P-173

Development and First-in-Man Study of a Novel Tetrapeptidic CCK-2R-Targeted Compound with Improved Metabolic Stability and Pharmacokinetics

Thomas Günther¹, Nadine Holzleitner¹, Georgine Wienand², Nicole Urzt-Urban¹, Constantin Lapa³, Hans-Juergen Wester¹ ¹Technical University of Munich, Germany, ²Augsburg, Germany, ³University of Augsburg, Germany

Objectives: In order to develop an improved CCK-2R ligand for imaging and radioligand therapy of medullary thyroid carcinoma (MTC), we synthesized and evaluated the novel ligand DOTA-CCK-66 (DOTA- γ -glu-PEG $_3$ -Trp-(N-Me)Nle-Asp-1-Nal-NH $_2$). Its design is based on the four C-terminal amino acids of DOTA-MGS5 (DOTA-glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH $_2$), a γ -glu-PEG $_3$ linker and a DOTA moiety for labeling with radiometals. As theranostic applications are desired, we carried out a comparative study on 64 Cu- 67 Ga- and 177 Lu-labeled DOTA-CCK-66 as well as DOTA-CCK-66.2 (glu instead of γ -glu) and the reference, DOTA-MGS5, by state-of-the-art experiments *in vitro* and *in vivo*.

Methods: 64 Cu- and 67 Ga-labeling was carried out at 90\xB0C within 15 min (1.0 M sodium acetate buffer, pH = 5.5, and 2.5 M HEPES buffer, respectively). 177 Lu-labeling was carried out at 90\xB0C within

15 min (1.0 M sodium acetate buffer, pH = 5.5, 0.1 M sodium ascorbate). CCK-2R affinity (IC50) was examined on AR42J cells. Studies on the metabolic stability were conducted *in vitro* (human serum, 37\xB0C, 72\xB12 h) and *in vivo* (murine serum and urine, 30 min postinjection (p.i.)). Biodistribution studies and μ SPECT/CT imaging at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice.

Results: Synthesis via Fmoc-based solid-phase peptide synthesis yielded 5–10% reversed-phase liquid chromatography-purified labeling precursor. All labelings proceeded almost quantitatively. Irrespective of the nuclide (copper, gallium, lutetium) used, high CCK-2R affinity was determined for all three compounds (IC_{50} : 3.6–6.0 nM). Lipophilicity (expressed as n-octanol/phosphate-buffered saline solution distribution coefficient; $\log D_{7.4}$) was similarly low for all three CCK-2R ligands, irrespective if 64 Cu- 67 Ga- or 177 Lu-labeled ($\log D_{7.4}$: -3.0 to -2.2). The amount of intact tracer was high for both [177 Lu]Lu-DOTA-MGS5 and [177 Lu]Lu-DOTA-CCK-66 *in vitro* in human serum (95–98%) and *in vivo* in murine serum (79–82%) but distinctly higher for the latter in murine urine (23.7 \pm 9.2% *versus* 77.8 \pm 2.3%).

[177 Lu]Lu-DOTA-MGS5 exhibited slightly increased activity levels in the tumor at 24 h p.i. than [177 Lu]Lu-DOTA-CCK-66 ($^{11.0\pm1.2\%}$ ID/g versus $8.6\pm1.1\%$ ID/g) but also elevated levels in all other organs, which is why overall tumor-to-background ratios were similar for both compounds. Beyond that, [67 Ga]Ga-DOTA-CCK-66 exhibited high tumor accumulation at 1 h p.i. ($^{19.4\pm3.5\%}$ ID/g) and low uptake in non-tumor organs (in $^{\%}$ ID/g; blood: $^{0.61\pm0.07}$, liver: $^{0.31\pm0.02}$, pancreas: $^{0.23\pm0.07}$, stomach: $^{1.81\pm0.19}$, kidney: $^{2.51\pm0.49}$). [68 Ga]Ga-DOTA-MGS5 displayed slightly higher tumor values ($^{23.2\pm4.7\%}$ ID/g) but also significantly higher activity levels in all non-tumor organs (in $^{\%}$ ID/g; blood: $^{1.47\pm0.82}$, liver: $^{1.02\pm0.52}$, pancreas: $^{1.83\pm0.42}$, stomach: $^{5.12\pm1.13}$, kidney: $^{5.71\pm1.38}$), which is why tumor-to-background ratios were noticeably higher for [67 Ga]Ga-DOTA-CCK-66 than for [68 Ga]Ga-DOTA-MGS5 [11]. $^{\mu}$ SPECT/CT studies confirmed the excellent biodistribution of [67 Ga]Ga-/[177 Lu]Lu-DOTA-CCK-66.

A proof-of-concept study using [⁶⁸Ga]Ga-DOTA-CCK-66 in a patient suffering from MTC revealed a favorable biodistribution of the tracer at 60 min p.i., which was highly accumulated in several MTC metastases.

Conclusion: Due to its simple design and thus improved metabolic stability, [nat/67Ga]Ga-/[nat/177Lu]Lu-DOTA-CCK-66 revealed favorable *in vitro* and *in vivo* data. In particular, similar (177Lu-labeled) or even higher (67/68Ga-labeled) tumor-to-background ratios were observed in all organs as compared to [177Lu]Lu-/[68Ga]Ga-DOTA-MGS5. A first-inman study in a MTC patient using [68Ga]Ga-DOTA-CCK-66 showed several metastases and an excellent biodistribution pattern, which is why further patient studies applying [68Ga]Ga- and [177Lu]Lu-DOTA-CCK-66 are warranted.

Acknowledgements: none.

Reference

1. Klingler et al., J Nucl Med. 2019;60:1010-1016.

Nuclear Medicine and Biology 126-127S (2023) 108642 https://doi.org/j.nucmedbio.2023.108642