
Journal of Symbolic Computation 107 (2021) 67–105
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Towards a computational proof of Vizing’s 

conjecture using semidefinite programming and 

sums-of-squares ✩,✩✩

Elisabeth Gaar a, Daniel Krenn b, Susan Margulies c, 
Angelika Wiegele a

a Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria
b Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
c United States Naval Academy, Annapolis, MD, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2019
Accepted 15 January 2021
Available online 1 February 2021

Keywords:
Vizing’s conjecture
Algebraic model
Gröbner basis
Sum-of-squares problems
Semidefinite programming

Vizing’s conjecture (open since 1968) relates the product of the 
domination numbers of two graphs to the domination number of 
their Cartesian product graph. In this paper, we formulate Vizing’s 
conjecture as a Positivstellensatz existence question. In particular, 
we select classes of graphs according to their number of vertices 
and their domination number and encode the conjecture as an 
ideal/polynomial pair such that the polynomial is non-negative on 
the variety associated with the ideal if and only if the conjecture is 
true for this graph class. Using semidefinite programming we ob-
tain numeric sum-of-squares certificates, which we then manage 
to transform into symbolic certificates confirming non-negativity 
of our polynomials. Specifically, we obtain exact low-degree sparse 
sum-of-squares certificates for particular classes of graphs.
The obtained certificates allow generalizations for larger graph 
classes. Besides computational verification of these more general 

✩ An extended abstract containing the ideas of this optimization-based approach for tackling Vizing’s conjecture appeared as 
Gaar et al. (2019). This article now also contains the full and complete proofs, new certificates only conjectured in the extended 
abstract, and further theoretical and computational results for particular cases. This also lead to a restructuring of the whole 
article, and more examples and many more remarks explaining the implications of the results are provided.
✩✩ The authors gratefully acknowledge the support of Fulbright Austria (via a Visiting Professorship at Alpen-Adria-Universität 
Klagenfurt). This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under the Marie Skłodowska-Curie grant agreement No 764759, the Austrian Science Fund (FWF): I 3199-N31 and the Austrian 
Science Fund (FWF): P 28466-N35.

E-mail addresses: elisabeth.gaar@aau.at (E. Gaar), math@danielkrenn.at (D. Krenn), margulie@usna.edu (S. Margulies), 
angelika.wiegele@aau.at (A. Wiegele).
https://doi.org/10.1016/j.jsc.2021.01.003
0747-7171/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jsc.2021.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2021.01.003&domain=pdf
mailto:elisabeth.gaar@aau.at
mailto:math@danielkrenn.at
mailto:margulie@usna.edu
mailto:angelika.wiegele@aau.at
https://doi.org/10.1016/j.jsc.2021.01.003
http://creativecommons.org/licenses/by/4.0/


E. Gaar, D. Krenn, S. Margulies et al. Journal of Symbolic Computation 107 (2021) 67–105
certificates, we also present theoretical proofs as well as conjec-
tures and questions for further investigations.

© 2021 The Authors. Published by Elsevier Ltd. This is an open 
access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sum-of-squares and its relationship to semidefinite programming is a cutting-edge tool at the 
forefront of polynomial optimization (Blekherman et al., 2013). Activity in this area has exploded 
over the past two decades to span areas as diverse as real and convex algebraic geometry (Laurent, 
2008), control theory (Jarvis-Wloszek et al., 2005), proof complexity (Grigoriev and Vorobjov, 2001), 
theoretical computer science (Barak et al., 2016) and even quantum computation (Barak et al., 2017). 
Systems of polynomial equations and other non-linear models are similarly widely known for their 
compact and elegant representations of combinatorial problems. Prior work on polynomial encodings 
includes colorings (Alon and Tarsi, 1992; Hillar and Windfeldt, 2008), stable sets (De Loera et al., 
2009; Lovász, 1994), matchings (Fischer, 1988), and flows (Onn, 2004). In this project, we combine the 
modeling strength of systems of polynomial equations with the computational power of semidefinite 
programming and devise an optimization-based framework for a computational proof of an old, open 
problem in graph theory, namely Vizing’s conjecture.

Vizing’s conjecture was first proposed in 1968, and relates the sizes of minimum dominating sets 
in graphs G and H to the size of a minimum dominating set in the Cartesian product graph G�H ; a 
precise formulation follows as Conjecture 2.1. Prior algebraic work on this conjecture (Margulies and 
Hicks, 2012) expressed the problem as the union of a certain set of varieties and thus the intersection 
of a certain set of ideals. However, algebraic computational results have remained largely untouched. 
In this project, we present an algebraic model of Vizing’s conjecture that equates the validity of the 
conjecture to the existence of a Positivstellensatz, or a sum-of-squares certificate of non-negativity 
modulo a carefully constructed ideal.

By exploiting the relationship between the Positivstellensatz and semidefinite programming, we 
are able to produce sum-of-squares certificates for certain classes of graphs where Vizing’s conjecture 
holds. Thus, not only are we demonstrating an optimization-based approach towards a computational 
proof of Vizing’s conjecture, but we are presenting actual minimum degree non-negativity certifi-
cates that are algebraic proofs of instances of this combinatorial problem. Although the underlying 
graphs do not further what is known about Vizing’s conjecture at this time (indeed the combinatorics 
of the underlying graphs is fairly easy), such a construction of “combinatorial” Positivstellensätze is 
successfully executed for the first time here. The construction process is an elegant combination of 
computation, guesswork, computer algebra and proofs relying on clever definitions of certain polyno-
mials as well as tricky manipulations.

Our paper is structured as follows. In Section 2, we present the necessary background and defi-
nitions from graph theory and commutative algebra. In Section 3, we begin the heart of the paper: 
we describe the ideal/polynomial pair that models Vizing’s conjecture as a sum-of-squares problem. 
This pair is parametrized by the sizes nG and nH of the graphs G and H respectively, and on the 
sizes kG and kH of a minimum dominating set in these graphs. In Section 4, we describe our precise 
process for finding the sum-of-squares certificates along with an example. In Sections 5 and 6, we 
present our computational results and the Positivstellensätze, i.e., the theorems that arise for various 
generalizations. In particular, in Section 5, we introduce certain symmetric polynomials that not only 
allow for a compact notation, but also are vital in proving correctness of the certificates. With the 
help of the developed calculus, we investigate the graph classes where kG = nG and kH = nH −d and 
present certificates for d ∈ {0, . . . , 4} (all other parameters arbitrary). We provide formal proofs for 
d ≤ 2 and computational proofs using SageMath The SageMath Developers (2019) for d ≤ 4. Moreover, 
for fixed integer d, we explain an algorithm for computing a certificate or proving that there is none 
of the conjectured form. Then, in Section 6, the case kG = nG − 1 and kH = nH − 1 is considered. For 
this class, we obtain certificates for nH ∈ {2, 3} (nG arbitrary) and prove their correctness. Finally, in 
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Section 7, we summarize our project, state some concluding remarks and present our ideas for future 
work. For the sake of completeness, an appendix provides certificates (along with proofs) that arose 
during the application of our method but were dismissed after we obtained certificates with simpler 
forms.

The code accompanying this article can be found at https://gitlab .com /dakrenn /vizing -sdp -sos.1

2. Backgrounds and definitions

In this section, we recall all necessary definitions from graph theory, polynomial ideals and com-
mutative algebra.

2.1. Definitions from graph theory

Given a graph G with vertex set V (G), a set D ⊆ V (G) is a dominating set in G if for each v ∈
V (G) \ D , there is a u ∈ D such that v is adjacent to u (i.e., there is an edge between u and v) in G . 
A dominating set is called minimum if there is no dominating set of smaller size (i.e., cardinality). The 
domination number of G , denoted by γ (G), is the size of a minimum dominating set in G . The decision 
problem of determining whether a given graph has a dominating set of size k is NP-complete (Garey 
and Johnson, 1979).

Given graphs G and H with edge sets E(G) and E(H) respectively, the Cartesian product graph 
G�H has vertex set2 V (G) × V (H) and edge set

E(G�H) = {{gh, g′h′} : g = g′ and
{

h,h′} ∈ E(H), or

h = h′ and
{

g, g′} ∈ E(G)
}
.

In 1968, Vadim G. Vizing conjectured the following beautiful relationship between domination 
numbers and Cartesian product graphs:

Conjecture 2.1 (Vizing (1968)). Given graphs G and H, then the inequality

γ (G)γ (H) ≤ γ (G�H)

holds.

Example 2.2. In this example, we demonstrate the Cartesian product graph of two C4 cycle graphs:

G = C4

H = C4

G�H

1 The code at https://gitlab .com /dakrenn /vizing -sdp -sos is meant to be used with the open source mathematics software 
Sagemath The SageMath Developers (2019) and the solver MOSEK MOSEK ApS (2017) within MATLAB.

2 It will be convenient to use the short notation gh = (g, h) for an element of the vertex set V (G) × V (H) of the Cartesian 
product graph G�H .
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In these graphs, represents a vertex in a minimum dominating set, and Vizing’s conjecture holds 
with equality: γ (G) γ (H) = 2 · 2 = 4 = γ (G�H). However, observe that some copies of G in G�H do 
not contain any vertices of the dominating set, i.e., they are dominated entirely by vertices in other 
“layers” of the graph. This example highlights the difficulty of Vizing’s conjecture. ©

2.2. Historical notes

Vizing’s conjecture is an active area of research spanning over fifty years. Early results have focused 
on proving the conjecture for certain classes of graphs. For example, in 1979, Barcalkin and German 
(1979) proved that Vizing’s conjecture holds for graphs satisfying a certain “partitioning condition” 
on the vertex set. The idea of a “partitioning condition” inspired work for the next several decades, as 
Vizing’s conjecture was shown to hold on paths, trees, cycles, chordal graphs, graphs satisfying certain 
coloring properties, and graphs with γ (G) ≤ 2. These results are clearly outlined in the 1998 survey 
paper by Hartnell and Rall (1998). In 2004, Sun (2004) showed that Vizing’s conjecture holds on 
graphs with γ (G) ≤ 3. There are also results proving a weaker version of the conjecture, for example, 
the recent result of Zerbib (2019) showing that γ (G) γ (H) +max{γ (G), γ (H)} ≤ 2 γ (G�H). The 2009 
survey paper (Brešar et al., 2012) summarizes the work from 1968 to 2008, contains new results, new 
proofs of existing results, and comments about minimal counter-examples.

2.3. Definitions around polynomial ideals and sum-of-squares

Our goal is to model Vizing’s conjecture as a semidefinite program. In particular, we will create 
an ideal/polynomial pair such that the polynomial is non-negative on the variety associated with the 
ideal if and only if Vizing’s conjecture is true.

In this subsection, we present a brief introduction to polynomial ideals, and the relationship 
between non-negativity and sum-of-squares. This material is necessary for understanding our poly-
nomial ideal model of Vizing’s conjecture. For a more thorough introduction to this material see 
Blekherman et al. (2013) and Cox et al. (2007).

Throughout this section, let I be an ideal in a polynomial ring P = K[z1, . . . , zn] over a field 
K ⊆R. The variety of the ideal I is defined as the set

V(I) = {z∗ ∈K
n : f (z∗) = 0 for all f ∈ I}

with K being the algebraic closure of K. The variety V(I) is called real if V(I) ⊆Rn .
We say that the ideal I is radical if whenever f m ∈ I for some polynomial f ∈ P and integer m ≥ 1, 

then f ∈ I . It should be mentioned that radical ideals and varieties are closely connected.3

The concrete ideals that we are using later on are all radical. This is a consequence of the following 
lemma.

Lemma 2.3. (Kreuzer and Robbiano, 2000, Section 3.7.B, pg. 246) Let I be an ideal with finite variety V(I). If 
the ideal I contains a univariate square-free polynomial in each variable, then I is radical.

The notion square-free implies that when a polynomial is decomposed into its unique factorization, 
there are no repeated factors. For example, (z2

1 + z2)(z4
1 + 2z3 + 3) is square-free, but (z2

1 + z2)(z4
1 +

2z3 + 3)3 is not. In particular, Lemma 2.3 implies that ideals containing z2
i − zi = zi(zi − 1) in each 

variable (i.e., boolean ideals) are radical.
In this work, we will make heavy use of one of the most prominent theorems of algebra, namely 

Hilbert’s Nullstellensatz.

3 If the ideal I is radical, then I = I(V(I)) where I(V(I)) is the ideal vanishing on V(I). We do not need this statement in 
our paper explicitly—the spirit of the very same, however, is present.
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Theorem 2.4 (Hilbert’s Nullstellensatz). Let K be a field (not necessarily real, as assumed everywhere else), 
P =K[z1, . . . , zn] a polynomial ring, I ⊆ P an ideal and f ∈ P . If f (z∗) = 0 for all z∗ ∈ V(I), then there is a 
non-negative integer r with f r ∈ I .

Remark 2.5. Our set-up implies the following:

• If the ideal I is radical, then f (z∗) = 0 for all z∗ ∈ V(I) implies f ∈ I .
• If I = 〈 f1, . . . , fq〉 for some f1 , . . . , fq ∈ P , then it suffices to check all z∗ that are common zeros 

of f1 , . . . , fq (over the algebraic closure K) instead of all z∗ ∈ V(I).

Therefore, if both assumptions are satisfied, then f (z∗) = 0 for all z∗ that are common zeros of f1 , 
. . . , fq (over the algebraic closure K) implies f ∈ I . �

We continue with our background by recalling the necessary notation for sum-of-squares for the 
ideal I of the polynomial ring P . As usual, we write f ≡ h mod I whenever f = h + g for some g ∈ I .

Definition 2.6. Let � be a non-negative integer. A polynomial f ∈ P is called �-sum-of-squares modulo I
(or �-sos modulo I), if there exist polynomials s1 , . . . , st ∈ P with degrees deg si ≤ � for all i ∈ {1, . . . , t}
and

f ≡
t∑

i=1

s2
i mod I.

In the context of real-valued polynomials as we have it, algebraic identities like f =∑t
i=1 s2

i + g for 
some g ∈ I , are often referred to as Positivstellensatz certificates of non-negativity, and these identities 
can be found via semidefinite programming, which is at the heart of this project. We present a first 
example now and will describe precisely how these certificates are obtained in Section 4.

Example 2.7. Let I = 〈z2
1 − z1, z2

2 − z2, z1z2 − 1
〉
. In this case,

z1 + z2 − 2 = (z1 − z2)
2 − (z2

1 − z1) − (z2
2 − z2) + 2(z1z2 − 1)

≡ (z1 − z2)
2 mod I

and the polynomial z1 + z2 − 2 is said to be 1-sos modulo I . The certificate consists of the single 
polynomial s1 = z1 − z2 . ©

It is well-known that not all non-negative polynomials can be expressed as a sum-of-squares. 
However, in the particular case when the ideal is radical and the variety is finite, we can state the 
following.

Lemma 2.8. Given a radical ideal I with a finite real variety and a polynomial f with f (V(I)) ⊆ R. Then f
is non-negative on the variety, i.e., ∀z∗ ∈ V(I) : f (z∗) ≥ 0, if and only if there exists a non-negative integer �
such that f is �-sos modulo I .

Proof. Let f be a polynomial that can be expressed as a sum-of-squares modulo I , say f ≡∑t
i=1 s2

i
mod I . Since all polynomials in the ideal I vanish on the variety by definition and since the real-
valued 

∑t
i=1 s2

i is clearly non-negative, f is non-negative on the variety V(I).
To prove the other direction, we recall a well-known argument. Suppose we have a polynomial f

with f (z∗) ≥ 0 for all z∗ ∈ V(I). Suppose further that the finite variety V(I) equals 
{

z∗
1, . . . , z∗

t

}
for 

a suitable t . We now construct t interpolation polynomials f i for i ∈ {1, . . . , t} (see Gasca and Sauer, 
2012) such that
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f i(z∗) =
{

1 z∗ = z∗
i ,

0 z∗ �= z∗
i

for all z∗ ∈ V(I). Observe that the square of an interpolating polynomial is again an interpolating 
polynomial. Therefore, the difference polynomial

f (z) −
t∑

i=1

f 2
i (z) f (z∗

i ) (2.1)

vanishes on every point
{

z∗
1, . . . , z∗

t

}
in the variety. We now use Hilbert’s Nullstellensatz (Theo-

rem 2.4): Since the ideal I is radical, we apply Remark 2.5 on the difference polynomial (2.1) and 
get that it is in I . Therefore, if we let

si = f i(z)
√

f (z∗
i ),

we then see that

f ≡
t∑

i=1

s2
i mod I. �

We observe that the � in this case is quite large, since it is the degree of the interpolating polyno-
mial f i , which depends on the number of points in the variety. However, we will rely on the fact that 
the sum-of-squares representation is not unique, and there may exist Positivstellensatz certificates of 
much lower degree, within reach of computation. As we will see in Section 5 and 6, this does indeed 
turn out to be the case.

3. Vizing’s conjecture as a sum-of-squares problem

In this section, we describe Vizing’s conjecture as a sum-of-squares problem. Towards that end, 
we will first define ideals associated with graphs G , H and G�H , and then finally describe an ideal/
polynomial pair where the polynomial is non-negative on the variety of the ideal if and only if Vizing’s 
conjecture is true. We begin by creating an ideal where the variety of solutions corresponds to graphs 
with a given number of vertices and size of a minimum dominating set.

The notation underlying all of the definitions in this section—we will use it also through the whole 
article—is as follows. Let nG and kG ≤ nG be fixed positive integers, and let G be the class of graphs 
on nG vertices with a fixed4 minimum dominating set DG of size kG . We then turn the various edges 
“on” or “off” (by controlling a boolean variable egg′ for each possible edge

{
g, g′}) such that each 

point in the variety corresponds to a specific graph G ∈ G .

Definition 3.1. Set eG = {egg′ : {g, g′}⊆ V (G)
}

. The ideal IG ⊆ PG = K[eG ] is defined by the system 
of polynomial equations5

4 We fix the vertices of the dominating set without loss of generality as this corresponds to a simple renaming of the vertices. 
Doing this avoids the introduction of additional boolean variables for the vertices and reduces the size of the corresponding 
isomorphism group of the variety. It is therefore algorithmically favorable.

5 Being precise, the ideal IG is defined by the polynomials on the left-hand side of the equations (3.1a), (3.1b) and (3.1c). 
However, we think that the current phrasing provides the better insight and is closer to the intended way of thinking for this 
work.

If one would like to write equations in a formally correct way, one first needs to evaluate the polynomial on the left-
hand side at some suitable point, meaning to substitute the variables of the polynomial ring by real values. For example, the 
variable egg′ ∈ PG is substituted by some (possibly a priori unknown) e∗

gg′ ∈R, therefore the polynomial on the left-hand side 
of (3.1a) becomes the equation (e∗

gg′ )2 − e∗
gg′ = 0. Notation 3.2 is also related to this issue and brings the connection to the 

points in the associated variety.
We will, however, always be precise when the distinction between variable and evaluated (starred) form matters.
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e2
gg′ − egg′ = 0 for

{
g, g′}⊆ V (G), (3.1a)∏

g′∈DG

(1 − egg′) = 0 for g ∈ V (G) \ DG , (3.1b)

∏
g′∈V (G)\S

⎛⎝∑
g∈S

egg′

⎞⎠= 0 for S ⊆ V (G) where |S| = kG − 1. (3.1c)

Notation 3.2. Throughout this paper, we will use the following notations: We will use z for the tuple 
of variables of the polynomial ring P , so P = K[z]. When considering the variety V(I) associated to 
an ideal I ⊆ P , we use the notation z∗ ∈ V(I) for the elements in this variety.

Note that the polynomial ring variables (which are the components of z) correspond bijectively 
to the components of z∗ . In particular we will use e∗

gg′ for the component of z∗ = e∗
G ∈ V(IG) corre-

sponding to the polynomial ring variable egg′ ∈ PG .

Remark 3.3. Definition 3.1 is meaningful even in the case that nG = 1. The only vertex must be in the 
dominating set, so kG = 1. Pairs

{
g, g′} cannot be chosen from the one-element set V (G), thus the 

set of variables eG is empty. This implies PG = K[eG ] is the polynomial ring over K in no variables 
(i.e., isomorphic to K).

The polynomials defining the ideal IG disappear: There are no polynomials coming from (3.1a)
again because of non-existing pairs

{
g, g′}. Also, there are no polynomials coming from (3.1b) as 

V (G) \ DG is empty because both V (G) and DG consist exactly of the same vertex. There is a con-
tribution from (3.1c) for S being the empty set, however this is the equation 0 = 0, so again no true 
contribution. Thus, the ideal IG ⊆ PG only consists of 0.

This, in turn, means that the variety V(IG) is “full” meaning in our particular situation being the 
set containing the empty tuple only. �

Theorem 3.4. The points in the variety V(IG) are in bijection to the graphs in G .

Proof. For nG = kG = 1 this is clearly true, as there is exactly one element in both V(IG) and G .
For nG � 2 consider any point z∗ ∈ V(IG). We use Notation 3.2. Since equations (3.1a) turn the 

edges “on” (e∗
gg′ = 1) or “off” (e∗

gg′ = 0), the point z∗ defines a graph G in nG vertices. Equations (3.1b)
iterate over all the vertices inside the set DG , and ensure that for each vertex outside the set at least 
one edge from a vertex inside the set to this vertex is “on”. Therefore, DG is a dominating set. Finally, 
equations (3.1c) iterate over all sets S of size kG − 1 and ensure that at least one vertex outside S is 
not incident to any vertex inside S for any S . Therefore, no set S of size kG − 1 is a dominating set. 
Thus, every point z∗ ∈ V(IG) corresponds to a graph G on nG vertices with a minimum dominating 
set of size kG .

With the intuition given above it is straightforward to construct a point in V(IG) for a graph on 
nG vertices with a minimum dominating set of size kG . �

Similarly, for fixed positive integers nH and kH ≤ nH , let H be the class of graphs on nH ver-
tices and a minimum dominating set of size kH . Again, we fix the dominating set to some DH to 
reduce isomorphisms within the variety. Furthermore let the ideal IH be defined on the polynomial 
ring PH =K[eH] with eH = {ehh′ : {h,h′}⊆ V (H)

}
such that the solutions in the variety V(IH) are 

in bijection to the graphs in H.
Next, we define the graph class G�H and the ideal IG�H . For the above classes G and H, the 

graph class G�H is the set of product graphs G�H for G ∈ G and H ∈ H. The new variables needed 
for the ideal are the variables corresponding to the vertices in the product graph and indicate if such 
a vertex is in the dominating set or not. Let xG�H = {xgh : g ∈ V (G), h ∈ V (H)

}
and set PG�H =

K[eG ∪ eH ∪ xG�H].
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Definition 3.5. The ideal IG�H ⊆ PG�H is defined by the system of polynomial equations

x2
gh − xgh = 0, (3.2a)

(
1 − xgh

)( ∏
g′∈V (G)

g′ �=g

(
1 − egg′ xg′h

))( ∏
h′∈V (H)

h′ �=h

(
1 − ehh′ xgh′

))= 0, (3.2b)

for g ∈ V (G) and h ∈ V (H).

Observe that we have no restrictions on the edge variables in this definition. It is only used as a 
stepping stone to the final and most important ideal in our polynomial model.

Definition 3.6. For graph classes G and H, we set Iviz to be the ideal generated by the elements of 
IG , IH and IG�H .

Note that our definition of Iviz depends on the specific parameters nG , nH , kG and kH .

Notation 3.7. Analogously to Notation 3.2 we will write z∗ ∈ V(Iviz) for the elements of the variety 
of Iviz . We will use e∗

gg′ , e∗
hh′ and x∗

gh for the component of z∗ corresponding to the polynomial ring 
variables egg′ ∈ PG , ehh′ ∈ PH and xgh ∈ PG�H respectively.

Theorem 3.8. The points in the variety V(Iviz) are in bijection to the triples (G, H, D) where G is a graph in 
G , H is a graph in H and D is a dominating set of any size of G�H.

Proof. We have already demonstrated in Theorem 3.4 that V(IG), V(IH) are in bijection to the 
graphs in nG , nH vertices with minimum dominating sets of size kG , kH respectively. It remains 
to investigate the restrictions placed on the xgh variables, which denote whether or not the vertex 
gh ∈ V (G�H) appears in the dominating set of the product graph.

Let z∗ ∈ V(Iviz) be a point in the variety. We use Notation 3.2. With the arguments above this point 
induces a graph G ∈ G and a graph H ∈H. Furthermore equations (3.2a) force the vertex variables xgh
to evaluate to “on” (x∗

gh = 1) or “off” (x∗
gh = 0). We define D such that the vertex gh is in D if x∗

gh = 1
and is outside D otherwise. Equations (3.2b) ensure that D is a dominating set, because every vertex 
gh is dominated. Indeed, it is either in the set itself (i.e., 1 − x∗

gh = 0), or it is adjacent to a vertex in 
the dominating set D via an edge from the underlying graph in G or the underlying graph in H. In 
particular, the edge 

{
g, g′} is “on” and the vertex g′h is in the dominating set (e∗

gg′ = 1 and x∗
g′h = 1), 

or the edge 
{

h,h′} is “on” and the vertex gh′ is in the dominating set (e∗
hh′ = 1 and x∗

gh′ = 1). In 
either of these cases, the vertex gh of the box graph is dominated. Therefore, the points in the variety 
V(Iviz) are in bijection to the graphs in nG , nH vertices with minimum dominating sets of size kG , 
kH respectively, and their corresponding product graph with a dominating set D of any size.

With the intuition given above it is straightforward to construct a point in V(IG) for graphs G , H
and a dominating set D in G�H . �

Observe that there are no polynomials in Iviz enforcing minimality on the dominating set in the 
product graph. This is essential when we tie all of the definitions together and model Vizing’s conjec-
ture as a sum-of-squares problem. In particular, we model Vizing’s conjecture as an ideal/polynomial 
pair, where the polynomial must be non-negative on the variety associated with the ideal if and only 
if Vizing’s conjecture is true.

Definition 3.9. Given the graph classes G and H, define

fviz =
( ∑

gh∈V (G)×V (H)

xgh

)
− kGkH.
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Theorem 3.10. Vizing’s conjecture is true if and only if for all positive integer values of nG , kG , nH and kH
with kG ≤ nG and kH ≤ nH , fviz is non-negative on V(Iviz), i.e.,

∀z∗ ∈ V(Iviz) : fviz(z∗) ≥ 0.

Proof. Assume that Vizing’s conjecture is true, and fix the values of nG , kG , nH and kH . Therefore, for 
all graphs G ∈ G and H ∈H, we have γ (G�H) ≥ γ (G)γ (H) which is equivalent to γ (G�H) −kGkH ≥
0. The sum

∑
gh∈V (G)×V (H) x∗

gh coming from fviz equals exactly the size of the dominating set in the 
box graph G�H . Therefore, we have fviz(z∗) ≥ 0 for all z∗ ∈ V(Iviz).

Similarly, if fviz(z∗) ≥ 0 for all z∗ ∈ V(Iviz), every dominating set in G�H has size at least kGkH . 
In particular, the minimum dominating set in G�H has size at least kGkH and Vizing’s conjecture is 
true. �
Corollary 3.11. Vizing’s conjecture is true if and only if for all positive integer values of nG , kG , nH and kH
with kG ≤ nG and kH ≤ nH , there exists an integer � such that fviz is �-sos modulo Iviz .

Proof. The ideal Iviz contains the univariate polynomial z2 − z for each variable. Therefore, by 
Lemma 2.3, Iviz is radical. Due to Lemma 3.8, the variety V(Iviz) is finite and obviously it is real. 
Therefore, by Lemma 2.8, we know that a polynomial is non-negative on V(Iviz), if and only if there 
exists an integer � such that the polynomial is �-sos modulo Iviz . Hence the result follows from The-
orem 3.10. �

In this section, we have drawn a parallel between Vizing’s conjecture and a sum-of-squares prob-
lem. We defined the ideal/polynomial pair (Iviz , fviz) such that fviz(z∗) ≥ 0 for all z∗ ∈ V(Iviz) if and 
only if Vizing’s conjecture is true. In the next section, we describe how to find these Positivstellensatz 
certificates of non-negativity, or equivalently, these Positivstellensatz certificates that Vizing’s conjec-
ture is true.

4. Methodology

4.1. Overview of the methodology

In our approach to Vizing’s conjecture we “partition” the graphs G , H and G�H by their sizes 
(number of vertices) nG and nH and by the sizes of their dominating sets kG and kH . Note that we 
aim for certificates for all partitions as this would prove the conjecture. However in the following we 
present our method which works for a fixed partition (i.e., for fixed values of nG , kG , nH and kH), 
and only later relax this and generalize to parametrized partitions.

The outline is as follows:

• Step 1: Model the graph classes as ideals
• Step 2: Formulate Vizing’s conjecture as sum-of-squares existence question
• Step 3: Transform to a semidefinite program
• Step 4: Obtain a numeric certificate by solving the semidefinite program
• Step 5: Guess an exact certificate
• Step 6: Computationally verify the certificate
• Step 7: Generalize the certificate
• Step 8: Prove correctness of the certificate

For fixed values of nG , kG , nH and kH the first step is to create the ideal Iviz as described in 
Section 3, in particular Definition 3.6. To summarize, we create the ideal Iviz in a suitable polynomial 
ring in such a way that the points in the variety V(Iviz) are in bijection to the triples (G, H, D) where 
G is a graph in G , H is a graph in H and D is a dominating set of any size of G�H ; see Theorem 3.8. 
In this polynomial ring there is a variable for each possible edge of G and H (indicating whether 
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this edge is present or not in the particular graphs G and H) and for each vertex of G�H (indicating 
whether this vertex is in the dominating set of G�H or not).

The second step is to use the polynomial ring variables mentioned above to reformulate Vizing’s 
conjecture: It is true for a fixed partition if the polynomial fviz (Definition 3.9) is non-negative if eval-
uated at all points in the variety V(Iviz) of the constructed ideal. For showing that the polynomial is 
non-negative, we aim for rewriting it as a finite sum of squares of polynomials (modulo the ideal Iviz). 
If we find such polynomials, then these polynomials form a certificate for Vizing’s conjecture for the 
fixed partition. To be more precise and as already described in Section 3, Vizing’s conjecture is true 
for these fixed values of nG , kG , nH and kH if and only if fviz is �-sos modulo Iviz .

In the subsequent Section 4.2 we describe how to perform step three and do another reformula-
tion, namely as a semidefinite program. Note that in order to do so, we need to have specified �, the 
degree of the certificate. Note also that in order to prepare the semidefinite program, we use basis 
polynomials (i.e., special generators) of the ideals. These are obtained by computing a Gröbner basis 
of the ideal; see Cox et al. (2007) for more information on Gröbner bases.

The fourth step (Section 4.3) is now to solve the semidefinite program. If the program is infeasible 
(i.e., there exists no feasible solution), we increase �. On the other hand, if the program is feasible, 
then we can construct a numeric sum-of-squares certificate. As the underlying system of equations—
therefore the future certificate—is quite large, we iterate the following tasks: Find a numeric solution 
to the semidefinite program, find or guess some structure in the solution, use these new relations 
to reduce the size of the semidefinite program, and begin again with solving the new program. This 
reduces the solution space and therefore potentially also the size (number t of summands) of the 
certificate and the number of monomials of the si from Definition 2.6. The procedure above goes 
hand-in-hand with our next step (Section 4.4), namely obtaining (one might call it guessing) an exact 
certificate out of the numeric certificate.

Once we have a candidate for an exact certificate, we can check its validity computationally by 
summing up the squares and reducing modulo the ideal; see our step six described in Section 4.5.

We want to point out, that we still consider Vizing’s conjecture for a particular partition of graphs. 
However, having such certificates for some partitions, one can go for generalizing them by introducing 
parametrized partitions of graphs. Our seventh step in Section 4.6 provides more information.

The final step is to prove that the newly obtained, generalized certificate candidate is indeed a 
certificate; see as well Section 4.6. Further certificates and different generalizations together with 
their proofs can be found in Sections 5 and 6.

4.2. Transform to a semidefinite program

Semidefinite programming refers to the class of optimization problems where a linear function 
with a symmetric matrix variable is optimized subject to linear constraints and the constraint that 
the matrix variable must be positive semidefinite. A semidefinite program (SDP) can be solved to ar-
bitrary precision in polynomial time Vandenberghe and Boyd (1996). In practice the most prominent 
methods for solving an SDP efficiently are interior-point algorithms. We use the solver MOSEK MOSEK 
ApS (2017) within MATLAB. For more details on solving SDPs and on interior-point algorithms 
see Wolkowicz et al. (2000).

It is possible to check whether a polynomial f is �-sos modulo an ideal with semidefinite pro-
gramming. We refer to (Blekherman et al., 2013, pg. 298) for detailed information and examples. We 
will now present how to do so for our setting only.

Let us first fix (for example, by computing) a reduced Gröbner basis B of Iviz and fix a non-
negative integer �. Denote by v the vector of all monomials in our polynomial ring P of degree at 
most � which can not be reduced6 modulo Iviz by the Gröbner basis B . Let p be the length of the 
vector v . Then fviz (of Definition 3.9) is �-sos modulo Iviz if and only if there is a positive semidefinite 
matrix X ∈Rp×p such that fviz is equal to

6 Algorithmically speaking, we say that a polynomial f is reduced modulo the ideal I if f is the representative of f + I which 
is invariant under reduction by a reduced Gröbner basis of the ideal I .
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v T X v

when reduced over B . Hence the SDP we end up with optimizes the matrix variable X ∈Rp×p subject 
to linear constraints that guarantee fviz being v T X v as above. The objective function can be chosen 
arbitrarily because any matrix satisfying the constraints is sufficient for our purpose. More will be 
said on this later.

If the SDP is feasible, then due to the positive semidefiniteness we can decompose the solution X
into X = S T S for some S ∈Rt×p and t ≤ p. Subsequently, we define the polynomial si by the ith row 
of S v and obtain

v T X v = (S v)T (S v) =
t∑

i=1

s2
i ≡ fviz mod Iviz. (4.1)

Note that the last congruence holds due to the constraints in the SDP. Equation (4.1) then certifies 
that fviz can be written as a sum of squares of the si , and hence, fviz is �-sos modulo Iviz according 
to Definition 2.6.

If the SDP is infeasible, we have an indication that there is no certificate of degree �. We increase �

to � + 1, because fviz could still be (� + 1)-sos modulo Iviz or possess a certificate of even higher 
degree. However, if no new reduced monomials appear in this increment, then by Lemma 2.8 and 
Theorem 3.10 Vizing’s conjecture does not hold.

Example 4.1. We consider the graph classes G and H with nG = 3, kG = 2, nH = 3 and kH = 2. Using 
SageMath The SageMath Developers (2019) we construct the ideal Iviz , generated by 32 polynomials 
in 15 variables. Again using SageMath, we find a Gröbner basis of size 95.

First, we check the existence of a 1-sos certificate. The vector v for � = 1 has length 12, i.e., we 
set up an SDP with a matrix variable X ∈ R12×12 . Imposing the necessary constraints to guarantee ∑12

i=1 s2
i ≡ fviz mod Iviz leads to 67 linear equality constraints. Interior-point algorithms detect infea-

sibility of this SDP in less than half a second, this indicates that there is no 1-sos certificate.
Setting up the SDP for checking the existence of a 2-sos certificate results in a problem with a 

matrix variable of dimension 67 and 359 linear constraints. Interior-point algorithms find a solution 
X of this SDP in 0.72 seconds, this guarantees the existence of a numeric 2-sos certificate for these 
graph classes. ©

4.3. Obtain a numeric certificate

As described in Section 4.2 above, after solving the SDP we decompose the solution X . We do 
so by computing the eigenvalue decomposition X = V T D V and then setting S = D1/2 V , where D is 
the diagonal matrix having the eigenvalues on the main diagonal. Since X is positive semidefinite, 
all eigenvalues are non-negative and we can compute D1/2 by taking the square root of each of 
the diagonal entries. The matrices X , V and D are obtained through numeric computations, hence 
there might be entries in D that are rather close to zero but not considered as zero. We may try 
setting these almost-zero eigenvalues to zero, which reduces the number of polynomials of the sum-
of-squares certificate.

Furthermore, a zero column in S means that the corresponding monomial is not needed in the 
certificate. Hence, we may try to compute a certificate where we remove all monomials corresponding 
to almost-zero columns. This can decrease the size of the SDP considerably and a smaller size of the 
matrix and fewer constraints is favorable for solving the SDP. Of course, if removing these monomials 
leads to infeasibility of the SDP, then removing these monomials was not correct.

As already mentioned we can choose the objective function arbitrarily. Our experiments show that 
different objective functions lead to (significantly) different solutions. Therefore, we carefully choose 
a suitable objective function leading to a “nice” solution for each instance.

Example 4.2. We look again at the case we considered in Example 4.1, that is G and H with nG = 3, 
kG = 2, nH = 3 and kH = 2, for which we already obtained an optimal solution X and a numeric 
2-sos certificate.
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Fig. 1. Plotting the entries of the matrix S for v being the vector of all monomials in P . Every row of S corresponds to 
one polynomial si of the numeric sum-of-squares certificate and every column of S corresponds to one monomial in v . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Plotting the entries of matrix S as in Fig. 1, but now we only allow the coefficients of 19 monomials to be non-zero. 
The numeric sum-of-squares certificate consists of 4 (number of rows) polynomials in 19 (number of columns) monomials. In 
particular the first three rows correspond to s1 , s2 and s3 and the last row corresponds to s0 as given in (4.2).

After computing (numerically) the eigenvalue decomposition X = V T D V , we set all almost-zero 
eigenvalues to zero and compute S = D1/2 V , which results in a 12 × 67 matrix, i.e., 55 eigenvalues 
are considered as zero. In Fig. 1 a heat map of matrix S is displayed. It seems unattainable to convert 
this obtained solution to an exact certificate (see Section 4.4), so we take a different path.

Using different objective functions and aiming for a certificate where only certain monomials ap-
pear can lead to results with a clearer structure. If the ith monomial should not be included, we can 
set the ith row and column of X equal to zero and obtain another SDP, where we have fewer vari-
ables and modified constraints. We now try to use only the 19 monomials 1, xgh and xghxgh′ for all 
g ∈ V (G) and all h, h′ ∈ V (H) with h′ �= h.

This results in an SDP with a matrix variable of dimension 19 and 99 constraints. The SDP can be 
solved in 0.48 seconds, and again, we obtain matrix S (after setting almost-zero eigenvalues to zero), 
which now is of dimension 4 × 19. A heat map is given in Fig. 2.

As one sees in Fig. 2, S has a certain block structure, suggesting that in each si the coefficients 
of the monomials depend only on the index g ∈ V (G) and there is no dependence on the indices 
h ∈ V (H). Therefore, we aim for a 2-sos certificate of the form 

∑nG
i=0 s2

i ≡ fviz mod Iviz with

si = νi +
∑

g∈V (G)

λg,i

( ∑
h∈V (H)

xgh

)
+
∑

g∈V (G)

μg,i

( ∑
{h,h′}⊆V (H)

xghxgh′
)

(4.2a)

for i ∈ {1, . . . ,nG
}

and

s0 = α + β

( ∑
g∈V (G)

∑
h∈V (H)

xgh

)
+ γ

∑
g∈V (G)

( ∑
{h,h′}⊆V (H)

xghxgh′
)

, (4.2b)

where the coefficients α, β , γ , νi , λg,i and μg,i are the entries of S . However, we only have the 
numeric values

S =
⎛⎜⎝ 0.535 0.011 0.011 0.011 −0.289 −0.289 −0.289

0.000 0.000 0.236 −0.236 −0.001 −0.471 0.472
−0.000 −0.272 0.136 0.136 0.544 −0.273 −0.272

2.778 −0.962 −0.962 −0.962 0.536 0.536 0.536

⎞⎟⎠
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at hand and it is not obvious how to guess suitable exact numbers from it. In contrast, looking at the 
values

X =

⎛⎜⎜⎜⎜⎜⎜⎝

8.000 −2.667 −2.667 −2.667 1.333 1.333 1.333
−2.667 1.000 0.889 0.889 −0.667 −0.444 −0.444
−2.667 0.889 1.000 0.889 −0.444 −0.667 −0.444
−2.667 0.889 0.889 1.000 −0.444 −0.444 −0.667

1.333 −0.667 −0.444 −0.445 0.667 0.222 0.222
1.333 −0.444 −0.667 −0.445 0.222 0.667 0.222
1.333 −0.444 −0.444 −0.667 0.222 0.222 0.667

⎞⎟⎟⎟⎟⎟⎟⎠ ,

it seems almost obvious which simple algebraic numbers the entries of X could be, for example 0.667
could be 2/3. We will use that in the following section. ©

4.4. Guess an exact certificate

We now have a guess for the structure of the certificate, but coefficients that are simple algebraic 
numbers are hard to determine from the numbers in S . On the other hand, the exact numbers in 
X seem to be rather obvious so we go back to the relation X = S T S . It implies that if we fix two 
monomials then the inner product of the vectors of the coefficients of these monomials in all the si
has to be equal to the corresponding number in X .

Setting up a system of equations using all possible inner products, we may obtain a solution to 
this system. This solution determines the coefficients in the certificate (and the certificate might be 
simplified even further).

Example 4.3. We continue Example 4.1, that is we consider the graph classes G and H with nG = 3, 
kG = 2, nH = 3 and kH = 2.

The exact numbers in X given in Example 4.2 can be guessed easily. In fact, if this guess for X is 
correct, every choice of S such that S T S = X gives a certificate. Using the relation S T S = X we set 
up a system of equations on the parameters of (4.2). To be more precise, let λg = (λg,i)i=1,...,nG , μg =
(μg,i)i=1,...,nG and ν = (νi)i=1,...,nG . Then we can define the vectors a = (να), bg = (λg

β

)
and cg = (μg

γ

)
, 

and S T S = X (together with the guessed values for X) implies that

〈a,a〉 = 2(nG − 1)2,

〈a,bg〉 = − 4
3 (nG − 1), 〈a, cg〉 = 2

3 (nG − 1),

〈bg,bg〉 = 1, 〈bg,bg′〉 = 8
3 ,

〈cg, cg〉 = 6
9 , 〈cg, cg′〉 = 2

9 ,

〈bg, cg〉 = − 6
9 , 〈bg, cg′〉 = − 4

9

has to hold for each g ∈ V (G), where 〈·, ·〉 denotes the standard inner product. Under the assumption 
that our guess for X was correct, each solution to this system of equations leads to a valid sum-of-
squares certificate (4.2).

We want a sparse certificate and the numeric solution suggests that ν2 = ν3 = 0 holds, so we try 
to obtain a solution with also ν1 = 0 (even though the numeric solution does not fit into that setting). 
Using these values, the equations involving the vector a determine the exact values for α, β and γ as 
α = √

2(nG − 1), β = − 2
3

√
2 and γ = 1

3

√
2. With that, the system of equations simplifies to

〈λg, λg〉 = 1
9 , 〈λg, λg′〉 = 0,

〈μg,μg〉 = 4
9 , 〈μg,μg′〉 = 0,

〈λg,μg〉 = − 2
9 , 〈λg,μg′〉 = 0.
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Calculating 
∑nG

i=1 s2
i we find out that, due to the system of equations, the sum-of-squares simplifies 

to
nG∑
i=1

s2
i = 1

9

∑
g∈V (G)

( ∑
h∈V (H)

xgh − 2
∑

{h,h′}⊆V (H)

xghxgh′
)2

.

Hence, if (4.2) is a sum-of-squares certificate then also

s0 = α + β

( ∑
g∈V (G)

∑
h∈V (H)

xgh

)
+ γ

( ∑
g∈V (G)

∑
{h,h′}⊆V (H)

xghxgh′
)

, (4.3a)

sg = 1

3

( ∑
h∈V (H)

xgh − 2
∑

{h,h′}⊆V (H)

xghxgh′
)

for g ∈ V (G), (4.3b)

where α = √
2(nG − 1), β = − 2

3

√
2 and γ = 1

3

√
2 is a sum-of-squares certificate. ©

To close this section let us highlight once more that we use the SDP and its solution to find out 
which monomials are used in the certificate and to obtain a structure of their coefficients. In particular 
we do not need a solution of the SDP of high precision, so solving the SDP is not a bottleneck in this 
example. It will turn out that this is also true for all other examples we consider.

4.5. Computationally verify the certificate

When a certificate is conjectured, it is straightforward to verify it computationally via Sage-
Math The SageMath Developers (2019). To do so, it is necessary to compute the Gröbner basis of 
Iviz . Observe that at this point, semidefinite programming is no longer needed.

Example 4.4. We computationally verified (using SageMath) the certificate derived in Example 4.3 for 
the graph classes G and H with nG = 3, kG = 2, nH = 3 and kH = 2. ©

4.6. Generalize the certificate and prove correctness

In Sections 4.2 to 4.5, we presented a methodology for obtaining a sum-of-squares certificate for 
graph classes G and H with fixed parameters nG , kG , nH and kH . Assuming that the previously found 
pattern generalizes, one can iterate the steps outlined above to obtain certificates for larger classes of 
graphs.

Example 4.5. We want to generalize the certificate for the graph classes G and H with nG = 3, kG = 2, 
nH = 3 and kH = 2 to the case kG = nG − 1 ≥ 1, nH = 3 and kH = 2 for any nG ≥ 2.

Solving the SDP for the cases nG = 4 and nG = 5 again yields nicely structured matrices and in 
fact, all the calculations done for the case nG = 3 (which we already wrote down parametrized by nG
above) go through.

Hence, we are able to generalize the sum-of-squares certificate (4.3) in the following way. ©

Theorem 4.6. For kG = nG − 1 ≥ 1, nH = 3 and kH = 2 Vizing’s conjecture is true as the polynomials

s0 = α + β

( ∑
g∈V (G)

∑
h∈V (H)

xgh

)
+ γ

( ∑
g∈V (G)

∑
{h,h′}⊆V (H)

xghxgh′
)

and

sg = 1

3

( ∑
h∈V (H)

xgh − 2
∑

{h,h′}⊆V (H)

xghxgh′
)

for g ∈ V (G),

where α = √
2(nG − 1), β = − 2

3

√
2 and γ = 1

3

√
2, are a sum-of-squares certificate with degree 2 of fviz .
80



E. Gaar, D. Krenn, S. Margulies et al. Journal of Symbolic Computation 107 (2021) 67–105
The proof will be given later on after introducing some more auxiliary results; see Section 6. Of 
course, once having the theorem above, it can be verified computationally for particular parameter 
values, for example for kG = 4 and nG = 5, where the computation of a Gröbner basis is feasible.

4.7. Summary

In this section we saw by an example how to use our machinery combined with clever guessing in 
order to obtain sum-of-squares certificates for proving that Vizing’s conjecture holds for fixed values 
of nG , kG , nH and kH , and how this can be used to obtain certificates for a less restricted set of 
parameters. We will use the next sections in order to present further certificates and generalizations 
that we found using our method and for which we were able to prove correctness.

5. Exact certificates for kG = nG and kH = nH − d

In this section we deal with certificates for the case kG = nG and kH = nH − d. Towards this 
end we will first prove several auxiliary results in Section 5.1. Next we present and prove certificates 
for d = 0, d = 1 and d = 2 in Sections 5.2, 5.3 and 5.4. Then in Section 5.5 we will see how this 
brings insight on the structure of the certificates. We are therefore able to formulate a conjecture on 
the structure of the certificate for general d and also present a strategy for proving it. This will be 
complemented by a more computational approach for checking the conjecture for a given value d; in 
particular we will prove the conjecture for d = 3 and d = 4 with the help of SageMath The SageMath 
Developers (2019).

5.1. Auxiliary results: Sigma calculus

In this section we will develop the machinery needed to prove the correctness of our (exact) 
certificates. It will turn out that the key is to be able to do operations with certain symmetric polyno-
mials, which will be introduced in Definition 5.4. Another important tool will be again Theorem 2.4, 
Hilbert’s Nullstellensatz. Its implications formulated as Remark 2.5 will be used repeatedly, for exam-
ple in the proof of the following first lemma.

Lemma 5.1. Let kG = nG ≥ 1. Then egg′ ∈ IG ⊆ Iviz holds for all 
{

g, g′}⊆ V (G).

Translating this lemma in terms of congruence relations, we have egg′ ≡ 0 mod IG and egg′ ≡ 0
mod Iviz for all 

{
g, g′}⊆ V (G).

Let us briefly consider Lemma 5.1 from a graph theoretic point of view. Due to Theorem 3.4 the 
points in the variety of IG are in bijection to the graphs in G , which are the graphs on nG vertices 
with domination number kG = nG . It is easy to see that such graphs can not have any edges, because 
otherwise the domination number would be strictly less than nG . Hence e∗

gg′ = 0 holds for all points 
z∗ in the variety of Iviz , when we use Notation 3.2. This intuitively justifies Lemma 5.1 by graph 
theoretical considerations.

Proof of Lemma 5.1. For kG = nG = 1 there is no 
{

g, g′}⊆ V (G), so there is nothing to prove.
For each 

{
g, g′}⊆ V (G), we apply Hilbert’s Nullstellensatz on the polynomial f = egg′ .

We use Notation 3.2, and let z∗ ∈ V(IG), i.e., z∗ is a common zero of (3.1a), (3.1b) and (3.1c). Then 
clearly e∗

gg′ ∈ {0,1} due to (3.1a). Furthermore kG = nG implies that (3.1c) simplifies to the equations∑
g∈V (G)

g �=g′

e∗
gg′ = 0 for g′ ∈ V (G).

Therefore e∗
gg′ = 0 for all 

{
g, g′}⊆ V (G). Hence z∗ is also a zero of f = egg′ and Hilbert’s Nullstellen-

satz (Theorem 2.4 and Remark 2.5) implies f = egg′ ∈ IG . �
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Lemma 5.2. Let kG = nG ≥ 1 and kH = nH − d ≥ 1 for some d ≥ 0. Moreover, let g ∈ V (G) and T ⊆ V (H)

be a subset of size |T | = d + 1. Then∏
h∈T

(1 − xgh) ∈ Iviz. (5.1)

Moreover, we have

∏
h∈T

xgh ≡
d∑

r=0

(−1)d+r
∑
U⊆T
|U |=r

∏
h∈U

xgh mod Iviz. (5.2)

Note that also Lemma 5.2 can be justified intuitively from the graph theoretic perspective. Accord-
ing to Theorem 3.8, a point in the variety of Iviz corresponds to two graphs G and H with nG and 
nH vertices and domination numbers kG = nG and kH = nH − d respectively, and a dominating set D
in G�H . Due to Lemma 5.1 there is no edge in G . Hence each vertex gh in G�H either must be in 
the dominating set D itself, or there must be a vertex h′ ∈ V (H) such that gh′ is in D and the edge {

h,h′} is in E(H). In other words, for fixed g ∈ V (G), the vertices h ∈ V (H) with x∗
gh = 1 have to form 

a dominating set in H . Since every dominating set in H has at least kH = nH − d vertices, at most 
d vertices are not in a dominating set. Therefore, whenever we choose d + 1 vertices from V (H), at 
least one vertex has to be in D . Equivalently, in every set T of d + 1 vertices of V (H) there is at least 
one vertex h with x∗

gh = 1, which is stated in (5.1).

Proof of Lemma 5.2. We use Hilbert’s Nullstellensatz for f =∏h∈T (1 − xgh).
Let z∗ ∈ V(Iviz), i.e., z∗ is a common zero of (3.1a), (3.1b) and (3.1c) for both G and H, and of 

(3.2a) and (3.2b). Note that we use Notation 3.7.
Let us consider the second factor of (3.2b). If nG = 1, then there is no g′ �= g ∈ V (G), so this 

product is empty and equals 1. If nG ≥ 2, then e∗
gg′ = 0 (the component of z∗ corresponding to egg′ ) 

for all g′ ∈ V (G) because of Lemma 5.1, and the product equals 1 again. Hence (3.2b) implies

(
1 − x∗

gh

)( ∏
h′∈V (H)

h′ �=h

(
1 − e∗

hh′ x∗
gh′
))

= 0 for h ∈ V (H). (5.3)

Furthermore e∗
hh′ ∈ {0,1} for all 

{
h,h′}⊆ V (H) because of (3.1a), and x∗

gh ∈ {0,1} for all h ∈ V (H) due 
to (3.2a).

Assume that z∗ is not a zero of f . Then clearly x∗
gh = 0 for all h ∈ T . In particular, (5.3) simplifies 

to ∏
h′∈V (H)

h′ �=h

(
1 − e∗

hh′ x∗
gh′
)

= 0 for h ∈ T .

Therefore, for each h ∈ T , there is a h′ ∈ V (H) such that e∗
hh′ = 1 and x∗

gh′ = 1. As x∗
gh = 0 for all h ∈ T , 

we have h′ /∈ T .
If nH = 1, then d = 0 and |T | = 1. But then V (H) \ T is empty, so no choice for h′ is left, a 

contradiction. If nH ≥ 2, then with S = V (H) \ T the equation (3.1c) for H simplifies to∏
h∈T

(∑
h′′∈S

e∗
h′′h

)
= 0.

For each h ∈ T , the h′ (defined above) is in S , so the summand e∗
h′′h = e∗

hh′ = 1 for h′′ = h′ . All other 
summands are either 0 or 1, hence each sum 

∑
h′′∈S e∗

h′′h is at least one, so in particular non-zero. 
This is again a contradiction.
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Hence for all nG ≥ 1 our assumption was wrong, so z∗ is a zero of f . Now, Hilbert’s Nullstellensatz 
(Theorem 2.4 and Remark 2.5) implies f ∈ Iviz , so (5.1) is satisfied.

Furthermore, (5.1) above can be rewritten as∏
h∈T

(1 − xgh) ≡ 0 mod Iviz.

Therefore, the congruence (5.2) follows from the fact that

∏
h∈T

(1 − xgh) =
d+1∑
r=0

(−1)r
∑
U⊆T
|U |=r

∏
h∈U

xgh

holds. �
Remark 5.3. In particular for kG = nG ≥ 1 and kH = nH ≥ 1, Lemma 5.2 implies

xgh ≡ 1 mod Iviz

for all g ∈ V (G) and all h ∈ V (H). For kH = nH − 1, Lemma 5.2 implies

xghxgh′ ≡ xgh + xgh′ − 1 mod Iviz

for all g ∈ V (G) and all 
{

h,h′}⊆ V (H). For kH = nH − 2, Lemma 5.2 implies

xghxgh′ xgh′′ ≡ xghxgh′ + xgh′ xgh′′ + xghxgh′′ − xgh − xgh′ − xgh′′ + 1 mod Iviz

for all g ∈ V (G) and all 
{

h,h′,h′′}⊆ V (H). �

Note that from a high-level point of view, if kH = nH − d, then Lemma 5.2 allows us to rewrite 
particular products of d + 1 terms as a sum of products of at most d terms and therefore to reduce 
the degree of polynomials.

To continue and in order to apply the above findings, we introduce the following polynomials.

Definition 5.4. Let g ∈ V (G) and i be a non-negative integer. We define

σg,i =
∑

S⊆V (H)
|S|=i

∏
h∈S

xgh.

In a classical setting the polynomial σg,i is the elementary symmetric polynomial of degree i in 
nH variables. In the following we will investigate the arithmetic of the σg,i over the ideal Iviz and 
aim for getting nice expressions for products of σg,i .

Lemma 5.5. Let kG , nG , kH , nH ≥ 1 and let i ≥ j. Then

σg,i σg, j ≡
min{ j,nH−i}∑

r=0

(
j

r

)(
i + r

j

)
σg,i+r mod Iviz

holds.

Note that we can extend the summation range to 0 ≤ r ≤ j as σg,i = 0 for all i > nH . This makes 
the formulation of the lemma completely independent of the parameters kG , nG , kH and nH . More-
over, we will see in the proof that we actually only need generators x2 − x in the ideal, making the 
lemma valid in a more general setting.
83



E. Gaar, D. Krenn, S. Margulies et al. Journal of Symbolic Computation 107 (2021) 67–105
Remark 5.6. As needed later, we state Lemma 5.5 for some particular values of i and j. We have

σ 2
g,1 ≡ σg,1 + 2σg,2 mod Iviz,

σg,2σg,1 ≡ 2σg,2 + 3σg,3 mod Iviz,

σ 2
g,2 ≡ σg,2 + 6σg,3 + 6σg,4 mod Iviz. �

Now we come back to the proof of Lemma 5.5. In the following, we use the phrase power products
to refer to products of powers of variables with non-negative exponent, or in other words, to the 
summands of a polynomial without their coefficient.

Proof of Lemma 5.5. We start with a couple of remarks. All summands of σg,i and σg, j have degree 
i and j respectively. Hence all summands in the product σg,i σg, j are summands of degree i + j. Fur-
thermore, whenever two summands in σg,i and σg, j contain the same factor xgh , a resulting factor x2

gh
can be reduced to xgh over Iviz because of (3.2a). Therefore, all summands in σg,i σg, j are square-free 
and will have degree at least i and at most i + j. Clearly the degree is also bounded by nH . Moreover 
σg,i and σg, j are symmetric in h ∈ V (H). By all these considerations, it is therefore possible to write

σg,i σg, j ≡
min{ j,nH−i}∑

r=0

δrσg,i+r mod Iviz (5.4)

for some coefficients δr ∈Z. In fact, these coefficients are non-negative.
For the following considerations, we always reduce modulo Iviz , therefore reducing exponents of 

monomials larger than one to exponents exactly one. So let us fix a power product xi of σg,i of 
degree i (i.e., xi =∏h∈S xgh for some S with |S| = i) and count power products x j of σg, j so that 
the product xi x j is of degree i + r (as said, after reducing the power product over Iviz). Apparently, 
there have to be r factors in x j which are not factors of xi ; there are 

(nH−i
r

)
possible such choices. 

The remaining j − r factors of x j have to be among the factors of xi , hence there are 
( i

j−r

)
possible 

choices. Finally, we note that there are 
(nH

i

)
choices for the fixed power product xi above.

In total, expanding the product σg,i σg, j results in a sum of 
(nH−i

r

)( i
j−r

)(nH
i

)
power-products of 

degree i + r for each r. We now collect these power products to determine the coefficients δr of the 
corresponding summand. Each sum σg,i+r consists of 

(nH
i+r

)
power products of degree i + r. Hence and 

due to the representation (5.4), we have

δr =
(

nH − i

r

)(
i

j − r

)(
nH

i

)/(
nH

i + r

)
= (i + r)!

r! ( j − r)! (i − j + r)! =
(

j

r

)(
i + r

j

)
,

which completes the proof. �
Lemma 5.5 allows us to replace products of our symmetric polynomials σg,i by sums. This will 

become very handy in proving certificates.
We now go back to our particular set-up with kH = nH − d. The next important ingredient is the 

following lemma, which allows us to reduce some σg,d+ j+1 of “high” degree.

Lemma 5.7. Let kG = nG ≥ 1 and kH = nH − d ≥ 1 for some d ≥ 1. Let j be a non-negative integer. Then

σg,d+ j+1 ≡
(

nH
d + j + 1

) d∑
r=0

(d+1
r

)(nH
j+r

) (−1)d+rσg, j+r mod Iviz

holds.
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Proof. For each 
∏

h∈S xgh in the definition of σg,d+ j+1 , we fix an arbitrary partition S = T ∪ W with 
T and W disjoint in a way that |T | = d + 1 and |W | = j. Therefore, we obtain

σg,d+ j+1 =
∑

S⊆V (H)
|S|=d+ j+1

∏
h∈S

xgh =
∑

T ∪W ⊆V (H)
T , W disjoint

|T |=d+1
|W |= j

(∏
h∈T

xgh

)( ∏
h′∈W

xgh′
)

.

With Lemma 5.2, we can reformulate this to

σg,d+ j+1 ≡
∑

T ∪W ⊆V (H)
T , W disjoint

|T |=d+1
|W |= j

d∑
r=0

(−1)d+r
∑
U⊆T
|U |=r

(∏
h∈T

xgh

)( ∏
h′∈W

xgh′
)

mod Iviz. (5.5)

Due to symmetry in h ∈ V (H), minimum degree j and maximum degree d + j of the right-hand 
side, we can rewrite (5.5) to a representation

σg,d+ j+1 ≡
d∑

r=0

(−1)d+rβrσg, j+r mod Iviz

for some coefficients βr ∈Z.
In order to determine these βr , we count the number of power products of degree j + r on the 

right-hand side of (5.5). There are 
( nH

d+ j+1

)
possible choices for S , only the one particular fixed par-

tition S = T ∪ W and 
(d+1

r

)
possible choices for U out of T . Hence there are 

( nH
d+ j+1

)(d+1
r

)
power 

products of degree j + r appearing in (5.5), all of which have the same sign. Due to the fact that 
σg, j+r contains 

(nH
j+r

)
monomials, this implies that

βr =
(

nH
d + j + 1

)(
d + 1

r

)/(
nH
j + r

)
. �

As mentioned, the lemmata above provide “reduction rules” for some quantities σg,i or products 
of such quantities. We now derive explicit formulas for particular instances.

Remark 5.8. Suppose we have d = 1, i.e., our full set-up is kG = nG ≥ 1 and kH = nH − 1 ≥ 1. Then, 
because of Lemma 5.7 (with d = 1 and j = 0) and Lemma 5.5 (with i = j = 1, see also Remark 5.6), 
and because σg,0 = 1, we have

σg,2 ≡ −1

2
nH(nH − 1)σg,0 + (nH − 1)σg,1 = −1

2
nH(nH − 1) + (nH − 1)σg,1 mod Iviz

σ 2
g,1 ≡ σg,1 + 2σg,2 ≡ (2nH − 1)σg,1 − nH(nH − 1) mod Iviz. �

Remark 5.9. Suppose we have d = 2, i.e., our full set-up is kG = nG ≥ 1 and kH = nH − 2 ≥ 1. Then, 
because of Lemma 5.7 and Lemma 5.5 (see also Remark 5.6) we have

σg,3 ≡ 1

3! (nH − 3)!
(
nH!σg,0 − 3(nH − 1)!σg,1 + 6(nH − 2)!σg,2

)
≡ 1

6 nH(nH − 1)(nH − 2)σg,0 − 1
2 (nH − 1)(nH − 2)σg,1 + (nH − 2)σg,2 mod Iviz

and
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σg,4 ≡ 1

4! (nH − 4)!
(
(nH − 1)!σg,1 − 6(nH − 2)!σg,2 + 18(nH − 3)!σg,3

)
≡ 1

4! (nH − 4)!
(
3nH!σg,0 − 8(nH − 1)!σg,1 + 12(nH − 2)!σg,2

)
≡ 1

8 nH(nH − 1)(nH − 2)(nH − 3)σg,0 − 1
3 (nH − 1)(nH − 2)(nH − 3)σg,1+

1
2 (nH − 2)(nH − 3)σg,2 mod Iviz

as well as

σ 2
g,1 ≡ σg,1 + 2σg,2 mod Iviz

σg,2σg,1 ≡ 2σg,2 + 3σg,3

≡ 1
2 nH(nH − 1)(nH − 2)σg,0 − 3

2 (nH − 1)(nH − 2)σg,1+
(3nH − 4)σg,2 mod Iviz

σ 2
g,2 ≡ σg,2 + 6σg,3 + 6σg,4

≡ 1
4 (3nH − 5)nH(nH − 1)(nH − 2)σg,0 − (2nH − 3)(nH − 1)(nH − 2)σg,1+

(1 + 3(nH − 1)(nH − 2))σg,2 mod Iviz.

As usual, we have σg,0 = 1 everywhere. �

Remark 5.10. Let us fix d, i.e., our full set-up is kG = nG ≥ 1 and kH = nH − d ≥ 1, and let us fix 
g ∈ V (G).

Then, more systematically speaking, whenever f is a finite K-linear combination of terms of the 
form σg,i and σg,i σg, j for non-negative integers i and j, we can reduce f to a form

f ≡
d∑

i=0

φiσg,i mod Iviz

for efficiently computable φi ∈K.
The idea is to use Lemma 5.5 for σg,i σg, j in order to get rid of these products and replace them by 

terms of the form σg,i . After this step, one can repeatedly use Lemma 5.2 in order to replace all σg,i
for i > d by linear combinations of σg,i with i ≤ d. All these operations are efficient; the coefficients 
of the individual steps are given directly in Lemmata 5.5 and 5.2. �

Finally let us mention that an implementation of the arithmetic described in the previous remark, 
for example with SageMath The SageMath Developers (2019), is handy: It makes it easily possible to 
verify the results of Remarks 5.8 and 5.9.

This completes the section on our auxiliary results which we need in the following to prove our 
certificates.

5.2. Certificates for kG = nG and kH = nH

The easiest and almost trivial case is the one with kG = nG and kH = nH , so d = 0. We get the 
following certificate and therefore have proven with our method that Vizing’s conjecture holds in this 
case.

Theorem 5.11. For kG = nG ≥ 1 and kH = nH ≥ 1, Vizing’s conjecture is true as the polynomials

sg = 0 for g ∈ V (G)

are a 0-sos certificate of fviz.
86



E. Gaar, D. Krenn, S. Margulies et al. Journal of Symbolic Computation 107 (2021) 67–105
Note that we can simplify this 0-sos certificate of Theorem 5.11 to an empty sum using no polyno-
mial, but we give the formulation of Theorem 5.11 to highlight the similarity to the other certificates 
we will present in this section.

Proof of Theorem 5.11. We have xgh ≡ 1 mod Iviz for all g ∈ V (G) and h ∈ V (H) as already men-
tioned in Remark 5.3 due to Lemma 5.2. Hence we obtain

fviz = −kGkH +
∑

g∈V (G)

∑
h∈V (H)

xgh ≡ −kGkH + nGnH = 0 =
∑

g∈V (G)

s2
g mod Iviz,

so the sg form indeed a 0-sos certificate for fviz . �
Note that the certificate of Theorem 5.11 has the lowest degree possible.

5.3. Certificates for kG = nG and kH = nH − 1

The easiest non-trivial case is the one with kG = nG and kH = nH − 1, so d = 1. Using the above 
machinery (explained in the methodology Section 4) we first found a complicated sum-of-squares 
certificate, which is presented in Appendix A.1. We were eventually able to transform this complicated 
certificate to the following much easier certificate and therefore have proven with our method that 
Vizing’s conjecture holds in this case.

Theorem 5.12. For kG = nG ≥ 1 and kH = nH − 1 ≥ 1, Vizing’s conjecture is true as the polynomials

sg =
( ∑

h∈V (H)

xgh

)
− (nH − 1) for g ∈ V (G)

are a 1-sos certificate of fviz.

Proof. The polynomials sg can alternatively be written as sg = σg,1 − (nH − 1). Using Remark 5.8
yields

s2
g = (σg,1 − (nH − 1))2 = σ 2

g,1 − 2(nH − 1)σg,1 + (nH − 1)2

≡ (2nH − 1)σg,1 − nH(nH − 1) − 2(nH − 1)σg,1 + (nH − 1)2

= σg,1 − (nH − 1) mod Iviz.

Consequently, this evaluates to∑
g∈V (G)

s2
g =

∑
g∈V (G)

(
σg,1 − (nH − 1)

)= −nG(nH − 1) +
∑

g∈V (G)

σg,1 = fviz mod Iviz,

so the sg form indeed a 1-sos certificate for fviz . �
Note that the certificate of Theorem 5.12 has the lowest positive degree possible and furthermore 

only uses very particular monomials of degree at most 1.

5.4. Certificates for kG = nG and kH = nH − 2

The next slightly more difficult case is the one for kG = nG and kH = nH − 2, so d = 2. Also in 
this case we first found a more complicated certificate (see Appendix A.2) which we were able to 
transform to the following simple certificate.
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Theorem 5.13. For kG = nG ≥ 1 and kH = nH − 2 ≥ 1, Vizing’s conjecture is true as the polynomials

sg = α + β

( ∑
h∈V (H)

xgh

)
+ γ

( ∑
{h,h′}⊆V (H)

xghxgh′
)

for g ∈ V (G),

where

α = (nH − 2)
(
nH + 1

2 (nH − 1)
√

2
)
,

β = −((2nH − 3) + (nH − 2)
√

2
)
,

γ = 2 + √
2,

are a 2-sos certificate of fviz.

Remark 5.14. We want to point out that Theorem 5.13 is true whenever α, β , γ are solutions to the 
system of equations

−(nH − 2) = α2 + 1

4
nH(nH − 1)(nH − 2)(3nH − 5)γ 2

+ nH(nH − 1)(nH − 2)βγ , (5.6a)

1 = β2 + 2αβ − (nH − 1)(nH − 2)(2nH − 3)γ 2

− 3(nH − 1)(nH − 2)βγ , (5.6b)

0 = 2β2 + 2αγ + (1 + 3(nH − 1)(nH − 2))γ 2

+ 2(3nH − 4)βγ , (5.6c)

and that in Theorem 5.13 one particular easy solution is stated. �

Proof of Theorem 5.13. The polynomials sg can alternatively be written as sg = ασg,0 +βσg,1 +γ σg,2 . 
(Note that σg,0 = 1.) Using Remark 5.8 yields

s2
g = (α + βσg,1 + γ σg,2)

2

= α2 + β2σ 2
g,1 + γ 2σ 2

g,2 + 2αβσg,1 + 2αγ σg,2 + 2βγ σg,1σg,2

≡ α2 + β2(σg,1 + 2σg,2) + 2αβσg,1 + 2αγ σg,2

+ γ 2( 1
4 (3nH − 5)nH(nH − 1)(nH − 2)σg,0 − (2nH − 3)(nH − 1)(nH − 2)σg,1

+ (1 + 3(nH − 1)(nH − 2))σg,2
)

+ 2βγ
( 1

2 nH(nH − 1)(nH − 2)σg,0 − 3
2 (nH − 1)(nH − 2)σg,1

+ (3nH − 4)σg,2
)

mod Iviz

and consequently, we evaluate to∑
g∈V (G)

s2
g ≡ (α2 + γ 2 1

4 (3nH − 5)nH(nH − 1)(nH − 2)

+ βγ nH(nH − 1)(nH − 2)
) ∑

g∈V (G)

σg,0

+ (β2 + 2αβ − γ 2(2nH − 3)(nH − 1)(nH − 2)

− 3βγ (nH − 1)(nH − 2)
) ∑

g∈V (G)

σg,1
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+ (2β2 + 2αγ + γ 2(1 + 3(nH − 1)(nH − 2))

+ 2βγ (3nH − 4)
) ∑

g∈V (G)

σg,2 mod Iviz.

Due to the particular values of α, β and γ this simplifies to∑
g∈V (G)

s2
g ≡ −(nH − 2)

∑
g∈V (G)

σg,0 +
∑

g∈V (G)

σg,1

= −nGkH +
∑

g∈V (G)

σg,1 = fviz mod Iviz. �

Note that for all computationally considered instances of the form kG = nG and kH = nH − 2, the 
SDP for � = 1 was infeasible, so for all of those instances there seems to be no 1-sos certificate and 
one really needs monomials of degree 2 in the si in order to obtain a certificate. Nevertheless, degree 
2 is still very low. Furthermore also in this sum-of-squares certificate only very particular monomials 
are used; it can be considered sparse therefore. This is confirmed by the following example.

Example 5.15. If we consider the case kG = nG = 4, nH = 5 and kH = 3, there are 432 monomials of 
degree at most 2 but the certificate of Theorem 5.13 uses only 61 of them. ©

5.5. Computational certificates for kG = nG and kH = nH − d

When taking a closer look at the certificates in Theorem 5.11, Theorem 5.12 and Theorem 5.13, 
one can guess a structure from the certificates found so far. In particular there seems to be a d-sos 
certificate for the case kG = nG and kH = nH − d. Hence, at this point, we can formulate a conjecture 
which intuitively seems to be the “correct” generalization.

Conjecture 5.16. For kG = nG ≥ 1 and kH = nH − d ≥ 1 with d ≥ 0, Vizing’s conjecture is true as the poly-
nomials

sg =
d∑

i=0

αi

( ∑
S⊆V (H)

|S|=i

∏
h∈S

xgh

)
for g ∈ V (G),

where αi are the solutions to a certain system of polynomial equations, are a d-sos certificate of fviz.

Moreover, the proofs of Theorems 5.12 and 5.13 give rise to an algorithmic approach for finding 
certificates. We formulate this as the following proposition.

Proposition 5.17. Let d be a non-negative integer. Then there is an algorithm that either finds a certificate of 
the form as given in Conjecture 5.16 or outputs that there is no certificate of that form.

Proof. We first describe our algorithm by following the proofs of Theorems 5.12 and 5.13.
Suppose sg is of the form as given in Conjecture 5.16, so

sg =
d∑

i=0

αiσg,i for g ∈ V (G),

where simply the definition of σg,i (see Definition 5.4) was used. We now use binomial expansion for 
s2

g . In the result there will be terms of the form σg,i σg, j for i, j ≤ d. We can now use the arithmetic 
described in Remark 5.10 to end up with
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s2
g ≡

d∑
i=0

φi(α)σg,i mod Iviz for g ∈ V (G).

Here, φi(α) is a polynomial in α = (α0, . . . , αd) for each 0 ≤ i ≤ d. Note that all coefficients of this 
polynomial additionally depend on the variable nH . The formal summation over all g ∈ V (G) is trivial; 
we obtain

∑
g∈V (G)

s2
g ≡

d∑
i=0

φi(α)
∑

g∈V (G)

σg,i mod Iviz.

In order to obtain a d-sos certificate, this has to be equal to

fviz = −(nH − d)
∑

g∈V (G)

σg,0 +
∑

g∈V (G)

σg,1.

Comparing the coefficients of nG =∑g∈V (G) σg,0 and the other 
∑

g∈V (G) σg,i (for 1 ≤ i ≤ d) yields the 
system of equations

φ0(α) = −(nH − d), (5.7a)

φ1(α) = 1, (5.7b)

φi(α) = 0 for 2 ≤ i ≤ d. (5.7c)

We want to point out that the existence of a real-valued solution α0 , . . . , αd (as functions in nH) is 
equivalent to the fact that to the sg being as in Conjecture 5.16 form a d-sos certificate. Therefore 
computing the variety associated to the system of equations (5.7), i.e., finding all solutions of this 
system, is the last step of an algorithm that has the properties stated in Proposition 5.17, and the 
proof is completed. �
Remark 5.18. The system of equations (5.7) does not depend on nG , but only on d and nH . Hence, 
whenever we find a solution to (5.7)—this might be for a fixed value of nH or parametrized in 
nH—then this gives rise to a certificate for those values and all possible values of nG = kG . �

Before we exploit the algorithm provided by Proposition 5.17 which finds a certificate of the form 
as given in Conjecture 5.16, let us mention that it consists of two main steps: The first step is to con-
struct the system of equations (5.7) and the second is to find a solution to this system of equations.

Let us reconsider the proofs of Theorems 5.12 and 5.13. There, we already have a particular cer-
tificate at hand, and we prove that it is in fact a certificate by performing essentially the first main 
step of the algorithm. In fact the system of equations (5.6) corresponds to (5.7) for d = 2 as the vari-
ables (α, β, γ ) (of (5.6)) equal (α0, α1, α2) (of (5.7)). Even though the computations for proving the 
theorems above are tedious, they are straightforward.

So, let us come back to the algorithm of Proposition 5.17. For finding a certificate for general d ≥ 3
the situation is more difficult: The computations get very messy, so it seems infeasible to get the 
system of equations (5.7) in closed form depending on the parameter d. Moreover, even for the case 
d = 2 it is not obvious that the system of equations (5.6) even has a solution. Still, we want to use 
Proposition 5.17 for obtaining more certificates, so let us consider the cases d = 1 and d = 2 once 
more, but this time with the help of SageMath The SageMath Developers (2019).

Using the algorithm provided in the proof of Proposition 5.17 allows to reprove Theorems 5.12
and 5.13 computationally with SageMath. It turns out that the variety of the system of equations (5.7), 
whose points are the solutions (α0, . . . , αd) of (5.7), is of dimension 1 which means that the depen-
dency on nH is the only dependency on a free parameter. For d = 1, the solution is essentially unique 
(except for the obvious replacement of sg by −sg ). For d = 2, in the solution presented in Theo-
rem 5.13 we can additionally replace each occurrence of 

√
2 in any of (α, β, γ ) by −√

2 and obtain 
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another solution. In other words we can choose the signs of ±√
1 and ±√

2. This observation will be 
revisited in Remark 5.22.

In the same manner and with a lot of patience, we can let the algorithm run for d = 3 and get 
the result presented as Theorem 5.20 below. However, the computation can be speeded up in the 
following way. This will allow to also cover the case d = 4.

Remark 5.19. Suppose that the coefficients α0 , . . . , αd are polynomials in nH with degrees bounded 
by d. (This is the case for Theorems 5.12 and 5.13, so this assumption is reasonable.) Then, by fixing 
a particular value for nH , the time of the computation of the α0 , . . . , αd is now dramatically reduced. 
Doing this for d + 1 different values nH allows to compute the coefficients α0 , . . . , αd as interpolation 
polynomials in nH .

It should be noted that this interpolation trick is technically/computationally not as innocent as 
one might think: One has to carefully choose the values nH in order to “keep track” of the branch of 
one particular solution, as the solution of (5.7) is not unique. �

By using the strategy explained in the previous remark, we are able to show the following.

Theorem 5.20. For kG = nG ≥ 1 and kH = nH − 3 ≥ 1, Vizing’s conjecture is true as the polynomials

sg =
3∑

i=0

αiσg,i for g ∈ V (G),

where

α0 = − 1
6 n3

H

(√
3 + 3

√
2 + 3

)
+ 1

2 n2
H

(
2
√

3 + 5
√

2 + 4
)

− 1
2 nH

(
11
3

√
3 + 6

√
2 + 3

)
+ √

3,

α1 = + 1
2 n2

H

(√
3 + 3

√
2 + 3

)
− 1

2 nH
(

5
√

3 + 13
√

2 + 11
)

+ 3
(√

3 + 2
√

2
)

+ 4,

α2 = −nH
(√

3 + 3
√

2 + 3
)

+ 3
√

3 + 8
√

2 + 7,

α3 = √
3 + 3

√
2 + 3,

are a 3-sos certificate of fviz.

Proof. We apply the algorithm provided by Proposition 5.17 and Remark 5.19 and the claimed result 
follows. In particular we use SageMath The SageMath Developers (2019) in order to construct the 
system of equations (5.7) and to obtain a solution of it. �
Theorem 5.21. For kG = nG ≥ 1 and kH = nH − 4 ≥ 1, Vizing’s conjecture is true as the polynomials

sg =
4∑

i=0

αiσg,i for g ∈ V (G),

where

α0 = 1
12 n4

H

(
2
√

3 + 3
√

2 + 1
)

− 1
6 n3

H

(
9
√

3 + 12
√

2 + 2
)

+ 1
12 n2

H

(
52

√
3 + 57

√
2 − 7

)
− 1

6 nH
(

24
√

3 + 18
√

2 − 17
)

− 2,

α1 = − 1
3 n3

H

(
2
√

3 + 3
√

2 + 1
)

+ 1
2 n2

H

(
11

√
3 + 15

√
2 + 3

)
− 1

6 nH
(

83
√

3 + 99
√

2 + 1
)

+ 10
√

3 + 10
√

2 − 3,
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α2 = n2
H

(
2
√

3 + 3
√

2 + 1
)

− nH
(

13
√

3 + 18
√

2 + 4
)

+ 5
(

4
√

3 + 5
√

2
)

+ 2,

α3 = −2 nH
(

2
√

3 + 3
√

2 + 1
)

+ 15
√

3 + 21
√

2 + 5,

α4 = 4
√

3 + 6
√

2 + 2,

are a 4-sos certificate of fviz.

Proof. We again use SageMath The SageMath Developers (2019) and apply the algorithm provided by 
Proposition 5.17 and Remark 5.19 to obtain the claimed certificate. �

It should be noted once more that once having algorithmically proven Theorems 5.20 and 5.21, 
verifying that those results indeed form a certificate—again this can be done computationally—is much 
easier.

Remark 5.22. Let us consider the set-up and certificate as presented in Conjecture 5.16 again. In 
particular, let us have a look at the coefficient αd for various d. By using the certificates obtained in 
this Section 5, we may rewrite this coefficient as

d = 1 : α1 = √
1,

d = 2 : α2 = √
2 + (1 + 1)

√
1,

d = 3 : α3 = √
3 + (1 + 2)

√
2 + (1 + 1 + 1)

√
1,

d = 4 : α4 = √
4 + (1 + 3)

√
3 + (1 + 2 + 3)

√
2 + (1 + 1 + 1 + 1)

√
1.

We therefore ask the following question: Is it true that

d = 5 : α5 = √
5 + (1 + 4)

√
4 + (1 + 3 + 5)

√
3

+ (1 + 2 + 3 + 4)
√

2 + (1 + 1 + 1 + 1 + 1)
√

1,

d = 6 : α6 = √
6 + (1 + 5)

√
5 + (1 + 4 + 7)

√
4 + (1 + 3 + 5 + 7)

√
3

+ (1 + 2 + 3 + 4 + 5)
√

2 + (1 + 1 + 1 + 1 + 1)
√

1

and more generally for given d that

αd =
d−1∑
i=0

( d−i−1∑
j=0

(1 + i j)
)√

i + 1 (5.8)

is a choice for αd in a certificate for Conjecture 5.16? If so, are all possible certificates given by 
choosing a sign for each square root ±√

i + 1 in (5.8) (including the signs of expressions like 
√

1 = 1
and 

√
4 = 2, i.e., 2d different solutions)? The latter turned out to be true for d ∈ {0,1,2,3,4} by our 

computations. �

To summarize, in this section we have obtained certificates for the cases with kG = nG ≥ 1 and 
kH = nH − d for d ∈ {0,1,2,3,4} by our method. For d ∈ {0,1,2} we have proven these results by 
hand, for d ∈ {3,4} we have proven them computationally. We will continue to prove the correctness 
of certain certificates in the next section.

6. Exact certificates for kG = nG − 1 and kH = nH − 1 with nH ∈ {2,3}

In this section we will finally prove Theorem 4.6 and therefore obtain a certificate for the case 
kG = nG − 1 ≥ 1, nH = 3 and kH = 2. As a byproduct we will also obtain a certificate for the case 
kG = nG − 1 ≥ 1, nH = 2 and kH = 1. Towards that end we will use some of the results of Section 5.1
and derive further results of a similar nature.
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6.1. Auxiliary results

We start with the following lemma.

Lemma 6.1. Let kG = nG − 1 ≥ 1. Then egg′ ∈ IG ⊆ Iviz holds for all 
{

g, g′}⊆ DG .

This lemma is equivalent to egg′ ≡ 0 mod IG and egg′ ≡ 0 mod Iviz for all 
{

g, g′}⊆ DG .
Lemma 6.1 is plausible from a graph theoretical point of view. Indeed, due to Theorem 3.4 the 

points in the variety of IG are in bijection to the graphs in G , which are the graphs on nG vertices 
with domination number kG = nG − 1 and a minimum dominating set DG . Clearly in such graphs 
there are no edges between any two vertices of DG , because if there would be such an edge, the 
domination number would decrease. Hence, for each point in the variety of Iviz , we have that the 
component e∗

gg′ is zero for every 
{

g, g′}⊆ DG .

Proof of Lemma 6.1. For kG = nG − 1 = 1 there is no 
{

g, g′}⊆ DG , so there is nothing to prove.
Let 

{
g, g′} ⊆ DG . We apply Hilbert’s Nullstellensatz on the polynomial f = egg′ . We have kG =

nG − 1, therefore 
∣∣V (G) \ DG

∣∣= 1, and so let 
{

ĝ
}= V (G) \ DG . Then clearly g �= ĝ and g′ �= ĝ .

We use Notation 3.2. Let z∗ ∈ V(IG), so z∗ is a common zero of (3.1a), (3.1b) and (3.1c). We assume 
that z∗ is not a zero of f = egg′ .

Let us set S = S g = {̃g ∈ DG : g̃ �= g
}

. Then, due to (3.1c) we have⎛⎝∑
g̃∈S g

e∗
g̃ g

⎞⎠⎛⎝∑
g̃∈S g

e∗
g̃ ĝ

⎞⎠= 0 (6.1)

and conclude that one of the two factors has to be zero.
Due to (3.1a), all e∗

g̃ g and e∗
g̃ ĝ

appearing in (6.1) are in {0,1}, and moreover e∗
gg′ ∈ {0,1}. Then 

e∗
gg′ = 1 (as it is assumed to be non-zero), and, because g′ ∈ S g , the first factor of (6.1) is non-zero. 

Therefore the second factor of (6.1) must be zero and hence e∗
g̃ ĝ

= 0 for all g̃ ∈ S g .

By symmetry (switching the roles of g and g′), we obtain e∗
g̃ ĝ

= 0 for all g̃ ∈ S g′ and therefore get 
e∗

g̃ ĝ
= 0 for all g̃ ∈ S g ∪ S g′ = DG . Thus,∏

g̃∈DG

(1 − e∗
g̃ ĝ) = 1,

but due to (3.1b) this product should be zero; a contradiction. Hence z∗ is also a zero of f = egg′ , and 
Hilbert’s Nullstellensatz (Theorem 2.4 and Remark 2.5) implies that f = egg′ ∈ IG . �

In particular we will need the following consequence of Lemma 6.1.

Corollary 6.2. Let kG = nG − 1 ≥ 1. Then eg1 g2 eg3 g4 ∈ IG ⊆ Iviz holds for all {g1, g2}, {g3, g4} ⊆ V (G) with 
{g1, g2} �= {g3, g4}.

Note that also Corollary 6.2 can be explained from a graph theoretic point of view. To be precise 
there can be only one edge in a graph on nG vertices with domination number nG − 1, because an 
additional edge would decrease the domination number. Therefore, for each point in the variety of 
IG , the product of components corresponding to two different edge variables has always to be equal 
to 0 due to Theorem 3.4.

Proof of Corollary 6.2. If {g1, g2} ⊆ DG or {g3, g4} ⊆ DG the result follows from Lemma 6.1 because 
then eg1 g2 ∈ IG or eg3 g4 ∈ IG . Hence we only have to consider the case {g1, g2} � DG and {g3, g4} �
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DG . Let 
{

ĝ
}= V (G) \ DG , then without loss of generality this case is equivalent to g1 = g3 = ĝ and 

g2 �= g4 .
We use Hilbert’s Nullstellensatz like in Lemma 6.1 to prove the statement. Let z∗ ∈ V(IG) be a 

common zero of (3.1a), (3.1b) and (3.1c). If we can prove that z∗ is also a zero of f = e ĝ g2
e ĝ g4

we are 
done.

For S = V (G) \ {g2, g4}, (3.1c) implies⎛⎝∑
g∈S

e∗
g g2

⎞⎠⎛⎝∑
g∈S

e∗
g g4

⎞⎠= 0,

so one of these two factors has to be zero; without loss of generality (due to symmetry in g2 and g4), 
let us assume the first factor. As e∗

g̃ g2
∈ {0,1} for all g̃ ∈ V (G) by (3.1a), we then have in fact e∗

g̃ g2
= 0

for all g̃ ∈ V (G). In particular we have e∗
ĝ g2

= 0 because ĝ ∈ S . This is what we wanted to show. �
We need Corollary 6.2 in order to prove the next result.

Lemma 6.3. Let kG = nG − 1 ≥ 1, nH ∈ {2,3} and kH = nH − 1. Then

(1 − xgh1)(1 − xgh2)(1 − xg′h3)(1 − xg′h4) ∈ Iviz

for 
{

g, g′}⊆ V (G) and for {h1,h2}, {h3,h4} ⊆ V (H).

Note that it would again be possible to justify Lemma 6.3 in terms of graph theory using Theo-
rem 3.8. It would need a case distinction for nH = 2 and nH = 3 and several more case distinctions 
on whether g , g′ ∈ DG , whether h1 , h2 , h3 , h4 ∈ DH and on the cardinality of {h1, h2, h3, h4}. We 
refrain from presenting the details here.

Proof of Lemma 6.3. First observe that without loss of generality we can assume that g ∈ DG , as ∣∣DG
∣∣ = nG − 1 and therefore not both of g and g′ can be in V (G) \ DG . For notational convenience 

let 
{

ĝ
}= V (G) \ DG , and note that g′ might or might not be equal to ĝ .

Next observe that without loss of generality h4 = h1 , because nH ∈ {2,3}, and h1 �= h2 and h3 �= h4
by assumption. We obtain that the sets {h1,h2} and {h3,h4} are both of cardinality 2 and not disjoint.

In order to prove Lemma 6.3 we will use Hilbert’s Nullstellensatz for f = (1 − xgh1 )(1 − xgh2 )(1 −
xg′h1)(1 − xg′h3) analogously as it has been done in the proofs of Lemma 6.1 and Corollary 6.2. Note 
that we use Notation 3.7. Towards that end let z∗ ∈ V(Iviz), i.e., z∗ is a common zero of (3.1a), (3.1b)
and (3.1c) for both G and H and of (3.2a) and (3.2b). Due to (3.1a) and (3.2a) all of e∗

gg′ , e∗
hh′ and x∗

gh
are either 0 or 1.

Assume that z∗ is not a zero of f , then x∗
gh1

= x∗
gh2

= x∗
g′h1

= x∗
g′h3

= 0. Furthermore, as g ∈ DG we 
have e∗

g g̃ = 0 for all g̃ ∈ DG by Lemma 6.1.
Now we distinguish the two cases nH = 2 and nH = 3. For nH = 2 the above condition e∗

g g̃ = 0

for all g̃ ∈ DG together with (3.2b) for the vertices gh1 and gh2 of the box graph class imply

1 − e∗
g ĝ x∗

ĝh1
= 0 and 1 − e∗

g ĝ x∗
ĝh2

= 0,

so e∗
g ĝ

= x∗
ĝh1

= x∗
ĝh2

= 1 holds. Note that for nH = 2 we have {h1,h2} = {h3,h4}, so ĝ �= g′ and hence 
g′ ∈ DG because x∗

g′h1
= 0. Then (3.2b) for g′h1 and g′h3 yields

1 − e∗
g′ ĝ x∗

ĝh1
= 0 and 1 − e∗

g′ ĝ x∗
ĝh3

= 0

and hence e∗
g′ ĝ

= x∗
ĝh1

= x∗
ĝh3

= 1. But due to Corollary 6.2 and e∗
g ĝ

= 1 we have e∗
g′ ĝ

= 0, a contradic-
tion. Hence the lemma holds for nH = 2.
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Next we consider the case nH = 3. Here we let {h} = V (H) \{h1,h2} and let 
{

h′}= V (H) \{h1,h3}. 
Together with (3.2b) for the box graph class vertices gh1 and gh2 , the above derived fact e∗

g g̃ = 0 for 
all g̃ ∈ DG yields

(1 − e∗
g ĝ x∗

ĝh1
)(1 − e∗

h1hx∗
gh) = 0 and (6.2a)

(1 − e∗
g ĝ x∗

ĝh2
)(1 − e∗

h2hx∗
gh) = 0. (6.2b)

If e∗
g ĝ

= 0, then (6.2a) and (6.2b) imply x∗
gh = 1 and e∗

h1h = e∗
h2h = 1, which is a contradiction to 

Corollary 6.2. So e∗
g ĝ

= 1 holds. Now we will distinguish the two cases g′ �= ĝ and g′ = ĝ .

Case g′ �= ĝ . We have g′ ∈ DG and can deduce from (3.2b) for g′h1 and g′h3 analogously as for g
that

(1 − e∗
g′ ĝ x∗

ĝh1
)(1 − e∗

h1h′ x∗
g′h′) = 0 and (6.3a)

(1 − e∗
g′ ĝ x∗

ĝh3
)(1 − e∗

h3h′ x∗
g′h′) = 0. (6.3b)

Due to Corollary 6.2 and e∗
g ĝ

= 1 we have e∗
g′ ĝ

= 0. Therefore (6.3a) and (6.3b) imply that e∗
h1h′ =

e∗
h3h′ = 1, which is a contradiction to Corollary 6.2. So in this case z∗ is also a zero of f and hence 

f ∈ Iviz holds because of Hilbert’s Nullstellensatz.
Case g′ = ĝ . Due to Corollary 6.2 and e∗

g ĝ
= 1 we can deduce that e∗

g′ g̃ = 0 for all g̃ ∈ V (G) \ {g}. 
Therefore (3.2b) for the vertices g′h1 and g′h3 of the box graph class become

(1 − e∗
g ĝ x∗

gh1
)(1 − e∗

h1h′ x∗
ĝh′) = 0 and (6.4a)

(1 − e∗
g ĝ x∗

gh3
)(1 − e∗

h3h′ x∗
ĝh′) = 0. (6.4b)

We have x∗
ĝh1

= x∗
gh1

= 0, so from (6.2a) and (6.4a) it follows that x∗
gh = x∗

ĝh′ = 1 and e∗
h1h = e∗

h1h′ = 1. 
Corollary 6.2 applied on the graph class H implies h = h′ and therefore also h2 = h3 holds. Further-
more, this corollary also implies that e∗

h2h = 0, and hence x∗
ĝh2

= 1 because of (6.2b). But this is a 
contradiction because x∗

ĝh2
= x∗

g′h3
= 0. So also in this case z∗ is a zero of f and therefore f ∈ Iviz

holds. �
Remark 6.4. In particular for kG = nG − 1, nH ∈ {2,3} and kH = nH − 1, Lemma 6.3 implies

xgh1 xgh2 xg′h3 xg′h4 ≡ xgh1 xgh2 xg′h3 + xgh1 xgh2 xg′h4 + xgh1 xg′h3 xg′h4 + xgh2 xg′h3 xg′h4

− xgh1 xgh2 − xgh1 xg′h3 − xgh2 xg′h3

− xgh1 xg′h4 − xgh2 xg′h4 − xg′h3 xg′h4

+ xgh1 + xgh2 + xg′h3 + xg′h4 − 1 mod Iviz

for all 
{

g, g′}⊆ V (G) and all {h1,h2}, {h3,h4} ⊆ V (H). �

Next we will need some more polynomials in order to be able to cope with σg,i in a better way.

Definition 6.5. Let i and j be two non-negative integers. We define

τi, j =
∑

g∈V (G)

∑
g′∈V (G)

g′ �=g

σg,iσg′, j .

Observe that τi, j = τ j,i holds. As a next step we will use Lemma 6.3 in order to determine τ2,2 .
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Lemma 6.6. Let kG = nG − 1 ≥ 1, nH ∈ {2,3} and kH = nH − 1. Then

τ2,2 ≡ 2(nH − 1)τ2,1 − (nH − 1)2τ1,1 − nH(nH − 1)(nG − 1)
∑

g∈V (G)

σg,2

+ nH(nH − 1)2(nG − 1)
∑

g∈V (G)

σg,1 − 1

4
nG(nG − 1)n2

H(nH − 1)2 mod Iviz.

Proof. By definition

τ2,2 =
∑

g∈V (G)

∑
g′∈V (G)

g′ �=g

σg,2σg′,2

=
∑

g∈V (G)

∑
g′∈V (G)

g′ �=g

⎛⎝ ∑
{h1,h2}⊆V (H)

xgh1 xgh2

⎞⎠⎛⎝ ∑
{h3,h4}⊆V (H)

xg′h3 xg′h4

⎞⎠
holds. By using Lemma 6.3 as stated in Remark 6.4 we obtain

τ2,2 ≡
∑

g∈V (G)

∑
g′∈V (G)

g′ �=g

∑
{h1,h2}⊆V (H)
{h3,h4}⊆V (H)

(
xgh1 xgh2 xg′h3 + xgh1 xgh2 xg′h4

+ xgh1 xg′h3 xg′h4 + xgh2 xg′h3 xg′h4

− xgh1 xgh2 − xgh1 xg′h3 − xgh2 xg′h3

− xgh1 xg′h4 − xgh2 xg′h4 − xg′h3 xg′h4

+ xgh1 + xgh2 + xg′h3 + xg′h4

− 1
)

mod Iviz.

(6.5)

We can further reformulate (6.5) by using the following argument. The monomials xgh1 xgh2 xg′h3 and 
xgh1 xgh2 xg′h4 in (6.5) are both of the form xgh1 xgh2 xg′h for some {h1,h2} ⊆ V (H) and some h ∈ V (H). 
Hence due to symmetry∑

{h1,h2}⊆V (H)
{h3,h4}⊆V (H)

xgh1 xgh2 xg′h3 + xgh1 xgh2 xg′h4 (6.6)

can be written as

δ
∑

{h1,h2}⊆V (H)
h∈V (H)

xgh1 xgh2 xg′h (6.7)

for some δ ∈ Z. In order to compute δ observe that there are 2
(nH

2

)2
monomials of the consid-

ered form in (6.6) and that there are nH
(nH

2

)
monomials of the considered form in (6.7). Hence 

δ = 2
(nH

2

)2
/(nH

(nH
2

)
). Similar arguments for the other monomials of (6.5) yield

τ2,2 ≡
∑

g∈V (G)

∑
g′∈V (G)

g′ �=g

(
2
(nH

2

)2
nH
(nH

2

) ∑
{h1,h2}⊆V (H)

h∈V (H)

xgh1 xgh2 xg′h
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+ 2
(nH

2

)2
nH
(nH

2

) ∑
{h3,h4}⊆V (H)

h∈V (H)

xghxg′h3 xg′h4

−
(nH

2

)2(nH
2

) σg,2 − 4
(nH

2

)2
n2
H

∑
h∈V (H)
h′∈V (H)

xghxg′h′ −
(nH

2

)2(nH
2

) σg′,2

+ 2
(nH

2

)2
nH

σg,1 + 2
(nH

2

)2
nH

σg′,1 −
(

nH
2

)2
)

mod Iviz,

which, using the definition of τi, j and τ1,2 = τ2,1 , can be simplified to

τ2,2 ≡ 2(nH − 1)τ2,1 − (nH − 1)2τ1,1 − nH(nH − 1)(nG − 1)
∑

g∈V (G)

σg,2

+ nH(nH − 1)2(nG − 1)
∑

g∈V (G)

σg,1 − 1

4
nG(nG − 1)n2

H(nH − 1)2 mod Iviz. �

This completes the collection of result that we need in this section.

6.2. Certificates for kG = nG − 1 and kH = nH − 1 with nH ∈ {2,3}

Now we are finally able to prove Theorem 4.6, which provides a sum-of-squares certificate of 
degree 2 for kG = nG − 1 ≥ 1, nH = 3 and kH = 2. In fact we will prove the existence of sum-of-
squares certificates not only in this case, but also for the case kG = nG − 1 ≥ 1, nH = 2 and kH = 1 in 
the following theorem.

Theorem 6.7. For kG = nG − 1 ≥ 1, nH ∈ {2,3} and kH = nH − 1 Vizing’s conjecture is true as the polyno-
mials

s0 = α + β

( ∑
g∈V (G)

∑
h∈V (H)

xgh

)
+ γ

( ∑
g∈V (G)

∑
{h,h′}⊆V (H)

xghxgh′
)

and

sg = κ

( ∑
h∈V (H)

xgh

)
− λ

( ∑
{h,h′}⊆V (H)

xghxgh′
)

for g ∈ V (G),

where α = √
nH − 1(nG − 1), β = −√

nH − 1/nH and γ = 2/(nH
√

nH − 1), are a sum-of-squares certifi-
cate with degree 2 of fviz .

In particular for nH = 2 we have α = nG − 1, β = −1, γ = 1, κ = 0 and λ = 1 and for nH = 3 we have 
α = √

2(nG − 1), β = − 2
3

√
2 γ = 1

3

√
2, κ = 1

3 and λ = − 2
3 .

Proof of Theorems 4.6 and 6.7. In order to prove that the polynomials s0 and sg for g ∈ V (G) are a 
sum-of-squares certificate we have to show that s2

0 +∑g∈V (G) s2
g ≡ fviz mod Iviz . Towards that end 

we can rewrite the polynomials as s0 = α +β
∑

g∈V (G) σg,1 +γ
∑

g∈V (G) σg,2 and sg = κσg,1 +λσg,2). 
This yields

s2
0 +

∑
g∈V (G)

s2
g =

⎛⎝α + β
∑

g∈V (G)

σg,1 + γ
∑

g∈V (G)

σg,2

⎞⎠2

+
∑

g∈V (G)

(κσg,1 + λσg,2)
2
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= α2 + 2αβ
∑

g∈V (G)

σg,1 + 2αγ
∑

g∈V (G)

σg,2 + β2
( ∑

g∈V (G)

σg,1

)( ∑
g′∈V (G)

σg′,1

)

+ γ 2
( ∑

g∈V (G)

σg,2

)( ∑
g′∈V (G)

σg′,2

)
+ 2βγ

( ∑
g∈V (G)

σg,1

)( ∑
g′∈V (G)

σg′,2

)
+
∑

g∈V (G)

(
κ2σ 2

g,1 + 2κλσg,1σg,2 + λ2σ 2
g,2

)
and therefore

s2
0 +

∑
g∈V (G)

s2
g =α2 +

∑
g∈V (G)

∑
g′∈V (G)

g′ �=g

(
β2σg,1σg′,1 + γ 2σg,2σg′,2 + 2βγ σg,1σg′,2

)

+
( ∑

g∈V (G)

(β2 + κ2)σ 2
g,1 + (2βγ + 2κλ)σg,1σg,2 + (γ 2 + λ2)σ 2

g,2

+ 2αβσg,1 + 2αγ σg,2

)
(6.8)

holds. By using Lemma 6.6 we obtain∑
g∈V (G)

∑
g′∈V (G)

g′ �=g

(
β2σg,1σg′,1 + γ 2σg,2σg′,2 + 2βγ σg,2σg′,1

)

= β2τ1,1 + γ 2τ2,2 + 2βγ τ1,2

≡
(

2βγ + 2(nH − 1)γ 2
)
τ2,1 +

(
β2 − (nH − 1)2γ 2

)
τ1,1

− nH(nH − 1)(nG − 1)γ 2
∑

g∈V (G)

σg,2

+ nH(nH − 1)2(nG − 1)γ 2
∑

g∈V (G)

σg,1

− 1
4 nG(nG − 1)n2

H(nH − 1)2γ 2 mod Iviz.

Furthermore, we rewrite σ 2
g,1 , σg,2σg,1 and σ 2

g,2 as in Remark 5.6, so

(β2 + κ2)σ 2
g,1 + (2βγ + 2κλ)σg,1σg,2 + (γ 2 + λ2)σ 2

g,2 + 2αβσg,1 + 2αγ σg,2

≡ (β2 + κ2)(σg,1 + 2σg,2) + (2βγ + 2κλ)(2σg,2 + 3σg,3)

+ (γ 2 + λ2)(σg,2 + 6σg,3 + 6σg,4) + 2αβσg,1 + 2αγ σg,2

≡ (β2 + κ2 + 2αβ)σg,1 + (2β2 + 2κ2 + 4βγ + 4κλ + γ 2 + λ2 + 2αγ )σg,2

+ (6βγ + 6κλ + 6γ 2 + 6λ2)σg,3 + (6γ 2 + 6λ2)σg,4 mod Iviz.

The previous two identities together with (6.8) and the fact that σg,4 = 0 trivially holds because 
nH ∈ {2,3} yield

s2
0 +

∑
g∈V (G)

s2
g ≡ (α2 − 1

4 nG(nG − 1)n2
H(nH − 1)2γ 2)+ 2

(
βγ + (nH − 1)γ 2)τ2,1

+ (β2 − (nH − 1)2γ 2)τ1,1

+ (β2 + κ2 + 2αβ + nH(nH − 1)2(nG − 1)γ 2) ∑
g∈V (G)

σg,1
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+ (2β2 + 2κ2 + 4βγ + 4κλ + γ 2 + λ2

+ 2αγ − nH(nH − 1)(nG − 1)γ 2) ∑
g∈V (G)

σg,2

+ 6(βγ + κλ + γ 2 + λ2)
∑

g∈V (G)

σg,3 mod Iviz.

In order to obtain a certificate s2
0 +∑g∈V (G) s2

g ≡ fviz = −kGkH +∑g∈V (G) σg,1 mod Iviz has to hold. 
For nH = 2 we have σg,3 = 0, so in this case every solution to the system of equations

α2 − 1

4
nG(nG − 1)n2

H(nH − 1)2γ 2 = −(nH − 1)(nG − 1),

βγ + (nH − 1)γ 2 = 0,

β2 − (nH − 1)2γ 2 = 0,

β2 + κ2 + 2αβ + nH(nH − 1)2(nG − 1)γ 2 = 1,

2β2 + 2κ2 + 4βγ + 4κλ + γ 2 + λ2 + 2αγ − nH(nH − 1)(nG − 1)γ 2 = 0

yields a valid certificate. It is easy to check that α = nG − 1, β = −1, γ = 1, κ = 0 and λ = 1 is a 
solution.

For nH = 3 the above equations and also

βγ + κλ + γ 2 + λ2 = 0

has to be fulfilled in order to obtain a certificate. Also in this case it can be verified easily that 
α = √

2(nG − 1), β = − 2
3

√
2, γ = 1

3

√
2, κ = 1

3 and λ = − 2
3 is a solution to the system of equations. 

Therefore the polynomials s0 and sg for g ∈ V (G) form indeed a certificate. �
6.3. Missing certificates for kG = nG − 1 and kH = nH − 1 with nH ≥ 4

Previously we have seen that in many cases it is possible to obtain a certificate not only for 
particular values of nH and kH , but for general values, like it was done in Section 5. Therefore it 
is a natural question, whether we can generalize the certificate from Theorem 4.6 for the case kG =
nG − 1 ≥ 1, nH = 3 and kH = 2 to a certificate for the case kG = nG − 1 ≥ 1 and kH = nH − 1 ≥ 1. 
We have successfully generalized the certificate for nH = 2 with Theorem 6.7. Unfortunately it turns 
out that this is not possible for nH ≥ 4.

Example 6.8. There seems to be no 2-sum-of-squares certificate for the case nG = 4, kG = 3, nH = 4, 
kH = 3 that uses only the monomials of the form 1, xgh and xghxgh′ for all g ∈ V (G) and all 

{
h,h′}⊆

V (H), as the corresponding SDP is infeasible.
The SDP for the case nG = 4, kG = 3, nH = 4, kH = 3 which takes into account all monomials of 

degree at most 2 is feasible. Therefore we expect that there is an exact 2-sum-of-squares certificate 
using all monomials also for these parameter values. ©

When we take a closer look on the proofs of Section 6.1 and 6.2 we get some insight in why this 
is the case. First, Lemma 6.3 is not true anymore for nG ≥ 4, so we can not use the reduction of 
all products of 4 variables as presented in Remark 6.4. Furthermore σg,4 is not equal to 0 anymore 
for nG ≥ 4, so in the proof of Theorem 4.6 the coefficient of σg,4 would have to be 0, which is not 
possible as the coefficient is 6γ 2 + 6λ2 .

As a result we would have to search for a certificate with more monomials than just 1, xgh and 
xghxgh′ for the case kG = nG − 1 and kH = nH − 1 for nH ≥ 4.
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7. Conclusions and future work

7.1. Conclusions

In this project, we modeled Vizing’s conjecture as an ideal/polynomial pair such that the polyno-
mial is non-negative on the variety of a particularly constructed ideal if and only if Vizing’s conjecture 
is true. We were able to produce low-degree, sparse Positivstellensatz certificates of non-negativity for 
certain classes of graphs using an innovative collection of techniques ranging from semidefinite pro-
gramming to clever guesswork to computer algebra.

In particular, Vizing’s conjecture with parameters kG = nG − 1 ≥ 1, kH = nH − 1 and nH ∈ {2,3}
has a 2-sum-of-squares Positivstellensatz certificate. Furthermore Vizing’s conjecture with parameters 
kG = nG and kH = nH − d has a d-sum-of-squares Positivstellensatz certificate for d ≤ 4. We have 
conjectured a broader combinatorial pattern based on these certificates, but proving validity is left to 
future work.

However, at this time, we have indeed proved Vizing’s conjecture for several classes of graphs 
using sum-of-squares certificates. Although we have not advanced what is currently known about 
Vizing’s conjecture, we have introduced a completely new technique (still to be thoroughly explored) 
to the literature of possible approaches.

7.2. Future work

The most pressing matter that arises in this paper is the following. We have investigated the case 
kG = nG and kH = nH − d. In the future we want to prove Conjecture 5.16 or find other certificates 
for the cases d ≥ 5. In particular it would be interesting to know if there is an easy structure for the 
leading coefficient αd in such a certificate as mentioned in Remark 5.22.

On a small scale, in order to obtain more insight on the structure of certificates a next step will be 
to investigate further specific parameter settings. In particular, finding a certificate for the case kG = 1
(and all other parameters arbitrary) is among our next candidates.

On a large scale, it is known that Vizing’s conjecture holds if one of the graphs G or H has 
domination number at most three (Brešar et al., 2012), therefore, to find new results we need to 
get certificates for kG ≥ 4 and kH ≥ 4. Furthermore, it suffices to consider graphs that contain no 
isolated vertices. For such graphs the number of vertices is at least twice the domination number (Ore, 
1962). Hence, parameters where we can obtain new results on Vizing’s conjecture must satisfy nG ≥ 8, 
kG ≥ 4, nH ≥ 8, and kH ≥ 4.

Therefore, in our future work we intend to continue pushing the computational aspect of this 
project. One way to do so is to exploit symmetries in order to simplify the computation of a Gröbner 
basis, as computing the Göbner basis is one of the computational bottlenecks. One alternative possi-
bility to deal with this bottleneck is to avoid the computation of a Gröbner basis by increasing the 
number of variables in the SDP. Another question of interest is if one could use symmetry to reduce 
the complexity of the SDP.

Up to now we always used the solution of the SDP in order to obtain insight in the structure of 
the certificate and then algebraic manipulations yielded the actual certificate. It would be interesting 
to solve the SDP exactly over the algebraic reals and not only to a high precision over the rationals, in 
order to obtain an exact certificate as soon as the SDP is solved. However, this is a highly non-trivial 
task and is left for future research.

Another line of research is to change the model from a Positivstellensatz certificate to a Hilbert’s 
Nullstellensatz certificate, and thus change from numeric semidefinite programming to exact arith-
metic linear algebra. This approach must also be thoroughly investigated.

Finally, it would be very interesting to conjecture a global relationship between the values of 
nG , nH , kG and kH , and the degree of the Positivstellensatz certificate, and perhaps even recast the 
conjecture in terms of the theta body hierarchy described in Gouveia et al. (2010).
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Appendix A. More complicated “intermediate” certificates

In Sections 5.2, 5.3 and 5.4 we presented simple sum-of-squares certificates for the case kG = nG
and kH = nH − d with d ∈ {0,1,2}. In fact, these easy certificates where obtained only after some 
computational experiments, in which more complicated certificates were found. We present these 
intermediate results and certificates here in this appendix.

For obtaining such a certificate, we use the machinery presented in Section 4.3 to get a numer-
ical certificate. From this, we can guess a structure of the occurring coefficients, like it was done 
in Example 4.2. We will see that these more complicated certificates—they were found by an SDP 
solver—have a geometric aspect. By studying this aspect it was possible to simplify the more com-
plicated certificates to the certificates presented in Sections 5.3 and 5.4. Hence retrospectively, these 
more complicated certificates are formally not needed for the proofs of existence of sum-of-squares 
certificates. Nevertheless we include them here to give a more accurate and complete picture of the 
process of how to obtain certificates.

A.1. kG = nG and kH = nH − 1

In this case the certificates found by observing a structure and guessing the coefficients of the 
numerical certificate have the following form.

Theorem A.1. For kG = nG ≥ 1 and kH = nH − 1 ≥ 1, Vizing’s conjecture is true as the polynomials

s′
i = 1√

nG

∑
g∈V (G)

λg,i

( ∑
h∈V (H)

xgh

)

for i ∈ {1, . . . ,nG − 1
}

and

s′
nG = 1√

nG

(
− kGkH +

∑
(g,h)∈V (G)×V (H)

xgh

)
,

where λg,i are solutions to the system of equations

nG−1∑
i=1

λ2
g,i = nG − 1 for g ∈ V (G), (A.1a)

nG−1∑
i=1

λg,iλg′,i = −1 for
{

g, g′}⊆ V (G), (A.1b)

are a 1-sos certificate of fviz.

We can prove this theorem directly, but go a different way here: This result is one intermediate 
step and useful and necessary for conjecturing Theorem 5.12. But once Theorem 5.12 is proved, Theo-
rem A.1 is not a dependency anymore. Therefore, we can reuse the statement made in Theorem 5.12
in the proof here without falling into a cyclic argumentation.

Proof of Theorem A.1. In Theorem 5.12 we have already determined a 1-sos certificate of fviz with 
sg , g ∈ V (G), so we know that 

∑
g∈V (G) s2

g ≡ fviz mod Iviz . Hence in order to prove that also the 
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s′
i form a certificate, it is enough to prove that 

∑nG
i=1(s′

i)
2 =∑g∈V (G) s2

g . We use the abbreviation 
σg,1 =∑h∈V (H) xgh (see Definition 5.4) and do this by

nG∑
i=1

(s′
i)

2 = 1

nG

[ nG−1∑
i=1

( ∑
g∈V (G)

λ2
g,iσ

2
g,1 + 2

∑
{g,g′}⊆V (G)

λg,iλg′,iσg,1σg′,1

)

+ (kGkH)2 − 2kGkH
∑

g∈V (G)

σg,1 +
∑

g∈V (G)

σ 2
g,1 + 2

∑
{g,g′}⊆V (G)

σg,1σg′,1

]

= 1

nG

[ ∑
g∈V (G)

(
1 +

nG−1∑
i=1

λ2
g,i

)
σ 2

g,1 + 2
∑

{g,g′}⊆V (G)

(
1 +

nG−1∑
i=1

λg,iλg′,i

)
σg,1σg′,1

+ (kGkH)2 − 2kGkH
∑

g∈V (G)

σg,1

]

(A.1)= 1

nG

[
nG

∑
g∈V (G)

σ 2
g,1 + (kGkH)2 − 2kGkH

∑
g∈V (G)

σg,1

]
kG=nG=

∑
g∈V (G)

σ 2
g,1 + kGk2

H − 2kH
∑

g∈V (G)

σg,1

=
∑

g∈V (G)

(
σ 2

g,1 − 2kHσg,1 + k2
H
)= ∑

g∈V (G)

(
σg,1 − kH

)2 =
∑

g∈V (G)

s2
g,

and so the proof is complete. �
Theorem A.1 requires the solution of a system of equations. We obtain a solution in the following 

explicit form.

Lemma A.2. Suppose nG is a positive integer and V (G) = {1, . . . ,nG
}

. For g ∈ V (G) and i ∈ {1, . . . ,nG − 1
}

define

λg,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i < nG − g,√
nG(nG − g)

nG − g + 1
for i = nG − g,

−λnG−i,i

i
for i > nG − g.

Then these λg,i are a solution to the system of equations (A.1).

Proof. Consider λg,i to be defined as stated in the lemma. We will show that it satisfies the equa-
tions (A.1).

We start with an initial remark: Observe that λg,i = λg′,i whenever i > nG − g and i > nG − g′ hold 
for all 

{
g, g′}⊆ V (G).

First we prove by induction that

nG−1∑
i=nG−g+1

λ2
g,i = g − 1

nG − g + 1
(A.2)
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holds for every g ∈ V (G). Indeed, (A.2) is trivially satisfied for g = 1, as both sides are equal to zero. 
In the induction step we assume the (A.2) holds for g and prove that it also holds for g + 1. Towards 
this end consider

nG−1∑
i=nG−g

λ2
g+1,i = λ2

g+1,nG−g +
nG−1∑

i=nG−g+1

λ2
g+1,i .

Our initial remark implies that

nG−1∑
i=nG−g

λ2
g+1,i = λ2

g,nG−g

(nG − g)2
+

nG−1∑
i=nG−g+1

λ2
g,i .

By using the induction hypothesis and the definition of λg,nG−g , this can be further simplified to

nG−1∑
i=nG−g

λ2
g+1,i = 1

(nG − g)2

nG(nG − g)

nG − g + 1
+ g − 1

nG − g + 1
= g

nG − g
.

Hence, this proves that (A.2) holds also for g + 1 and therefore for all g ∈ V (G).
Next we consider the system of equations that has to be satisfied. Observe that λg,i = 0 for i <

nG − g . This and (A.2) imply

nG−1∑
i=1

λ2
g,i = λ2

g,nG−g +
nG−1∑

i=nG−g+1

λ2
g,i = nG(nG − g)

nG − g + 1
+ g − 1

nG − g + 1
= nG − 1

and, again because of our initial remark, we have

nG−1∑
i=1

λg,iλg′,i = λg,nG−g

(
−λg,nG−g

nG − g

)
+

nG−1∑
i=nG−g+1

λ2
g,i

= −
(

1

nG − g

)
nG(nG − g)

nG − g + 1
+ g − 1

nG − g + 1
= −1.

Therefore the proposed solution for λg,i is indeed a solution to the system of equations (A.1). �
A.2. kG = nG and kH = nH − 2

In this case, we again can find certificates by recognizing a structure in a numeric certificate and 
guessing the coefficients. Such a certificate is of the following form.

Theorem A.3. For kG = nG ≥ 1 and kH = nH − 2 ≥ 1, Vizing’s conjecture is true as the polynomials

s′
i = 1√

nG

⎛⎝ ∑
g∈V (G)

λg,i

⎛⎝ ∑
h∈V (H)

xgh

⎞⎠+
∑

g∈V (G)

μg,i

⎛⎝ ∑
{h,h′}⊆V (H)

xghxgh′

⎞⎠⎞⎠
for all i ∈ {1, . . . ,nG − 1

}
and

s′
nG = 1√

nG

⎛⎝nGα + β

⎛⎝ ∑
g∈V (G)

∑
h∈V (H)

xgh

⎞⎠+ γ
∑

g∈V (G)

⎛⎝ ∑
{h,h′}⊆V (H)

xghxgh′

⎞⎠⎞⎠ ,

where α, β and γ are solutions of (5.6) and λg,i and μg,i are solutions of the system of equations
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nG−1∑
i=1

λ2
g,i = (nG − 1)β2 for g ∈ V (G), (A.3a)

nG−1∑
i=1

μ2
g,i = (nG − 1)γ 2 for g ∈ V (G), (A.3b)

nG−1∑
i=1

λg,iμg,i = (nG − 1)βγ for g ∈ V (G), (A.3c)

nG−1∑
i=1

λg,iλg′,i = −β2 for
{

g, g′}⊆ V (G), (A.3d)

nG−1∑
i=1

μg,iμg′,i = −γ 2 for
{

g, g′}⊆ V (G), (A.3e)

nG−1∑
i=1

λg,iμg′,i = −βγ for
{

g, g′}⊆ V (G), (A.3f)

are a 2-sos certificate of fviz.

Sketch of the proof. The proof can be done analogously to the proof of Theorem A.3, hence we want 
to show that

nG∑
i=1

(s′
i)

2 =
∑

g∈V (G)

s2
g,

where the si are those from Theorem 5.13. Towards that end we first simplify and express s′
i in terms 

of σg,i . Then we use binomial expansion to express the squares. In the result we can use (A.3) in 
order to eliminate all expressions of the form σg,iσg′, j and in order to simplify all expressions of the 
form σg,iσg, j . Eventually it is easy to see that the result is in fact a reformulation of 

∑
g∈V (G) s2

g . 
Hence the s′

i form a certificate due to Theorem 5.13. �
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