P-129

Preclinical Evaluation of [¹⁸F]F-[^{nat}Lu]Lu-DOTA-rhCCK-18, the First ¹⁸F-Labeled Radiohybrid-Based Minigastrin Derivative with high Target Affinity and Tumor Accumulation

Nadine Holzleitner¹, Thomas Günther¹, Roswitha Beck¹, Daniel Di Carlo¹, Constantin Lapa², Hans-Juergen Wester¹ ¹Technical University of Munich, Germany, ²University of Augsburg, Germany

Objectives: In order to enable ¹⁸F- and ¹⁷⁷Lu-labeling within the same molecule, we previously introduced a silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N (DOTA-(D-Glu)₆-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH₂) via the side chain of a D-2,3-diaminopropionic acid (D-Dap), which led to a decelerated activity clearance and thus improved tumor retention despite a noticeably lower CCK-2R affinity (~5-fold higher *IC*₅₀ values). However, activity uptake in the kidneys was massively elevated. Hence, in this study we aimed to maintain high activity levels in the tumor while reducing kidney retention. Therefore, we substituted the (*R*)-DOTAGA- by a DOTA moiety to reduce the negative charges in direct proximity to the SiFA building block.

Methods: Synthesis of all compounds was carried out via standard Fmoc-based solid-phase peptide synthesis (SPPS). ¹⁷⁷Lu-labeling studies were performed at 90°C within 15 min (1.0 M sodium acetate buffer, pH = 5.5, 0.1 M sodium ascorbate). ¹⁸F-Labeling was carried out

at 60°C for 5 min, followed by cartridge purification. Cell-based experiments (IC_{50} determination, internalization studies) were performed on AR42J cells. Lipophilicity (depicted as *n*-octanol/PBS distribution coefficient; log $D_{7,4}$) was investigated. Biodistribution studies (n = 4) as well as μ SPECT/CT imaging (n = 1) were carried out at 1 and 24 h post-injection (p.i.) in AR42J tumor-bearing CB17-SCID mice.

Results: SPPS vielded 4–8% RP-HPLC-purified labeling precursor. ¹⁷⁷Lu-labeling proceeded quantitatively in high radiochemical purities (RCP, >95%) and molar activities ($A_m = 40 \text{ GBq}/\mu \text{mol}$). ¹⁸F-labeling resulted in radiochemical vields (RCY) of 10-30% and molar activities of $A_m \sim 85$ GBg/umol. Simple substitution of a (*R*)-DOTAGA by a DOTA mojety led to a noticeably enhanced CCK-2R affinity (~4-fold improved IC_{50} values) for almost all ^{nat}Lu-labeled compounds, pointing to the negative influence of the additional negative charge at the chelator moiety. Concomitantly, the most affine (IC_{50} : 4.7 ± 0.6 nM) compound, [¹⁹F]F-[¹⁷⁷Lu-]Lu-DOTA-rhCCK-18 ([¹⁷⁷Lu]Lu-DOTA-D-Dap([¹⁹F]F-SiFA)-(D-Glu)₈-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH₂) also revealed the highest internalization values at 6 h (~250% of reference ligand [¹⁷⁷Lu] Lu-DOTA-PP-F11N) as well as an favorable lipophilicity ($log D_{74}$: - 2.69 ±0.06). In vivo at 24 h p.i., [¹⁹F]F-[¹⁷⁷Lu]Lu-DOTA-rhCCK-18 revealed 13-fold increased activity levels in the tumor as compared to [177Lu]Lu-DOTA-PP-F11N (25.4 ± 4.7 versus 1.9 ± 0.8%ID/g), but also massively elevated retention levels in the kidneys $(134 \pm 18 \text{ versus } 3.1 \pm 0.5\% \text{ID/g})$. At 1 h p.i., high activity levels were found for [19F]F-[177Lu]Lu-DOTArhCCK-18 in the tumor $(24.1 \pm 4.2\%$ ID/g) and the kidneys $(97.2 \pm 14.0\%$ ID/g), whereas overall non-tumor organ uptake was low. μ SPECT/CT imaging studies at 1 h p.i. with the chemically identical [¹⁸F]F-[^{nat}Lu] Lu-DOTA-rhCCK-18 underlined these results, rendering this compound a valuable asset for imaging of medullary thyroid carcinoma (MTC) when ¹⁸F-labeled.

Conclusion: Substitution of a (*R*)-DOTAGA by a DOTA moiety in rhCCK ligands led to a noticeably increased CCK-2R affinity and receptor-mediated internalization, which resulted in distinctly improved activity levels in the tumor for [¹⁹F]F-[¹⁷⁷Lu]Lu-DOTA-rhCCK-18 at 1 and 24 h p.i. However, elevated kidney retention might be a limiting factor when ¹⁷⁷Lu-labeled. Nevertheless, the high kidney uptake is of lesser concern when the rhCCK ligand is ¹⁸F-labeled, which is why [¹⁸F]F-[^{nat}Lu]Lu-DOTA-rhCCK-18 might surpass the detection rate of currently clinically applied imaging agents for MTC such as ⁶⁸Ga- or ¹¹¹In-labeled CCK-2R targeted compounds.

Acknowledgements: none.

Reference none

Nuclear Medicine and Biology 126-127S (2023) 108599 https://doi.org/j.nucmedbio.2023.108599