conceptual transferability of the methodology to a wide variety of use cases provided
benefits in terms of time effort, as human intervention could be reduced to a minimum.

237





Chapter 9

Future Work

Es ist nicht Deine Schuld,
dass die Welt ist, wie sie ist
Es wär nur Deine Schuld,
wenn sie so bleibt

Die Ärzte - Deine Schuld

A novel Knowledge Discovery (KD)-based approach, the Multi-Sampling and Com-
bination Strategy, was developed and presented in this thesis to analyze large-scale
user-generated data sets in terms of explainable fine-grained structures. The method
was successfully applied in a plethora of various scenarios and thoroughly discussed
in Chapter 8. Opportunities for further exploration remain, particularly regarding
the KD pipeline presented in Chapter 4 and the case studies in Chapters 5, 6, and
7. Additionally, the Borda Social Choice Voting Rule introduced in Chapter 3 offers
captivating directions for further investigation.

9.1 Structure Discovery of Fine-Grained User Roles
in Social Media

The novel KD pipeline established a broad range of possibilities for future work. Even
though many steps of the approach could be optimized yet, some need further attention
to reduce runtime and human intervention. While the drawback of the complexity
of hierarchical clustering was already addressed with the novel Multi-Sampling and
Combination Strategy, a parallelization of clustering smaller but more representative
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samples would be suitable as time could be saved additionally. Besides that, a fully
automatic approach would be beneficial, determining the sampling strategy, sample
sizes, and number of needed samples depending on the data set’s specifications and
the user’s desires. For each use case, a tailored strategy could be applied to reduce
runtime and human interventions, as the novel Multi-Sampling and Combination
Strategy deals with many tuneables to adjust. Another conceptual optimization is
dealing with building training data for classifiers. As the whole process was initially
almost manually driven and only further automatized for the Telegram use case, the
Active Learning (AL) approach needs to be optimized to discharge human experts.
Furthermore, the application of a wider variety of data sets, such as events over a
whole year or season with several rounds, such as Formula 1 or Football Bundesliga,
would be beneficial for analyzing user roles in an entirely different use case, as feature
drifts and shifts in short intervals may reveal different user behavior. Considering
relatively large data sets such as the FIFA and UEFA football events, slicing the
data sets into group stage and knockout stage can also reveal different user behavior
within shorter periods of time. Thus, comparing user roles’ long-term and short-term
evolution and their correlation remains a compelling research area.
Exploring additional data sets would help validate the existence of specific user roles.
For instance, analyzing data sets from Telegram that involve political extremists,
conspiracy theorists, climate change deniers, support chats, communication between
fans, and other chat-like discussions would be beneficial. These directions could provide
further evidence for fine-grained user roles.
Considering the model-building process, more refinements and adjustments would be
beneficial, as the model needs more data for more precise simulations and predictions
of role changes over time. With these refinements, the models’ transfer to other data
sets can also be improved. As the combination of training data for the classifiers
delivered suitable results in Chapter 5, combining role chains from several data sets
may be a worthwhile approach for refinement. In addition, the model-building process
would also be a valuable approach for short-term round-based events such as Formula
1 or Bundesliga to prove the dynamic threshold models’ suitability in further use cases.

9.2 Structure Discovery of Fine-Grained User Roles
in Graphs

Graph structures arising from graph embeddings were analyzed successfully in terms
of finding explainable fine-grained structures in Chapter 7 by applying parts of the
KD pipeline introduced in Chapter 4. As this use case, representing an independent
research area has more open issues to pursue, the most inspiring ones with overlaps to
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the Twitter user role-based use case from Chapter 5 will be outlined. As information
cascades are composed of several users’ messages, their influence and interactions
among themselves, the roles of users within an information cascade are of particular
interest, as the root user may hold an entirely different position as leaf users. The latter,
being influenced last do not influence others, while bridge users, spread information
into another cliques. Thus, the user roles’ correlation from the Twitter data sets found
and evaluated in Chapter 5 are of specific interest in analyzing cascade shapes.

9.3 Borda Social Choice Voting Rule

Both approaches presented in Chapter 3 rely only on the clustering and cluster
analysis part of the KD pipeline, providing novel k-means clustering-based approaches
addressing user-preference-based use cases on Pareto-frontiers. As the exploitation of
the Borda Social Choice Voting Rule was successfully applied to partitional clustering,
the use cases are typically narrowed down to smaller and medium-sized data sets due
to the drawbacks lying in the nature of partitional clustering. For larger data sets
such as those from the use cases in Chapter 5 and 6 of the KD approach from Chapter
4, partitional clustering stretches to its limits. Thus, a worthwhile approach would
be exploiting the Borda Social Choice Voting Rule as allocation to other clustering
approaches, such as Hierarchical clustering, to benefit from explainability issues.
The benefit of saving additional time and discharging experts by avoiding Feature
Preprocessing steps such as normalization and standardization would also improve the
whole KD pipeline from Chapter 4.
Moreover, implementing a weighting feature, which is very important for users in
recommender use cases, would be very beneficial as the clustering result would be
tailored individually to users. Further directions are also to map categorical data like
sets, e.g., a set of favored genres in a movie recommender using other metrics like
TF-IDF, Okapi BM25, or vector space model from the area of information retrieval,
instead of the well-known but trivial Jaccard coefficient.
The novel approaches were applied in several use cases, such as a movie recommender.
Many use cases are of interest to demonstrate the suitability of this approach. These
include micro targeting-based advertisements and music streaming services, books,
and video game recommendations.
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