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The famous open Vizing conjecture claims that the domination 
number of the Cartesian product graph of two graphs G and H
is at least the product of the domination numbers of G and H . 
Recently Gaar, Krenn, Margulies and Wiegele used the graph 
class G of all graphs with nG vertices and domination number kG
and reformulated Vizing’s conjecture as the problem that for all 
graph classes G and H the Vizing polynomial is sum-of-squares 
(SOS) modulo the Vizing ideal. By solving semidefinite programs 
(SDPs) and clever guessing they derived SOS-certificates for some 
values of kG , nG , kH , and nH .
In this paper, we consider their approach for kG = kH = 1. For this 
case we are able to derive the unique reduced Gröbner basis of 
the Vizing ideal. Based on this, we deduce the minimum degree 
(nG +nH −1)/2 of an SOS-certificate for Vizing’s conjecture, which 
is the first result of this kind. Furthermore, we present a method 
to find certificates for graph classes G and H with nG +nH −1 = d
for general d, which is again based on solving SDPs, but does 
not depend on guessing and depends on much smaller SDPs. 
We implement our new method in SageMath and give new SOS-
certificates for all graph classes G and H with kG = kH = 1
and nG + nH ≤ 15.
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1. Introduction

A large area of graph theory focuses on the interrelationship of graph invariants. One of these 
graph invariants is the domination number γ (G) of a simple undirected graph G , that is the minimum 
size of a set of vertices in G , such that each vertex in the graph is either in this set itself or adjacent 
to a vertex in this set. In 1968, Vizing (1968) made a conjecture regarding the domination number of 
the Cartesian product G�H of the graphs G and H . The vertices of G�H are the Cartesian product 
of the vertices in G and H , and the subgraphs of G�H induced by the vertices with same fixed first 
tuple entry are isomorphic to the graph G and analogously the vertices with the same second tuple 
entry induce subgraphs isomorphic to H . Vizing conjectured that for any graphs G and H it holds 
that γ (G�H) ≥ γ (G)γ (H). To date, it is not clear whether this conjecture is true. Nevertheless, for 
many classes of graphs it has already been shown that Vizing’s conjecture holds, see the survey of 
Brešar et al. (2012) for details.

The first algebraic formulation of Vizing’s conjecture has been done by Margulies and Hicks in Mar-
gulies and Hicks (2012). An algebraic method to solve combinatorial problems is to encode the 
problem as a system of polynomial equations and apply the Nullstellensatz or Positivstellensatz. In 
several areas this and similar approaches have been used to show new results, for example for color-
ings (Alon and Tarsi, 1992; De Loera, 1995; De Loera et al., 2008; Eliahou, 1992; Hillar and Windfeldt, 
2008; Lovász, 1994; Matiyasevich, 2001; Mnuk, 2001), stable sets (De Loera, 1995; De Loera et al., 
2009; Gouveia et al., 2010; Li and Li, 1981; Lovász, 1994; Simis et al., 1994), flows (Alon and Tarsi, 
1992; Mnuk, 2001; Onn, 2004) and matchings (Fischer, 1988) in graphs. Gaar et al. (2019) used an 
algebraic method to reformulate Vizing’s conjecture as a sum-of-squares (SOS) program. In such a 
program one asks the question of whether it is possible to represent a non-negative polynomial as 
the sum of squares of polynomials. SOS are heavily used in the area of polynomial optimization, see 
for example Blekherman et al. (2013), and also in many other fields like dynamical systems, geometric 
theorem proving and quantum mechanics, see for example Parrilo (2004).

Such SOS programs can be solved with the help of semidefinite programming (SDP). Roughly 
speaking, a semidefinite program (SDP) is like a linear program but instead of a non-negative vec-
tor variable one has a positive semidefinite matrix variable and the Frobenius inner product is used 
instead of vector multiplications. As for linear programs, there is also a duality theory for SDPs. They 
are often used as relaxations of combinatorial optimization problems. The first contribution to this 
area was the seminal paper of Lovász (1979) in 1979. Around 1990, the interest in SDP exploded. 
Nowadays there are several off-the-shelf solvers for SDPs, for example MOSEK (2021) and SDPT3 (Toh 
et al., 1999). Some nice survey papers on SDP are for example Vandenberghe and Boyd (1996) and 
Todd (2001).

As already mentioned, Gaar et al. (2019, 2021) presented a new approach for proving Vizing’s con-
jecture by finding SOS Positivstellensatz certificates with the help of SDP. In particular, they used SDP 
in order to prove that the so-called Vizing polynomial is SOS modulo the so-called Vizing ideal Iviz . 
In addition, they provide code to computationally find numeric certificates and check certificates for 
correctness. Furthermore, they gave certificates for the graph classes G (all graphs with nG vertices 
and domination number kG ) and H (all graphs with nH vertices and domination number kH) with 
the property that nG , kG , nH and kH satisfy kG = nG − 1 ≥ 1 and kH = nH − 1 for nH ∈ {2, 3} and 
the graph classes with kG = nG and kH = nH − d for d ≤ 4.

In this paper, we focus on the graph classes G and H with domination numbers kG = kH = 1. Due 
to this special choice of the parameters, we are able to determine the unique reduced Gröbner basis 
of the Vizing ideal Iviz , which is an important part of finding SOS-certificates. With the help of this 
Gröbner basis, we can determine the minimum degree of any certificate, which is (nG + nH − 1)/2.

Furthermore, we show that if SOS-certificates are of a specific form, then the certificates for graph 
classes with nG + nH − 1 = d for a fixed integer d ≥ 3 depend on d only. Based on that, we introduce 
a new method to find SOS-certificates for these graph classes. This method again makes use of SDP, 
but unlike in the approach of Gaar et al. (2019, 2021), no algebraic numbers have to be guessed. 
Additionally, the SDP that has to be solved is much smaller than the one in the other approach. 
With the help of our implementation of the new algorithm in SageMath (2021), we give certificates 
for all graph classes G and H with kG = kH = 1 up to nG + nH ≤ 15. The program code of the 
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implementation discussed in Section 5 is available as ancillary files from the arXiv page of this paper 
at arxiv.org /src /2112 .04007 /anc.

For these specific graph classes with kG = kH = 1 it is clear that Vizing’s conjecture holds, as it 
simply states that the domination number of the Cartesian product graph is greater or equal to 1, 
which holds for every graph. Thus, in this paper we do not advance the knowledge on whether 
Vizing’s conjecture is true for some graph classes or not. However, deriving new certificates via an 
algebraic method is an important step in the area of using conic linear optimization for computer-
assisted proofs, because it demonstrates that deriving such proofs is possible for a wider set of graph 
classes.

The paper is structured as follows. In Section 2 we present all formal definitions and the back-
ground on the algebraic method of Gaar et al. we need for our results. In this paper, we focus on 
the case kG = kH = 1. First, we determine the reduced Gröbner basis and state the minimum degree 
of a certificate for kG = kH = 1 in Section 3. In Section 4 we show how to find 2-SOS-certificates 
for nG = nH = 2 and for nG = 3 and nH = 2. Next, derived from the previous examples, we propose a 
general form of certificates for Vizing’s conjecture in the case of kG = kH = 1 in Section 5. We work 
out a new general method to prove the correctness of such certificates and we also list certificates for 
all graph classes with nG + nH ≤ 15, which we found using the newly implemented method. Finally, 
we conclude and point out some open questions in Section 6.

2. Formal definitions and background

Vizing’s conjecture is centered around the domination number defined as follows.

Definition 2.1. Let G = (V , E) be an undirected graph. A subset of vertices D ⊆ V (G) is a dominating 
set of G if for all u ∈ V (G) \ D there exists a vertex v ∈ D such that u is adjacent to v . In this case we 
say that vertex v dominates vertex u. A dominating set is a minimum dominating set of G if there is no 
dominating set with smaller cardinality. The domination number γ (G) is the cardinality of a minimum 
dominating set of G .

Our interest lies in the behavior of the domination number on the product of two graphs, the 
so-called Cartesian product graph, which is defined as follows.

Definition 2.2. Let G and H be two graphs. The Cartesian product graph G�H is a graph with vertices 
V (G�H) = V (G) × V (H) and edge set

E(G�H) =
{{

(g,h), (g′,h′)
}∣∣∣ g = g′ ∈ V (G) and {h,h′} ∈ E(H), or

h = h′ ∈ V (H) and {g, g′} ∈ E(G)
}
.

For convenience we will further write gh for a vertex (g, h) ∈ V (G�H). Fig. 1 shows the Cartesian 
product graph of the cyclic graph C4 and the linear graph P4 .

For any vertex g ∈ V (G) the vertices {(g,h)|h ∈ V (H)} induce a subgraph of G�H that is isomor-
phic to H . Such a subgraph is called H-fiber and denoted by g H . Also for h ∈ V (H) the subgraph Gh

of G�H induced by {(g,h)|g ∈ V (G)} is called a G-fiber.
In 1963, Vizing asked the question about the connection between the domination numbers of G

and H and the domination number of the Cartesian product graph of G and H in Vizing (1963). Five 
years later, he published the following conjecture in Vizing (1968).

Conjecture 2.3 (Vizing’s conjecture). For any two graphs G and H, the inequality

γ (G�H) ≥ γ (G)γ (H)

holds.
3
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G = C4

H = P4

G�H

Fig. 1. The Cartesian product graph C4�P4 .

To date, there is no answer to the question of whether Vizing’s conjecture is true. The typical 
approach to attack Vizing’s conjecture is to show that for a specific G Vizing’s conjecture holds for 
any graph H . Many results are based on the assumption that G can be partitioned into subgraphs of 
a special kind. The conjecture holds for example whenever G is a cycle, a tree, or has domination 
number less than or equal to 3 and H may be any graph. Furthermore, Zerbib (2019) proved that

γ (G�H) ≥ 1

2
γ (G)γ (H) + 1

2
max{γ (G),γ (H)},

a weaker result. To show that Vizing’s conjecture is false, one may try to find a counterexample. Some 
properties of a minimal counterexample are known, for example it has to be a graph with domination 
number greater than 3 and for each vertex g ∈ V (G) there has to exist a minimum dominating set 
that contains g . We refer to the survey paper of Brešar et al. (2012) for an exceedingly nice and 
structured overview of the results on Vizing’s conjecture.

In order to present new results for and with the approach of Gaar, Krenn, Margulies and Wiegele 
introduced in Gaar et al. (2019, 2021), we continue with algebraic basics needed throughout the 
paper. For more details and, in particular, the definitions of (total degree lexicographical) term orders, 
the leading term and (reduced) Gröbner bases, which we will need in Section 3, we refer the reader 
to the book of Cox et al. (2015).

By I we denote an ideal in a polynomial ring P =K[z1, . . . , zn] over a real field K ⊆R. By K we 
denote the algebraic closure of K. We denote by V(I) = {

z∗ ∈K
n ∣∣ f (z∗) = 0 for all f ∈ I

}
the variety 

of the ideal I . The ideal we consider in this paper is proven to be radical (i.e., for any polynomial f ∈ P
and any positive integer m the fact that f m ∈ I implies that f is in the ideal I) by Gaar et al. (2019). 
This allows us to apply the following important theorem.

Theorem 2.4 (Hilbert’s Nullstellensatz for radical ideals). Let P = K[z1, . . . , zn] be a polynomial ring over a 
field K and I ⊆ P a radical ideal. If f (z∗) = 0 for all z∗ ∈ V(I) for some f ∈ P , then f is in the ideal I .

Note that if the ideal I is finitely generated by the polynomials f1, . . . , fr ∈ P , it is enough to check 
that f vanishes on the common zeros of the generating polynomials (over the algebraic closure K).

The main idea of the approach by Gaar et al. is to prove Vizing’s conjecture by showing for a 
particular constructed ideal that a specific polynomial is non-negative on the variety of the ideal. For 
this purpose, they use the subsequent definitions.

Definition 2.5. Two polynomials f , g ∈ P are congruent modulo an ideal I (denoted by f ≡ g mod I), 
if f − g ∈ I or equivalently f = g + h for some h ∈ I .

Let � be a non-negative integer. A polynomial f ∈ P is �-sum-of-squares modulo I (�-SOS modulo I), 
if there are polynomials s1, . . . , st ∈ P of degree at most � such that

f ≡
t∑

s2
i mod I.
i=1

4
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We say that the polynomials s1, . . . , st form an SOS-certificate of degree �.

In the approach of Gaar et al., Vizing’s conjecture is investigated for classes of graphs for G and H
with fixed number of vertices in the graph and fixed domination number. The graph classes are 
denoted in the following way.

Definition 2.6. Let nG and kG be positive integers with kG ≤ nG defining the class of graphs G as the 
set of graphs with nG vertices and fixed minimum dominating set DG of size kG .

Without loss of generality, the minimum dominating set DG is fixed. All other graphs can be 
obtained by relabeling the vertices. For kG = k, we set DG = {g1, . . . , gk}.

In a next step, Gaar et al. construct an ideal, in which points in the variety correspond to graphs 
in the graph class G . The variables in this setting are boolean edge variables egg′ indicating whether 
there is an edge between the vertices g and g′ .

Definition 2.7. Let the set of variables be eG = {egg′ | g 	= g′ ∈ V (G)}. The ideal IG ⊆ PG = K[eG ] is 
generated by the polynomials

egg′(egg′ − 1) for all g 	= g′ ∈ V (G), (1a)∏
g′∈DG

(1 − egg′) for all g ∈ V (G) \ DG, (1b)

∏
g′∈V (G)\S

(∑
g∈S

egg′
)

for all S ⊆ V (G) with |S| = kG − 1. (1c)

Note that in the case kG = 1 (1b) simplifies to (1 −egg1 ) for all g ∈ V (G) with g 	= g1 as DG = {g1}
and (1c) is void.

Gaar et al. proved that the following theorem holds.

Theorem 2.8. The points in the variety of IG are in bijection to the graphs in G .

We write e∗
G for elements in the variety of IG , and by e∗

gg′ we denote the coordinate of e∗
G corre-

sponding to the variable egg′ .
Any point e∗

G in the variety of IG is a common zero of the generating polynomials. Let G be the 
graph the point e∗

G corresponds to according to Theorem 2.8. Then (1a) ensures that e∗
gg′ is either 0 

or 1 and indicates whether g is adjacent to g′ in G , (1b) guarantees that all vertices of G are domi-
nated by DG and (1c) makes sure that DG is a minimum dominating set, thus the domination number 
of G is indeed kG .

Analogously, Gaar et al. introduce the ideal IH ⊆ PH =K[eH] corresponding to the class H, which 
contains all graphs of size nH and fixed minimum dominating set DH of size kH . Moreover, they 
consider the graph class G�H, consisting of all Cartesian product graphs of graphs from G and H. 
The ideal IG�H , where the boolean variables xgh indicate whether the vertex (g, h) ∈ V (G�H) is in 
the dominating set, is constructed as follows.

Definition 2.9. Let xG�H = {xgh | g ∈ V (G), h ∈ V (H)}. The ideal IG�H ⊆ PG�H = K[xG�H ∪ eG ∪
eH] is generated by the polynomials

xgh(xgh − 1) and (2a)

(1 − xgh)

( ∏
g′∈V (G)

g′ 	=g

(1 − egg′ xg′h)

)( ∏
h′∈V (H)

h′ 	=h

(1 − ehh′ xgh′)

)
(2b)
5
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for all g ∈ V (G) and h ∈ V (H).

Next, Gaar et al. introduced a final ideal with the following properties.

Definition 2.10. For given graph classes G and H the Vizing ideal Iviz ⊆ PG�H is defined as the ideal 
generated by the elements of IG , IH and IG�H .

Lemma 2.11. The ideal Iviz is radical with finite variety.

Theorem 2.12. The points in the variety V(Iviz) are in bijection to the triples (G, H, D), where G ∈ G , H ∈ H
and D ⊆ V (G�H) is any (not necessary minimum) dominating set in G�H.

We denote the elements from the variety of Iviz by z∗ , and by x∗
gh , e∗

gg′ and e∗
hh′ , we refer to the 

different coordinates of z∗ for g , g′ ∈ V (G), and h, h′ ∈ V (H). For z∗ ∈ V(Iviz), the polynomial (2a) im-
plies that x∗

gh is 0 or 1, which indicates if the vertex (g, h) is in the dominating set D that corresponds 
to z∗ according to Theorem 2.12. Furthermore, (2b) warrants that D is a dominating set.

The polynomial of special interest for Gaar et al. is the so-called Vizing polynomial defined as 
follows.

Definition 2.13. For given graph classes G and H, the Vizing polynomial is defined as

fviz =
( ∑

gh∈V (G�H)

xgh

)
− kGkH.

With the help of this polynomial, Gaar et al. formulate the following important theorem, that 
provides a new method to prove Vizing’s conjecture.

Theorem 2.14. Vizing’s conjecture is true if and only if for all positive integers nG , kG , nH and kH with kG ≤
nG and kH ≤ nH , there exists a positive integer � such that the Vizing polynomial fviz is �-SOS modulo Iviz .

Note that Theorem 2.14 is based on a result that connects the non-negativity of a polynomial on a 
variety of an ideal with the fact that this polynomial is �-SOS modulo the ideal for some value of �, 
see Gaar et al. (2021, Lemma 2.8), and also Laurent (2009, Theorem 2.4), which is based on results by 
Parrilo (2002), for further details.

We want to point out that with arguments like the ones of Lasserre (2001), one can obtain an 
upper bound on the � to consider in Theorem 2.14. In particular, due to the generators (1a) and (2a)
of Iviz , every monomial can be reduced over Iviz such that each variable has power at most one. Thus, 
when setting up the SDP, it suffices to consider all possible monomials that contain each variable with 
power at most one. As a result, in Theorem 2.14 this gives � ≤ nGnH + (nG

2

) + (nH
2

)
.

To find SOS-certificates for Vizing’s conjecture as in Theorem 2.14, Gaar et al. (2021) formulated 
these problems of finding SOS-certificates as SDPs as described below.

They first fix nG , nH , kG and kH and determine Iviz . Let B be a Gröbner basis of Iviz and fix � to 
be some positive integer. Let v be the vector of all monomials in PG�H of degree smaller or equal 
to �, that equal themselves when reduced by B . It is enough to consider these monomials as potential 
parts of the polynomials s1, . . . , st of an �-SOS-certificate. Let u be the length of v . Furthermore, let 
S be a real t × u matrix, where the entries of row i represent the coefficients of the monomials 
from v in si . Then it holds that S v is the vector (s1, . . . , st)

� . Now, let X be the positive semidefinite 
matrix S� S , then

t∑
s2

i = (S v)�(S v) = v� X v

i=1

6
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holds. As a result, the polynomials s1, . . . , st form an �-SOS-certificate if and only if

v� X v ≡ fviz mod Iviz

holds, which is the case if for both sides of the equivalence the unique remainder of reduction by B is 
the same. By equating the coefficients, Gaar et al. obtain linear equations in the entries of the variable 
matrix X . To find a matrix X , which satisfies these equations and is additionally positive semidefinite, 
they set up an SDP with the constraints obtained by these equations. The objective function of this 
SDP can be chosen arbitrarily as any feasible solution gives rise to an �-SOS-certificate.

Note that it is also possible to set up an SDP to decide whether a polynomial is �-SOS without the 
knowledge of a Gröbner basis, as it is described for example by Laurent (2007, 2009). However, the 
number of variables and constraints of this alternative SDP may be significantly larger. Thus, using 
the Gröbner basis of Iviz is a useful technical tool to reduce the size of the occurring SDP.

Once an optimal solution X of the SDP is found, the matrix S is derived by computing the 
eigenvalue decomposition X = Q ��Q and setting S = �1/2 Q . Unfortunately, the entries of X are 
numerical, meaning that the values in S do not represent an exact certificate. The strategy of Gaar 
et al. is to find an objective function such that one can guess exact values for the entries in X or S
and then check whether the obtained certificate is indeed valid with the code provided in Gaar et al. 
(2021).

The final step is to prove the correctness of the found certificate algebraically. Ideally, one discovers 
some structures and finds a way to determine a general certificate for further graph classes like Gaar 
et al. did.

To sum up, the approach presented by Gaar et al. consists of the following steps. First fix nG , nH , 
kG and kH and compute a reduced Gröbner basis of Iviz , then set up and solve an SDP in order to 
get a numeric certificate. Next, guess an exact certificate and verify the certificate computationally. 
Finally, prove the correctness of the certificate and generalize the certificate. In this way, Gaar et al. 
successfully derived SOS-certificates for kG = nG − 1 ≥ 1 and kH = nH − 1 where nH ∈ {2, 3}, and 
for kG = nG and kH = nH − d where d ≤ 4.

3. Gröbner basis of the Vizing ideal for kG = kH = 1

In this paper, we focus on Vizing’s conjecture for graphs G and H with domination number 1, 
so we consider graph classes G and H with kG = kH = 1 and fixed dominating sets DG = {g1}
and DH = {h1}. In particular, this implies that g1 and h1 are adjacent to all other vertices of G and H , 
respectively. In this section, we first derive some simple statements with similar methods resulting 
from the work of Gaar et al. (2019, 2021), which we then use to determine the Gröbner basis of the 
Vizing ideal and to derive the minimum degree of any SOS-certificate.

3.1. Auxiliary results

The statements we derive in this section are based on the proof techniques of Gaar et al. (2019, 
2021) and are similar to those in Section 5.1 of Gaar et al. (2021). We introduce the subsets of vertices

T gh = {(g′,h′) ∈ V (G�H) | g′ = g or h′ = h} = V (Gh) ∪ V (gH)

from V (G�H), which are potentially adjacent to a vertex (g, h) ∈ V (G�H) in G�H. The correspond-
ing variables of the vertices in T gh are exactly those which appear in the polynomial (2b). This leads 
to the following lemma.

Lemma 3.1. The polynomial∏
(g′,h′)∈T gh

(1 − xg′h′)

is in the Vizing ideal Iviz for all g ∈ V (G), h ∈ V (H).
7
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Proof. Let z∗ ∈ V(Iviz) be a common zero of the generating polynomials of Iviz . This implies for given 
g ∈ V (G) and h ∈ V (H), that

(1 − x∗
gh)

( ∏
g′∈V (G)

g′ 	=g

(1 − e∗
gg′ x∗

g′h)

)( ∏
h′∈V (H)

h′ 	=h

(1 − e∗
hh′ x∗

gh′)

)
= 0.

Moreover, we know that e∗
gg′ ∈ {0, 1} for all g , g′ ∈ V (G) and e∗

hh′ ∈ {0, 1} for all h, h′ ∈ V (H). There-
fore,

(1 − x∗
gh)

( ∏
g′∈V (G)

g′ 	=g

(1 − x∗
g′h)

)( ∏
h′∈V (H)

h′ 	=h

(1 − x∗
gh′)

)
= 0

holds, which implies that z∗ is a zero of 
∏

(g′,h′)∈T gh
(1 − xg′h′). Applying Hilbert’s Nullstellensatz for 

radical ideals (Theorem 2.4) proves the lemma, as Iviz is radical (Lemma 2.11). �
We further define the following polynomials.

Definition 3.2. Let (g, h) ∈ V (G�H) and let i ≤ nG + nH − 1 be a non-negative integer. Then the 
polynomial ρ i

gh is defined as

ρ i
gh =

∑
S⊆T gh
|S|=i

∏
(g′,h′)∈S

xg′h′ .

Note that the polynomial ρ i
gh is the sum of all monomials consisting of i distinct variables 

from T gh .

Lemma 3.3. It holds that

∏
(g′,h′)∈T gh

(1 − xg′h′) =
nG+nH−1∑

i=0

(−1)iρ i
gh.

Proof. By expanding the product we get a sum whose summands are a product of i negative vertex 
variables and |T gh| − i = nG + nH − 1 − i ones for all values of i between 0 and nG + nH − 1. Since 
the polynomial ρ i

gh is the sum of all monomials consisting of i distinct variables corresponding to the 
vertices (g′, h′) ∈ T gh and ρ0

gh = 1, the equality holds. �
By simple reductions and combinatorial reasoning, we obtain the following lemma.

Lemma 3.4. Let T ⊆ V (G�H) be a non-empty set of cardinality d. For any positive integer k ≤ d we define 
the polynomial πk as

πk =
∑
S⊆T
|S|=k

∏
(g,h)∈S

xgh.

Then for all integers i, j with 1 ≤ i ≤ j ≤ d it holds that

π iπ j ≡
min{i,d− j}∑ (

i

r

)(
j + r

i

)
π j+r mod Iviz.
r=0

8
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Proof. From the generating polynomial (2a) it follows that x2 ≡ x mod Iviz for all variables x ∈ T . 
Furthermore, all monomials in the polynomial π j have degree j and those in π i are of degree i. 
This implies that the monomials in π iπ j reduced by the generating polynomials in (2a) have at least 
degree j and the maximum degree is the minimum of i + j and the maximum number of distinct 
variables d. Therefore,

π iπ j ≡
min{i,d− j}∑

r=0

φrπ
j+r mod Iviz

for some coefficients φr ∈Z.
In order to determine φr let us take a closer look at the coefficient of π j+r after we reduced π iπ j

by (2a). All monomials of the polynomial π j+r consist of j + r different variables. When we multiply 
two monomials m1 and m2 with i and j different variables, the resulting reduced monomial m con-
sists of j + r distinct variables, if r variables of m1 are in m1 but not in m2 and i − r variables of m1

are in both monomials. This can be viewed as dividing j + r variables into 3 groups with i − r, r, and 
j + r − i elements. Hence, for a fixed monomial m in π j+r , this gives us

φr = ( j + r)!
(i − r)!r!( j + r − i)! =

(
i

r

)(
j + r

i

)

different ways to choose the monomials m1 and m2 such that m1m2 ≡ m mod Iviz . �
Lemma 3.4 can be applied to the polynomials ρ i

gh and leads to the following corollary.

Corollary 3.5. For all (g, h) ∈ V (G�H) and for all integers i, j with 1 ≤ i ≤ j ≤ nG + nH − 1 holds

ρ i
ghρ

j
gh ≡

min{i,nG+nH−1− j}∑
r=0

(
i

r

)(
j + r

i

)
ρ

j+r
gh mod Iviz.

One can observe that the form of products of such polynomials solely depends on |T gh | = nG +
nH − 1. Later on, this fact allows us to derive the certificates for all graph classes G and H with 
kG = kH = 1 and nG + nH − 1 = d from the certificate of one of these graph classes for fixed d.

3.2. Gröbner basis of the Vizing ideal

Our first step on the way to compute an SOS-certificate is to determine a Gröbner basis of the 
Vizing ideal Iviz . Note that in our case of kG = kH = 1 we fix the minimum dominating sets to 
DG = {g1} and DH = {h1}. We start with the following lemma.

Lemma 3.6. Let kG = 1, then 1 − egg1 ∈ IG ⊆ Iviz holds for all g ∈ V (G) \ {g1}.

Proof. For nG = 1 this holds trivially, for nG > 1 it follows directly from (1b). �
To describe the elements of the Gröbner basis, we define the following sets of vertices.

Definition 3.7. For some vertex (g, h) ∈ V (G�H) in the Cartesian product graph we define the fol-
lowing subsets of T gh as

U r
gh =

{
{(g,h′) ∈ V (G�H) | h′ /∈ {h1,h}}, for h 	= h1

∅, for h = h1
,

9
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g1

g2

g3

g4

h1 h2 h3 h4

G

H

G�H (g,h) = (g2,h3) (g,h) = (g3,h1) (g,h) = (g1,h1)

Fig. 2. Illustration of G�H and U gh and U gh for different choices of (g,h) in G�H .

U c
gh =

{
{(g′,h) ∈ V (G�H) | g′ /∈ {g1, g}}, for g 	= g1

∅, for g = g1
,

U gh = U r
gh ∪ U c

gh and

U gh = T gh \ U gh.

The next example uses different selections of (g, h) to illustrate the rather technical definitions 
of U gh and U gh .

Example 3.8. Fig. 2 shows the vertices in U gh and U gh in one graph G�H of the graph class G�H
with nG = nH = 4 and kG = kH = 1 for different choices of (g, h) ∈ V (G�H). The vertex (g, h) is 
highlighted with a thicker border, the vertices are in the set U gh , whereas the ones marked as 
are in U gh .

Note that the vertices in U gh and U gh are independent of the choice of G�H and only depend 
on G and H. More precisely, the vertices in U gh are exactly those adjacent to (g, h) in any graph G�H
of the class G�H and the vertex (g, h) itself. This means that the vertices in U gh are those, which 
are not necessarily adjacent to (g, h).

Besides the polynomials encountered so far, there is also a new type of polynomial in the Gröbner 
basis. To express these, we make use of the Iverson notation. In particular, for a statement A the value 
of the expression �A� is 1 if A is true and 0 otherwise. The following lemma shows that also these 
new polynomials are in Iviz .

Lemma 3.9. For all vertices (g, h) ∈ V (G�H) and for all choices of subsets M ⊆ U gh , the polynomial∏
(g′,h′)∈U gh

(xg′h′ − 1)
∏

(g,h′)∈U r
gh

(
�(g,h′) ∈ M�(xgh′ − ehh′) + ehh′ − 1

) ×

×
∏

(g′,h)∈U c
gh

(
�(g′,h) ∈ M�(xg′h − egg′) + egg′ − 1

)
(3)

is in the Vizing ideal Iviz.

Proof. Let z∗ ∈ V(Iviz). By Theorem 2.12, z∗ is in bijection to a triple (G, H, D) with G ∈ G , H ∈H and 
D is a dominating set of G�H . Assume that z∗ is not a zero of (3) for some vertex (g, h) ∈ V (G�H)

and some M ⊆ U gh .
Since all edge and vertex variables are boolean, this implies that all variables corresponding to 

vertices in U gh , especially x∗
gh , have to be zero. For all other vertices in T gh we have that the vertex 

variable has to be zero if the vertex is in the set M and the edge variable indicating whether there is 
an edge between the vertex and (g, h) has to be zero if the vertex is not in M . This implies that
10
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(1 − x∗
gh)

( ∏
g′∈V (G)

g′ 	=g

(1 − e∗
gg′ x∗

g′h)

)( ∏
h′∈V (H)

h′ 	=h

(1 − e∗
hh′ x∗

gh′)

)
= 1

and therefore, z∗ is not a zero of (2b), thus z∗ can not be a common zero of the polynomials 
generating Iviz , which contradicts z∗ ∈ V(Iviz). Hence, the polynomial (3) vanishes on V(Iviz) and 
with Hilbert’s Nullstellensatz for radical ideals (Theorem 2.4) the claim follows, as Iviz is radical 
(Lemma 2.11). �

The next two lemmas will be the main ingredients to prove that the polynomials generating Iviz
can be generated by the polynomials of the prospective Gröbner basis.

Lemma 3.10. For all vertices (g, h) ∈ V (G�H), the polynomial∏
(g,h′)∈U r

gh

(ehh′ xgh′ − 1)
∏

(g′,h)∈U c
gh

(egg′ xg′h − 1) (4)

is equal to

|U gh |∑
m=0

∑
M⊆U gh
|M|=m

∏
(g′,h′)∈M

(xg′h′ − 1)
∏

(g,h′)∈U r
gh

(
ehh′ − �(g,h′) /∈ M�

) ∏
(g′,h)∈U c

gh

(
egg′ − �(g′,h) /∈ M�

)
.

(5)

Proof. Using the fact that

n∏
i=1

(yi − 1) =
n∑

m=0

∑
M⊆{1,...,n}

|M|=m

(−1)n−m
∏
i∈M

yi (6)

holds for any variables y1, . . . , yn by expanding the product, we get that (4) is equal to

|U gh |∑
m=0

∑
M⊆U gh
|M|=m

(−1)|U gh |−m
∏

(g,h′)∈U r
gh∩M

ehh′ xgh′
∏

(g′,h)∈U c
gh∩M

egg′ xg′h.

Then, we consider one summand of (5) for a fixed M ⊆ U gh , so∏
(g′,h′)∈M

(xg′h′ − 1)
∏

(g,h′)∈U r
gh

(
ehh′ − �(g,h′) /∈ M�

) ∏
(g′,h)∈U c

gh

(
egg′ − �(g′,h) /∈ M�

)
. (7)

Applying (6) to the first product in (7) yields that (7) equals( ∏
(g′,h′)∈M

xg′h′ +
m−1∑
k=0

∑
K⊆M
|K |=k

(−1)m−k
∏

(g′,h′)∈K

xg′h′

)
×

×
∏

(g,h′)∈U r
gh

(
ehh′ − �(g,h′) /∈ M�

) ∏
(g′,h)∈U c

gh

(
egg′ − �(g′,h) /∈ M�

)
.

Since all vertices in M are either in U r
gh or in U c

gh , we can rewrite this polynomial as
11
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∏
(g,h′)∈U r

gh∩M

ehh′ xgh′
∏

(g′,h)∈U c
gh∩M

egg′ xg′h
∏

(g,h′)∈U r
gh\M

(ehh′ − 1)
∏

(g′,h)∈U c
gh\M

(egg′ − 1)+ (8)

+
(

m−1∑
k=0

∑
K⊆M
|K |=k

(−1)m−k
∏

(g′,h′)∈K

xg′h′

)
×

×
∏

(g,h′)∈U r
gh

(
ehh′ − �(g,h′) /∈ M�

) ∏
(g′,h)∈U c

gh

(
egg′ − �(g′,h) /∈ M�

)
,

which, using the fact that m = |M|, can be further rewritten as

(−1)|U gh |−m
∏

(g,h′)∈U r
gh∩M

ehh′ xgh′
∏

(g′,h)∈U c
gh∩M

egg′ xg′h + pM (9)

for some polynomial pM that depends on the set M and that captures the whole second summand 
of (8) and every part of the first summand of (8) that does not contain only −1 in the third and 
fourth factor after expanding the third and the fourth factor.

To finish the proof, it remains to show that the polynomial

p =
|U gh |∑
m=0

∑
M⊆U gh
|M|=m

pM

is equal to the zero polynomial.
All monomials in the expanded expression of p have in common that the number of occurring 

edge variables is greater than the number of occurring vertex variables. Indeed, when expanding the 
product (7) we get that if a vertex variable is a factor of a monomial, the corresponding edge variable 
is a factor of this monomial too. Moreover, all monomials that have the same number of edge and 
vertex variables are captured within the first summand of (9). As a result, all monomials in p have 
less vertex variables than edge variables.

Now, choose some fixed monomial q in p of degree k + � that is a product of k vertex and � edge 
variables, so 0 ≤ k < � ≤ |U gh| holds. To determine the coefficient of q in p we count the number 
of different choices of the set M such that q is a summand in pM . Clearly, if |M| = m, then m ≥ k
has to hold. The k vertex variables in q determine k vertices that have to be in M . Note that the 
corresponding edge variables are in q too. Then, there are � − k edge variables in q left that do not 
correspond to a vertex variable. Of these � − k edge variables, m − k correspond to a vertex in M . 
Therefore, there are 

(
�−k
m−k

)
different choices of M ⊆ U gh with |M| = m such that q is a summand 

of pM with coefficient (−1)m−k+|U gh |−� . Hence, the coefficient of q in p equals

�∑
m=k

(
� − k

m − k

)
(−1)m−k+|U gh |−�.

Substituting i = m − k and n = � − k, this coefficient can be written as

n∑
i=0

(
n

i

)
(−1)i+|U gh |−� = (−1)|U gh |−�

n∑
i=0

(−1)i
(

n

i

)
.

Using the identity

n∑
i=0

(−1)i
(

n

i

)
= 0,

we get that all coefficients are zero and therefore p is in fact the zero polynomial, which completes 
the proof. �
12
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Lemma 3.11. Let (g, h) ∈ V (G�H), then the equations

(eg1 g′ xg′h − 1)p = (xg′h − 1)p + xg′h(eg1 g′ − 1)p and

(eh1h′ xgh′ − 1)p = (xgh′ − 1)p + xgh′(eh1h′ − 1)p

hold for all g′ ∈ V (G) \ {g1}, h′ ∈ V (H) \ {h1} and p ∈ PG�H .

Proof. This is straightforward to check. �
With all the results so far, we are now able to state the unique reduced Gröbner basis of Iviz for 

the total degree lexicographical ordering.

Theorem 3.12. Let kG = kH = 1, then the reduced Gröbner basis of Iviz with respect to a total degree lexico-
graphical term ordering consists of the polynomials

eg1 g − 1 for all g ∈ V (G) \ {g1}, (10a)

eh1h − 1 for all h ∈ V (H) \ {h1}, (10b)

egg′(egg′ − 1) for all g 	= g′ ∈ V (G) \ {g1}, (10c)

ehh′(ehh′ − 1) for all h 	= h′ ∈ V (H) \ {h1}, (10d)

xgh(xgh − 1) for all (g,h) ∈ V (G�H), (10e)

and

bgh,M =
∏

(g′,h′)∈U gh

(xg′h′ − 1)
∏

(g,h′)∈U r
gh

(
�(g,h′) ∈ M�(xgh′ − ehh′) + ehh′ − 1

) ×

×
∏

(g′,h)∈U c
gh

(
�(g′,h) ∈ M�(xg′h − egg′) + egg′ − 1

)
(10f)

for all subsets M ⊆ U gh for all choices of (g, h) ∈ V (G�H).

Before we start with the proof, we want to give combinatorial interpretation to (10f). Let (g, h) be a 
fixed vertex in the Cartesian product graph G�H . As already mentioned, the vertices in U gh are (g, h)

and all vertices that are adjacent to (g, h) in all product graphs G�H of the graph class G�H.
Let D be a dominating set (of any size) in G�H . If there is a vertex in U gh ∩ D , the vertex (g, h)

is dominated by this vertex in D . If this is not the case, then there has to be a vertex in U gh ∩ D , 
that is adjacent to (g, h). The polynomial bgh,U gh ensures that at least one vertex in U gh is in D . The 
above choice of M does not assure that a vertex adjacent to (g, h) in U gh is in D . Indeed, assume that 
there is no vertex in D ∩ U gh that is adjacent to (g, h). Then all vertex variables occurring in bgh,U gh\D
are zero because the corresponding vertices are not in D . Hence, there has to be at least one edge 
between (g, h) and a vertex in D ∩ U gh . This ensures that the vertex (g, h) is dominated by D .

To sum this up, the polynomials in (10f) in the Gröbner basis guarantee that (g, h) is dominated 
by a vertex in D . Next, we present the proof of Theorem 3.12.

Proof of Theorem 3.12. Let B be the set of all polynomials in the claimed reduced Gröbner basis. 
First, we will show that the polynomials in B are indeed in Iviz . Then, we will show that the leading 
term of each polynomial f in Iviz is divisible by the leading term of some polynomial in B . The third 
step in the proof will be to show that the polynomials in B are a generating system of Iviz , hence 
after this step we know that B is a Gröbner basis. The last step will be to show that B is even a 
reduced Gröbner basis.

From (1a), (2a) and Lemma 3.6 and 3.9 we get that all polynomials in B are in Iviz , so the first 
step of the proof is easily finished.
13
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For the second step, let us consider the divisibility of the leading terms. We show that the desired 
property holds for each of the polynomials we used to generate Iviz , which then implies the property 
for all polynomials f in Iviz . For the polynomials in (1a), (1b) and (2a) this is trivial. Since kG = kH =
1 in our setting, there are no polynomials in (1c). Furthermore, for all (g, h) ∈ V (G�H) the leading 
term of (2b), that is

(−1)nG+nH−1xgh

( ∏
g′∈V (G)

g′ 	=g

egg′ xg′h

)( ∏
h′∈V (H)

h′ 	=h

ehh′ xgh′

)
,

is divisible by the leading term of (10f) for M = U gh , which equals ρnG+nH−1
gh .

As a third step, we prove that B is a generating system of Iviz by representing the polynomials of 
Definition 2.7 and 2.9 in terms of the polynomials in B . This is again easy to check, except for the 
polynomials (2b). For a fixed vertex (g, h) ∈ V (G�H), we will build the polynomial (2b) step by step 
using polynomials of B . First, we sum up bgh,M multiplied by∏

(g,h′)∈U r
gh∩M

ehh′
∏

(g′,h)∈U c
gh∩M

egg′ ∈ PG�H

for all possible subsets M of U gh . Since bgh,M ∈ B , this sum can be represented by polynomials in B
and equals (5) multiplied with∏

(g′,h′)∈U gh

(xg′h′ − 1).

Due to Lemma 3.10, this sum is also equal to∏
(g′,h′)∈U gh

(xg′h′ − 1)
∏

(g,h′)∈U r
gh

(ehh′ xgh′ − 1)
∏

(g′,h)∈U c
gh

(egg′ xg′h − 1). (11)

Next, we iteratively apply Lemma 3.11 for all vertices in U gh \ {(g, h)} to obtain from (11) the 
polynomial

(xgh − 1)

( ∏
g′∈V (G)

g′ 	=g

(egg′ xg′h − 1)

)( ∏
h′∈V (H)

h′ 	=h

(ehh′ xgh′ − 1)

)

in the following way. First we fix a vertex (g′, h′) ∈ U gh \ {(g, h)}. Let the polynomial p be such 
that (11) equals (xg′h′ − 1)p. By e we denote the edge variable corresponding to (g′, h′), that is eg1 g′
if h′ = h and eh1h′ otherwise. Now, we add to (xg′h′ − 1)p the polynomial (e − 1)xg′h′ p to obtain 
(exg′h′ − 1)p by Lemma 3.11. Since we added a polynomial from (10a) or (10b) times a polynomial in 
PG�H to a polynomial generated by B , the resulting polynomial is again generated by B . Based on 
this new polynomial, we choose the next vertex in U gh \ {(g, h)} and apply the same arguments as 
before to this polynomial. This is done for all vertices in U gh \ {(g, h)}.

Finally, multiplying by (−1)nG+nH−1 yields that the requested polynomial (2b) can be generated 
by B . This finalizes to prove that B is a Gröbner basis.

The last step in the proof is to show that B is a reduced Gröbner basis. It is rather easy to see that 
there is no monomial in any of the polynomials in (10a)–(10e), which can be represented by the lead-
ing terms of the other polynomials in B . Moreover, it holds that the leading term of any polynomial 
from (10f) is the product of all variables in the polynomial that do not cancel out. The leading terms 
of these polynomials are of the same degree, square-free and pairwise distinct. Moreover, it holds that 
the variables in the leading terms of (10f) are not leading term of any polynomial from (10a) or (10b)
in B . Therefore, we can not represent a leading term of a polynomial from (10f) by the leading terms 
14
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of the other polynomials in B . A monomial m1 of a polynomial p of type (10f) in B , which is not 
the leading term, has a smaller degree than the leading term and is the product of pairwise distinct 
variables, which occur in the polynomials of degree 2 in B . For each leading term of the polynomials 
of type (10f) it holds that there is a variable which is a factor of the leading term but is no factor 
of m1 . Due to these facts, we are not able to represent m1 by the leading terms of B \ {p}. Together 
with the fact that all polynomials in B have leading coefficient 1, we conclude that the Gröbner basis 
is reduced. �

With the help of the reduced Gröbner basis of Iviz obtained in Theorem 3.12, we know that if a 
polynomial is not representable in terms of the polynomials in this basis, then it can not be in Iviz . 
We use this to get an SDP formulation to computationally find an SOS-certificate. Before doing so, we 
use the Gröbner basis to determine the minimum degree of an SOS-certificate.

3.3. Minimum degree of a sum-of-squares certificate

The knowledge of the reduced Gröbner basis of Iviz allows us to state a lower bound on the 
degree � of an SOS-certificate for Vizing’s conjecture in the case of kG = kH = 1.

Theorem 3.13. Let kG = kH = 1 and nG , nH > 1, then there is no �-SOS-certificate of fviz for any integer �
less than (nG + nH − 1)/2.

Proof. For any set of polynomials s1, . . . , st ∈ PG�H that forms an �-SOS-certificate of fviz , it needs 
to hold that

t∑
i=1

s2
i − fviz ≡ 0 mod Iviz.

Additionally, the degrees of the polynomials s1, . . . st have to be at most �.
For all 1 ≤ i ≤ t let pi be the polynomial that results from si by evaluating eg1 g = 1 and eh1h = 1

for all g ∈ V (G) \ {g1} and for all h ∈ V (H) \ {h1}. Lemma 3.6 yields that

t∑
i=1

p2
i − fviz ≡

t∑
i=1

s2
i − fviz ≡ 0 mod Iviz.

To show that something is congruent to 0 modulo Iviz is the same as proving that it is contained 
in Iviz . This implies that

t∑
i=1

p2
i − fviz =

t∑
i=1

p2
i −

∑
(g,h)∈V (G�H)

xgh + 1 (12)

has to be generated by the elements in the Gröbner basis of Iviz stated in Theorem 3.12.
Assume that this can be done by using the elements of degree 1 and 2 only. We know that the 

constant term of the polynomial in (12) is greater or equal to 1. Furthermore, we are not able to 
represent a polynomial with constant term other than zero by using only the Gröbner basis elements 
of degree 2. This means that we have to use at least one Gröbner basis element of degree 1. But if we 
do so, we end up getting an edge variable eg1 g with g ∈ V (G) \ {g1} or eh1h with h ∈ V (H) \ {h1} in 
the resulting polynomial. Clearly, there is no such edge variable in (12). Therefore, it holds that it is 
not possible to represent the polynomial in (12) by using the elements of degree 1 and 2 only.

Intuitively, this makes sense, as the polynomials in the Gröbner basis of degree 1 can be used to 
reduce the variable to 1, and the polynomials of degree 2 can be used to reduce higher powers of the 
variable to the variable itself, and this is not enough to reduce (12) to zero.

However, all other polynomials in the Gröbner basis have degree nG +nH −1. Hence, the degree of 
the polynomial in (12) is at least nG +nH −1. Consequently, there has to be at least one polynomial pi
15
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such that the degree of p2
i is greater or equal to nG + nH − 1. As the degree of pi is less or equal to 

the degree of si , we get that two times the degree of si is also greater or equal to nG + nH − 1. This 
implies that there is no �-SOS-certificate of fviz for � < (nG + nH − 1)/2. �

As a result of Theorem 3.13, any �-SOS-certificate for kG = kH = 1 has to be at least of degree 
� ≥ (nG + nH − 1)/2. This is the first result stating the minimum degree of an �-SOS-certificate for 
any values of nG , nH , kG and kH .

4. New certificates for two subclasses of kG = kH = 1

In this section, we present SOS-certificates for Vizing’s conjecture obtained with the method 
of Gaar et al. (2021), i.e., by following the steps in Gaar et al. (2021, Section 4), and recalled in 
Section 2. To set up the SDP, to solve the SDP and to computationally verify our obtained certificates, 
we made use of the code provided in Gaar et al. (2021). In particular, we ran the code in Sage-
Math (2021) and in MATLAB using MOSEK (2021). We refrain from detailing the steps and focus on 
presenting the SOS-certificates and proving their correctness. For details on how they were obtained 
we refer to the master thesis of Siebenhofer (2021).

4.1. Certificate for nG = 3, nH = 2 and kG = kH = 1

We start by presenting a 2-SOS-certificate for the case nG = 3, nH = 2 and kG = kH = 1.

Theorem 4.1. For nG = 3, nH = 2 and kG = kH = 1, Vizing’s conjecture holds, as for all choices of (g, h) ∈
V (G�H) the polynomials

sg∗h∗ = xg∗h∗ for all (g∗,h∗) ∈ V (G�H) with g∗ 	= g and h∗ 	= h,

s1 = −α + α
∑

(g′,h′)∈T gh

xg′h′ + β
∑

(g′,h′)∈T gh

xg′h′
∑

(g′′,h′′)∈T gh\{(g′,h′)}
xg′′h′′ and

s2 = δ
∑

(g′,h′)∈T gh

xg′h′
∑

(g′′,h′′)∈T gh\{(g′,h′)}
xg′′h′′ ,

form a 2-SOS-certificate of fviz for all (α, β, δ) in{(
−√

3,
4

9

√
3,−1

9

√
6
)
,
(
−√

3,
4

9

√
3,

1

9

√
6
)
,
(√

3,−4

9

√
3,−1

9

√
6
)
,
(√

3,−4

9

√
3,

1

9

√
6
)}

.

Remark 4.2. Theorem 4.1 is true whenever α, β , δ are solutions to the system of equations

α2 + 1 = 2α2 + β2 + 2αβ + δ2,

−(α2 + 1) = 6β2 + 6αβ + 6δ2 and

α2 + 1 = 6β2 + 6δ2.

It can be checked that the pairs (α, β, δ) stated in Theorem 4.1 are all solutions to this system of 
equations.

Proof of Theorem 4.1. We start by fixing a vertex (g, h) ∈ V (G�H). Next, we write the polynomi-
als s1 and s2 using the polynomials ρ1

gh and ρ2
gh from Definition 3.2, so

s1 = −α + αρ1
gh + βρ2

gh and

s2 = δρ2
gh.

For brevity, we denote by ρk the polynomial ρk
gh for 1 ≤ k ≤ 4. By Corollary 3.5 we get
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ρ1ρ1 ≡ ρ1 + 2ρ2 mod Iviz,

ρ2ρ2 ≡ ρ2 + 6ρ3 + 6ρ4 mod Iviz and

ρ1ρ2 ≡ 2ρ2 + 3ρ3 mod Iviz.

These congruences imply that

s2
1 = (−α + αρ1 + βρ2)2

= α2 + α2ρ1ρ1 + β2ρ2ρ2 − 2α2ρ1 − 2αβρ2 + 2αβρ1ρ2

≡ α2 + α2(ρ1 + 2ρ2) + β2(ρ2 + 6ρ3 + 6ρ4) − 2α2ρ1 − 2αβρ2 + 2αβ(2ρ2 + 3ρ3) =
= α2 − α2ρ1 + (2α2 + β2 + 2αβ)ρ2 + (6β2 + 6αβ)ρ3 + 6β2ρ4 mod Iviz

and

s2
2 = (δρ2)2 ≡ δ2ρ2 + 6δ2ρ3 + 6δ2ρ4 mod Iviz

hold.
The sum of squares of the polynomials in the certificate can be written as∑

(g∗,h∗)∈V (G�H)
g∗ 	=g,h∗ 	=h

s2
g∗h∗ + s2

1 + s2
2 =

∑
(g∗,h∗)∈V (G�H)

g∗ 	=g,h∗ 	=h

x2
g∗h∗ +α2 −α2ρ1 + (2α2 +β2 +2αβ +δ2)ρ2

+ (6β2 + 6αβ + 6δ2)ρ3 + (6β2 + 6δ2)ρ4. (13)

Using the fact that x2
g∗h∗ ≡ xg∗h∗ mod Iviz , we get∑

(g∗,h∗)∈V (G�H)
g∗ 	=g,h∗ 	=h

x2
g∗h∗ + ρ1 − 1 ≡

∑
(g∗,h∗)∈V (G�H)

g∗ 	=g,h∗ 	=h

xg∗h∗ + ρ1 − 1

=
∑

(g∗,h∗)∈V (G�H)\T gh

xg∗h∗ +
∑

(g′,h′)∈T gh

xg′h′ − 1

= fviz mod Iviz.

Therefore the sum of squares (13) written as∑
(g∗,h∗)∈V (G�H)

g∗ 	=g,h∗ 	=h

x2
g∗h∗ + ρ1 − 1 + (α2 + 1) − (α2 + 1)ρ1

+ (2α2 + β2 + 2αβ + δ2)ρ2 + (6β2 + 6αβ + 6δ2)ρ3 + (6β2 + 6δ2)ρ4

is congruent

fviz + (α2 + 1) − (α2 + 1)ρ1 + (2α2 + β2 + 2αβ + δ2)ρ2

+ (6β2 + 6αβ + 6δ2)ρ3 + (6β2 + 6δ2)ρ4

modulo Iviz . Since α, β and δ satisfy

α2 + 1 = 2α2 + β2 + 2αβ + δ2,

−(α2 + 1) = 6β2 + 6αβ + 6δ2 and

α2 + 1 = 6β2 + 6δ2,

the sum of squares of the polynomials is congruent
17
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fviz + (α2 + 1)(1 − ρ1 + ρ2 − ρ3 + ρ4)

modulo Iviz . Lemma 3.3 together with Lemma 3.1 yields that

fviz + (α2 + 1)(1 − ρ1 + ρ2 − ρ3 + ρ4) = fviz + (α2 + 1)
∏

(g′,h′)∈T gh

(1 − xg′h′)

≡ fviz mod Iviz,

which completes the proof. �
To sum up, we found for each of the 6 vertices in G�H 4 different certificates of degree 2 for 

Vizing’s conjecture on the graph class G�H with nG = 3, kG = 1, nH = 2 and kH = 1. In total, these 
give 24 different 2-SOS-certificates.

4.2. Certificate for nG = nH = 2 and kG = kH = 1

Next, we consider the graph class with nG = nH = 2 and kG = kH = 1. Here we find the following 
certificate.

Theorem 4.3. For nG = nH = 2 and kG = kH = 1 Vizing’s conjecture holds, since for any (g, h) ∈ V (G�H)

the two polynomials

sg∗h∗ = xg∗h∗ and

s1 = −α + α
∑

(g′,h′)∈T gh

xg′h′ + β
∑

(g′,h′)∈T gh

xg′h′
∑

(g′′,h′′)∈T gh\{(g′,h′)}
xg′′h′′

with (g∗, h∗) being the only vertex not in the set T gh , form a 2-SOS-certificate of fviz for all pairs

(α, β) ∈
{(√

2+3,−√
2−2

)
,
(−√

2+3,
√

2−2
)
,
(√

2−3,−√
2+2

)
,
(−√

2−3,
√

2+2
)}

.

Remark 4.4. In particular, Theorem 4.3 is true whenever α and β ∈R are solutions to the system of 
equations

α2 + 1 = 2α2 + β2 + 2αβ and

−(α2 + 1) = 6β2 + 6αβ.

The ones stated in the theorem are all solutions to this system of equations.

Proof of Theorem 4.3. This proof is analogous to that of Theorem 4.1. First, we fix a vertex (g, h) ∈
V (G�H). Next, we rewrite s1 as −α + αρ1

gh + βρ2
gh . For the sake of brevity, we denote by ρk the 

polynomial ρk
gh for 1 ≤ k ≤ 3. By Corollary 3.5 we get

ρ1ρ1 ≡ ρ1 + 2ρ2 mod Iviz,

ρ2ρ2 ≡ ρ2 + 6ρ3 mod Iviz and

ρ1ρ2 ≡ 2ρ2 + 3ρ3 mod Iviz.

Hence, we can write s2
1 as

s2
1 = (−α + αρ1 + βρ2)2

= α2 + α2ρ1ρ1 + β2ρ2ρ2 − 2α2ρ1 − 2αβρ2 + 2αβρ1ρ2

≡ α2 + α2(ρ1 + 2ρ2) + β2(ρ2 + 6ρ3) − 2α2ρ1 − 2αβρ2 + 2αβ(2ρ2 + 3ρ3) =
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= α2 + (α2 − 2α2)ρ1 + (2α2 + β2 − 2αβ + 4αβ)ρ2 + (6β2 + 6αβ)ρ3 =
= α2 − α2ρ1 + (2α2 + β2 + 2αβ)ρ2 + (6β2 + 6αβ)ρ3 mod Iviz.

Using the fact that x2
g∗h∗ ≡ xg∗h∗ mod Iviz holds, we get that

x2
g∗h∗ + ρ1 − 1 ≡ xg∗h∗ + ρ1 − 1

= xg∗h∗ +
∑

(g′,h′)∈T gh

xg′h′ − 1

= fviz mod Iviz.

Therefore, for the sum of the polynomials squared it holds that

x2
g∗h∗ + s2

1 ≡ x2
g∗h∗ + α2 − α2ρ1 + (2α2 + β2 + 2αβ)ρ2 + (6β2 + 6αβ)ρ3

= x2
g∗h∗ + ρ1 − 1 + (α2 + 1) − (α2 + 1)ρ1 + (2α2 + β2 + 2αβ)ρ2 + (6β2 + 6αβ)ρ3

≡ fviz + (α2 + 1) − (α2 + 1)ρ1 + (2α2 + β2 + 2αβ)ρ2 + (6β2 + 6αβ)ρ3 mod Iviz.

Since α and β satisfy

α2 + 1 = 2α2 + β2 + 2αβ and

−(α2 + 1) = 6β2 + 6αβ,

we can further conclude with Lemma 3.3 and Lemma 3.1 that

x2
g∗h∗ + s2

1 ≡ fviz + (α2 + 1) − (α2 + 1)ρ1 + (2α2 + β2 + 2αβ)ρ2 + (6β2 + 6αβ)ρ3

= fviz + (α2 + 1)(1 − ρ1 + ρ2 − ρ3)

≡ fviz mod Iviz

holds, which closes the proof. �
One may observe the strong parallelism between the two graph classes considered. In the next 

section we derive a generalized method to find certificates of this special form.

5. General approach to find certificates for kG = kH = 1

In this section, we first give a general formulation of the previous two SOS-certificates, that could 
potentially be an SOS-certificate for any graph classes G and H with kG = kH = 1. To really obtain an 
SOS-certificate one has to determine the coefficients of the polynomials in this specific SOS-certificate 
by finding a solution of a system of equations. We give an algorithm to find such a solution in the 
second part of this section.

5.1. General certificate for kG = kH = 1

The SOS-certificates of the last section have a few things in common. First, a vertex (g, h) ∈
V (G�H) is selected, which determines the set T gh as defined at the beginning of Section 3.1. Then, 
the polynomials of degree greater than 1 in the certificate contain only vertex variables corresponding 
to the vertices in T gh . In particular, we use the polynomials ρ i

gh from Definition 3.2 to represent these 
polynomials in the certificate. Based on computational results and on our knowledge of the Gröbner 
basis, we propose the following specific form of a possible SOS-certificate. Additionally, we give a 
condition on the correctness of the certificate in the next theorem.
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Theorem 5.1. Let kG = kH = 1 and let d = nG + nH − 1. If cw,i ∈R for 1 ≤ w ≤ �d/2� and 0 ≤ i ≤ �d/2� is 
a solution to the system of equations

cw,0 = −cw,1 ∀1 ≤ w ≤ �d/2� (14a)

(−1)k
( �d/2�∑

w=1

c2
w,1 + 1

)
=

min{k,�d/2�}∑
i=�k/2�

�d/2�∑
w=1

c2
w,i

(
i

k − i

)(
k

i

)
(14b)

+2
min{k,�d/2�}∑

j=⌈ k+1
2

⌉
j−1∑

i=k− j

�d/2�∑
w=1

cw,icw, j

(
i

k − j

)(
k

i

)
∀2 ≤ k ≤ d,

then for any choice of the vertex (g, h) ∈ V (G�H) the polynomials

sg∗h∗ = xg∗h∗ for all (g∗,h∗) ∈ V (G�H) \ T gh and

sw =
�d/2�∑
i=0

cw,iρ
i
gh for all 1 ≤ w ≤ �d/2�

form a �d/2�-SOS-certificate of fviz , and therefore Vizing’s conjecture holds on the graph classes G and H.

Note that the SOS-certificates of Theorem 5.1 are of the smallest possible degree according to 
Theorem 3.13. Additionally, note that the system of equations (14) depends on d = nG + nH − 1 and 
not on nG or nH explicitly. This means that if we find a solution for some d, then we have found 
certificates for all graph classes G and H with nG + nH − 1 = d. Furthermore, it can be observed that 
the constant terms in the polynomials sw have to be the negative coefficients of the monomials of 
degree 1, as cw,0 is the coefficient of ρ0

gh = 1 and cw,1 is the coefficient of ρ1
gh in sw .

Furthermore, observe that the system of equations (14b) coincides with those for nG = 3, nH = 2, 
kG = kH = 1 (so d = 4) in Remark 4.2 and for nG = nH = 2, kG = kH = 1 (so d = 3) in Remark 4.4. So 
for these graph classes we were able to find a solution of (14).

To prove Theorem 5.1, we first consider some useful lemma.

Lemma 5.2. Let d = nG + nH − 1 and fix some vertex (g, h) ∈ V (G�H). Furthermore, let ci ∈R for 0 ≤ i ≤
�d/2� define the polynomial s ∈ PG�H as

s =
�d/2�∑
i=0

ciρ
i
gh.

Then s squared is congruent to

d∑
k=0

( min{k,�d/2�}∑
i=�k/2�

c2
i

(
i

k − i

)(
k

i

)
+ 2

min{k,�d/2�}∑
j=⌈ k+1

2

⌉
j−1∑

i=k− j

cic j

(
i

k − j

)(
k

i

))
ρk

gh

modulo Iviz .

Proof. By expanding the square of the polynomial s, we get that

s2 =
�d/2�∑
i=0

c2
i ρ

i
ghρ

i
gh + 2

�d/2�∑
i=0

�d/2�∑
j=i+1

cic jρ
i
ghρ

j
gh.

Next, we use Corollary 3.5 yielding that
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ρ i
ghρ

j
gh ≡

min{i,d− j}∑
r=0

(
i

r

)(
j + r

i

)
ρ

j+r
gh =

min{i+ j,d}∑
k= j

(
i

k − j

)(
k

i

)
ρk

gh mod Iviz

holds for all 0 ≤ i ≤ j ≤ �d/2�. We apply this to ρ i
ghρ

j
gh for 0 ≤ i ≤ j ≤ �d/2� and sum up the coeffi-

cients of ρk
gh for each k with 0 ≤ k ≤ d. From the product cic jρ

i
ghρ

j
gh we get a contribution of

cic j

(
i

k − j

)(
k

i

)
(15)

to the coefficient of ρk
gh if k is between j and the minimum of i + j and d. For i = j, this means 

that i has to be between k/2 and k and additionally, i is less or equal to �d/2�. In the case of i < j, 
combining the inequalities k ≤ j + i and i ≤ j − 1, we get that the inequalities j ≥ (k + 1)/2 and i ≥
k − j have to hold. Moreover, it holds that j ≤ k and j ≤ �d/2�. Therefore, collecting all coefficients 
of ρk

gh yields the stated result. �
In the next corollary, we apply Lemma 5.2 to the sum of all s2

w for 1 ≤ w ≤ �d/2�.

Corollary 5.3. Let d = nG + nH − 1 and fix (g, h) ∈ V (G�H). Furthermore, let cw,i ∈ R for 0 ≤ i ≤ �d/2�
and for 1 ≤ w ≤ ⌈

d/2
⌉

define the polynomial sw as

sw =
�d/2�∑
i=0

cw,iρ
i
gh.

Then the sum of all polynomials sw squared is congruent to

d∑
k=0

( min{k,�d/2�}∑
i=�k/2�

�d/2�∑
w=1

c2
w,i

(
i

k − i

)(
k

i

)
+ 2

min{k,�d/2�}∑
j=⌈ k+1

2

⌉
j−1∑

i=k− j

�d/2�∑
w=1

cw,icw, j

(
i

k − j

)(
k

i

))
ρk

gh

modulo Iviz .

Finally, we have all ingredients to prove Theorem 5.1.

Proof of Theorem 5.1. The proof is analogous to the ones of Theorem 4.1 and 4.3. First, we fix a 
vertex (g, h) ∈ V (G�H). For brevity, we write ρk for ρk

gh for all 0 ≤ k ≤ �d/2�. Next, we use the fact 
that x2

g∗h∗ ≡ xg∗h∗ mod Iviz , to get the congruence∑
(g∗,h∗)∈V (G�H)\T gh

x2
g∗h∗ + ρ1 − 1 ≡

∑
(g∗,h∗)∈V (G�H)\T gh

xg∗h∗ + ρ1 − 1

=
∑

(g∗,h∗)∈V (G�H)\T gh

xg∗h∗ +
∑

(g′,h′)∈T gh

xg′h′ − 1

= fviz mod Iviz.

The above and Corollary 5.3 yield the congruence

∑
(g∗,h∗)∈V (G�H)\T gh

x2
g∗h∗ +

�d/2�∑
w=1

s2
w ≡ fviz − ρ1 + 1 +

d∑
k=0

( min{k,�d/2�}∑
i=�k/2�

�d/2�∑
w=1

c2
w,i

(
i

k − i

)(
k

i

)

+ 2
min{k,�d/2�}∑

j=⌈ k+1
2

⌉
j−1∑

i=k− j

�d/2�∑
w=1

cw,icw, j

(
i

k − j

)(
k

i

))
ρk mod Iviz. (16)
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By writing down the coefficients of ρ0 = 1 and ρ1 in (16) explicitly, we get that the sum of squares 
is congruent to

fviz − ρ1 + ρ0 +
( �d/2�∑

w=1

c2
w,0

)
ρ0 +

( �d/2�∑
w=1

(c2
w,1 + 2cw,0cw,1)

)
ρ1

+
d∑

k=2

( min{k,�d/2�}∑
i=�k/2�

�d/2�∑
w=1

c2
w,i

(
i

k − i

)(
k

i

)

+ 2
min{k,�d/2�}∑

j=⌈ k+1
2

⌉
j−1∑

i=k− j

�d/2�∑
w=1

cw,icw, j

(
i

k − j

)(
k

i

))
ρk

modulo Iviz . If the coefficients cw,i satisfy cw,0 = −cw,1 (and thus also c2
w,1 + 2cw,0cw,1 = −c2

w,1) and 
the system of equations (14b), then the above expression equals

fviz +
( �d/2�∑

w=1

c2
w,1 + 1

)( d∑
k=0

(−1)kρk
)

,

which is congruent to fviz modulo Iviz due to Lemma 3.1 and Lemma 3.3. Hence, the polynomials 
stated in Theorem 5.1 form a �d/2�-SOS-certificate for the graph classes G and H if the coeffi-
cients cw,i fulfill (14). �

To summarize, Theorem 5.1 states that if we find a solution to the system of equations (14), then 
we obtain an SOS-certificate of minimum degree. In fact, it can also be deduced that if there is an 
SOS-certificate of the form given by Theorem 5.1, then the system of equations (14) has to hold.

5.2. Finding a solution of the system of equations

Next, we consider the problem of finding such solutions. Towards that end, let the vector ci be 
defined as

ci = (cw,i)1≤w≤�d/2�
for all 0 ≤ i ≤ �d/2�, so ci denotes the vector collecting all coefficients of ρ i

gh in the general SOS-
certificate for kG = kH = 1 and d = nG + nH − 1 stated in Theorem 5.1. It is easy to see that the 
system of equations (14) has a solution if and only if there are vectors ci ∈ R�d/2� for 0 ≤ i ≤ �d/2�
that are a solution to the system of equations

c0 = −c1 ∀1 ≤ w ≤ �d/2� (17a)

(−1)k(〈c1, c1〉 + 1) =
min{k,�d/2�}∑

i=�k/2�
〈ci, ci〉

(
i

k − i

)(
k

i

)
(17b)

+ 2
min{k,�d/2�}∑

j=⌈ k+1
2

⌉
j−1∑

i=k− j

〈ci, c j〉
(

i

k − j

)(
k

i

)
∀2 ≤ k ≤ d.

The system of equations (17) can be rewritten using F i, j = 〈ci, c j〉 for 0 ≤ i, j ≤ �d/2�. Let F be 
the �d/2� × �d/2�-matrix with F = (F i, j)1≤i, j≤�d/2� , i.e., F is the Gram matrix of the matrix C =
(cw,i)1≤w,i≤�d/2� and F = C�C holds. As any Gram matrix is positive semidefinite and any positive 
semidefinite matrix is the Gram matrix of some set of vectors (which can for example be determined 
using Cholesky decomposition), we obtain the following result.
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Observation 5.4. The system of equations (14) has a real solution if and only if there is a positive semidefinite 
matrix F = (F i, j)1≤i, j≤�d/2� such that

(−1)k(F1,1 + 1) =
min{k,�d/2�}∑

i=�k/2�
F i,i

(
i

k − i

)(
k

i

)
+ 2

min{k,�d/2�}∑
j=⌈ k+1

2

⌉
j−1∑

i=k− j

F i, j

(
i

k − j

)(
k

i

)
, (18)

where we substitute F0, j = −F1, j , holds for all 2 ≤ k ≤ d. In particular, F = C�C for C = (cw,i)1≤w,i≤�d/2�
and cw,0 = −cw,1 for all 1 ≤ w ≤ �d/2� holds for corresponding solutions.

With Observation 5.4 we have transformed the task of finding a certificate from solving a system 
of �d/2� linear and d − 1 quadratic equations (14) in �d/2� (�d/2� + 1) variables to solve an SDP with 
matrix variable of dimension �d/2� with d − 1 linear equality constraints.

The objective function of this SDP can be chosen arbitrarily, as any feasible solution leads to an 
SOS-certificate. Unfortunately, just solving this SDP with an off-the-shelf SDP solver is not enough 
because any feasible solution obtained from an SDP solver is numerical, i.e., the system of equations 
is not fulfilled exactly, but only with small numerical errors. So in order to find a certificate, there is 
still some lucky guessing required.

Thus, we follow a different road to find a positive semidefinite matrix F that is an exact solution 
to the system of linear equations (18). In fact, any solution F to the system of equations (18) can be 
represented as linear expression in some free variables, which are a subset of all variables F i, j . We 
iteratively fix the free variables by solving SDPs in the following way. When we want to fix the free 
variable F i, j , we solve the SDP with matrix variable F , the system of linear equations (18) and the 
already fixed free variables two times, one time with maximizing and one time with minimizing the 
value of the free variable F i, j as objective function. Let F min

i, j and F max
i, j denote the optimal objective 

function values of these SDPs. We fix the free variable F i, j to an arbitrary rational number in the 
interval [F min

i, j , F max
i, j ], where we try to set F i, j to a rational number with small denominator in order 

to obtain “nice” values in F . Then we proceed with the next free variable.
Clearly, the choice of F i, j in the interval [F min

i, j , F max
i, j ] makes sure that we find a positive semidef-

inite matrix F that is an exact solution to the system of linear equations (18) with this procedure if 
it exists. If the system of linear equations (18) has no positive semidefinite solution, then we are not 
able to find a certificate of the specific form stated in Theorem 5.1.

As already mentioned before Observation 5.4, from F we can obtain the coefficients cw,i of the 
SOS-certificate from Theorem 5.1 with a Cholesky decomposition. We now consider an example to 
demonstrate our approach to determine an SOS-certificate.

Example 5.5. Let nG = 4, nH = 2 and kG = kH = 1, so d = 5. To find a certificate as stated in Theo-
rem 5.1 we need to find a 3 × 3 positive semidefinite matrix F such that its entries satisfy the system 
of equations (18), i.e., the equations

F1,1 + 1 = 2F1,1 + 2F2,1 + F2,2,

−(F1,1 + 1) = 6F2,1 + 6F2,2 + 4F3,1 + 6F3,2 + F3,3,

F1,1 + 1 = 6F2,2 + 8F3,1 + 24F3,2 + 12F3,3 and

−(F1,1 + 1) = 20F3,2 + 30F3,3.

(19)

All possible solutions of this system of linear equations can be written as
23
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F2,1 = −1

2
F1,1 − 1

2
F2,2 + 1

2
,

F3,1 = 47

40
F1,1 − 3

4
F2,2 − 133

40
,

F3,2 = −1

2
F1,1 + 7

4
and

F3,3 = 3

10
F1,1 − 6

5
,

(20)

where F1,1 and F2,2 are free parameters. Thus, we can write any matrix F , which fulfills (20) and 
hence (19), as

F1,1

⎛
⎝ 1 −1/2 47/40

−1/2 0 −1/2
47/40 −1/2 3/10

⎞
⎠ + F2,2

⎛
⎝ 0 −1/2 −3/4

−1/2 1 0
−3/4 0 0

⎞
⎠

+
⎛
⎝ 0 1/2 −133/40

1/2 0 7/4
−133/40 7/4 −6/5

⎞
⎠ (21)

for the free variables F1,1 and F2,2 . Next, we need to find exact values for F1,1 and F2,2 such that the 
resulting matrix F is positive semidefinite.

Let F min
1,1 be the result of the SDP which minimizes F1,1 under the constraint that (21) is posi-

tive semidefinite. Furthermore, let F max
1,1 be the optimal solution of the same SDP with an objective 

that maximizes F1,1 . For this example we get the (numerical) optimal solutions F min
1,1 = 4.68455

and F max
1,1 = 38.41658. We can set F1,1 to be any rational value in the interval [F min

1,1 , F max
1,1 ] and choose 

F1,1 = 6.
As a consequence, we get that F has to be of the form

F2,2

⎛
⎝ 0 −1/2 −3/4

−1/2 1 0
−3/4 0 0

⎞
⎠ +

⎛
⎝ 6 −5/2 149/40

−5/2 0 −5/4
149/40 −5/4 3/5

⎞
⎠ .

To find a rational value for F2,2 , we follow the same strategy. We determine F min
2,2 = 2.64289 and 

F max
2,2 = 3.26414 and choose F2,2 = 3 and finally obtain the matrix

F =
⎛
⎝ 6 −4 59/40

−4 3 −5/4
59/40 −5/4 3/5

⎞
⎠ ,

which is positive semidefinite and fulfills the system of equations (19) exactly. To determine the 
solution of the system of equations (14), i.e., the coefficient matrix C , we compute the Cholesky 
factorization of F = C�C and obtain

C =
⎛
⎝

√
6 −2/3

√
6 59/240

√
6

0 1/3
√

3 −4/15
√

3
0 0 1/80

√
154

⎞
⎠ .

As a consequence of Example 5.5 and Theorem 5.1, we have found the following 3-SOS-certificate 
for nG = 4 and nH = 2 as well as for nG = nH = 3 and kG = kH = 1.

Corollary 5.6. Let G and H be two graph classes with d = nG + nH − 1 = 5 and kG = kH = 1, then Vizing’s 
conjecture is true for these graph classes, as for any vertex (g, h) ∈ V (G�H) the polynomials
24
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sg∗h∗ = xg∗h∗ for all (g∗,h∗) ∈ V (G�H) \ T gh

s1 = −√
6 +√

6ρ1
gh −2

3

√
6ρ2

gh + 59

240

√
6ρ3

gh,

s2 = 1

3

√
3ρ2

gh − 4

15

√
3ρ3

gh and

s3 = 1

80

√
154ρ3

gh

form a 3-SOS-certificate of fviz.

5.3. Theoretical properties of certificates

It turns out that for even values of d we can say more about the system of equations (18), in 
particular F1,1 is fixed as stated in the following corollary.

Corollary 5.7. Let d ≥ 4 be even, then F1,1 = d − 1 holds.

Proof. We show that F1,1 = d − 1 holds by adding up the equations of (18) multiplied by (−1)k d
k(k−1)

for all k with 2 ≤ k ≤ d.
On the left-hand side of the resulting equation we get

d(F1,1 + 1)

d∑
k=2

1

k(k − 1)
= d(F1,1 + 1)

d − 1

d
= (F1,1 + 1)(d − 1).

The right-hand side is

d∑
k=2

(−1)kd

k(k − 1)

( min{k,�d/2�}∑
i=�k/2�

F i,i

(
i

k − i

)(
k

i

)
+ 2

min{k,�d/2�}∑
j=⌈ k+1

2

⌉
j−1∑

i=k− j

F i, j

(
i

k − j

)(
k

i

))
. (22)

It is enough to show that (22) equals dF1,1 . The variable F1,1 appears only once in (22), namely 
for k = 2 with the coefficient d

2

(1
1

)(2
1

) = d. Thus, it remains to show that the coefficients of all other 
variables in (22) sum up to zero.

We start with the variables F i, j for 1 < i ≤ j ≤ d/2. With the same arguments as in the proof of 
Lemma 5.2 to obtain the bounds on k for (15), F i, j appears in all summands with k between j and 
min{d, i + j} = i + j. Hence, the coefficient of F i, j in (22) for i = j is

i+ j∑
k= j

(−1)k d
( i

k− j

)(k
i

)
(k − 1)k

(23)

and for i < j it is two times (23). It can be shown that (23) is equal to zero.
The variables left to consider are F1, j for 1 < j ≤ d/2. The variable F1, j appears only in the sum-

mands of (22) for k = j and k = j + 1. Moreover, the variable F0, j , which is equal to −F1, j , appears 
in the summand with k = j only. Therefore, when we substitute F0, j = −F1, j , the coefficient of F1, j

in (22) is

(−1) j 2d

j( j − 1)

((
1

0

)(
j

1

)
−

(
0

0

)(
j

0

))
+ (−1) j+1 2d

( j + 1) j

(
1

1

)(
j + 1

1

)
= 0,

which completes the proof. �
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Corollary 5.7 shows that for all even d ≥ 4, the left-hand sides of (18) are fixed to (−1)kd. This 
implies that for all certificates of the form stated in Theorem 5.1 for any fixed vertex gh, the sum 
of the polynomials squared and then reduced by the polynomials of degree 2 in the Gröbner basis 
stated in Theorem 3.12 equals

fviz + d
d∑

k=0

(−1)kρk
gh,

which is congruent to fviz modulo Iviz .
Moreover, the fact that F1,1 is fixed implies that F d

2 , d
2

and F d
2 −1, d

2
are fixed too.

Observation 5.8. For all even d in (18) the equation for k = d is

F1,1 =
(

d

d/2

)
F d

2 , d
2

− 1

and the equation for k = d − 1 is

F1,1 = −d

2

(
d − 1

d/2

)
F d

2 , d
2

− 2

(
d − 1

d/2 − 1

)
F d

2 −1, d
2

− 1

Since F1,1 + 1 = d by Corollary 5.7, this implies that

F d
2 , d

2
= F1,1 + 1( d

d/2

) = d( d
d/2

) and

F d
2 −1, d

2
= −d + d2

(d−1
d/2

)
/(2

( d
d/2

)
)

2
( d−1

d/2−1

) = −d + d2/4( d
d/2

) = −F d
2 , d

2
(1 + d/4)

holds.

5.4. Further certificates for kG = kH = 1

We implemented the above-described procedure to find an SOS-certificate as stated in Theorem 5.1
for Vizing’s conjecture for the graph classes G and H satisfying d = nG + nH − 1 and kG = kH = 1 in 
SageMath (2021).

The implementation is available as ancillary files from the arXiv page of this paper at arxiv.org /src /
2112 .04007 /anc. In particular, the method find_certficate(d) returns for a given integer d the 
coefficient matrix C of a �d/2�-SOS-certificate for Vizing’s conjecture.

With the help of this code, we were able to find SOS-certificates for Vizing’s conjecture on the 
graph classes G and H with kG = kH = 1 and d = nG + nH − 1 for 6 ≤ d ≤ 14.

Corollary 5.9. For all graph classes G and H with kG = kH = 1 and d = nG +nH−1 with 6 ≤ d ≤ 14 Vizing’s 
conjecture is true, because the polynomials

sg∗h∗ = xg∗h∗ for all (g∗,h∗) ∈ V (G�H) \ T gh and

sw =
�d/2�∑
i=0

cw,iρ
i
gh for all 1 ≤ w ≤ �d/2�

form a �d/2�-SOS-certificate of fviz for every choice of (g, h) ∈ V (G�H). Here cw,i = 0 for all 1 ≤ i < w ≤
�d/2� and cw,0 = −cw,1 for all 1 ≤ w ≤ �d/2� hold for all values of d. Furthermore, for d = 6 we have
26
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c1,1 = √
5, c1,2 = −3

5

√
5, c1,3 = 21

100

√
5,

c2,2 = 1

5

√
5, c2,3 = − 3

25

√
5 and

c3,3 = 1

20

√
3;

for d = 7 we have

c1,1 = √
7, c1,2 = −5

7

√
7, c1,3 = 9

28

√
7, c1,4 = − 17

245

√
7,

c2,2 = 1

7

√
21, c2,3 = − 179

1260

√
21, c2,4 = 109

2205

√
21,

c3,3 = 1

90

√
429, c3,4 = − 53

6435

√
429 and

c4,4 = 1

5005

√
4147;

for d = 8 we have

c1,1 = √
7, c1,2 = −5

7

√
7, c1,3 = 31

98

√
7, c1,4 = − 8

108

√
7,

c2,2 = 1

7

√
21, c2,3 = − 41

294

√
21, c2,4 = 16

315

√
21,

c3,3 = 1

21

√
15, c3,4 = − 8

225

√
15 and

c4,4 = 2

525

√
35;

for d = 9 we have

c1,1 = 4, c1,2 = − 27
8 , c1,3 = 115

48 , c1,4 = − 103
80 , c1,5 = 11

28 , c2,2 = 1
8

√
39, c2,3 = − 925

5616

√
39,

c2,4 = 607
5616

√
39, c2,5 = − 355

9828

√
39, c3,3 = 1

351

√
24882, c3,4 = − 34253

8957520

√
24882,

c3,5 = 47513
25081056

√
638 · 210409, c4,4 = 1

76560

√
638 · 210409,

c4,5 = − 586549
4510495612

√
210409 · 638 and c5,5 = 5

17674356

√
1262454 · 2417;

for d = 10 we have

c1,1 = 3, c1,2 = − 7
3 , c1,3 = 17

12 , c1,4 = − 7
15 , c1,5 = 71

1512 , c2,2 = 1
3

√
5, c2,3 = − 5

12

√
5,

c2,4 = 251
1200

√
5, c2,5 = − 379

30240

√
5, c3,3 = 1

4

√
2, c3,4 = − 33

160

√
2, c3,5 = 193

4032

√
2,

c4,4 = 1
800

√
146170, c4,5 = − 135673

2016
√

146170
and c5,5 = 1

504
√

14617

√
4176691;

for d = 11 we have

c1,1 = √
87, c1,2 = − 28

29

√
87, c1,3

215
261

√
87, c1,4 = − 279446473

495701640

√
87, c1,5 = 1345

4959

√
87,

c1,6 = − 22906823
330467760

√
87, c2,2 =

√
26
29 , c2,3 = − 157

78

√
26
29 , c2,4 = 2674088

1322685

√
26
29 ,

c2,5 = − 5485
4446

√
26
29 , c2,6 = 1834513

4702880

√
26
29 , c3,3 = 1

3

√
467
78 , c3,4 = − 3554462909

5321670480

√
467
78 ,
27
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c3,5 = 282916
452523

√
467
78 , c3,6 = − 23866165

88694508

√
467
78 , c4,4 = 1

759696

√
127230362521319

14010 ,

c4,5 = − 82275318718
41095407094386037

√
127230362521319

14010 , c4,6 = 21037454688547
20136749476249158130

√
127230362521319

14010 ,

c5,5 = 1
2907

√
132029134219450005907

8906125376492330 , c5,6 = − 3893456665881898045477
10234898484691764457910640

√
132029134219450005907

8906125376492330

and c6,6 = 1
13328

√
110317821367843091833849

1980437013291750088605 ;
for d = 12 we have

c1,1 = √
11, c1,2 = − 35

44

√
11, c1,3 = 1

2

√
11, c1,4 = − 655199

2676520

√
11, c1,5 = 1

11

√
11,

c1,6 = − 110207
5353040

√
11, c2,2 = 1

4

√
95
11 , c2,3 = − 11

38

√
95
11 , c2,4 = 147757

660440

√
95
11 , c2,5 = − 2617

22515

√
95
11 ,

c2,6 = 4172389
138692400

√
95
11 , c3,3 =

√
1

38 , c3,4 = − 38345
36498

√
1

38 , c3,5 = 424
1185

√
1

38 , c3,6 = 8117
729960

√
1

38 ,

c4,4 = 1
182490

√
176558597

2 , c4,5 = − 496865
83688774978

√
176558597

2 , c4,6 = 274043219
128880713466120

√
176558597

2 ,

c5,5 = 1
2370

√
3003702364301

2471820358 , c5,6 = − 18498609557237
62645216509861656

√
3003702364301

2471820358 and

c6,6 = 1
3080

√
1479419046289663
2372924867797790 ;

for d = 13 we have

c1,1 = 4
√

41
7 , c1,2 = − 643

164

√
41
7 , c1,3 = 2285

656

√
41
7 , c1,4 = − 25057169756187379

9706601210394348

√
41
7 ,

c1,5 = 223240166469743567
155305619366309568

√
41
7 , c1,6 = − 133

260

√
41
7 , c1,7 = 25638546175376171

328531117890270240

√
41
7 ,

c2,2 = 1
4

√
4423
287 , c2,3 = − 36921

70768

√
4423
287 , c2,4 = 648304603385756183

1047129198867663444

√
4423
287 ,

c2,5 − 8656079938938263059
16754067181882615104

√
4423
287 , c2,6 = 336651

1149980

√
4423
287 , c2,7 = − 3101604353052717839

35441295961674762720

√
4423
287 ,

c3,3 = 1
4

√
52445
4423 , c3,4 = − 876978256134844544

1671406615081576485

√
52445
4423 , c3,5 = 139692919173390267203

248323268526405649200

√
52445
4423 ,

c3,6 = − 414247923
1172670200

√
52445
4423 , c3,7 = 56813568067103416

525299221882781181

√
52445
4423 ,

c4,4 = 2
3541078198497

√
278022966275031721230952411511

681785 ,

c4,5 = − 16842806625507324664137697618319
15988889469513083235667255314875525722629840

√
278022966275031721230952411511

681785 ,

c4,6 = 7494161056453719279901
8607591035874982089310286660380560

√
278022966275031721230952411511

681785 ,

c4,7 = − 115260002843756514570159114279703
364546679904898297773213421179161986475960352

√
278022966275031721230952411511

681785 ,

c5,5 = 1
14204782259113680

√
17451872904879613634434062169896872769038117850574344762823

278022966275031721230952411511 ,

c5,6 = − 151181192623630707882481830209965662197243013451
1404805961351189379117404268428018670416492334499832456028200208×
×

√
17451872904879613634434062169896872769038117850574344762823

278022966275031721230952411511 ,
28
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c5,7 = 65110165541673840570849188883311271190521123019507743585023
1258569508109052577461744053186022770733948051592944510245658946785111648480×

×
√

17451872904879613634434062169896872769038117850574344762823
278022966275031721230952411511 ,

c6,6 =
√

25352491093848053461206176651408840063078575112714792491
680623043290304931742928424625978037992486596172399445750097,

c6,7 = − 116354006097743659300270866764317970081269530370009757503847822914109
2373228356611870629873418754566765279954894894468648815804099558215400×
×

√
25352491093848053461206176651408840063078575112714792491

680623043290304931742928424625978037992486596172399445750097

and c7,7 = 1
46804638404700×

×
√

41971232677905854359177826832232722232187999636495894239101559440686690856571
1064804625941618245370659419359171282649300154734021284622 ;

and for d = 14 we have

c1,1 = √
13, c1,2 = − 32

39

√
13, c13 = 7

13

√
13, c1,4 = − 1581

5005

√
13, c1,5 = 186021079786121

1151722559447460

√
13,

c1,6 = − 53
897

√
13, c1,7 = 3286004765171

309987438360600

√
13, c2,2 = 2

3

√
17
13 , c2,3 = − 59

68

√
17
13 ,

c2,4 = 1293
2618

√
17
13 , c2,5 = − 185610347559698

1882623414481425

√
17
13 , c2,6 = − 12097

333132

√
17
13 ,

c2,7 = 153739557217
7871226963600

√
17
13 , c3,3 = 1

4

√
67
17 , c3,4 = − 19441

51590

√
67
17 , c3,5 = 646437778225307

2473250368044225

√
67
17 ,

c3,6 = − 41037
437644

√
67
17 , c3,7 = 127375771980323

9585765401612400

√
67
17 , c4,4 = 1

385

√
59509

67 ,

c4,5 = − 56914455235667
11576949729765700

√
59509

67 , c4,6 = 2624828
680247379

√
59509

67 ,

c4,7 = − 51012398758058
40932786544528725

√
59509

67 ,

c5,5 = 1
14765673839070

√
9222821132677377658501193273

297545 ,

c5,6 = − 28381206876870420343
316278205102905312042981420910989

√
9222821132677377658501193273

297545 ,

c5,7 = 800180049472559360738859359
21631465553921823566411244940446165459600

√
9222821132677377658501193273

297545 ,

c6,6 = 2
34293

√
32861993291352160021413495104861

46114105663386888292505966365 ,

c6,7 = − 465798003932716733895505153185993057604207
9403204725977980081537461590679792988551578400

√
32861993291352160021413495104861

46114105663386888292505966365 and

c7,7 = 1
95380750264800

√
27167242806224591574440191807735163931063797448111661

98585979874056480064240485314583 .

Due to the fact that we were able to find a feasible solution to the SDP derived in Observation 5.4
for any d ≤ 14 we have the following conjecture.

Conjecture 5.10. Let kG = kH = 1 and let d = nG + nH − 1. Then a �d/2�-SOS-certificate of fviz of the 
form presented in Theorem 5.1 exists, as there is a positive semidefinite matrix F fulfilling the system of equa-
tions (18) in Observation 5.4.

Concerning the value of F1,1 , we know from Corollary 5.7 that F1,1 = d − 1 for even d, for odd d
we make the following observation.
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Observation 5.11. For the certificates above with d ≤ 13 and d odd it turns out that F1,1 is not fixed. Moreover, 
for these certificates the choice of F1,1 = d − 1 is not possible.

For d > 14 we did not derive certificates because of numerical difficulties with off-the-shelf SDP 
solvers.

6. Conclusion and open questions

In this paper, we extended the approach of Gaar et al. (2019, 2021) to prove Vizing’s conjecture via 
an algebraic method for graph classes G and H, where the graph classes G and H are defined as all 
graphs with nG and nH vertices and a minimum dominating set of size kG and kH , respectively. We 
applied their technique to the case where both minimum dominating sets in G and H are of size 1. 
A bottleneck in their computations is the time-consuming intermediate step to determine a Gröbner 
basis of Iviz . We were able to overcome this obstacle by determining the unique reduced Gröbner 
basis of Iviz for this case. This allowed us to conclude that if an �-SOS-certificate exists, it must be at 
least of degree � = �(nG + nH − 1)/2�.

We further presented a procedure to find �(nG + nH − 1)/2�-SOS-certificates of a special form for 
Vizing’s conjecture on these graph classes G and H. This new approach is based on our knowledge 
of the Gröbner basis, and assumes that in addition to the polynomials of degree 2, only one poly-
nomial of higher degree of the Gröbner basis is sufficient to prove correctness of the SOS-certificate. 
Assuming a specific form of the SOS-certificate, the coefficients of the polynomials of this certificate 
can be obtained by solving a system of quadratic equations. We presented a method how to obtain 
an exact solution to this using SDPs, that avoids clever guessing as usually needed in the approach 
from Gaar et al. (2019, 2021). The specific form of the certificates yields that certificates of classes 
with nG + nH − 1 = d depend only on d and not on nG or nH . We implemented this new method in 
SageMath (2021) and used it to find certificates for all graph classes G and H with nG +nH ≤ 15 and 
domination numbers kG = kH = 1. Even though this does not advance what is known with respect 
to Vizings’s conjecture, deriving this new certificates is an important step in the area of using conic 
linear optimization for computer-assisted proofs because it demonstrates that deriving such proofs is 
possible.

We were not able to derive certificates for nG +nH > 15 due to numerical difficulties with off-the-
shelf SDP solvers. This needs to be dealt with in more detail. In future work, another topic for further 
investigation is whether the system of linear equation, which has to be solved in our new approach, 
is solvable for any size d = nG + nH − 1.

Most of all, the question of a general certificate depending on the size d arises. We know 
that c1,1 = √

nG + nH − 2 holds in the case of odd nG + nH . For nG + nH even, however, this is not 
the case. This coefficient as well as all other coefficients are among the most obvious future topics to 
work on to find a general certificate.

With our work, we know there are SOS-certificates for Vizing’s conjecture for all graph classes G
and H with kG = nG − 1 ≥ 1 and kH = nH − 1 for nH ∈ {2, 3}, with kG = nG and kH = nH − d
for d ≤ 4, and now also with kG = kH = 1 and nG +nH ≤ 15. Clearly, it would be interesting to derive 
SOS-certificates also for other graph classes G and H.
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