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ABSTRACT We present the technologies and host components developed to power a speech-based
dialogue manager with affective capabilities. The overall goal is that the system adapts its response to the
sentiment and arousal level of the user inferred by analysing the linguistic and paralinguistic information
embedded in his or her interaction. A linguistic-based, dedicated sentiment analysis component determines
the body of the system response. A paralinguistic-based, dedicated arousal recognition component adjusts
the energy level to convey in the affective system response. The sentiment analysis model is trained using the
CMU-MOSEI dataset and implements a hierarchical contextual attention fusion network, which scores an
Unweighted Average Recall (UAR) of 79.04% on the test set when tackling the task as a binary classification
problem. The arousal recognition model is trained using the MSP-Podcast corpus. This model extracts the
Mel-spectrogram representations of the speech signals, which are exploited with a Convolutional Neural
Network (CNN) trained from scratch, and scores a UAR of 61.11% on the test set when tackling the
task as a three-class classification problem. Furthermore, we highlight two sample dialogues implemented
at the system back-end to detail how the sentiment and arousal inferences are coupled to determine the
affective system response. These are also showcased in a proof of concept demonstrator. We publicly release
the trained models to provide the research community with off-the-shelf sentiment analysis and arousal
recognition tools.

INDEX TERMS Affective dialogue manager, sentiment analysis, arousal recognition, emotional artificial
intelligence, human–computer interaction.

I. INTRODUCTION
The market penetration of smart devices is increasing every
year and is changing the way how users interact with the
technology. For instance, the launch of voice-based Virtual
Assistants (VAs) – such as Siri™ (Apple), Alexa™ (Ama-
zon), Cortana™ (Microsoft), Bixby™ (Samsung), Celia™
(Huawei), or Google Assistant™ – has advanced the Human-
Computer Interaction (HCI) field, as these deploy hardware
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and software components that allow users to interact verbally
with these assistants towards a natural interaction. Current
VAs focus on the analysis of the linguistic information
to provide this sort of natural interaction. Nevertheless,
human-human communication is more complex, as the
nonverbal communication is a fundamental and decisive
aspect of the interaction. Hence, to boost the user experience
when interacting with VAs towards a more natural and
realistic interaction, there is a need to power these assistants
with affective capabilities by means of affective computing
technologies [1], [2].
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Research works on VAs with affective capabilities can be
found in the literature. Among the most recent examples,
we highlight the EMPATHIC Virtual Coach [3] and the Ryan
agent [4]. The former [3] modifies the agent’s voice based
on the user’s emotional state, which is inferred from the
user’s face and the paralinguistic information embedded in
the user’s voice recorded during the interaction. The latter [4]
includes an affective dialogue manager able to generate
responses based on the inferred emotions of the users.
Despite considering multimodal information – as the system
features sentiment analysis and face emotion recognition –,
the information inferred from a single modality is sufficient
to determine the affective response.

We present the technologies developed for sentiment and
arousal analysis, so that a speech-based dialogue manager
can adapt the system response to the sentiment and arousal
level conveyed by the user during the interaction. We utilise
a customised smartphone app as the gateway for users to
communicate and interact with the system. The dialogue
manager features a dedicated sentiment analysis component,
which exploits the linguistic information embedded in the
user’s voice, and a dedicated arousal recognition component,
which analyses the paralinguistic information. While the
output of the former determines the body of the system
answer, the output of the latter conditions the level of
energy to convey in the response. We detail two of the
sample dialogues deployed at the back-end of the system
– to exemplify the system logic in the specific use case
of an agent that engages its users with short affective
dialogues at different points throughout their working day [5]
– and provide a proof of concept demonstrator to showcase
the implemented affective dialogue manager. An additional
contribution of this work is the public release of the
Application Programming Interfaces (API) developed to
interact with the models trained in an attempt to provide the
research communitywith off-the-shelf sentiment analysis and
arousal recognition tools.

The scientific contribution of this work focuses on
determining the optimal sentiment analysis and arousal
recognition models to deploy in the system, which are
trained using the CMU-MOSEI dataset [6], and the MSP-
Podcast corpus [7], respectively. The CMU-MOSEI dataset
is annotated in terms of both sentiment and emotion.
Although the sentiment annotations are in the continuous
space, the emotional annotations are in the categorical space.
Hence, for a fine-grained arousal recognition, we opt for the
MSP-Podcast corpus, as it provides affective annotations in
the continuous space. In the sentiment analysis literature,
a range of conventional [8], [9] and deep learning [10]
approaches have been explored. Recurrent Neural Networks
(RNN) are a specific deep learning technique suitable for
sentiment analysis, as it is a sequence modelling task with
variable length inputs. The goal of an RNN is to learn
an embedded representation of the input sequence, which
is then coupled with a classification block responsible for
the actual inference. This embedded representation usually

TABLE 1. Statistics of the resulting CMU-MOSEI dataset per partition
after aligning the linguistic and word embedding representations of the
original data, and segmenting the original videos into the corresponding
sentences.

corresponds to the hidden state of the RNN produced at
the last time step of the input sequence, which encodes
information from the whole sequence, but excludes the
previous hidden states from the preceding computations,
losing potential information. The experiments we conduct
target the assessment of this aspect, as we hypothesise that
an effective fusion of the hidden states learnt at each time
step could help improve the performance of the sentiment
analysis models. Following the current trends in the Artificial
Intelligence (AI) domain, researchers have recently started
investigating the utilisation of Transformers [11], [12] and
Large Language Models (LLM) [13] for sentiment analysis.
In the paralinguistic-based affective computing literature,
a wide range of feature representations [14] and network
architectures [15], [16] have been studied, highlighting the
dependency of the models performance on the available
data and the targeted application. Thus, we compare the
performance of arousal recognition models trained with dif-
ferent neural network architectures exploiting hand-crafted
and deep-learnt representations extracted from the speech
signals.

The rest of the paper is organised as follows. Section II
introduces the datasets explored to train the sentiment
analysis and the arousal recognition models. Section III
describes the methodology followed. Specifically, this
section provides an overview of the composite system and
reports on the research conducted in both research areas.
Section IV summarises and analyses the results obtained
from the experiments conducted. Section V provides a proof
of concept demonstrator, showcasing the overall affective
dialogue manager implemented, and Section VI concludes
the paper.

II. DATASETS
This section introduces the two datasets exploited in
this work. Section II-A presents the CMU-MOSEI
dataset [6] – used to train the sentiment analysis models –
, while Section II-B describes the MSP-Podcast corpus
[7] – employed to train the arousal recognition models.

A. CMU-MOSEI DATASET
The data used for training the sentiment analysis model
belongs to the CMU-MOSEI dataset [6]. This is one
of the largest gender-balanced multimodal datasets for
sentiment analysis and emotion recognition in English,
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TABLE 2. Number of negative and positive samples belonging to the
train, development, and test partitions of the resulting CMU-MOSEI
dataset when considering the task as a binary classification problem.

containing more than 3 000 video clips with language,
vision, and acoustic features extracted from over 65 hours
of video. To download and process the data, we use the
CMU Multimodal Data SDK1 [17]. For the purpose of
our study, we exploit the original sequences available,
and their corresponding 300-dimensional word embedding
representations extracted using Global Vectors (GloVe) [18].
We opt for the exploitation of the GloVeword embeddings for
consistency with previous works in the literature exploiting
the CMU-MOSEI dataset [6], [17]. Early processing of the
corpus using the available SDK includes the alignment of
both linguistic representations and the segmentation of the
original videos into the corresponding sentences, and their
splitting into the pre-defined train, development, and test
partitions. The compiled vocabulary contains 16 824 tokens.
Table 1 synthesises the statistics of the resulting data.

Each sentence in the dataset is annotated with a sentiment
score in the range [−3, 3], determined by 3 crowdsourced
annotators. These scores correspond to highly negative (−3),
negative (−2), weakly negative (−1), neutral (0), weakly
positive (1), positive (2), and highly positive (3) sentiments.
In this work, we aim to tackle the sentiment analysis task
as a binary classification problem to properly support the
envisioned use cases of the presented dialogue manager
(cf. Section V). Consequently, we map the scores ∈ [−3,−1]
to the negative class, and the scores ∈ [1, 3] to the
positive class. Although related works in the literature based
on this corpus cluster the sentences corresponding to the
neutral sentiment into the negative class [19], we exclude
these sentences to minimise biasing our models towards the
negative class. Table 2 summarises the number of positive
and negative sentences belonging to the resulting train,
development, and test partitions.

B. MSP-PODCAST CORPUS
The data explored for training the arousal recognition model
belongs to the MSP-Podcast corpus [7], which was gathered
from freely available English podcasts. The selected podcasts
were converted into the audio format 16 kHz/16 bit single-
channel PCM. The resulting recordings were segmented,
so that information from a single speaker was contained
in each audio segment. The corpus was annotated via
crowdsourcing in terms of emotional attributes (arousal,
valence, and dominance), and categorical emotions. For the

1https://github.com/A2Zadeh/CMU-MultimodalDataSDK

TABLE 3. Number of low, mid, and high arousal samples belonging to the
train, development, and test partitions of the resulting MSP-Podcast
corpus when considering the task as a three-class classification problem.

purpose of our study, we focus only on the arousal-related
annotations, as arousal seems to be more prominent in the
paralinguistic information embedded in the user’s voice [20].
To annotate the audio segments in terms of arousal, the

annotators rated the perceived level of arousal of the speaker
using a seven-point Likert scale; i. e., the annotators were
asked to rate whether the speaker was perceived to be very
calm (1), calm (2), somewhat calm (3), neutral (4), somewhat
active (5), active (6), or very active (7). Each segment was
evaluated by several annotators, and the gold standard was
determined as the average value among the annotations
provided by the individual annotators.

As the envisioned affective dialogue manager does not
need to infer arousal informationwith this level of granularity,
we simplify the problem by clustering the arousal annotations
in three different levels [21]: the annotations ∈ [1, 3] are
assigned to the low arousal class, the annotation in ∈ (3, 5],
to the mid arousal class, and the annotations ∈ (5, 7],
to the high arousal class. Table 3 summarises the number
of audio samples assigned to the low, mid, and high arousal
classes belonging to the resulting train, development, and test
partitions.

III. METHODOLOGY
The architecture and the information workflow of the overall
system is depicted in Figure 1. A smartphone app acts
as a gateway, so the users can record their own voice to
communicate and interact with the system. The resulting
media file is then transferred via the Internet to the system
back-end. Upon reception, the speech file is transcribed
using the off-the-shelf Automatic Speech Recognition (ASR)
service provided by Google Cloud. The benefit of this
approach is that the back-end can exploit the recorded speech
file, and the resulting transcription, separately.

The proposed back-end architecture contains three main
blocks: i) the sentiment analysis component, ii) the arousal
recognition component, and iii) the dialogue manager com-
ponent. Sections III-A and III-B describe the methodology
followed to determine the best sentiment analysis, and arousal
recognition models, respectively, to deploy in the respective
components. The implementation of the dialogue manager
component is detailed in Section V. This engineering-based
section emphasises how the sentiment and the arousal
information inferred is coupled to affectively adapt the system
response to the current affective state of the user interacting
with the system.
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FIGURE 1. Block diagram illustrating the architecture of the affective dialogue manager system implemented and presented in this work, including the
interaction workflow. The system answer is determined by considering the sentiment and the arousal information inferred from the linguistic and the
paralinguistic analysis, respectively, of the voice-based user’s response.

A. SENTIMENT ANALYSIS COMPONENT
This section describes the methodology followed to deter-
mine the best sentiment analysismodel. Section III-A1 details
the pre-processing applied to the sentences belonging to
the CMU-MOSEI dataset (cf. Section II-A), Section III-A2
introduces the models implemented, and Section III-A3
summarises their training details.

1) DATA PREPARATION
Each sentence in the CMU-MOSEI dataset is composed of
a different number of tokens. The first step is, therefore, the
homogenisation of the sequence lengths, so these can be used
to train our neural networks. According to the results obtained
from our data analysis (cf. Table 1), the longest sentence
belongs to the training partition and has a total of 310 tokens.
Thus, we fix the length of the sequences to train our networks
to 310 time steps. This parameter determines the maximum
length of the sentences that can be analysed with our models
at inference time. So that the training sentences have a length
of 310 time steps, we opt for repeating the sequence of
tokens for the shorter sequences until reaching the desired
sequence length, avoiding zero-padding. Nonetheless, the
sentences with their original lengths are used when evaluating
the performance of the models. To overcome the imbalanced
data in terms of the positive and the negative sentiments
(cf. Table 2), we upsample the under-represented classes via
replication, so that the same number of samples for each
sentiment is used for training the networks at each epoch.

2) MODELS DESCRIPTION
The sentiment analysis networks implemented in this work
are composed of two main blocks: the first block is
responsible for learning the embedded representations of
the input sequences, while the second block, for the
actual classification. The first block features a single-layer,

bidirectional Gated Recurrent Unit – Recurrent Neural
Network (GRU-RNN) with 128 hidden units. We select the
use of a GRU-RNN to overcome the vanishing gradient
problem suffered by other RNNs, such as the Long Short-
Term Memory – Recurrent Neural Network (LSTM-RNN).
The embedded representation learnt at the output of this block
can be mathematically represented as

hi =
[
−−→
GRU (wi) ,

←−−
GRU (wi)

]
, (1)

where wi corresponds to the word embedding representations
extracted from the sequence of words [w1 · · ·ws] in the
sentence. The second block is composed of two-stacked
fully connected layers, preceded by two dropout layers with
probability 0.3. The first layer contains 32 neurons and uses
the Rectified Linear Unit (ReLU) as the activation function.
The second layer has as many neurons as classes we need
to classify our samples and uses Softmax as the activation
function, so that the outputs of the network can be interpreted
as probability scores.

The embedded representations learnt at the output of the
first block, hi, encapsulate the salient information from the
input sequences. Hence, the way how this information is
exploited determines the performance of the overall model.
In this work, we exploit the embedded representations hi
using the following network architectures.

i) Baseline Network (Baseline RNN). The baseline
network uses the last hidden state of the GRU-RNN as a
standalone representation of the input sequence, h̃. This
embedded representation is then fed to the second block
of the network for the actual classification.

ii) Hierarchical Naïve Fusion Network (H-N). This
network fuses the sequence of embedded representa-
tions, hi, by averaging the representations over all the
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sequence. This can be mathematically formulated as:

h̃ =
∑S

i=1 hi
S

. (2)

We refer to this approach as a naïve fusion method, since
no parameters need to be trained by the network.

iii) Hierarchical Contextual Attention Fusion Network
(H-CA). Based on the methodology presented in [22]
and adapted from [23], this approach fuses the infor-
mation by computing contextual attention scores as
follows:

ui = tanh (Whi + b) , (3)

αi =
exp

(
uTi u

)∑S
i=1 exp

(
uTi u

) , (4)

h̃ =
S∑
i=1

αihi. (5)

In this approach, W, b, and u are defined as trainable
parameters. The parameter u can be interpreted as a
contextual tensor, which contributes to the identification
of the relevant words in the sentences.

iv) Convolutional Fusion Network (CNN). The fusion of
the sequence of embedded representations is performed
using a 1-dimensional convolutional layer with 256 and
128 input and output channels, respectively, a kernel
size of 3, and a stride of 1. The parameters selected
guarantee a smooth integration of this convolutional
block into the baseline network for a fair and effective
comparison between the models. Batch normalisation is
applied to the output of the convolution, and the resulting
representation is transformed using a ReLU function.
Finally, a 1-dimensional adaptive average pooling is
applied to obtain 2 values as a result of the fusion. The
final representation is reshaped into a 1-dimensional
tensor h̃, ready to be fed into the classification block of
the network.

v) Convolutional Contextual Attention Fusion Net-
work (CNN-CA). This final network combines the
approaches described for the H-CA and the CNN
networks. First, the contextual attention scores from the
sequence of embedded representations are computed as
defined in Equations (3) and (4). Then, hi is transformed
into an intermediate representation mathematically
defined as

h′i = αihi. (6)

This new representation h′i is then exploited using a
1-dimensional convolutional layer, as described for the
CNN network.

3) NETWORKS TRAINING
At the initialisation of each network, the pseudo-random
number generator is manually seeded for a fair com-
parison, and reproducibility of the results. The models

described in Section III-A2 are trained using the Categorical
Cross-Entropy as the loss to optimise. As the optimiser,
we use Adam with a fixed learning rate of 10−4. The network
parameters are updated in batches of 256 samples, and their
gradients are clipped at 1. The networks are trained during a
maximumof 100 epochs, andwe implement an early stopping
mechanism to stop training when the validation loss does not
improve for 20 consecutive epochs. Using this early stopping
mechanism, we determine the number of epochs needed
for training the networks, while minimising the chances of
overfitting.

B. AROUSAL RECOGNITION COMPONENT
This section describes the methodology followed to deter-
mine the best arousal recognition model. Section III-B1
details the pre-processing applied to the speech samples
belonging to the MSP-Podcast corpus (cf. Section II-B),
Section III-B2 introduces the models implemented, and
Section III-B3 summarises their training details.

1) DATA PREPARATION
The feature representations to extract from the original audio
files play a vital role in the paralinguistic analysis. Hence,
we aim to compare the performance of the arousal models
when exploiting the functionals of the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) [24]
extracted using openSMILE [25], and the Mel-spectrogram
representations of the audio signals. The former extracts an
88-dimensional feature vector representation of each audio
signal as a whole. The Mel-spectrograms are computed
using 128 Mels and a hope size of 128 samples. The audio
signals in the MSP-Podcast corpus have different durations.
To homogenise their duration for training the models,
we window the Mel-spectrogram representations so that they
contain the information equivalent to 5 seconds of the original
audio signals using an overlap of 50%. Each windowed
representation is stored as an image of 224× 224 pixels for
further processing. As the speech samples are imbalanced
with respect to the arousal classes (cf. Table 3), we use a
weighted random sampler to select the samples to use for
training the models at each epoch. With this strategy, the
samples corresponding to the less represented classes are
used more often for training the models than the samples
corresponding to the most represented classes.

2) MODELS DESCRIPTION
To model the different features extracted from the speech
files (cf. Section III-B1), we explore different network
architectures, which we proceed to describe.
i) MLP. The eGeMAPS features are modelled using a
Multi-Layer Perceptron (MLP) composed of two main
blocks. The first block acts as a feature adapter, as it
uses a linear layer to convert the original features into a
512-dimensional representation. This 512-dimensional
representation is then fed to the classification block,
which implements two linear layers with 32 and 3 output
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neurons, respectively, preceded by 2 dropout layers with
probability 0.3. The outputs of the first linear layer are
transformed using a ReLU function, and the outputs
of the second linear layer use a Softmax activation
function, so the network outputs can be interpreted as
probability scores.

ii) Scratch CNN. This network exploits the Mel-
spectrogram representations of the audio signals using
a CNN trained from scratch. This network is composed
of two main blocks. The first block extracts deep learnt
representations from the input Mel-spectrograms. For
this, we implement 3 convolutional layers with 32, 64,
and 128 filters each, a kernel size of 3 × 3 and a
stride of 1. After each convolutional layer, we use batch
normalisation, and the network outputs are transformed
using a ReLU function. The first two layers use a
2-dimensional max-pooling layer with a kernel size
of 2 × 2, while the third layer uses a 2-dimensional
adaptive average pooling layer, so the outputs of this
feature extraction block produce a 512-dimensional
representation of the input data. The second block of the
network is responsible for the actual classification and
implements the same architecture as the classification
block of the MLP network described above.

iii) Pre-trained CNN. This network also exploits the
Mel-spectrogram representations of the audio signals,
but using a pre-trained CNN. This network is also
composed of a feature extraction and a classifica-
tion block. We choose the same architecture for the
classification block as in the MLP and the Scratch
CNN architectures. The difference, however, lies in
the feature extraction block. In this case, we opt for
applying a pre-trained Resnet-18 [26] network without
the last layer to extract deep learnt representations
from the input Mel-spectrograms. We fine-tune the
network during the training process. This network
produces a 512-dimensional representation of the input
data. For this reason, we engineered the previous
network architectures to produce a 512-dimensional
representation at the output of the feature extraction
block. This way, we can fairly compare the performance
of the three different architectures proposed.

3) NETWORKS TRAINING
At the initialisation of each network, the pseudo-random
number generator is manually seeded for a fair comparison,
and reproducibility of the results. We train the models
described in Section III-B2 to minimise the Categorical
Cross-Entropy loss, using Adam as the optimiser with a
learning rate of 10−3. The networks are trained in batches
of 128 samples and during a maximum of 200 epochs.
We implement an early stopping mechanism to stop training
when the validation error does not improve for 20 consecutive
epochs. With this early stopping mechanism, we determine
the number of epochs needed for training the networks, while
minimising the chances of overfitting. We decide for the

Unweighted Average Recall (UAR) as the metric to compare
the ground truth and the inferred arousal annotations, and,
therefore, we define (1 − UAR) as the validation error to
monitor the training process.

IV. EXPERIMENTAL RESULTS
This section reports the results obtained from the experiments
conducted. Section IV-A compares the performance of the
sentiment analysis models that implement the different net-
work architectures described in Section III-A2. Section IV-B
analyses how the performance of the arousal recognition
models is impacted by choosing different feature representa-
tions of the speech signals and different network architectures
to analyse the information extracted (cf. Section III-B2).

A. SENTIMENT ANALYSIS MODELS
To assess the performance of our sentiment analysis models,
we compute the UAR between the inferred and the ground
truth annotations. We consider the UAR as the most suitable
metric to use in this case, as it is not impacted by the
imbalanced data. Hence, the chance level in terms of UAR
for the binary classification problem is 50.00%.

The performance of the binary sentiment analysis models
trained is summarised in Table 4. To contextualise the
performance of our models, we apply a state-of-the-art
transformer-based binary sentiment analysis model to infer
the sentiment corresponding to the sentences belonging to
both the development and the test partitions. Specifically,
we select the pre-trained, off-the-shelf binary sentiment
model available from the pipeline API of the Transform-
ers library2 [27]. This model was trained based on the
DistilBERT architecture [28] and fine-tuned on the SST2
dataset [29]. The results obtained with this pre-trained model
are included in Table 4.

Comparing the results obtained, we observe that all our
models achieve a higher performance than the state-of-the-
art transformer-based binary sentiment model on the test set.
The highest performance on the development partition is
obtained with the baseline RNN, scoring a UAR of 75.84%.
Nevertheless, the H-CA network scores the best performance
on the test set, with aUARof 79.04%, surpassing the baseline
network.

The sentiment analysis component in the affective dialogue
manager architecture (cf. Section III) deploys the H-CA
network-based sentiment analysis model trained. The senti-
ment analysis component is implemented through a simple
API, which is publicly available with the aim to provide an
off-the-shelf sentiment analysis tool to the community3.

B. AROUSAL RECOGNITION MODELS
The results obtained from the network architectures described
in Section III-B2 are reported in Table 5. As it can
be observed, the best performance is obtained using the

2https://huggingface.co/docs/transformers/main_classes/pipelines
3https://github.com/EIHW/sustAGE_SentimentAnalysis
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TABLE 4. Summary of the results obtained in terms of UAR (%) when
tackling the sentiment analysis task as a binary classification problem.
The performance of the models is assessed in both development and test
partitions.

TABLE 5. Summary of the results obtained in terms of UAR (%) when
tackling the arousal recognition task as a 3-class classification problem.
The performance of the models is assessed in both development and test
partitions.

scratch CNN architecture exploiting the Mel-spectrogram
representations of the audio files with a UAR of 61.61%
and 61.11% on the development and the test partitions,
respectively. The lowest UAR of 57.81% on the test set is
obtained with theMLP architecture exploiting the functionals
of the eGeMAPS feature set, similar to the performance
obtained with the pre-trained CNN on the Mel-spectrogram
representations, which scores a UAR of 57.98% on the test
set. These results suggest the suitability of exploiting the
Mel-spectrogram representations of the audio signals with
CNNs trained from scratch for arousal recognition.

The arousal recognition component in the affective
dialogue manager architecture (cf. Section III) extracts the
Mel-spectrogram representations of the input speech signals,
and deploys the scratch CNN-based model trained. The
arousal recognition component is implemented through a
simple API, which is publicly available with the aim to
provide an off-the-shelf arousal recognition tool to the
community4.

V. PROOF OF CONCEPT DEMONSTRATOR
Coupling the sentiment analysis and arousal recognition
technologies developed and hosted in their corresponding
components (cf. Figure 1), we can power a dialogue manager
with affective capabilities. As depicted in Figure 1, the
proposed system initialises the dialogue, and, then, the
users record their voice via the smartphone app to answer.
The content of the answer is open to the user. Upon
reception of the recorded file, the back-end of the system
runs the generated transcription and the received speech file
through the sentiment analysis and the arousal recognition
components, respectively. Open dialogue systems are a

4https://github.com/EIHW/sustAGE_ArousalRecognition

Dialogue 1 Affective dialogue designed at wake-up
time considering the outcomes of the sentiment
analysis and the arousal recognition models when
analysing the open user’s response
← [SYSTEM] Good morning, [NICKNAME]! How
did you sleep tonight?
→ [USER’S RESPONSE]
if (sentiment == positive) then

if (arousal == high) then
← [SYSTEM] I like the spirit! It is great to
start a new day full of energy.

else if (arousal == mid) or (arousal == low) then
← [SYSTEM] Glad to hear this. It is great to
start a new day full of energy.

else if (sentiment == negative) then
← [SYSTEM] I am sorry to hear this. Try to
sleep a bit more if you can, or perform 2-3 times
the exercise 4-7-8 (4 sec breath in – 8 sec hold –
7 sec slowly breath out).

else
← [SYSTEM] I think it is still too early in the
morning for you.

end

challenging research topic, out of the scope of this work.
Hence, we opt for a rule-based dialogue manager. We employ
predefined sentences – containing the body of the system
answer – and interjections – to convey different levels of
energy in the system response –, which the dialogue manager
selects according to the sentiment and arousal information
inferred by the corresponding components to determine an
affective system response to the users’ input.

As a proof of concept demonstrator, we integrate the
proposed affective dialogue manager at the back-end of
a larger companion system which interacts with its users
at specific, relevant points in time during the day and
gathers users’ and context-related information to determine
timely and personalised recommendations that can support
wellbeing, wellness, and productivity [5]. For this use case,
the affective dialogue manager aims at improving the user
experience when interacting with the companion system. For
a more natural interaction, the dialogue manager addresses
the users using a nickname of their choice, which is adapted
to each user on the fly. Considering the deployment scenario,
we define two of the short dialogues in which the users are
engaged at wake-up time (cf. Dialogue 1), and at the end of
the working time (cf. Dialogue 2). We also showcase these
dialogue scenarios in a video demonstration5.

It is worth mentioning that the smartphone app showcased
in the video demonstration utters the dialogue manager
responses with the Text-to-Speech (TTS) functionality pro-
vided by Android. The authors agree that emotional TTS is
an emerging research field [30], which could potentially be

5https://youtu.be/7Hq1q146P7Q
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Dialogue 2 Affective dialogue designed at the end
of the working day considering the outcomes of the
sentiment analysis and the arousal recognitionmodels
when analysing the open user’s response
← [SYSTEM] Hi [NICKNAME], your working day
is finally over. Do you have some plans for this
afternoon?
→ [USER’S RESPONSE]
if (sentiment == positive) then

if (arousal == high) then
← [SYSTEM] It sounds exciting! Safe trip
back home and enjoy your afternoon.

else if (arousal == mid) or (arousal == low) then
← [SYSTEM] It is good to hear this. Safe
trip back home and enjoy your afternoon.

else if (sentiment == negative) then
← [SYSTEM] You deserve doing some activity
that makes you happy.

else
← [SYSTEM] You do not seem to be very
talkative. I am sure you are tired after working all
day long.

end

applied in the proposed affective dialoguemanager for a more
natural system response. Nevertheless, as herein we focus on
the affective capabilities of a dialogue manager from a user
analysis perspective, we consider the synthesis aspect of the
affective dialogue manager as future work.

Ethical concerns are inherent to voice-based HCI applica-
tions; especially those related to privacy [31]. In our case,
users actively press a button on the smartphone interface to
start and stop the audio recording. We opted for this approach
to gain users’ trust, avoiding them having the impression
their were continuously recorded. When sending sensible
data – such as voice – throughout the Internet, the connection
between the smartphone and the system back-end needs to
be secured and encrypted; for instance, using the HTTPS
protocol. Finally, the raw recordings should be deleted after
processing and providing the answer to the users in order not
to store personal data and minimise the damage of potential
data leaks associated to exposing the back-end system to the
public Internet.

VI. CONCLUSION AND FUTURE WORK
In this work, we presented a speech-based affective dialogue
manager system powered by sentiment analysis and arousal
recognition capabilities to create an instantaneous affective
profile of the user, so it can be used to condition and adjust
the system response. The research conducted on the sentiment
analysis problem focused on analysing the information loss
experienced by using the hidden state of a recurrent neural
network produced at the last time step as the embedded
representation encoding the whole input sentence. The best
model implemented a hierarchical contextual attention fusion

network, which exploited the hidden states produced during
all the time steps of the input sentence as the embedded
representations. The research conducted on the arousal
recognition problem focused on assessing the suitability
of using different feature representations of the speech
signals and using different network architectures to exploit
the information extracted. The best model extracted the
Mel-spectrogram representations of the speech signals and
used a CNN trained from scratch to generate deep learnt
representations. Overall, the deployed sentiment analysis
model was able to infer whether the input sentence conveyed
a negative or a positive sentiment, while the deployed
arousal recognition model was able to infer whether the
speaker conveyed a low, mid, or high level of arousal.
Furthermore, we provided a proof of concept demonstrator
of the implemented affective dialogue manager and presented
two of the dialogues supported at the back-end of the
system, exemplifying how the inferred affective information
determined the system response.

Future work includes the assessment of the proposed
affective dialogue manager with real users. To evaluate the
effectiveness of the proposed solution, it would be relevant
to also compare it with existing dialogue managers. Further
investigations could consider exploring more advanced neu-
ral network architectures to improve the performance of the
models trained. Motivated by the recent trends in the field of
AI, a throughout analysis of Transformer-based architectures
for sentiment analysis could be conducted with the aim to
understand and determine which architecture works best and
why. Furthermore, the study of LLMs in this problem is
also a promising research direction, based on the excellent
performance of such models in a wide range of problems and
applications. Additionally, powering the dialogue manager
system with natural language understanding capabilities and
emotional TTS to utter the system responses would be
encouraging directions to support open dialogues between the
users and the system and to increase the affective perception
of the system by the users, respectively.
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