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While the concepts of quantummany-body integrability and chaos are of fundamental importance for the
understanding of quantum matter, their precise definition has so far remained an open question. In this
Letter, we introduce an alternative indicator for quantum many-body integrability and chaos, which is
based on the statistics of eigenstates by means of nearest-neighbor subsystem trace distances. We show that
this provides us with a faithful classification through extensive numerical simulations for a large variety of
paradigmatic model systems including random matrix theories, free fermions, Bethe-ansatz solvable
systems, and models of many-body localization. While existing indicators, such as those obtained from
level-spacing statistics, have already been utilized with great success, they also face limitations. This
concerns, for instance, the quantum many-body kicked top, which is exactly solvable but classified as
chaotic in certain regimes based on the level-spacing statistics, while our introduced indicator signals the
expected quantum many-body integrability. We discuss the universal behaviors we observe for the nearest-
neighbor trace distances and point out that our indicator might be useful also in other contexts such as for
the many-body localization transition.
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Quantum chaos and integrability have been a major
focus of research for decades due to their key relevance for
the foundations of statistical physics and fundamental
concepts such as thermalization. In classical physics, chaos
manifests as a divergence of initially close-by phase-
space trajectories. Integrability as a counterpart of chaos
is defined by the existence of a maximal number of
Poisson-commuting invariants [1,2]. However, establishing
a precise measure of quantum chaos and integrability in the
quantum many-body regime has remained an outstanding
challenge [3]. The most widely used indicator is based on
level spacing statistics [4,5]. However, it predicts chaotic
behavior for some systems, which are expected to be
considered integrable in the many-body sense [6,7].
In this Letter, we introduce an alternative indicator of

quantum integrability and many-body quantum chaos
based on the eigenstate properties instead of the spectrum.
We show that our indicator correctly classifies a wide range
of systems as quantum integrable, including Bethe-ansatz
solvable models, quantum spin chains in a fully many-body
localized (MBL) regime, and quadratic fermionic systems.
It is a central result of this Letter that our indicator detects
quantum integrability also in cases where the level spacing
fails, such as the quantum many-body kicked-top model.
Our indicator is based on subsystem trace distances

between nearest-neighboring Hamiltonian eigenstates,
which provides a bound on the smoothness of operator
expectation values as a function of energy and, therefore, a
natural connection to the eigenstate thermalization hypoth-
esis (ETH). This measure is much more robust to the
symmetries of the systems as compared to the level spacing
statistics. This can be useful when the symmetries of a
model are not fully understood.
To investigate whether a general quantum Hamiltonian

exhibits chaos or integrability, we evaluate the trace
norm distance between two reduced density matrices
defined as

DA
n ¼ 1

2
jjρAnþ1 − ρAn jj1: ð1Þ

Here, ρAn ¼ TrĀρn denotes the reduced density matrix of a
subsystem A and ρn ¼ jψnihψnj the density matrix of an
eigenstate jψni of a given Hamiltonian. We order the
eigenstates jψni with respect to their eigenvalues ϵn in
ascending order, i.e., ϵnþ1 > ϵn. While distances between
density matrices can be defined in various ways [8–10],
the definition in Eq. (1) turns out to be practically suitable,
as we will discuss in the remainder of this Letter. In
particular, it has been found that DA

n provides a general
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upper bound on the smoothness of operator expectation
values as a function of energy [10,11]:

jΔOnj ¼ jTrðρAnþ1 − ρAnÞOj ≤ 2sDA
n : ð2Þ

Here, ΔOn ¼ hψnþ1jOjψnþ1i − hψnjOjψni denotes the
difference of operator expectation values in neighboring
eigenstates withO an operator defined in subsystem A and
s is the largest singular value of the operator O [10]. The
expectation values of local observables for various
Hamiltonian eigenstates may fluctuate between neighbor-
ing eigenstates and conform to thermal predictions if the
ETH is valid. This distinction can be used to differentiate
between integrable and chaotic models. The ETH, which
pertains to chaotic Hamiltonians, stipulates that the diago-
nal matrix elements of observables within Hamiltonian
eigenstates exhibit a smooth energy dependence and a
narrow distribution. Conversely, in the integrable regime,
the expectation values across the spectrum tend to fluc-
tuate significantly, as previously demonstrated in various
research studies (see Refs. [12,13] for a review). We
propose to use the eigenstate trace distances measure in
Eq. (1), which expands upon the definition of the ETH
based on subsystem trace distances in Ref. [14] by
providing quantitative criteria for quantum many-body
chaos and integrability.
In the following, we will introduce the microscopic

chaotic and integrable models we use to illustrate our
findings.
Many-body quantum chaotic systems.—Let us start with

the analysis of many-body quantum chaotic systems. In this
context, we will use for our analysis the paradigmatic
quantum Ising chain with both transverse and longitudinal
fields

HIsing ¼
XL

l¼1

ðJσzlσzlþ1 þ hzσ
z
l þ hxσxl Þ; ð3Þ

where σαl ðα ¼ x; y; zÞ denote the Pauli spin operators at site
l, J is the coupling constant, and hβðβ ¼ x; zÞ represent the
strengths of the two magnetic fields. In what follows, we
will set the interaction J ¼ 1. We assume periodic boun-
dary conditions (PBCs), i.e., σαLþ1 ¼ σα1ðα ¼ x; y; zÞ,
which implies translational invariance. This symmetry
enables us to partition the Hamiltonian into different sectors
with a conserved momentum of K ¼ 2πj=L, where
j ¼ 0;…; L − 1. Each sector can be independently dia-
gonalized, reducing the computational complexity. It is
worth noting that the main features of the statistics of
DA

n are identical for single symmetry sectors or for the
full spectrum. We, therefore, focus on a single sector
K ¼ 2π=L without loss of generality. Let us mention,
however, that the K ¼ 0; π sectors provide an exception
due to the presence of further symmetries. Examples of
different symmetry blocks and comparisons with results

from the full spectrum can be found in the Supplemental
Material [15]. In the following, it will be suitable to
analyze DA

n as a function of x ¼ LA=L, so that we
introduce the following notation:

DnðxÞ¼
1

2
jjρnþ1ðxÞ−ρnðxÞjj1; x¼LA=L; ð4Þ

in addition to Eq. (1).
The Ising chain, which is described in Eq. (3), is known

to exhibit chaotic behavior as long as J and hx;z are
nonzero [24]. In Fig. 1, we show the qualitatively different
behaviors of the distribution of DnðxÞ in the integrable and
quantum chaotic regimes for a system of size L ¼ 18 and
for x ¼ 1=2; 2=9, respectively. The distribution is narrow
and strongly peaked for the quantum chaotic case, and we
find that the width of the distribution is exponentially
suppressed with the system size in this limit, see Fig. S1(a)
in the Supplemental Material [15]. This result is consistent
with RMT, where the distribution is Gaussian, with a
vanishing standard deviation by increasing the size of the
system, see Figs. S1(a) and S1(b) in the Supplemental
Material [15]. Turning off either the longitudinal or
transverse field results in an integrable model with a much
broader distribution, as shown in Fig. 1.
In what follows, we will consider as a detector of

quantum many-body chaos and integrability the mean
value hDnðxÞi taken over all eigenstates in a single
momentum sector. In the chaotic regime, we see that
hDnðxÞi decays upon increasing system size L as long
as x < 1=2, see Figs. 2(a) and 2(b) for the chaotic Ising
model and the Gaussian orthogonal ensemble (GOE) from
random matrix theory (RMT). As we show analytically in

FIG. 1. Ising model: Distribution P½DnðxÞ� of trace distances
DnðxÞ for nearest-neighbor eigenstates with x ¼ LA=L, the ratio
between subsystem size LA and system size L ¼ 18. The main
plot shows data for P½DnðxÞ� at different magnetic field strengths
for LA ¼ L=2 and the inset for LA ¼ 4, focusing on one
symmetry sector: K ¼ 2π=L.
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Sec. II of the Supplemental Material [15], the ETH predicts
the following behavior:

hDnðxÞi ¼ CΔ; ð5Þ

where Δ ¼ hϵnþ1 − ϵni denotes the mean level spacing and
C a prefactor, which will be discussed in more detail below.
Since Δ decays exponentially with system size L for large
systems, we find that this is consequently also the case for
DnðxÞ. This holds as long as the ETH applies to the
considered model system, requiring that the system size L
is sufficiently large. From the insets of Figs. 2(a) and 2(b) at
a fixed x ¼ 1=3 we further see that the GOE exhibits
compelling evidence for an exponential decay, as predicted
by Eq. (5). For the chaotic Ising model the behavior is less
pronounced due to limitations from the accessible system
sizes, but also consistent with the predicted exponen-
tial decay.
As we further show analytically in Sec. II of the

Supplemental Material [15], we can additionally bound
the proportionality constant C. For that purpose we have to
assume in addition to the ETH that the subsystem density
matrix itself can be approximated well by a canonical
density matrix. This requires us to take the usual limits of
statistical mechanics requiring the subsystem to be very
large, but still much smaller than the total system. In this
regime we find that C ≤ 1=ΔE with ΔE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH2i − hHi2

p

the total energy fluctuations yielding a system-size depend-
ence proportional to 1=

ffiffiffiffi
L

p
. Notice, however, that for the

system sizes considered in Fig. 2, the aforementioned
requirements are not yet met. Thus, the derived bound
on C should be viewed more as an asymptotic behavior.
In Fig. 2, we show numerical data of hDnðxÞi for many-

body quantum chaotic models. We find that x ¼ 1=2 is a
fixed point, and the behavior of hDnðxÞi is different for
values of x less than and greater than 1=2. For x < 1=2,
hDnðxÞi decays upon increasing L, ultimately tending

towards zero as L approaches infinity. These results align
with the recent study [25], which carried out analytical
assessments of hDnðxÞi for random states and has delved
into its application in the Ising model for small sizes. For
x > 1=2, hDnðxÞi tends towards 1 by increasing system
size. To emphasize the consistency of the results of the
chaotic Ising chain with RMT, we study in more detail
hDnð1=2Þi in Fig. 2(c). One can see that for large system
sizes hDnð1=2Þi in the chaotic Ising model approaches the
saturation value of RMT. More details about RMT are
discussed in Sec. I of the Supplemental Material [15].
Integrable systems.—After discussing the behavior of

hDnðxÞi for quantum many-body chaotic systems, we now
move to the case of integrable models. In particular, we first
study the transverse-field Ising chain at hz ¼ 0 in Eq. (3).
Since the model is integrable in this regime, we expect the
results to be significantly different from those predicted by
RMT. We show the markedly different behavior in Fig. 3(a)
where we provide numerical data for hDnðxÞi for different
system sizes. First of all, we cannot identify a fixed point
anymore. Upon increasing system size, we find that
hDnðxÞi appears to converge to a single nonzero curve
that does not match the prediction of the ETH in Eq. (5).
Instead, the numerical data seem to approach a linear
function hDnðxÞi ∼ ax upon increasing system size with a
slope a ≈ 2. The linear slope remains roughly unchanged
when considering other symmetry blocks except those with
K ¼ 0; π, which have a ≈ 1 [26]. This is discussed further
in Sec. III of the Supplemental Material [15].
In order to gain some analytical insights into this

linear behavior, we have also studied the XY chain, which
can be solved exactly through a mapping to a free fermion
Hamiltonian using the Jordan-Wigner transformation
[27–29]. The subsystem trace distance between two
eigenstates can be obtained by explicit construction of
the RDMs [30–32]. We find evidence that hDnðxÞi ∝ x in
the large L limit, especially in the range x∈ ð0.1; 0.4Þ, see
Sec. IV of the Supplemental Material [15].

FIG. 2. Quantum many-body chaotic models: (a) average hDnðxÞi for the Ising chain at hz ¼ ð1þ ffiffiffi
5

p Þ=4 and hx ¼ ð5þ ffiffiffi
5

p Þ=8 in the
symmetry sector with K ¼ 2π=L. (b) hDnðxÞi for RMT from the Gaussian orthogonal ensemble (GOE) taken over 4000 random
eigenstates. The inset shows the exponential decay of hDnðxÞi with system size L for the case of x ¼ 1=3. In panel (c), we compare the
system-size dependence of hDnðx ¼ 1=2Þi in the quantum many-body chaotic Ising model with RMT.
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In the following, we will now explore to what extent this
observed behavior for the Ising chain generalizes also to
other models, including the Bethe-ansatz integrable homo-
geneous XXZ chain, the XXZ model with a random field in
the MBL regime, and the quantum many-body kicked top.
The Hamiltonian of the XXZ model is given by

HXXZ ¼
XL

l¼1

ðσxl σxlþ1 þ σyl σ
y
lþ1 þ Δσzlσ

z
lþ1 þ hlzσ

z
l Þ; ð6Þ

where Δ denotes the anisotropy parameter. We will con-
sider two cases for the magnetic field hlz. On the one hand,
we take hlz ¼ hz uniform, where Eq. (6) yields the Bethe-
ansatz integrable XXZ model. On the other hand, we will
consider hlz ∈ ½−h; h� a random variable drawn from the
uniform distribution, which gives a paradigmatic model for
MBL [33,34].
In Fig. 3(b), we show numerical data of hDnðxÞi for the

Bethe-ansatz integrable limit. We observe a similar behav-
ior as compared to the integrable Ising chain. Again,
hDnðxÞi doesn’t align with the ETH prediction of
Eq. (5), but rather approaches a linear behavior as a
function of x with a slope a ≈ 2 as in the case of the
Ising chain.
For the case of strong random fields, the XXZ model

enters an MBL phase [33,34], violating the ETH. Systems
in the fully MBL regime are expected to show an emergent
form of integrability caused by the presence of an extensive
number of emergent local conservation laws. The numeri-
cal results for the MBL case, see Fig. 3(c), again don’t
follow the ETH prediction in Eq. (5) so that our indicator
correctly classifies such MBL systems as integrable.
However, differently from the other integrable systems,
we don’t observe a linear behavior of hDnðxÞi as a function
of x. hDnðxÞi rather appears to approach hDnðxÞi → 1 upon
increasing system size.
Finally,we investigate amany-bodyFloquet systemwhose

dynamics is captured by the following Hamiltonian [35]

H ¼ hx
XL

l¼1

σxl þ
κ

L

XL

l;m¼1

σzlσ
z
m

Xþ∞

n¼−∞
δðt − nτÞ; ð7Þ

where the transverse field and kick strength are represented
by hx and κ, respectively, and the kicks have a period of τ.
This is the so-called quantum kicked top (QKT). In this
model, the collective spin operator S2 ¼ S2x þ S2y þ S2z, with
Sα ¼ 1=2

P
i σ

α
i where α ¼ x, y, z, is conserved. As a result,

the Hilbert space of the system can be divided into
subspaces with fixed total spin, in which the dynamics
are equivalent to that of a single kicked top with the
corresponding angular momentum S [36–38]. We analyze
this explicitly time-dependent model using Floquet
theory by means of the eigenstates of the Floquet oper-
ator UF ¼ exp ð−iκS2z=LÞ exp ð−ihxτSxÞ, i.e., the time-
evolution operator UF over one period τ. As the analog
of the eigenenergies we consider the quasienergies of the
corresponding Floquet operator HF ¼ −i lnðUFÞ. In what
follows, we perform the statistics for the largest Hilbert
space subspace with S ¼ L=2.
The key consequence of the aforementioned conserva-

tion law is that the largest subspace in Hilbert space is linear
in system size L. Therefore, the exact solution can be
obtained with an effort depending only polynomially on
system size. As a consequence, we consider this model to
be quantum many-body integrable. Let us directly empha-
size, however, that this statement is not in contradiction to
the well-known result that the kicked top is considered a
paradigmatic quantum chaotic model in the single-particle
sense. In particular, it has been shown that the level spacing
statistics of individual blocks in Hilbert space can display
GOE behavior whenever the parameter κ exceeds a critical
value κc [36,39,40]. Such GOE behavior is a standard
indicator of quantum chaos.
In Fig. 3(d) we show the results of hDnðxÞi for the QKT

with κ ¼ 7. One can clearly observe that hDnðxÞi doesn’t
follow the ETH prediction in Eq. (5) of an exponentially
decaying hDnðxÞi with system size. We rather find that

FIG. 3. Quantum many-body integrable models: (a) hDnðxÞi as a function of x ¼ LA=L for the transverse field Ising model (TFIM)
with hx ¼ ð5þ ffiffiffi

5
p Þ=8 and hz ¼ 0. The dashed line marks the linear ax with a ≈ 2. (b) hDnðxÞi for the Bethe-ansatz integrable XXZ

chain with Δ ¼ 2. Again, we have included a dashed line indicating linear behavior ax with a ≈ 2. (c) XXZ model with Δ ¼ 2 and
strong disorder h ¼ 10 in the MBL regime. (d) Quantum kicked top (QKT) model at κ ¼ 7 and τ ¼ 1. In (a), (b), and (c) we focus on the
symmetry block with K ¼ 2π=L, and in (d) the S ¼ L=2 sector.
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hDnðxÞi behaves similar to the conventional integrable
models such as the Ising chain or the XXZ model. Upon
increasing system size, hDnðxÞi appears to approach a
linear behavior upon increasing L. As a consequence, our
indicator predicts the many-body quantum integrability of
the QKT for κ ¼ 7. It is noteworthy that, for small values of
the parameter κ, the behavior of the observable DnðxÞ is
unexpectedly consistent with that of a MBL system.
Additional illustrations of this can be found in Sec. V of
the Supplemental Material [15].
Conclusions.—In this Letter, we have presented an

alternative indicator for quantum many-body integrability
and chaos through trace distances of nearest-neighboring
eigenstates, unlike traditional level spacing statistics focus-
ing on Hamiltonian eigenvalues. In recent years many
indicators based on local observables related to the reduced
density matrix of small subsystems have been introduced.
However, according to our analysis in Sec. VI of the
Supplemental Material [15], examining the corresponding
density matrix of larger subsystems (i.e., x > 0) proves
more fruitful in discerning many-body integrable systems
from chaotic regimes.
Trace distances also provide bounds on eigenstate-to-

eigenstate fluctuations of some nonlocal quantities, such as
the entanglement entropy and Rényi entropy [41–43],
which have been used as alternative indicators for chaos,
integrability, and MBL in quantum systems [44–46]. Let us
point out, however, that by utilizing the entanglement
entropy, say, as an indicator, it is essential to have analytical
access to a reference, which is typically the Page value.
While this allows us to study many-body quantum chaos at
infinite temperature for bounded Hamiltonians, the indi-
cator based on trace distances in our Letter exhibits a
broader range of applicability as it can be also applied in an
energy-resolved fashion, in principle, and also for
unbounded Hamiltonians including bosonic systems.
For the future, it would be important to develop a deeper

analytical understanding of our indicator hDnðxÞi in the
quantum many-body integrable regimes, which so far has
been mostly based on numerical results. A particularly
interesting point might be to address the seemingly
universal linear behavior of hDnðxÞi for certain integrable
models and why certain other models, such as MBL
systems, apparently behave differently. While we have
covered a broad range of physical systems, extending our
indicator’s applicability to larger class of models is impor-
tant. For instance, it would be interesting to apply the
indicator to interacting systems with disorder, where recent
developments have raised fundamental questions on the
MBL phase and the MBL transition [47–50].
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