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ABSTRACT With the increased amount of digitized historical documents, information extraction from
them gains pace. Historical maps contain valuable information about historical, geographical and economic
aspects of an era. Retrieving information from historical maps is more challenging than processing modern
maps due to lower image quality, degradation of documents and the massive amount of non-annotated digital
map archives. Convolutional Neural Networks (CNN) solved many image processing challenges with great
success, but they require a vast amount of annotated data. For historical maps, this means an unprecedented
scale of manual data entry and annotation. In this study, we first manually annotated the Third Military
Mapping Survey of Austria-Hungary historical map series conducted between 1884 and 1918 and made
them publicly accessible. We recognized different road types and their pixel-wise positions automatically by
using a CNN architecture and achieved promising results.

INDEX TERMS Convolutional neural networks, digital humanities, digital preservation, document analysis,
geospatial analysis, geospatial artificial intelligence, road type detection, image processing.

I. INTRODUCTION
Historical documents are precious cultural sources that help
researchers investigate social, historical and economic per-
spectives of the past. The digitization of them grants direct
access to researchers and the public. Nevertheless, due to
maintenance purposes, direct access to these archives could
be restricted or not possible. With the help of increased digiti-
zation processes in the last decades, they can be analyzed, and
researchers can retrieve new information. There are also orga-
nized and well-funded efforts to make digitized and georef-
erenced historical maps publicly available including detailed
metadata [1]. Recently, automatic processing techniques are
applied to the historical maps for information extraction.
Road types, intersection of roads, human settlements, forest
and flora cover information were extracted in these studies.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaochun Cheng.

For many academic disciplines, these maps are essential in
making long-term spatial quantitative analyses and assess-
ments, primarily due to the wide variety of annotated histori-
cal and geographical information they contain. They offer one
of themost comprehensive ways, if not the only way, in which
historians, archaeologists and geographers can gain insight
into how historical transport networks developed over time.
Often, however, we can only find these historical maps as
scanned archival documents, making the process of extracting
annotated information very time-consuming and complex.
The digitization andmanual annotation of 300.000 kmof road
features with more than 64,000 segments took 1250 hours
with two graduate students. Training and testing the model
lasted for 7 days maximum on GPU. As far as the complexity
is concerned, our model has 32.8M parameters. When we
searched the literature for historical map processing, the train-
ing times and complexity ofmodels are not generally reported
but Uhl et al. [2] reported that 138 million parameters used

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 62847

https://orcid.org/0000-0002-6614-0183
https://orcid.org/0000-0001-5808-0144
https://orcid.org/0000-0003-3206-0190


Y. S. Can et al.: Automatic Detection of Road Types From the Generalkarte Historical Maps

in their VGGNet-16 models. Our model has relatively lower
number of parameters, training time and complexity because
of the pretrained architectures.

CNN architectures outperformed feature extraction-based
models in the image processing field and solved many prob-
lems [8]. However, they require a large amount of anno-
tated data for training. For historical maps, this requires an
unprecedented scale of manual data entry and data annotation
which makes it challenging to use CNN models on historical
maps. Towards this effort, in this research, we would like
to contribute by making a large-scale public database with
annotated and/or labeled historical map features available.
This dataset can reproduce the shared research, as well as
enable research towards CNN training on historical maps.
The links to the repository are shared later in this paper.

The map series used in this research, the Third Military
Mapping Survey of Austria-Hungary or Generalkarte von
Mitteleuropa in German (hereafter Generalkarte),’ was cre-
ated between 1884 and 1918 by the Austro–Hungarian
Military Geographical Institute in Vienna. The map is also
known as the Third Mapping Survey of Austria-Hungary.
This surveywas the result of the third, the last and cartograph-
ically the most accurate Austro–Hungarian imperial survey-
ing effort with the massive additional geographical scope of
mapping Central and East Europe in an unprecedented topo-
graphical detail and precision between 1884 and 1918 [9].
The map series is documented in 267 individual map sheets
that cover the complete Austro–Hungarian Empire, with the
outer corners laying in as far as Cologne, Istanbul, Nizza and
Kiev. The historical map has been through many iterations
and was republished in 50 separate series since its initial
release between 1886 and 2000 [10]. Furthermore, the trans-
port facilities were of utmost importance to the surveyors of
the Generalkarte due to military purposes [11]. Therefore,
due to the size, historical impact and spatio-temporal accu-
racy, we consider focusing on this particular map series
essential for automatic feature recognition.

This research provides a novel approach for extracting
detailed semantic information of historical maps using Deep
Convolutional Neural Networks. In time, we are convinced
that CNNs will be able to accomplish the complicated task of
automating this digitization process. This research is aimed
towards this goal by making use of a large-scale manually
digitized transport network that was supervised and extracted
by hand from the Generalkarte. For preparing ground truths
of our dataset for training a CNN, we digitized a histori-
cal transport network. The digitized historical network was
initially used for the development of a spatial interaction
model to reconstruct a multimodal transport infrastructure
for Southeast Europe for around 1900. We previously con-
structed a preliminary multimodal transport network for the
entire territory of the Ottoman Empire in 1899 following
the same method of manual annotation. However, that model
had only one type of railroad and two types of roads [12].
Generalkarte, on the other hand, has five types of railroads
and 15 types of roads, as can be seen in the legend of the map

in Figure 3. We re-used the transport model and converted the
transport road segments that were digitized and used them as
ground truth datasets in our Deep CNN because the annotated
features it contains can also serve as an excellent training and
verification data set for automatized feature extraction. The
contributions of our study are three-fold:

• We created the first annotated historical map dataset for
road type detection. It includes more than 7000 images
and their labels and we made it publicly accessible.

• We applied CNNs to the Generalkarte historical map
series for road type detection with the most successful
pretrained network [4] (Resnet50) in historical map pro-
cessing.

• We also explored the performance of Unet architecture
as the pretrained network for road type detection which
has not been used in historical map processing studies.

The rest of the paper is organized as follows. The literature
on historical map processing is provided in Section 2. The
description of the map series and the dataset is presented
in Section 3. We described the methodology in Section 4.
In Section 5, the experimental results and discussion are pre-
sented. We summarize our findings and mention our planned
future works in the concluding Section 6.

II. RELATED WORKS
Recently, more and more studies have tried to extract infor-
mation automatically from historical maps with the advance
of computer vision algorithms. The researchers tried to make
sense out of these maps and make use of the retrieved infor-
mation. There are many significant challenges for automat-
ically extracting features from raster maps in geographical
information systems (GISs). The first challenge is that ele-
ments in the historical maps might overlap with each other
such as road lines, elevation contour lines, marks or soil fea-
tures and populated place names [6]. Secondly, the digitized
map could have low quality due to scanning or compression
processes, which could further complicate the image recogni-
tion task. Lastly, some old maps may be degraded that makes
the development of an automatic proceduremore challenging.

Several authors proposed automatic techniques to extract
geographical features in scanned thematic historical maps.
Some examplemaps used for feature recognition can be listed
as the topographic maps of the United States Geological Sur-
vey (USGS), a historical map of France from the 19th century
[6] and the Swiss topographic maps (Siegfried maps) [7]
(see Table 1). USGS provided maps are the most commonly
used historical maps for feature extraction.

Uhl et al. used USGS maps for human settlement footprint
retrieval in their studies [2], [3]. By applying a weakly super-
vised CNN, they achieved promising results (i.e., recall of
up to 0.96, F_measure of up to 0.79). Saeedimoghaddam and
Stepinski [5] developed a road intersection point detection
system by using USGS historical maps. They achieved a
0.8 F_measure with a fast CNN algorithm. Railroad features
were also studied in the literature. Chiang et al. [4] presented
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TABLE 1. The comparison of our study with the historical map feature extraction studies on different datasets.

FIGURE 1. Coverage of study area (in red) and the full generalkarte extent [13].

a thorough experiment for extracting railroad features from
USGS historical topographic maps as a case study. They
achieved a 23.09 IoU score with CNN + Resnet50 architec-
tures. Forest features were extracted from a historical map
of France and a Swiss topographic map (Siegfried maps).
Herrault et al. [6] achieved a 0.9 Kappa score for extracting
forest features by using an unsupervised K-means algorithm
and color space conversion. Duan et al. [15] presented a
method that automatically aligns label data with geographic
properties of historical maps. They created ground truth
labels automatically, but the alignment of these labels with
geographic map features is also a challenge. They proposed a
generalizable framework for the alignment of these ground
truth vectors. They achieved 100% correctness and 20%
completeness for river and railroad detection problems. They

improved the alignment technique in a recent study [16]. They
used reinforcement learning (RL) for aligning automatically
extracted ground truth data and map features. RL improves
especially the completeness results for detecting railroads
and rivers. Template matching from historical maps was
also tried in the literature. Budig and van Dijk [17] applied
active learning for detecting and finding positions of meta-
data images such as text or place markers from historical
maps. They achieved 80% for detecting nine image templates.
They further investigated smart crowdsourcing for extracting
building footprints from historical maps in another study [18]
to increase the annotated data. They developed an algorithm
for combining crowdsourcing answers for building footprint
detection and achieved better accuracy when compared to
individual answers.
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As can be seen from the literature, the most important
challenge is to obtain annotated data. To overcome scarce
annotated data problems, crowdsourcing, automatic anno-
tation and alignment techniques, weakly supervised CNN
algorithms were employed. This shows the importance of
annotated historical maps for improving state of art. Our
study is the first one to annotate and retrieve information from
the Generalkarte historical map series which would reveal
very substantial information on the transport infrastructure in
Southeast Europe before and during World War I. We also
applied state-of-the-art CNN architectures to this map series
for detecting seven types of roads. Although there are several
studies that extract features from different historical maps
by using machine learning techniques, our study is the most
comprehensive road analysis by usingmachine learning in the
literature.

III. DATASET DESCRIPTION
The digitized geospatial transport dataset used in this
research as ground-truth labels were manually created by the
UrbanOccupationsOETR project based on the Generalkarte.
The collection of transport features can be regarded as the
oldest topographical data set from this region that is derived
from historical maps. It was initially used to gain a better
understanding of historical transport routes and estimating
reconstructing detailed road elevation profiles. The digital
data set was created by geographically locating and ref-
erencing the individual map sheets, commonly referred to
as georeferencing. After georeferencing the historical map,
vector-based polylines were drawn manually over the corre-
sponding topographical and geographical elements. On the
whole, the Generalkarte map collection covers a majority of
Central and East Europe in a total of 267 map tiles. However,
for this research, we made use of 54 map tiles that cover
modern Bulgaria and large parts of Greece, the Republic of
North Macedonia, Serbia and Albania (see Figure 1). The
necessity for deep learning for automatic feature retrieval
of road features can be showcased very well by the time
and effort it took to digitize this historical map manually.
Between 2017 and 2019, it took two research fellows more
than 1250 hours to digitize 300.000 km of road features with
more than 64,000 segments based on this historical map.
Creating a deep learning model can significantly reduce the
time spent on creating such networks and it is our hope that
this research can be transferred and used to analyze other
areas and different periods.

Our choice to focus on the Generalkarte is not only based
on it being one of the oldest historical map collections with
accurate transport features, but also because of the rich anno-
tations represented on the map (see Figure 2 and 3). The
Austro–Hungarian cartographers were very explicit in doc-
umenting the large variety of topographical and geographical
features. This rich annotation can provide valuable informa-
tion as it gives a direct and detailed link with the historical
conditions of the study area at that time. Table 2 shows the
presence of the individual road types on the historical maps,

FIGURE 2. Generalkarte labeled example upon modern roads from
Plovdiv, Bulgaria [13].

FIGURE 3. Legend of the generalkarte and variety of roads [14].

whichwere computed after digitizing.We divided the training
and test sets by using the map tiles. The training and test sets
have an equal number of map tiles, but they sometimes have a
different number of images for training and test of some road
types. For this research, we used the following road types for
analysis (see Figure 3 for the legend of the map):
• 1) bridle paths (German: Saumweg),
• 2) cart roads (German: Karrenweg),
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TABLE 2. Different road types are included in the analysis and their
appearance on the historical map as segment count. N. stands for Nicht.
Train. stands for training and Img. stands for images.

• 3) main roads (German: Hauptstrasse),
• 4) footpaths (German: Fussweg,
• 5) country roads (German: Landstrasse)
• 6) maintained and 7) non-maintained roads (German:
Erhaltener Fahrweg and Nicht erhalterner Fahrweg
respectively).

As a public data set, we created label and image datasets
containing all features, which were automatically organized
into sub-folders using a python script. The output images
were converted from a tif file format to png to ensure com-
patibility with the deep learning training module. The dataset
contains both a dataset for training as well as testing purposes

so that our research can be recreated. Labels were stored as
CNN_Model_RCNN_PNG\labels\roadType\label.png. The
dataset was controlled manually and cleaned. Each road
type has 1000 images (256 × 256) and their correspond-
ing labels. Half of these images and labels are placed
into the training folder, and the remaining 500 of them
are put into the test folder. The dataset can be accessed
at https://urbanoccupations.ku.edu.tr/publicdatasets/.We cre-
ated one downloadable dataset that contains both the training
and test sets of images and labels.

IV. METHODOLOGY
Methodologically we separated this research into two steps.
The first step involved the creation and preparation of the
labeled features in a GIS software environment. This is
needed for our labeled dataset and validating our deep learn-
ing model. For creating suitable labeled information, we uti-
lized several geoprocessing tools, modules and python envi-
ronment available in the ArcGIS Pro software package [19],
as well as GDAL [20], an open-source python library for
geospatial data analysis. The geospatial data is divided into
training and test data in order to validate and understand
the accuracy of our input model (see Figure 4). The second
computational component of this research makes use of

FIGURE 4. The division of training and test data displayed geographically over the study area.
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Tensorflow [21] for the creation of our Deep LearningModel,
a free and open-source software library for data flow and dif-
ferentiable programming across a range of tasks, often used
for machine learning applications such as neural networks.

A. GEOSPATIAL GROUND-TRUTH DATA SET
1) PROCESSING OF HISTORICAL IMAGERY
The individual map sheets were georeferenced using a
Projected Coordinate System (Europe Lambert Conformal
Conic, ESRI: 102014) suitable for the entire research area.
The 54 individual map sheets were separately georeferenced
before digitizing. The scanned and georeferenced maps had
an image resolution of 4644 by 4097 and dpi of 96. The maps
were not preprocessed prior to creating the labeled dataset
and were used in their original form.

2) CREATION OF THE GROUND-TRUTH LABELS
OF THE GEOSPATIAL DATASET
The geospatial label dataset was created in ArcGIS Pro
software by manually drawing polyline features over geo-
referenced historical maps. Each road type was annotated
separately, allowing a more detailed reconstruction. In order
to reshape geographic polylines into labeled features usable
for the deep learning CNN model, the first step was to con-
vert polylines to polygons. We determined the width of the
new polygons by making sure that they completely covered
underlying road features from the raster-based historical map.
We showed a representation of the outcome in Figure 2.
Transforming the line segments into polygons was done by
using a buffer analysis ArcGIS Pro and using different width
fields per sub-classes.

After creating the polygon-based labeled dataset, the next
step involved the preparation for the extraction of images
and labels for the Deep Learning model. Using the ‘‘Export
training data for Deep Learning’’ geoprocessing tool in
ArcGIS Pro, we converted our polygon features to RCNN

masked images and labels. The road types were automatically
assigned to a sub-folder structure and necessarymetadata was
provided as well. Labels and images were divided into image
masks with a width of 256 by 256 pixels, with a stride overlap
of 128 by 128 pixels. The masked images were exported as a
png image file type; the labels could only be exported as tif
files. In order for our Deep Learning Training system to work,
we converted the images from tif to png files as well, using
GDAL and a python script for automating the workflow.

B. TRAINING DEEP LEARNING CNN MODEL
We used the open-source dhSegment toolbox [23] as in our
previous segmentation studies [24] and [25]. The authors
describe the toolbox as a general and flexible architecture
for pixel-wise segmentation related tasks on historical doc-
uments. This toolbox is comprised of two components. The
first component is a Fully Convolutional Neural Network
(FCNN). The scanned and digitized image of a document is
provided to the FCNN (the toolbox does not limit the size
of the image if there is enough memory to process it). The
toolbox outputs the probability map of pixels generated by
the ReLU function that belongs to the trained object types.
This map could be used to transform the prediction map to
the desired output in the post-processing step. We provided
an overview of the system in Figure 5.

The network architecture has two paths: an expanding
and contracting path, namely. These paths formed a Unet
architecture [26]. The contracting path has repeated convo-
lutional layers that reduce spatial information and increase
feature information. Conversely, the expanding path merges
the feature and spatial information with a sequence of
up-convolutions and concatenations through high-resolution
features obtained from the contracting path. The contract-
ing path follows the structure of the deep residual network
ResNet-50 [27] (it is not the same because of memory effi-
ciency reasons). The ResNet-50 architecture is demonstrated
in yellow blocks. The number of feature channels is limited

FIGURE 5. The architecture of the dhSegment. It forms a unet architecture. It was adapted from [22], p. 9, 
2019 IEEE.
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to 512 in the expansive path to restrict the number of training
parameters, thus decreasing the contracting path (light blue
arrows). Expanding steps double the size of the feature map
and halves the feature channel number. The output prediction
has an equal size with the input image, and the number of
feature channels forms the required number of classes. This
last convolution layer is parameterized as follows: c (number
of classes) filters, 3 × 3 kernel, stride and padding of 1.
It is followed by a softmax layer that calculates the class
probabilities of each pixel.

The expanding path is comprised of five blocks plus a
final convolutional layer which assigns a class to each pixel.
Each deconvolutional step is comprised of an upscaling of the
former block feature map, a concatenation of the upscaled
feature map with a copy of the corresponding contracting
feature map and a 3 × 3 convolutional layer followed by a
rectified linear unit (ReLU). The number of feature channels
in step i = 4 and i = 5 is diminished to 512 by a 1 × 1
convolution before concatenation for reducing the number of
parameters and memory usage. The upsampling is achieved
by applying a bilinear interpolation.

The input images are map fragments that have 256 × 256
dimensions. Paths use pretrained weights from a general
image classification task where the system learns high-level
features (ImageNet). These weights increase robustness and
improve generalization. The system’s architecture has 32.8M
of parameters, but only 9.36M parameters are required to be
trained because of the pretrained weights in the contracting
path. With the pretrained weights in the network, the training
time was decreased substantially [23]. We used GPUs for
training the models.

For training the models, L2 regularization is used with
10-6 weight decay [23]. We use a learning rate with an expo-
nential decay rate of 0.95 and an initial value in [10-5; 10-4].
Xavier’s initialization [28] and Adam optimizer [29] were
employed. Batch renormalization [30] was used to evade the
lack of diversity issue. The toolbox also downsized images
and divided them into 300 to 300 patches to fit the memory
better and to provide batch training. By adding the margins,
the toolbox prevents border effects. The training process
uses different data augmentation methods such as rotation
(from −0.2 to 0.2 rad), scaling (coefficient from 0.8 to 1.2)
and mirroring. The output of the neural network can be used
in post-processing steps. We trained dhSegment on our data
with 100 epochs since the model is pre-trained and converges
fastly. We used mini-batches of size 5.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we provided the results for detecting the
selected seven different road types. We used two different
pretrained architectures, namely Unet and Resnet50. We first
describe themetrics and provide the results, and discuss them.

A. PREPARING THE DATASET FOR EVALUATION
We trained 14 different models for evaluating the perfor-
mance of our road type detection (seven different road types)

system. Half of these models were trained by using pre-
trained Resnet50 architecture, and the other half were trained
by using a pretrained Unet architecture. These architectures
were selected among the commonly applied networks such as
Vgg16, GoogleNet, Resnet50 and Unet. Resnet50 is reported
to have better IoU results than Vgg16 and GoogleNet when
applied to the historical maps [4]. We selected Unet archi-
tecture because it is relatively new and it is not applied in
historical map processing studies before. We balanced the
number of images in the training and test sets by remov-
ing extra samples from the majority sets. Map images were
divided into 50% training and 50% test parts in this way.
Binary classification models were formed for each road type
(road versus background).

B. METRICS
To assess the performance of our road detection scheme,
five metrics were employed. These metrics are pixel-wise
classification accuracy, Intersection over Union, pixel-wise
precision, recall and F_measure. They are widely used in dif-
ferent image analysis applications for detecting objects [31].
We will briefly describe these metrics in this section.

1) PIXEL-WISE CLASSIFICATION ACCURACY
The first metric is pixel-wise accuracy. It can be calculated
by dividing the accurately classified pixels in all documents
by the number of all pixels (for all object types).

2) INTERSECTION OVER UNION
We also calculated the Intersection over Union (IoU) metric.
The segmented objects’ actual area can be called the ground
truth, whereas the connected areas are formed by connecting
the adjacent pixel classifications that belong to the same class
can be called the prediction area. The IoU can be computed
by dividing the intersection of these two areas into the union
of these areas.

3) PIXEL-WISE PRECISION, RECALL AND F_measure
We calculated and used the pixel-wise precision, recall and
F_measure metrics. They are computed for all pixels on the
documents (for all road types). Precision and recall metrics
are used to calculate the F_measure. It is widely used in the
cases where there is a class imbalance to present classification
performance in more detail. Their formulas are provided as:

Precision =
TruePositive

TruePositive+ FalsePositive
(1)

Recall =
TruePositive

TruePositive+ FalseNegative
(2)

Fmeasure =
2× Precision× Recall
Precision+ Recall

(3)

C. ROAD TYPE DETECTION RESULTS
For each road type, we trained a CNN model and tested
the performance of these models on the test sets. We used
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FIGURE 6. A sample prediction of our system. In the top left, the original
map; in the top right, the manual label that shows the road on the map.
We can see the binary prediction of our system at the bottom.

TABLE 3. IoU and pixel-wise accuracy results obtained by using the
pretrained Resnet50 architecture are provided.

TABLE 4. IoU and pixel-wise accuracy results obtained by using the
pretrained unet architecture are provided.

pretrained Resnet-50 and Unet models for each road type and
extracted results. The obtained results are presented with four
metrics in Tables 3,4,6, and 7. A sample prediction output

TABLE 5. Precision, recall and F_measure results obtained by using the
pretrained Resnet50 architecture are provided.

TABLE 6. Precision, recall and F_measure results obtained by using the
pretrained unet architecture are provided.

of our system, the input image and the ground truth labels
are shown in Figure 6. Visualization results for a sample
road type are demonstrated in Figure 7. Using a pretrained
Unet architecture achieves better results when compared to
the Resnet50 architecture which shows that it is more suit-
able for these types of historical map data. Furthermore,
the best accuracies are obtained when detecting Saumweg
and Karrenweg and Erhaltener Fahrweg road types in terms
of F_measure, IoU and pixel-wise accuracy. These roads are
frequently seen, and their number of images is higher than the
other road types. Their detection accuracies are then higher.
Furthermore, CNN architectures require a vast amount of data
for training. Although we have one of the most extensive
datasets for historical maps, they need more training data
for some road types. Another important factor that affects
the classification performance is the representation of road
legends. Some road type legends could not be distinguished
from the background easily due to the thickness, color, style.
Therefore, for these road types, the F_measure drops to 0.10,
which is a relatively low score. However, it is comparable
to the results seen in the literature for processing historical
maps.

FIGURE 7. Visual results for detecting Saumweg road type with unet pretrained architecture. The left figure shows the
global steps per second, the middle figure shows loss and the right figure shows the learning rate with changing steps as
a horizontal axis.
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When we compare our work with the segmentation tech-
niques applied to different historical maps, our results
were aligned with the best-reported results in the literature
(see Table 1 for comparison with railroad feature extraction
study [3]). Note that the results should be compared with
other studies that worked on historical maps in a similar
era. When the maps become more recent, the accuracies
increase due to the increase in the quality of the maps.
Furthermore, because the different techniques were tried in
different datasets created for each particular study in the
literature, one could not infer the success of a technique over
others.

VI. CONCLUSION
In this study, first, the Generalkarte historical map series
are manually annotated. The different road types and their
pixel-wise positions are detected automatically by using a
CNN classifier. We achieved promising results for frequently
seen road types such as Saumweg, Karrenweg and Erhal-
tener Fahrweg. For these road types, we achieved comparable
results (around 0.5 F_measure, 0.45 IoU and 0.93 pixel-wise
accuracy) with the literature for automatic processing maps
of the 19th century. Furthermore, we compared the perfor-
mance of Resnet50 and Unet architectures. Pretrained Unet
architecture achieves better performance when compared to
the pretrained Resnet50 architecture for each road type. Clas-
sification accuracy is also affected by the representation of
road legends. As mentioned before, the thickness, color or
style of the road type legends may increase the difficulty of
recognizing the road types. Therefore, for the challenging
road types, the F_measure may decrease to 0.10. However,
these results are comparable to the results seen in the lit-
erature for processing historical maps. These results show
that our dataset is noisy. In future work, we plan to apply
preprocessing techniques and detect and remove the names
of the places to improve the performance of our system.
We further plan to remove the background (which has varying
colors depending on the land types) and contour lines that
complicate the road detection process. We also plan to apply
data augmentation and deep transfer learning to overcome the
limited data problem of some road types in our future work.
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