
Computers & Operations Research 161 (2024) 106449

A
0

L

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Strong SDP based bounds on the cutwidth of a graph✩

Elisabeth Gaar a,b, Diane Puges c, Angelika Wiegele c,d,∗

a University of Augsburg, Universitätsstraße 14, 86159 Augsburg, Germany
b Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
c Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65–67, 9020 Klagenfurt, Austria
d Universität zu Köln, Albertus-Magnus-Platz, 50923 Köln, Germany

A R T I C L E I N F O

Dataset link: https://arxiv.org/abs/2301.03900

Keywords:
Cutwidth
Linear ordering
Semidefinite programming
Combinatorial optimization

A B S T R A C T

Given a linear ordering of the vertices of a graph, the cutwidth of a vertex 𝑣 with respect to this ordering is the
number of edges from any vertex before 𝑣 (including 𝑣) to any vertex after 𝑣 in this ordering. The cutwidth of
an ordering is the maximum cutwidth of any vertex with respect to this ordering. We are interested in finding
the cutwidth of a graph, that is, the minimum cutwidth over all orderings, which is an NP-hard problem. In
order to approximate the cutwidth of a given graph, we present a semidefinite relaxation. We identify several
classes of valid inequalities and equalities that we use to strengthen the semidefinite relaxation. These classes
are on the one hand the well-known 3-dicycle equations and the triangle inequalities and on the other hand we
obtain inequalities from the squared linear ordering polytope and via lifting the linear ordering polytope. The
solution of the semidefinite program serves to obtain a lower bound and also to construct a feasible solution
and thereby having an upper bound on the cutwidth.

In order to evaluate the quality of our bounds, we perform numerical experiments on graphs of different
sizes and densities. It turns out that we produce high quality bounds for graphs of medium size independent of
their density in reasonable time. Compared to that, obtaining bounds for dense instances of the same quality
is out of reach for solvers using integer linear programming techniques.
1. Introduction

Several graph parameters are determined by finding an arrangement
of the vertices of a graph on a straight line having a certain objective in
mind. Depending on the objective, these parameters are, for instance,
the treewidth, the pathwidth, the bandwidth or the cutwidth of a graph.
Computing these graph parameters is necessary for several applications,
e.g., when a certain layout has to be found (VLSI design, see Raspaud
et al., 1995), in automatic graph drawing, see Díaz et al. (2002), or
in many versions of network problems arising in energy or logistics.
All these applications ask for algorithms to practically compute these
parameters. However, this leads to NP-hard optimization problems and
therefore algorithms for approximating these parameters in terms of
lower and upper bounds are required. The parameter that is of our
interest in this work is the cutwidth of a graph.

Definitions. The minimum cutwidth problem (MCP) can be defined as
follows. We consider an undirected graph 𝐺 = (𝑉 ,𝐸) with vertex set
𝑉 and edge set 𝐸 and assume without loss of generality that the set of

✩ This research was supported by the Austrian Science Fund (FWF): DOC 78 and by the Johannes Kepler University Linz, Linz Institute of Technology (LIT):
IT-2021-10-YOU-216.
∗ Corresponding author at: Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65–67, 9020 Klagenfurt, Austria.

E-mail addresses: elisabeth.gaar@uni-a.de (E. Gaar), diane.puges@aau.at (D. Puges), angelika.wiegele@aau.at (A. Wiegele).

vertices 𝑉 is 𝑉 = (1,… , 𝑛). Furthermore, the set of all permutations of
(1,… , 𝑛) is denoted by 𝛱𝑛. In any permutation 𝜋 ∈ 𝛱𝑛 of the vertices
of 𝐺, the position of a vertex 𝑣 ∈ 𝑉 in 𝜋 is given by 𝜋(𝑣). Note that
any linear ordering of the vertices 𝑉 of 𝐺 can be represented by a
permutation 𝜋 ∈ 𝛱𝑛.

The cutwidth 𝐶𝑊𝜋 (𝑣) of a vertex 𝑣 with respect to the permutation
𝜋 is the number of edges (𝑢,𝑤) ∈ 𝐸 such that 𝜋(𝑢) ≤ 𝜋(𝑣) < 𝜋(𝑤) holds,
i.e., the cutwidth of 𝑣 in 𝜋 is the number of edges from any vertex
before 𝑣 (including 𝑣) to any vertex after 𝑣 (not including 𝑣) in a linear
ordering of the vertices according to the permutation 𝜋. Furthermore,
the cutwidth 𝐶𝑊𝜋 (𝐺) of a graph 𝐺 with respect to 𝜋 is the maximum
cutwidth of any vertex with respect to the permutation 𝜋, so

𝐶𝑊𝜋 (𝐺) = max
𝑣∈𝑉

𝐶𝑊𝜋 (𝑣)

holds. Finally, the cutwidth 𝐶𝑊 (𝐺) of a graph 𝐺 is the minimum
cutwidth of 𝐺 with respect to 𝜋 over all possible permutations 𝜋, i.e.,

𝐶𝑊 (𝐺) = min
𝜋∈𝛱𝑛

𝐶𝑊𝜋 (𝐺).
vailable online 7 October 2023
305-0548/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.cor.2023.106449
Received 11 January 2023; Received in revised form 11 August 2023; Accepted 5 O
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
mailto:elisabeth.gaar@uni-a.de
mailto:diane.puges@aau.at
mailto:angelika.wiegele@aau.at
https://doi.org/10.1016/j.cor.2023.106449
https://doi.org/10.1016/j.cor.2023.106449
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106449&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 161 (2024) 106449E. Gaar et al.

w
u

An obvious lower bound on the cutwidth is given by

𝐶𝑊 (𝐺) ≥ ⌊

𝛥(𝐺) + 1
2

⌋,

here 𝛥(𝐺) is the maximum degree of any vertex in 𝑉 . Indeed, let
s denote by 𝑣max a vertex of G with degree 𝛥(𝐺). Then, for every

linear ordering 𝜋, every vertex in the neighborhood of 𝑣max is counted
either in 𝐶𝑊𝜋 (𝑣max) or in 𝐶𝑊𝜋 (𝑢max), where 𝑢max is the vertex directly
preceding 𝑣max in 𝜋. It follows that either 𝐶𝑊𝜋 (𝑣max) or 𝐶𝑊𝜋 (𝑢max) has
to be greater or equal to 𝛥(𝐺)

2 , and due to the integrality of 𝐶𝑊 (𝐺) we
obtain the lower bound ⌊

𝛥(𝐺)+1
2 ⌋.

Among connected graphs with 𝑛 vertices, the graphs with the small-
est cutwidth are the paths, which have a cutwidth of 1. The graphs with
the largest cutwidth are the complete graphs 𝐾𝑛, with 𝐶𝑊 (𝐾𝑛) = ⌊

𝑛2

4 ⌋.

Related literature. The MCP has been investigated in several aspects
and in several contexts. Inspired from results in the topology of mani-
folds, Kloeckner (2009) explores lower bounds depending on the spar-
sity and the degeneracy of the underlying graph. Next to theoretical
properties of the cutwidth, connections between the cutwidth of a
graph 𝐺 with its treewidth 𝑇𝑊 (𝐺) and its pathwidth 𝑃𝑊 (𝐺) have been
explored by several authors. It is known that 𝐶𝑊 (𝐺) ≤ 𝛥(𝐺)𝑃𝑊 (𝐺)
from Chung and Seymour (1989), 𝐶𝑊 (𝐺) ≥ 𝑇𝑊 (𝐺) from Bodlaender
(1986), and 𝐶𝑊 (𝐺) = ((log 𝑛)𝛥(𝐺)𝑇𝑊 (𝐺)) from Korach and Solel
(1993). It follows that if 𝑇𝑊 (𝐺) and 𝛥(𝐺) are bounded by constants,
𝐶𝑊 (𝐺) = (log 𝑛). Furthermore, if (𝑋, 𝑇) is a tree decomposition of 𝐺
with treewidth 𝑘, then 𝐶𝑊 (𝐺) ≤ (𝑘 + 1)𝛥(𝐺)𝐶𝑊 (𝑇).

As for computing the cutwidth, there exist polynomial time algo-
rithms for certain graph classes, see e.g. Heggernes et al. (2011, 2012)
and Yannakakis (1985). Giannopoulou et al. (2019) design a fixed-
parameter algorithm for computing the cutwidth that runs in time
2(𝑘2 log 𝑘)𝑛, where 𝑘 is the cutwidth. In a more general setting, Bodlaen-
der et al. (2012) discuss exponential time algorithms for vertex ordering
problems, including the MCP. A relation of computing the cutwidth and
the pathwidth via the so-called locality number, a structural parameter
for strings, has been investigated by Casel et al. (2019).

Another way to solve the MCP is to model the optimization problem
as a mixed-integer linear program (MILP). This has been considered
by Luttamaguzi et al. (2005) and by López-Locés et al. (2014). More-
over, in the PhD thesis of Coudert (2016a) MILP formulations for
linear ordering problems, among them the cutwidth, pathwidth and
bandwidth problem, are given. Therein, different formulations for these
problems are introduced and compared to each other. However, all
these algorithms can only deal with sparse instances of small size.
Indeed, by Coudert (2016a) results are given for (very) sparse graphs
only with |𝑉 | ∈ {16,… , 24}.

Martí et al. (2013) introduce a branch-and-bound algorithm using
lower bounds on the cutwidth of partial solutions and a greedy ran-
domized adaptive search procedure (GRASP) to compute upper bounds.
Applying the metaheuristic adaptive large neighborhood search for ob-
taining orderings with a small cutwidth has been introduced by Santos
and de Carvalho (2021).

A further line of research is to apply semidefinite programming
(SDP) to optimization problems that deal with orderings of the vertices,
see e.g. Buchheim et al. (2010) and Hungerländer and Rendl (2013).
In particular, SDP based methods proved to be very successful when
applied to the single row facility layout problem, see Fischer et al.
(2019), Schwiddessen (2022), which falls into this category as its goal
is to order facilities on a straight line in the best way according to some
objective function. SDP based bounds for the bandwidth problem are
introduced in Rendl et al. (2021). To the best of our knowledge there
have been no attempts so far in using semidefinite programming to
tackle the MCP.
2

Contribution and outline. In this paper we present a novel relaxation
of the MCP that uses semidefinite programming. We introduce several
valid inequalities that we include in the SDP in a cutting-plane fashion
to strengthen the lower bound on the cutwidth. Moreover, we intro-
duce a heuristic that uses the optimizer of the SDP to obtain feasible
solutions and thereby providing an upper bound on the cutwidth. Our
computational experiments confirm that we can obtain tight bounds
in reasonable time and that the run time of our algorithms are not
sensitive concerning the density of the graph.

The rest of this paper is structured as follows. In Section 2 we
introduce a basic SDP relaxation for the MCP and provide several linear
constraints that can be used to strengthen the basic SDP relaxation. We
describe in detail the algorithm for computing the lower bounds arising
from the SDP as well as a heuristic to obtain upper bounds in Section 3.
Computational results of our new algorithms are given in Section 4, and
Section 5 concludes.

2. New bounds for the minimum cutwidth problem

The aim of this section is to introduce a new SDP relaxation for the
MCP and to present ways to strengthen this relaxation.

2.1. Our new basic SDP relaxation

We follow the approach of Buchheim et al. (2010) for the quadratic
linear ordering problem in order to derive an SDP formulation of the
MCP. This is a promising endeavor, as the feasible region of both the
quadratic linear ordering problem and the MCP consist of permutations.

Towards this end, let 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 be the adjacency matrix of the
graph 𝐺, i.e., 𝑎𝑖𝑗 = 1 if and only if the edge (𝑖, 𝑗) is in the set of edges 𝐸
of the graph 𝐺. To represent a permutation 𝜋, Buchheim et al. (2010)
introduce a binary variable 𝜒𝜋

𝑖𝑗 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 that indicates
whether 𝜋(𝑖) < 𝜋(𝑗) holds, so in total they have a vector 𝜒𝜋 consisting
of

(𝑛
2

)

binary variables. They define the linear ordering polytope 𝐿𝑂(𝑛)
as the convex hull of all vectors 𝜒𝜋 , formally

𝐿𝑂(𝑛) = conv(𝜒𝜋 ∶𝜋 ∈ 𝛱𝑛),

which is a subset of R(
𝑛
2). As a consequence, the elements of the set

𝐿𝑂(𝑛) ∩ (0, 1)(
𝑛
2) are exactly all vectors representing permutations of

(1,… , 𝑛).
Let 𝑥 = (𝑥𝑖𝑗)1≤𝑖<𝑗≤𝑛 be a vector in 𝐿𝑂(𝑛) ∩ (0, 1)(

𝑛
2) representing a

permutation 𝜋 ∈ 𝛱𝑛. By definition, the binary variable 𝑥𝑖𝑗 is equal to
1 if and only if 𝑖 is before 𝑗 in 𝜋. Then, it can be checked that for any
vertex 𝑣 of 𝐺,

𝐶𝑊𝜋 (𝑣) =
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤>𝑣

𝑎𝑢𝑤𝑥𝑢𝑣𝑥𝑣𝑤 +
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤>𝑣
𝑤≠𝑢

𝑎𝑢𝑤(1 − 𝑥𝑣𝑢)𝑥𝑣𝑤

+
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑢𝑣(1 − 𝑥𝑤𝑣)

+
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑢𝑤(1 − 𝑥𝑣𝑢)(1 − 𝑥𝑤𝑣)

+
∑

𝑤∈𝑉
𝑤>𝑣

𝑎𝑣𝑤𝑥𝑣𝑤 +
∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑣𝑤(1 − 𝑥𝑤𝑣) (1)

holds. The first four terms of this expression count the number of edges
from any vertex before 𝑣 to any vertex after 𝑣 in the permutation, both
not including 𝑣. These four terms are necessary, as only one of the
variables 𝑥𝑢𝑣 (if 𝑢 < 𝑣) and 𝑥𝑣𝑢 (if 𝑢 > 𝑣), and one of the variables
𝑥𝑤𝑣 (if 𝑤 < 𝑣) and 𝑥𝑣𝑤 (if 𝑤 > 𝑣) exist. The last two terms of (1) count

the edges from 𝑣 to any vertex after 𝑣.

Computers and Operations Research 161 (2024) 106449E. Gaar et al.
By expanding (1), grouping the constant, linear and quadratic terms
together, and by combining three times two sums as one, we can
rewrite (1) as

𝐶𝑊𝜋 (𝑣) =
∑

𝑤∈𝑉
𝑤<𝑣

∑

𝑢∈𝑉
𝑢≥𝑣

𝑎𝑢𝑤 +
∑

𝑤∈𝑉
𝑤>𝑣

∑

𝑢∈𝑉
𝑢≥𝑣
𝑢≠𝑤

𝑎𝑢𝑤𝑥𝑣𝑤 +
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑢𝑣 (2)

−
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑢𝑤(𝑥𝑣𝑢 + 𝑥𝑤𝑣) −
∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑣𝑤𝑥𝑤𝑣 + 2
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤>𝑣

𝑎𝑢𝑤𝑥𝑢𝑣𝑥𝑣𝑤

−
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤>𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑣𝑢𝑥𝑣𝑤 −
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑢𝑣𝑥𝑤𝑣,

and as a result, the MCP can be written as

min 𝛼 (3a)

s. t. 𝛼 ≥
∑

𝑤∈𝑉
𝑤<𝑣

∑

𝑢∈𝑉
𝑢≥𝑣

𝑎𝑢𝑤 +
∑

𝑤∈𝑉
𝑤>𝑣

∑

𝑢∈𝑉
𝑢≥𝑣
𝑢≠𝑤

𝑎𝑢𝑤𝑥𝑣𝑤 +
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑢𝑣 (3b)

−
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑢𝑤(𝑥𝑣𝑢 + 𝑥𝑤𝑣) −
∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑣𝑤𝑥𝑤𝑣 + 2
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤>𝑣

𝑎𝑢𝑤𝑥𝑢𝑣𝑥𝑣𝑤

−
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤>𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑣𝑢𝑥𝑣𝑤 −
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑢𝑣𝑥𝑤𝑣 ∀𝑣 ∈ 𝑉

𝑥 ∈ 𝐿𝑂(𝑛) ∩ (0, 1)(
𝑛
2). (3c)

This is an integer program with a linear objective function and quadratic
constraints, which is perfectly suited for deriving an SDP relaxation.
To do so, we introduce the matrix variable 𝑋 = (𝑋𝑖𝑗,𝑘𝓁) 1≤𝑖<𝑗≤𝑛

1≤𝑘<𝓁≤𝑛
. In

particular, 𝑋𝑖𝑗,𝑘𝓁 represents the product 𝑥𝑖𝑗𝑥𝑘𝓁 . Then the following SDP
is a relaxation of the MCP.

min 𝛼 (4a)

s. t. 𝛼 ≥
∑

𝑤∈𝑉
𝑤<𝑣

∑

𝑢∈𝑉
𝑢≥𝑣

𝑎𝑢𝑤 +
∑

𝑤∈𝑉
𝑤>𝑣

∑

𝑢∈𝑉
𝑢≥𝑣
𝑢≠𝑤

𝑎𝑢𝑤𝑥𝑣𝑤 +
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑥𝑢𝑣 (4b)

−
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑢𝑤(𝑥𝑣𝑢 + 𝑥𝑤𝑣) −
∑

𝑤∈𝑉
𝑤<𝑣

𝑎𝑣𝑤𝑥𝑤𝑣 + 2
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤>𝑣

𝑎𝑢𝑤𝑋𝑢𝑣,𝑣𝑤

−
∑

𝑢∈𝑉
𝑢>𝑣

∑

𝑤∈𝑉
𝑤>𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑋𝑣𝑢,𝑣𝑤 −
∑

𝑢∈𝑉
𝑢<𝑣

∑

𝑤∈𝑉
𝑤<𝑣
𝑤≠𝑢

𝑎𝑢𝑤𝑋𝑢𝑣,𝑤𝑣 ∀𝑣 ∈ 𝑉

𝑥 = diag(𝑋) (4c)

𝑋̄ =
(

1 𝑥⊤

𝑥 𝑋

)

(4d)

𝑋̄ ⪰ 0. (4e)

Note that 𝑥 = (𝑥𝑖𝑗)1≤𝑖<𝑗≤𝑛 is a vector of dimension
(𝑛
2

)

and 𝑋̄ is a
square matrix with (

(𝑛
2

)

+1) columns and rows. Thus, the SDP (4) has a
matrix variable of dimension (

(𝑛
2

)

+1) and 𝑛+
(𝑛
2

)

+1 constraints. The 𝑛
constraints (4b) make sure that 𝛼 is at least the cutwidth of each vertex.
The

(𝑛
2

)

+ 1 constraints (4c) together with the constraints (4d) and (4e)
represent the relaxation of 𝑋 − 𝑥𝑥⊤ = 0 to 𝑋 − 𝑥𝑥⊤ ⪰ 0 and taking the
Schur complement. Due to the fact that 𝑥 is binary, 𝑋 − 𝑥𝑥⊤ = 0 also
implies that (4c) has to hold.

Furthermore, note that adding the non-convex constraint rank(𝑋̄) =
1 to the SDP relaxation (4), the optimal objective function value be-
comes 𝐶𝑊 (𝐺). This is also the case if we add integer conditions for
𝑋.

2.2. Strengthening the SDP relaxation

Next, we investigate several options to improve the SDP relax-
ation (4) of the MCP.
3

2.2.1. 3-dicycle equations
In the basic SDP relaxation (4), no specific information about the

fact that 𝑥 should represent a permutation is used. One possible way
to include such information is to model the transitivity by so-called
3-dicycle equations, as it is done by Buchheim et al. (2010). These 3-
dicycle equations make sure that if 𝑖 is before 𝑗 and 𝑗 is before 𝑘, then
𝑖 must be before 𝑘. For a vector 𝑥 = (𝑥𝑖𝑗)1≤𝑖<𝑗≤𝑛, they can be written as

𝑥𝑖𝑘 − 𝑥𝑖𝑗𝑥𝑖𝑘 − 𝑥𝑖𝑘𝑥𝑗𝑘 + 𝑥𝑖𝑗𝑥𝑗𝑘 = 0 ∀𝑖 < 𝑗 < 𝑘, (5)

so we can include

𝑥𝑖𝑘 −𝑋𝑖𝑗,𝑖𝑘 −𝑋𝑖𝑘,𝑗𝑘 +𝑋𝑖𝑗,𝑗𝑘 = 0 ∀𝑖 < 𝑗 < 𝑘 (6)

as additional constraints into our SDP relaxation (4) of the MCP. If we
add all possible constraints of the form (6), we include

(𝑛
3

)

equality
constraints.

Observe, that Buchheim et al. (2010) show that if the variables
are binary, the expression on the left hand-side of (5) is always non-
negative. So in this case, one needs to consider only the inequality ≤ 0.
However, this does not hold anymore for our SDP relaxation, as the
variables are not necessarily binary.

2.2.2. Triangle inequalities
Another way to strengthen the SDP relaxation (4) is adding the

triangle inequalities

0 ≤ 𝑋𝑖𝑗,𝑘𝓁 ∀𝑖 < 𝑗, 𝑘 < 𝓁 (7a)

𝑋𝑖𝑗,𝑘𝓁 ≤ 𝑋𝑖𝑗,𝑖𝑗 ∀𝑖 < 𝑗, 𝑘 < 𝓁 (7b)

𝑋𝑖𝑗,𝑖𝑗 +𝑋𝑘𝓁,𝑘𝓁 ≤ 1 +𝑋𝑖𝑗,𝑘𝓁 ∀𝑖 < 𝑗, 𝑘 < 𝓁 (7c)

𝑋𝑖𝑗,𝑘𝓁 +𝑋𝑢𝑣,𝑘𝓁 ≤ 𝑋𝑘𝓁,𝑘𝓁 +𝑋𝑖𝑗,𝑢𝑣 ∀𝑖 < 𝑗, 𝑘 < 𝓁, 𝑢 < 𝑣 (7d)
𝑋𝑖𝑗,𝑖𝑗 +𝑋𝑘𝓁,𝑘𝓁 +𝑋𝑢𝑣,𝑢𝑣 ≤ 1 +𝑋𝑖𝑗,𝑘𝓁 +𝑋𝑖𝑗,𝑢𝑣 +𝑋𝑘𝓁,𝑢𝑣 ∀𝑖 < 𝑗, 𝑘 < 𝓁, 𝑢 < 𝑣.

(7e)

The inequalities (7a) and (7b) were introduced by Lovász and Schrijver
(1991) and the constraints (7c), (7d) and (7e) originate from Gruber
and Rendl (2003). As a consequence, (7a), (7b) and (7c) each yield
(𝑛
2

)2 potential new constraints. Both (7d) and (7e) offer the option of
including

(𝑛
2

)3 inequalities.
It can be checked easily that all the inequalities of (7) are satisfied

for each matrix 𝑋 = 𝑥𝑥⊤ for any 𝑥 ∈ 𝐿𝑂(𝑛) ∩ (0, 1)(
𝑛
2), so for any vector

𝑥 that represents a permutation. Thus, the inequalities (7) are valid
inequalities for the SDP relaxation (4) for the MCP. Next, we give an
alternative reasoning that the inequalities (7) are satisfied.

2.2.3. Inequalities obtained from the squared linear ordering polytope
Adams et al. (2015) introduced so-called exact subgraph constraints

(ESC), which were later computationally exploited for the stable set
problem, the Max-Cut problem and the coloring problem by Gaar and
Rendl (2019, 2020).

For the stable set problem the ESCs are defined in the following
way. Let 𝐺 = (𝑉 ,𝐸) be a graph with vertex set 𝑉 = {1, 2,… , 𝑛}. The
squared stable set polytope 𝑆𝑇𝐴𝐵2(𝐺) of 𝐺 is defined as

𝑆𝑇𝐴𝐵2(𝐺) = conv
{

𝑠𝑠𝑇 ∶ 𝑠 ∈ {0, 1}𝑛, 𝑠𝑖𝑠𝑗 = 0 ∀{𝑖, 𝑗} ∈ 𝐸
}

,

and the ESCs for the stable set problem (ESCSS) are

𝑋𝐼 ∈ 𝑆𝑇𝐴𝐵2(𝐺𝐼),

where 𝐼 ⊆ 𝑉 , 𝐺𝐼 is the induced subgraph of 𝐺 on the vertices 𝐼 , 𝑋 is
the matrix variable of an SDP relaxation of the stable set problem, and
𝑋𝐼 is the submatrix of 𝑋 that corresponds to 𝐺𝐼 . As detailed by Gaar
et al. (2022), the ESCSS are equivalent to

𝑋𝐼 ∈ 𝑆𝑇𝐴𝐵2(𝐺0
|𝐼|),

where the graph 𝐺0
𝑘 = (𝑉 0

𝑘 , 𝐸
0
𝑘) is given as 𝑉 0

𝑘 = {1, 2,… , 𝑘} and 𝐸0
𝑘 = ∅.

This implies that only the squared stable set polytope for a graph with

𝑘 vertices and no edges needs to be considered.

Computers and Operations Research 161 (2024) 106449E. Gaar et al.

𝑋
s

t

𝐿

h

t
p
v

𝑋

i

h
|

𝑋

C
o

a

w
Furthermore, Gaar et al. (2022) describe that the ESCSS can be
represented by inequalities for 𝑋𝐼 , and therefore as inequalities for

. In Gaar (2020), these inequalities that represent the ESCSSs are
tated explicitly for subgraphs with 2 and 3 vertices. In fact, the triangle

inequalities (7) are exactly the inequalities representing the ESCSS for
subgraphs of order 2 ((7a), (7b) and (7c)) and for subgraphs of order
3 ((7d) and (7e)). When deriving the inequalities that represent the
ESCSS for 𝐺0

𝑘, any binary vector of dimension 𝑘 is feasible for the
corresponding stable set problem in 𝐺0

𝑘. As a consequence, 𝑋 = 𝑥𝑥𝑇

is in 𝑆𝑇𝐴𝐵2(𝐺0
𝑘) for any 𝑥 ∈ {0, 1}𝑘.

For the MCP, only specific (and not all) binary vectors of dimension
(𝑛
2

)

induce a permutation of the 𝑛 vertices. Thus, it makes sense to
deduce the ESCs specifically for the linear ordering problem as they
might be more restrictive. Towards this end, we introduce the quadratic
linear ordering polytope

𝐿𝑂2(𝑛) = conv(𝜒𝜋𝜒𝜋⊤ ∶𝜋 ∈ 𝛱𝑛),

which is a subset of R(
𝑛
2)×(

𝑛
2). From our considerations above, it follows

hat

𝑂2(𝑛) ⊆ 𝑆𝑇𝐴𝐵2(𝐺0
(𝑛2)

)

olds for all 𝑛 ∈ N.
The vertices of the polytope 𝐿𝑂2(𝑛) can easily be enumerated. With

he help of the software PORTA by Christof and Löbel (1997) it is
ossible to determine the inequalities that represent 𝐿𝑂2(𝑛) for small
alues of 𝑛. In particular, any matrix 𝑋 is in 𝐿𝑂2(𝑛) for 𝑛 = 3 if and

only if it is symmetric and all facet defining inequalities and equations

0 ≤ 𝑋𝑖𝑗,𝑗𝑘 ∀𝑖 < 𝑗 < 𝑘 (8a)

𝑖𝑗,𝑖𝑘 ≤ 𝑋𝑖𝑗,𝑖𝑗 , 𝑋𝑖𝑗,𝑖𝑘 ≤ 𝑋𝑖𝑘,𝑖𝑘, 𝑋𝑖𝑘,𝑗𝑘 ≤ 𝑋𝑖𝑘,𝑖𝑘, 𝑋𝑖𝑘,𝑗𝑘 ≤ 𝑋𝑗𝑘,𝑗𝑘 ∀𝑖 < 𝑗 < 𝑘 (8b)

𝑋𝑖𝑗,𝑖𝑗 +𝑋𝑗𝑘,𝑗𝑘 ≤ 1 +𝑋𝑖𝑗,𝑗𝑘 ∀𝑖 < 𝑗 < 𝑘 (8c)

𝑋𝑖𝑘,𝑖𝑘 −𝑋𝑖𝑗,𝑖𝑘 −𝑋𝑖𝑘,𝑗𝑘 +𝑋𝑖𝑗,𝑗𝑘 = 0 ∀𝑖 < 𝑗 < 𝑘 (8d)

are satisfied. Note, that (8a), (8c) and (8d) each yield
(𝑛
3

)

potential
inequalities and (8b) offers the option of including 4

(𝑛
3

)

constraints. It
is easy to see that (8d) coincides with the 3-dicycle equations already
considered as (6). Furthermore, (8a), (8b) and (8c) are a subset of the
triangle inequalities (7a), (7b) and (7c), respectively. It turns out that
the following holds.

Lemma 2.1. If a symmetric 𝑋 satisfies (8), then 𝑋 also fulfills all
nequalities of (7) whenever |{𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣}| ≤ 3 holds.

Proof. Assume a symmetric 𝑋 satisfies (8).
We first show that then 𝑋 fulfills (7b) whenever |{𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣}| ≤ 3

olds. Clearly |{𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣}| ≥ 2 always holds, and (7b) is trivial if
{𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣}| = 2. So let {𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣} = {𝑖′, 𝑗′, 𝑘′} with 𝑖′ < 𝑗′ < 𝑘′.

We have to show that 𝑋 fulfills

𝑋𝑖′𝑗′ ,𝑖′𝑘′ ≤ 𝑋𝑖′𝑗′ ,𝑖′𝑗′ (9a)

𝑋𝑖′𝑗′ ,𝑗′𝑘′ ≤ 𝑋𝑖′𝑗′ ,𝑖′𝑗′ (9b)

𝑋𝑖′𝑘′ ,𝑖′𝑗′ ≤ 𝑋𝑖′𝑘′ ,𝑖′𝑘′ (9c)

𝑋𝑖′𝑘′ ,𝑗′𝑘′ ≤ 𝑋𝑖′𝑘′ ,𝑖′𝑘′ (9d)

𝑋𝑗′𝑘′ ,𝑖′𝑗′ ≤ 𝑋𝑗′𝑘′ ,𝑗′𝑘′ (9e)

𝑗′𝑘′ ,𝑖′𝑘′ ≤ 𝑋𝑗′𝑘′ ,𝑗′𝑘′ . (9f)

learly, the inequalities (9a), (9c), (9d) and (9f) are fulfilled because
f (8b).

Furthermore, 𝑋𝑖′𝑘′ ,𝑖′𝑘′ = 𝑋𝑖′𝑗′ ,𝑖′𝑘′ +𝑋𝑖′𝑘′ ,𝑗′𝑘′ −𝑋𝑖′𝑗′ ,𝑗′𝑘′ because of (8d)
nd 𝑋𝑖′𝑘′ ,𝑗′𝑘′ ≤ 𝑋𝑖′𝑘′ ,𝑖′𝑘′ due to (8b). Thus, 𝑋𝑖′𝑘′ ,𝑗′𝑘′ ≤ 𝑋𝑖′𝑗′ ,𝑖′𝑘′+𝑋𝑖′𝑘′ ,𝑗′𝑘′−

𝑋 holds, which implies that 𝑋 ≤ 𝑋 holds. Together
4

𝑖′𝑗′ ,𝑗′𝑘′ 𝑖′𝑗′ ,𝑗′𝑘′ 𝑖′𝑗′ ,𝑖′𝑘′
ith 𝑋𝑖′𝑗′ ,𝑖′𝑘′ ≤ 𝑋𝑖′𝑗′ ,𝑖′𝑗′ because of (8b), this implies 𝑋𝑖′𝑗′ ,𝑗′𝑘′ ≤ 𝑋𝑖′𝑗′ ,𝑖′𝑗′ ,
and so (9b) holds.

Analogously it can be shown that (9e) holds with the help of (8b)
and (8d). As a result, 𝑋 it fulfills (7b) whenever |{𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣}| ≤ 3
holds. In a similar fashion,

• (8d), (7b) and (8a) imply (7a),
• (8d), (8b) and (8c) imply (7c),
• (7b) and (8d) imply (7d), and
• (8d), (7a) and (7c) imply (7c)

whenever |{𝑖, 𝑗, 𝑘,𝓁, 𝑢, 𝑣}| ≤ 3 holds. As a consequence, all inequalities
of (7) are satisfied in this case. □

Note that Lemma 2.1 is indeed no surprise: With the intuition of
the ESCs for the stable set problem, the triangle inequalities (7) (which
represent the membership to 𝑆𝑇𝐴𝐵(𝐺0

3)) must be satisfied for any 3 × 3
submatrix of 𝑋, as the only condition is that the corresponding sub-
matrix must be formed by binary vectors. Instead, the constraints (8)
(which represent the membership to 𝐿𝑂2(3)) are only valid for 3 × 3
submatrices of 𝑋 whose indices that correspond to the three pairs 𝑖𝑗,
𝑖𝑘, 𝑗𝑘 for any 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛. Thus, the inequalities (8) capture more
structure, but are valid for fewer submatrices.

With the help of 𝐿𝑂2(4) we were able to find the next valid inequal-
ities, which are (to the best of the knowledge of the authors) not known
as valid inequalities for the linear ordering problem so far.

Lemma 2.2. The inequalities

𝑥𝑖𝓁 +𝑋𝑖𝑘,𝑗𝑘 +𝑋𝑗𝑘,𝑗𝓁 ≤ 𝑥𝑖𝑘 + 𝑥𝑗𝓁 +𝑋𝑖𝑗,𝑘𝓁 +𝑋𝑖𝓁,𝑗𝑘 ∀𝑖 < 𝑗 < 𝑘 < 𝓁 (10)

are valid inequalities for the SDP relaxation (4) for the MCP.

Proof. In order to prove this lemma, it is enough to show that for all
𝑖 < 𝑗 < 𝑘 < 𝓁 and for all 𝑋 = 𝜒𝜋𝜒𝜋⊤ for 𝜋 ∈ 𝛱𝑛 the inequality

𝜒𝜋
𝑖𝓁 + 𝜒𝜋

𝑖𝑘𝜒
𝜋
𝑗𝑘 + 𝜒𝜋

𝑗𝑘𝜒
𝜋
𝑗𝓁 ≤ 𝜒𝜋

𝑖𝑘 + 𝜒𝜋
𝑗𝓁 + 𝜒𝜋

𝑖𝑗𝜒
𝜋
𝑘𝓁 + 𝜒𝜋

𝑖𝓁𝜒
𝜋
𝑗𝑘 (11)

is satisfied. To do so, we distinguish two cases for fixed 𝑖 < 𝑗 < 𝑘 < 𝓁
and fixed 𝜋.

If 𝜋(𝑗) < 𝜋(𝑘), then 𝜒𝜋
𝑗𝑘 = 1 and (11) simplifies to 0 ≤ 𝜒𝜋

𝑖𝑗𝜒
𝜋
𝑘𝓁 , which

is clearly satisfied.
If 𝜋(𝑘) < 𝜋(𝑗), then 𝜒𝜋

𝑗𝑘 = 0 and therefore (11) simplifies to

𝜒𝜋
𝑖𝓁 ≤ 𝜒𝜋

𝑖𝑘 + 𝜒𝜋
𝑗𝓁 + 𝜒𝜋

𝑖𝑗𝜒
𝜋
𝑘𝓁 . (12)

As this inequality is surely satisfied if 𝜒𝜋
𝑖𝓁 = 0, we only have to

investigate 𝜒𝜋
𝑖𝓁 = 1, so 𝜋(𝑖) < 𝜋(𝓁). Assume 𝜒𝜋

𝑖𝑘+𝜒
𝜋
𝑗𝓁 = 0, then 𝜋(𝑘) < 𝜋(𝑖)

and 𝜋(𝓁) < 𝜋(𝑗). With all other relations we have this implies that
𝜋(𝑘) < 𝜋(𝑖) < 𝜋(𝓁) < 𝜋(𝑗) holds. Thus, 𝜒𝜋

𝑖𝑗𝜒
𝜋
𝑘𝓁 = 1 holds under our

assumption, which implies that the right hand-side of (12) is at least
one. Therefore, (11) is fulfilled in this case.

As a result, in any case (11) is satisfied, which finishes the proof. □

2.2.4. Liftings of inequalities from the linear ordering polytope
Buchheim et al. (2010) derived their quadratic 3-dicycle equa-

tions (5) as an alternative to the linear 3-dicycle inequalities

0 ≤ 𝑥𝑖𝑗 + 𝑥𝑗𝑘 − 𝑥𝑖𝑘 ≤ 1 ∀𝑖 < 𝑗 < 𝑘. (13)

One could also use the standard reformulation linearization tech-
nique (RLT), of which the foundations were laid by Adams and Sherali
(1986). Using this approach, we can multiply the inequalities (13) by
𝑥𝑢𝑣 and (1 − 𝑥𝑢𝑣) for every pair (𝑢, 𝑣) with 𝑢 < 𝑣, and then replace
products of the form 𝑥𝑖𝑗𝑥𝑘𝓁 by 𝑋𝑖𝑗,𝑘𝓁 . In this way we obtain the set
of valid inequalities

0 ≤ 𝑋𝑖𝑗,𝑢𝑣 +𝑋𝑗𝑘,𝑢𝑣 −𝑋𝑖𝑘,𝑢𝑣 ∀𝑖 < 𝑗 < 𝑘, 𝑢 < 𝑣 (14a)
𝑋𝑖𝑗,𝑢𝑣 +𝑋𝑗𝑘,𝑢𝑣 −𝑋𝑖𝑘,𝑢𝑣 ≤ 𝑥𝑢𝑣 ∀𝑖 < 𝑗 < 𝑘, 𝑢 < 𝑣 (14b)

Computers and Operations Research 161 (2024) 106449E. Gaar et al.

w

a
i
c
i
n

t

0 ≤ 𝑥𝑖𝑗 + 𝑥𝑗𝑘 − 𝑥𝑖𝑘 −𝑋𝑖𝑗,𝑢𝑣 −𝑋𝑗𝑘,𝑢𝑣 +𝑋𝑖𝑘,𝑢𝑣 ∀𝑖 < 𝑗 < 𝑘, 𝑢 < 𝑣 (14c)

𝑥𝑖𝑗 + 𝑥𝑗𝑘 − 𝑥𝑖𝑘 −𝑋𝑖𝑗,𝑢𝑣 −𝑋𝑗𝑘,𝑢𝑣 +𝑋𝑖𝑘,𝑢𝑣 ≤ 1 − 𝑥𝑢𝑣 ∀𝑖 < 𝑗 < 𝑘, 𝑢 < 𝑣, (14d)

hich yields 4
(𝑛
3

)(𝑛
2

)

potential additional constraints. However, some
of them are already implied by the inequalities previously introduced.
Indeed,

• (14a) for (𝑢, 𝑣) = (𝑖, 𝑗) and (𝑢, 𝑣) = (𝑗, 𝑘) is implied by (7a) and
(7b),

• (14a) for (𝑢, 𝑣) = (𝑖, 𝑘) is implied by (6) and (7a),
• (14b) for (𝑢, 𝑣) = (𝑖, 𝑗) and (𝑢, 𝑣) = (𝑗, 𝑘) is implied by (6) and (7b),
• (14b) for (𝑢, 𝑣) = (𝑖, 𝑘) is implied by (7b),
• (14c) for (𝑢, 𝑣) = (𝑖, 𝑗) and (𝑢, 𝑣) = (𝑗, 𝑘) is implied by (6) and (7b),
• (14c) for (𝑢, 𝑣) = (𝑖, 𝑘) is implied by (7b),
• (14d) for (𝑢, 𝑣) = (𝑖, 𝑗) and (𝑢, 𝑣) = (𝑗, 𝑘) is implied by (7b) and

(7c), and
• (14d) for (𝑢, 𝑣) = (𝑖, 𝑘) is implied by (6) and (7c).

Thus, at least one of 𝑢 and 𝑣 needs to be different to 𝑖, 𝑗 and 𝑘 such
that an inequality of (14) has the potential to bring new information.

3. Algorithms

In this section we describe in detail our algorithm that utilizes our
new SDP relaxation for the MCP and its strengthenings derived in the
last section. Furthermore, we present a new upper bound obtained by
a heuristic utilizing the optimizer of the SDP relaxation.

3.1. Algorithm for computing our new lower bound

Adding all the previously described inequality and equality con-
straints at once to the basic SDP relaxation (4) would render it too com-
putationally expensive to solve. Therefore, a cutting-plane approach is
used to obtain a tight lower bound for the MCP.

3.1.1. Separating constraints
The total number of possible inequality and equality constraints

to add to the basic SDP relaxation (4) is (𝑛6). While it is possible
to exhaustively enumerate them and keep the ones with the largest
violation, it would take a long time and does not guarantee the best
tightening of the relaxation. A heuristic to find violated constraints is
thus preferred.

The algorithm used to find a single violated constraint for a given
solution 𝑋̄ of the SDP relaxation (4) is a simulated annealing heuristic,
in which the current solution is represented by a tuple of indices
((𝑖, 𝑗, 𝑘,𝓁), (𝑢, 𝑣), (𝑞,𝑤)), with 𝑖 < 𝑗 < 𝑘 < 𝓁, 𝑢 < 𝑣 and 𝑞 < 𝑤,
coupled with the constraint type. The possible constraint types are
the 3-dicycle equations (6); the triangle inequalities (7a), (7b), (7c),
(7d), (7e); the inequality from the squared linear ordering polytope of
order four (10), and the inequalities obtained from lifting the linear
ordering polytope (14a), (14c), (14b), (14d) and are given in the array
constraintsToTest. Note that the tuple of indices is defined in
such a way that the required indices of all possible constraints can be
extracted from it. For example, the three pairs of indices of (7e) can be
extracted as (𝑖, 𝑗), (𝑢, 𝑣) and (𝑞,𝑤) from the current solution.

Whenever a current solution is given, neighbor solutions are ob-
tained with random_neighbor_indices() by randomly replacing one index
from the tuple of indices of the current solution before ordering it again.
The violation of a solution (i.e., a fixed type of constraint for a fixed
tuple of indices) for the solution 𝑋̄ of the SDP relaxation (4) can be
computed via violation(), and is positive if the inequality or equality
constraint is violated. The pseudocode of this simulated annealing
heuristic can be found in Algorithm 1.
5

r

Algorithm 1: Simulated annealing to separate constraints
Parameters: 𝑇init, 𝑓𝑡, maxIterSep, maxLenPlateau
Input: solution 𝑋̄ of the SDP relaxation (4), array of types

of constraints constraintsToTest
1 iter ⟵ 0
2 lenPlateau ⟵ 0
3 (𝑖, 𝑗, 𝑘,𝓁) ⟵ random((1,… , 𝑛)) with 𝑖 < 𝑗 < 𝑘 < 𝓁
4 (𝑢, 𝑣) ⟵ random((1,… , 𝑛)) with 𝑢 < 𝑣
5 (𝑞,𝑤) ⟵ random((1,… , 𝑛)) with 𝑞 < 𝑤
6 indices ⟵ ((𝑖, 𝑗, 𝑘,𝓁), (𝑢, 𝑣), (𝑞,𝑤))
7 currentSolution ⟵ (indices, None)
8 currentViolation ⟵ −∞
9 bestSolution ⟵ currentSolution
10 bestViolation ⟵ currentViolation
11 𝑇 ⟵ 𝑇init
12 while lenPlateau < maxLenPlateau and iter <

maxIterSep do
13 iter ⟵ iter + 1
14 lenPlateau ⟵ lenPlateau + 1
15 neighborIndices ⟵

random_neighbor_indices(currentSolution)
16 for inequality in constraintsToTest do
17 neighborSolution = (neighborIndices, inequality)
18 neighborViolation ⟵ violation(neighborSolution, 𝑋̄)
19 𝛥 ⟵ neighborViolation − currentViolation
20 if 𝛥 > 0 then
21 currentSolution ⟵ neighborSolution
22 currentViolation ⟵ neighborViolation
23 else
24 if random([0, 1]) < 𝑒

𝛥
𝑇 then

25 currentSolution ⟵ neighborSolution
26 currentViolation ⟵ neighborViolation
27 𝑇 ⟵ 𝑇 ⋅ 𝑓𝑡
28 end
29 end
30 if currentViolation > bestViolation then
31 bestSolution ⟵ currentSolution
32 bestViolation ⟵ currentViolation
33 lenPlateau ⟵ 0
34 end
35 end
36 end
37 return bestSolution, bestViolation

3.1.2. Outline of the overall algorithm

After detailing how to find violated inequality and equality con-
straints with simulated annealing in Algorithm 1, we are now able to
describe our main algorithm to derive a lower bound for the MCP.

Our algorithm starts by solving the basic SDP relaxation (4), pro-
viding a first lower bound 𝛼init and the associated solution 𝑋̄init. Some
constraints violated by the current solution 𝑋̄init, are then determined
with Algorithm 1. In particular, at each iteration, Algorithm 1 is run
2⋅numCuts times, and the numCuts most violated constraints are
dded. These violated constraints are then added to the SDP, which
s solved again to obtain a new improved lower bound 𝛼 and a new
urrent solution 𝑋̄. These steps are repeated for a fixed number of
terations maxIterCP, or until the improvement of the bound does
ot reach a certain threshold.

To reduce the computational effort, at each iteration the constraints
hat seem to be not necessary for obtaining the bound with the SDP are
emoved. To do so, the mean 𝛾 of all absolute values of all dual
mean

Computers and Operations Research 161 (2024) 106449E. Gaar et al.

m

w
t
c
t
(
i
t
a
c
a
a

3

l
o
t
b

i
a
(

𝑝

F
i
p
o
n
o
A
t
T

w
c
b
t
h
t
f
t
o
i
c
c

Algorithm 2: Cutting-plane algorithm to obtain a lower
bound for the MCP

Parameters: maxIterCP, improvementMin, numCuts,
minViolation

Input: adjacency matrix 𝐴, array of types of constraints
constraintsToTest

1 solve the SDP relaxation (4) to obtain 𝑋̄init and the lower
bound 𝛼init

2 𝑋̄ ⟵ 𝑋̄init
3 𝛼 ⟵ 𝛼init
4 iter ⟵ 0
5 improvement ⟵ +∞
6 addedCuts = ∅
7 while iter < maxIterCP and improvement >

improvementMin do
8 iter ⟵ iter + 1
9 update constraintsToTest
10 for iterTemp in {1,… , 2numCuts} do
11 (cutTemp,violationTemp) ⟵ Algorithm 1 with

input 𝑋̄, constraintsToTest
12 if violationTemp > minViolation then
13 add cutTemp to addedCuts
14 end
15 end
16 addedCuts ⟵ numCuts most violated cuts from

addedCuts
17 solve (4) with all inequalities from addedCuts to obtain

𝑋̄new, 𝛼new, and the dual values 𝛾 associated with each
added inequality from addedCuts

18 𝛾mean ⟵ mean of the absolute values of all dual values
𝛾

19 remove constraints with dual value |𝛾| < 0.01𝛾mean from
addedCuts

20 improvement ⟵ 𝛼new − 𝛼
21 𝑋̄ ⟵ 𝑋̄new
22 𝛼 ⟵ 𝛼new
23 end
24 return 𝛼, 𝑋̄

values 𝛾 associated with each added inequality is computed. The con-
straints that are associated with a dual value |𝛾| < 0.01𝛾mean are then re-

oved. The pseudocode of our algorithm can be found in Algorithm 2.

The update of constraintsToTest is done in the following
ay to improve the efficiency. Empirically, the constraints added in

he first two iterations are mostly 3-dicycle equations (6). This is
onsistent with the fact that they are the ones adding the most to
he structure of the problem. From the second or third iteration on
depending mostly on the size of the instances), the triangle inequal-
ties (7) represent the most part of the added cuts. Thus, in the first
wo iterations of our algorithm only violated 3-dicycle equations are
dded. Triangle inequalities are then added to our pool of potential
onstraints constraintsToTest for the third and fourth iterations,
nd all constraints are considered for the remaining iterations of the
lgorithm.

.2. Our new heuristic for computing an upper bound

We can utilize the SDP relaxation (4) of the MCP not only to derive
ower bounds as seen in Section 3.1, but also to obtain upper bounds
n the cutwidth. In particular, our aim is to derive a feasible solution of
he MCP, and thus an upper bound, from the SDP solution 𝑋̄ returned
y Algorithm 2.
6

For that purpose, the first column 𝑥 of 𝑋̄ is considered, without
ts first element (equal to 1 by definition of 𝑋̄). So 𝑥 = (𝑥𝑖𝑗)1≤𝑖<𝑗≤𝑛 is

vector of size
(𝑛
2

)

, with entries between 0 and 1. For any 𝑖 ∈ 𝑉 =
1, 2,… , 𝑛), we compute the relative position 𝑝𝑖 of vertex 𝑖 as

𝑖 =
∑

𝑗∈𝑉
𝑗>𝑖

(1 − 𝑥𝑖𝑗) +
∑

𝑗∈𝑉
𝑗<𝑖

𝑥𝑗𝑖.

or any vector 𝑥 ∈ 𝐿𝑂(𝑛) ∩ (0, 1)(
𝑛
2) encoding a linear ordering 𝜋, 𝑝𝑖

s equal to the number of vertices before the vertex 𝑖 in 𝜋, i.e., to the
osition of 𝑖 in the linear ordering. In the general case of a vector 𝑥
btained from the SDP relaxation (4) (with or without added cuts), and
ot necessarily feasible for the MCP, the 𝑝𝑖 are first sorted in ascending
rder: let (𝑖1,… , 𝑖𝑛) be an ordering of 𝑉 such that 𝑝𝑖1 ≤ 𝑝𝑖2 ≤ ⋯ ≤ 𝑝𝑖𝑛 .
linear ordering 𝜋 can then be retrieved by assigning to each vertex 𝑖

he position of 𝑝𝑖 in the sorted list, so 𝜋(𝑖1) = 1, 𝜋(𝑖2) = 2,… , 𝜋(𝑖𝑛) = 𝑛.
he pseudocode of this algorithm can be found in Algorithm 3.

This algorithm provides a feasible linear ordering for the MCP,
hich we obtained directly from a feasible SDP solution. Thus, the

utwidth of this ordering is an upper bound for the MCP. This upper
ound is then improved by running a simulated annealing heuristic,
hat uses the obtained feasible solution as starting solution. In this
euristic, random neighbors of the current feasible ordering are ob-
ained by swapping at random two vertices of the ordering, using the
unction random_neighbor_ordering(). This function takes as argument
he current feasible solution, as well as the list of already visited
rderings, to ensure that no ordering is considered more than once
n the algorithm. The cutwidth of an ordering in a given graph is
omputed via the function cutwidth(). The pseudocode of the heuristic
an be found in Algorithm 4.

Algorithm 3: Obtaining a linear ordering from a feasible SDP
solution

Input: 𝑉 = (1, 2,… , 𝑛), matrix 𝑋̄ returned by Algorithm 2
1 𝑥 = (𝑥𝑖𝑗)1≤𝑖<𝑗≤𝑛 ⟵ first row of 𝑋̄ without the first entry
2 foreach 𝑖 ∈ 𝑉 do
3 𝑝𝑖 ⟵

∑

𝑗∈𝑉
𝑗>𝑖

(1 − 𝑥𝑖𝑗) +
∑

𝑗∈𝑉
𝑗<𝑖

𝑥𝑗𝑖

4 end
5 (𝑖1,… , 𝑖𝑛) ⟵ ordering of 𝑉 such that 𝑝𝑖1 ≤ 𝑝𝑖2 ≤ … ≤ 𝑝𝑖𝑛
6 foreach 𝑘 ∈ 𝑉 do
7 𝜋(𝑖𝑘) ⟵ 𝑘
8 end
9 return 𝜋

4. Computational experiments

In this section we evaluate the quality of the bounds obtained by
our algorithms through numerical results. We compare the bounds to
those obtained by modeling the problem as MILP.

4.1. Computational setup

Our algorithm was implemented in Python, using the graph library
networkx. The SDP relaxations were solved using the (MOSEK ApS,
2018) Optimizer API version 10. We use CPLEX by Anon (2018)
version 22.1 to solve the MILP in order to compare bounds and com-
putation times of our approach to a MILP approach from the literature.
We ran the tests on an Intel Xeon W-2125 CPU @ 4.00 GHz with
4 Cores/8 vP with 256 GB RAM. The code and the instances are
available as ancillary files from the arXiv page of this paper: arXiv:
2301.03900.

For the experiments, the parameters introduced in Algorithms 1, 2
and 4 were set as follows: 𝑇 = 0.042, 𝑓 = 0.97, maxIterSep =

(𝑛),
init 𝑡 2

https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900
https://arxiv.org/abs/2301.03900

Computers and Operations Research 161 (2024) 106449E. Gaar et al.

o
a

o
a
o

s
t
a
b
e
c
n

e
(

m

4

l
a
c
i
g
e

g
d
o
{

v
j
a
w
a

4

4

e
a
t
c
a
6
m
m
t
f

a
t

Algorithm 4: Simulated annealing to improve the upper
bound for the MCP given by an initial linear ordering

Parameters: 𝑇 𝑈𝐵
init, 𝑓

𝑈𝐵
𝑡 , maxIterUB, maxLenPlateauUB

Input: graph 𝐺, linear ordering 𝜋
1 iter ⟵ 0
2 lenPlateau ⟵ 0
3 𝑇 ⟵ 𝑇 𝑈𝐵

init
4 currentOrdering ⟵ 𝜋
5 currentCutwidth ⟵ cutwidth(𝐺, currentOrdering)
6 bestOrdering ⟵ currentOrdering
7 bestCutwidth ⟵ currentCutwidth
8 visitedOrderings ⟵ [currentOrdering]
9 while lenPlateau < maxLenPlateauUB and iter <

maxIterUB do
10 iter ⟵ iter + 1
11 lenPlateau ⟵ lenPlateau + 1
12 neighborOrdering ⟵

random_neighbor_ordering(currentOrdering,
visitedOrderings)

13 append neighborOrdering to visitedOrderings
14 neighborCutwidth ⟵ cutwidth(𝐺, neighborOrdering)
15 𝛥 ⟵ neighborCutwidth − currentCutwidth
16 if 𝛥 < 0 then
17 currentOrdering ⟵ neighborOrdering
18 currentCutwidth ⟵ neighborCutwidth
19 else
20 if random([0, 1]) < 𝑒−

𝛥
𝑇 then

21 currentOrdering ⟵ neighborOrdering
22 currentCutwidth ⟵ neighborCutwidth
23 𝑇 ⟵ 𝑇 ⋅ 𝑓𝑈𝐵

𝑡
24 end
25 end
26 if currentCutwidth < bestCutwidth then
27 bestOrdering ⟵ currentOrdering
28 bestCutwidth ⟵ currentCutwidth
29 lenPlateau ⟵ 0
30 end
31 end
32 return bestOrdering, bestCutwidth

maxLenPlateau = ⌊

𝑛
2 ⌋, maxIterCP = 7, numCuts = 2𝑛2, im-

provementMin =10−2, and minViolation = 10−4, 𝑇 𝑈𝐵
init = 0.25,

𝑓𝑈𝐵
𝑡 = 0.99, maxIterUB =

(𝑛
2

)

, maxLenPlateauUB = 5𝑛.

4.2. Instances

There are several sets of instances commonly used in the literature
as benchmark for linear ordering problems. However, almost all of
these benchmark instances are very sparse. This is due to the fact
that so far they have been tested mainly on MILP-based approaches
and these approaches are applicable on sparse instances only. For
evaluating our bounds on instances of varying size and density, we
generate new instances, namely the Erdős–Rényi graphs and random
geometric graphs, as described in Section 4.2.2.

4.2.1. Benchmark instances in the literature
On these benchmarks instances, MILP-based methods are, due to

the sparsity of the graphs, typically performing much better than SDP-
based methods, hence we will refrain from reporting detailed results.
However, for completeness we give here the specifics and sources of
these instances.
7

r

The Small dataset, introduced for the Bandwidth Minimization Prob-
lem by Martí et al. (2008) and already used several times for evaluating
algorithms for the CMP, consists in 84 graphs of order between 16 and
24, and densities ranging from 0.07 to 0.21.

The Rome graphs dataset, introduced in Di et al. (1997), is formed
f 11 534 graphs whose number of vertices ranges between 10 and 100,
nd densities in average below 0.1, and rarely above 0.2.

The grid dataset was proposed by Raspaud et al. (1995) and consists
f 81 rectangular grids of sizes width × height where width and height
re chosen from the set {3, 6, 9, 12, 15, 18, 21, 24, 27}. The optimal values
f the MCP for these instances are known (see Raspaud et al., 2009).

The Harwell–Boeing dataset (available at Boisvert et al., 1997) is a
et of (mostly) sparse matrices obtained from problems in linear sys-
ems, least squares, and eigenvalue calculations from diverse scientific
nd engineering disciplines. Graphs are obtained from these matrices
y considering an edge for every nonzero element of the matrix. For
xperiments on linear ordering problems, a subset of 87 matrices is
ommonly used, with numbers of vertices ranging from 30 to 700, and
umbers of edges from 46 to 41 686.

The Small, Harwell–Boeing and grid datasets can be found at Pantrigo
t al. (2010), and the Rome graphs dataset can be accessed at Coudert
2016b).

Almost all these instances are, as stated, very sparse, with densities
ost of the time much below 20% and very often even below 10%.

.2.2. Erdős-Rényi graphs and random geometric graphs
It is expected that the MCP on denser graphs is much more chal-

enging to be solved by MILP-based approaches, whereas our SDP-based
pproach is little to no impacted by density. As such, its relevance for
omputing lower bounds for the MCP becomes much greater for denser
nstances, on which existing algorithms struggle. To do experiments on
raphs with various densities, we generated instances according to well
stablished models: Erdős–Rényi graphs and random geometric graphs.

An Erdős–Rényi graph 𝐺(𝑛, 𝑝) is a random graph with 𝑛 vertices
enerated by including each possible edge with probability 𝑝 (in-
ependent from the inclusion of other edges). Our set is composed
f 30 Erdős–Rényi graphs 𝐺(𝑛, 𝑝) with 𝑛 ∈ {20, 30, 40, 50} and 𝑝 ∈
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

A random geometric graph 𝑈 (𝑛, 𝑑) is generated by first placing 𝑛
ertices uniformly at random in the unit cube. Two vertices are then
oined by an edge if and only if the Euclidean distance between them is
t most 𝑑, see for example (Johnson et al., 1989). Our set created this
ay is composed of 45 graphs with 𝑛 ∈ {20, 30, 40, 50}, the distances 𝑑
re chosen from the set {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

.3. Numerical results

.3.1. Numerical results on the benchmark instances in the literature
As already mentioned, on the very sparse graphs used in the lit-

rature so far, our algorithm is not competitive with the MILP-based
pproaches. For example, the algorithm of Coudert (2016a) manages
o solve all instances of the Small dataset to optimality with an average
omputational time of 3.2 s. The results provided by our algorithm have
final gap between upper and lower bound ranging between 20% and
3%, with a mean of 44%, obtained with an average time sightly over a
inute. This looks similar for the other instances: we obtain bounds of
oderate quality and in reasonable time but for these sparse instances,

he MILP-based approaches perform much better. We therefore refrain
rom listing the details in long tables.

Moreover, most instances from the Harwell–Boeing and grid datasets,
s well as a big part of those from the Rome graphs dataset are too big
o be solved by the MILP-based approaches or using our algorithm in

easonable time.

Computers and Operations Research 161 (2024) 106449E. Gaar et al.
Table 1
Bounds and times for the MCP using the SDP relaxation on Erdős–Rényi graphs.
𝑛 𝑝 bounds time #cuts

LB LB gap LB LB LB
init final UB final total SDP sep. UB

20 0.3 10.99 14.27 26 0.42 62.62 23.37 38.28 0.36 3697
20 0.4 17.05 21.54 36 0.39 61.83 22.61 38.28 0.32 3826
20 0.5 17.14 21.92 41 0.46 63.94 23.47 39.40 0.44 3919
20 0.6 28.89 36.40 55 0.33 63.38 23.23 39.02 0.51 3832
20 0.7 30.59 38.65 57 0.32 63.59 23.37 39.20 0.39 3806
20 0.8 37.12 46.59 68 0.31 62.43 21.74 39.45 0.62 3789
20 0.9 46.87 59.47 88 0.32 59.05 19.58 38.37 0.49 3267

30 0.3 23.65 30.69 48 0.35 365.83 206.53 153.80 2.21 9364
30 0.4 32.20 41.79 76 0.45 370.88 212.26 153.67 1.67 9244
30 0.5 47.39 60.55 95 0.36 376.59 215.95 155.00 2.33 9687
30 0.6 55.72 70.84 101 0.30 400.35 235.57 158.45 3.01 10149
30 0.7 71.93 91.86 143 0.36 379.24 220.62 152.50 2.65 9160
30 0.8 86.47 110.58 168 0.34 401.19 237.39 156.08 4.33 8949
30 0.9 93.63 119.93 181 0.34 392.83 233.53 153.09 2.90 9106

40 0.3 46.15 60.12 92 0.34 1505.80 1092.75 396.12 4.97 17300
40 0.4 66.42 85.52 126 0.32 1597.97 1169.59 407.50 8.91 18712
40 0.5 77.24 99.75 155 0.35 1495.82 1091.20 387.26 5.41 16655
40 0.6 101.62 130.84 195 0.33 1593.94 1176.42 399.59 5.87 17849
40 0.7 120.73 155.30 235 0.34 1691.67 1271.61 397.09 10.94 17663
40 0.8 146.23 187.95 281 0.33 1723.79 1299.59 400.07 12.10 18293
40 0.9 176.23 227.74 346 0.34 1703.14 1291.81 391.63 7.64 16651

50 0.3 70.48 91.92 159 0.42 5310.93 4359.63 901.09 16.17 30416
50 0.4 102.90 133.61 211 0.36 5404.70 4436.08 905.93 28.63 30238
50 0.5 140.54 182.44 286 0.36 5313.71 4396.23 863.22 20.16 28586
50 0.6 170.81 221.14 338 0.34 5511.41 4594.26 858.48 24.56 28417
50 0.7 196.65 253.98 382 0.34 5552.34 4610.50 890.25 17.42 30954
50 0.8 241.24 312.20 468 0.33 6303.39 5365.25 881.05 22.80 29710
50 0.9 270.41 350.87 525 0.33 6033.16 5106.08 874.43 18.43 29418
Fig. 1. Evolution of the bound over the iterations of Algorithm 2, Erdős–Rényi graph
with 𝑛 = 20 and 𝑝 = 0.8, 7 iterations.

4.3.2. Numerical results on Erdős-Rényi graphs and random geometric
graphs

In this section we provide a detailed evaluation of the numerical
experiments on the graphs with varying density described in Sec-
tion 4.2.2.

Fig. 1 shows the evolution of the bound computed by our algorithm
over seven iterations considering different sets of constraints on the
example of an Erdős–Rényi graph on 𝑛 = 20 vertices. Note that in the
initial iteration no constraints are added and in the first iteration always
only the 3-dicycle equations (6) are considered. The circles in Fig. 1
show that the bound does not move anymore from iteration three on
if only considering constraints (6). Adding the triangle inequalities (7)
8

Table 2
Bounds and times for the MCP using the MILP formulation on Erdős–Rényi graphs.
𝑛 𝑝 LB UB gap time

20 0.3 20.00 20 0.00 3.45
20 0.4 32.00 32 0.00 118.43
20 0.5 31.00 31 0.00 11.81
20 0.6 52.00 52 0.00 25.58
20 0.7 56.00 56 0.00 33.04
20 0.8 68.00 68 0.00 271.60
20 0.9 88.00 88 0.00 1206.53

30 0.3 44.00 44 0.00 191.15
30 0.4 60.00 60 0.00 203.37
30 0.5 87.00 87 0.00 1165.32
30 0.6 101.00 101 0.00 1326.97
30 0.7 123.33 136 0.09 7200.00
30 0.8 122.53 163 0.25 7200.00
30 0.9 134.75 176 0.23 7200.00

40 0.3 88.00 89 0.01 7200.00
40 0.4 115.37 121 0.05 7200.00
40 0.5 105.67 150 0.30 7200.00
40 0.6 117.00 193 0.39 7200.00
40 0.7 127.00 232 0.45 7200.00
40 0.8 143.80 283 0.49 7200.00
40 0.9 150.13 343 0.56 7200.00

50 0.3 91.44 142 0.36 7200.00
50 0.4 105.00 208 0.50 7200.00
50 0.5 106.09 283 0.63 7200.00
50 0.6 113.00 337 0.66 7200.00
50 0.7 123.93 388 0.68 7200.00
50 0.8 123.00 477 0.74 7200.00
50 0.9 128.42 536 0.76 7200.00

to the pool of possible constraints leads to a remarkable increase of
the bound, cf. the triangles in the plot. And offering additionally the
inequalities obtained from lifting the linear ordering polytope (14) and

Computers and Operations Research 161 (2024) 106449E. Gaar et al.
Table 3
Bounds and times for the MCP using the SDP relaxation on random geometric graphs.
𝑛 𝑑 density bounds time #cuts

LB LB gap LB LB LB
init final UB final total SDP sep. UB

20 0.3 0.18 4.66 5.24 9 0.33 42.55 7.02 34.74 0.26 2592
20 0.4 0.28 7.16 8.28 13 0.31 42.69 8.68 33.19 0.28 2439
20 0.5 0.42 13.03 16.50 24 0.29 61.18 20.23 40.03 0.32 3576
20 0.6 0.44 14.21 16.56 24 0.29 57.48 16.69 39.87 0.33 2989
20 0.7 0.72 33.23 39.83 67 0.40 58.37 17.32 39.80 0.64 3053
20 0.8 0.91 45.49 56.75 83 0.31 62.43 19.63 41.73 0.43 2955
20 0.9 0.83 39.93 48.57 69 0.29 59.91 19.82 39.07 0.41 2631

30 0.3 0.19 9.17 10.46 19 0.42 293.96 125.34 163.40 2.08 6305
30 0.4 0.35 26.04 32.72 65 0.49 337.93 167.22 165.32 2.14 8699
30 0.5 0.48 42.01 51.65 79 0.34 346.90 176.51 165.47 1.67 8342
30 0.6 0.75 76.20 92.20 136 0.32 373.08 198.05 167.51 4.28 7597
30 0.7 0.70 67.36 84.98 121 0.30 395.81 223.55 165.97 2.98 9897
30 0.8 0.94 105.86 134.97 200 0.32 391.51 219.12 166.81 2.27 8296
30 0.9 0.96 109.07 139.47 207 0.32 381.37 206.85 168.38 2.88 7682

40 0.3 0.21 18.42 22.48 34 0.32 1253.51 770.35 463.22 8.24 12957
40 0.4 0.31 30.87 39.98 61 0.34 1389.39 895.44 477.01 5.13 15569
40 0.5 0.44 55.25 69.41 149 0.53 1353.95 875.37 456.78 9.73 15999
40 0.6 0.55 80.26 97.37 135 0.27 1416.42 928.89 468.95 6.78 14286
40 0.7 0.74 131.38 165.83 234 0.29 1650.37 1178.59 453.00 6.85 17886
40 0.8 0.84 158.23 201.33 299 0.32 1669.65 1197.72 448.71 11.22 18253
40 0.9 0.95 190.22 245.12 363 0.32 1758.20 1290.30 448.63 7.24 17238

50 0.3 0.26 40.58 48.00 88 0.44 3534.43 2325.10 1157.76 18.29 18417
50 0.4 0.38 76.75 96.25 139 0.30 4139.52 2889.61 1197.40 18.88 22951
50 0.5 0.47 98.82 127.56 177 0.28 4433.95 3256.09 1128.30 15.79 26260
50 0.6 0.61 149.46 189.41 315 0.40 4604.08 3441.39 1109.84 19.08 27503
50 0.7 0.76 214.97 272.53 397 0.31 5064.41 3916.95 1089.12 24.48 28401
50 0.8 0.79 224.27 283.43 427 0.33 5512.39 4352.64 1086.82 38.97 29912
50 0.9 0.93 286.08 368.44 550 0.33 6983.07 5810.03 1118.61 20.22 31414
S

Table 4
Bounds and times for the MCP using the MILP formulation on random geometric
graphs.
𝑛 𝑑 LB UB gap time

20 0.3 7.00 7 0.00 1.51
20 0.4 12.00 12 0.00 26.88
20 0.5 22.00 22 0.00 6.65
20 0.6 21.00 21 0.00 3.86
20 0.7 55.00 55 0.00 33.99
20 0.8 83.00 83 0.00 284.89
20 0.9 69.00 69 0.00 31.36

30 0.3 13.00 13 0.00 23.97
30 0.4 45.00 45 0.00 509.40
30 0.5 60.31 72 0.16 7200.00
30 0.6 126.00 126 0.00 1236.75
30 0.7 119.00 119 0.00 2401.15
30 0.8 107.80 200 0.46 7200.00
30 0.9 120.40 207 0.42 7200.00

40 0.3 31.00 31 0.00 1130.25
40 0.4 50.00 50 0.00 847.54
40 0.5 92.00 92 0.00 1241.06
40 0.6 119.31 126 0.05 7200.00
40 0.7 154.66 238 0.35 7200.00
40 0.8 166.00 294 0.44 7200.00
40 0.9 130.35 366 0.64 7200.00

50 0.3 57.64 63 0.09 7200.00
50 0.4 115.50 131 0.12 7200.00
50 0.5 146.40 175 0.16 7200.00
50 0.6 162.33 266 0.39 7200.00
50 0.7 146.67 398 0.63 7200.00
50 0.8 112.01 416 0.73 7200.00
50 0.9 115.90 556 0.79 7200.00
9

w

Table 5
Comparison of the SDP bounds with the optimal values for the MCP on Erdős–Rényi
graphs.
𝑛 𝑝 LB UB opt opt−LB

opt

20 0.3 14.27 26 20 0.25
20 0.4 21.54 36 32 0.31
20 0.5 21.92 41 31 0.29
20 0.6 36.40 55 52 0.29
20 0.7 38.65 57 56 0.30
20 0.8 46.59 68 68 0.31
20 0.9 59.47 88 88 0.32

30 0.3 30.69 48 44 0.30
30 0.4 41.79 76 60 0.30
30 0.5 60.55 95 87 0.30
30 0.6 70.84 101 101 0.30
30 0.7 91.86 143 135 0.32

40 0.3 60.12 92 89 0.31
40 0.4 85.52 126 121 0.29
40 0.5 99.75 155 147 0.32

the inequalities from the squared linear ordering polytope of order
four (10) further pushes the bound above with neglectable extra cost,
cf. the stars in Fig. 1. The plots are similar for all the instances we
consider. Hence, these experiments confirm our choice of using all the
constraints (6), (7), (10) and (14) as potential strengthenings within
our algorithm.

In Tables 1–4 we give the numerical results for the above mentioned
instances, comparing our SDP bounds with those obtained when using
an MILP solver. The column label 𝑛 refers to the number of vertices
of the graph, 𝑝 and 𝑑 relates to the edges of the graph as specified in
ection 4.2 above.

In Tables 1 and 3 columns ‘‘LB init’’ list the lower bounds obtained
hen solving the initial basic SDP relaxation without any cutting

Computers and Operations Research 161 (2024) 106449E. Gaar et al.
Table 6
Comparison of the SDP bounds with the optimal values for the MCP on geometric
graphs.
𝑛 𝑑 density LB UB opt opt−LB

opt

20 0.3 0.18 5.24 9 7 0.14
20 0.4 0.28 8.28 13 12 0.25
20 0.5 0.42 16.50 24 22 0.23
20 0.6 0.44 16.56 24 21 0.19
20 0.7 0.72 39.83 67 55 0.27
20 0.8 0.91 56.75 83 83 0.31
20 0.9 0.83 48.57 69 69 0.29

30 0.3 0.19 10.46 19 13 0.15
30 0.4 0.35 32.72 65 45 0.27
30 0.5 0.48 51.65 79 72 0.28
30 0.6 0.75 92.20 136 126 0.26
30 0.7 0.70 84.98 121 119 0.29

40 0.3 0.21 22.48 34 31 0.26
40 0.4 0.31 39.98 61 50 0.20
40 0.5 0.44 69.41 149 92 0.24

planes, while in column ‘‘LB final’’ the lower bound we finally obtained
is displayed. ‘‘UB’’ is the upper bound obtained through our heuristic
and ‘‘gap final’’ is computed as (UB − LB)∕UB, where LB is the final
lower bound. In the column with the ‘‘time’’ label, we report the
total time for obtaining our lower bound, and how this total time is
split into solving the SDPs and separating the violated inequality and
equality constraints. Moreover, the time for computing the upper bound
is given. The last column of these two tables indicate the number of
cutting planes added when the algorithm stops. Tables 2 and 4 give
the details when using CPLEX to obtain an (approximate) solution.

In the tables we see that adding the valid inequalities and equalities
significantly improves the initial bound, in Table 1 the value of the
bound increases by roughly 30%, for the random geometric graphs
(Table 3) it is around 20 to 30%. Also the upper bounds we obtained
are of good quality, overall the gap between our final lower bounds and
the upper bounds is from 30% to 46% for the Erdős–Rényi graphs and
between 27% and 53% for the random geometric graphs.

The time spent to compute the lower bounds ranges from a few
seconds for the instances with 20 vertices up to 115 min for instances
with 50 vertices. For the small instances, solving the SDPs can be done
rather quickly and therefore, the time spent in the separation takes
the bigger ratio. For larger instances, however, separating violated
inequalities and equalities typically uses less than 20% of the overall
time. Computing the upper bounds is done within less than 40 s.

We now turn our attention to comparing our results with using the
MILP solver CPLEX, see Tables 2 and 4. As all our SDP based results are
obtained within 2 h, we set this as time limit for CPLEX. On small and
sparse instances CPLEX performs very well. However, for the Erdős–
Rényi graph with 𝑛 = 40 and 70% density we are left with a gap of
45% after two hours, compared to the gap of 34% that we obtain with
our algorithm in less than 30 min. The random geometric graphs with
𝑑 equal to 0.3 or 0.4 can be solved for graphs with up to 40 vertices,
for dense instances with at least 40 vertices a gap of more than 35%
remains after two hours run time. In general, the density has a huge
impact on the runtime for the MILP solver. For example, it increases
from 3.45 s for 𝑝 = 0.3 to 1206.53 s for 𝑝 = 0.9 for Erdős–Rényi
graphs on 20 vertices. Our SDP based bounds do not show significant
differences for sparse and dense instances for the Erdős–Rényi graphs,
and only a minor increase of the runtime for the random geometric
graphs.

To get a better understanding of the quality of our lower and upper
bounds, we computed the optimal solutions for some instances by
running the MILP-model up to several days of CPU-time. The results
are displayed in Tables 5 and 6, in which the columns labeled 𝑛, 𝑝,
𝑑 and ‘‘density’’ relate to the same instance parameters as previously
10
specified. Columns ‘‘LB’’ and ‘‘UB’’ list the lower and upper bounds,
respectively, obtained by our algorithm. In column ‘‘opt’’ the optimal
value of the CMP obtained with the MILP-model is given, and the last
column shows the deviation of our lower bound from the optimum,
i.e., the value (opt− LB)∕opt. These tables show that, for most of these
instances, our upper bounds are rather close to the optimal value, and
consequently that most of the gap comes from the lower bound. Indeed,
the experiments show that our lower bound is always approximately
30% away from the optimum for the Erdős–Rényi graphs, and most of
the time between 20% and 30% for the geometric graphs. As this behav-
ior seems consistent, we can presume that it stays similar for the bigger
and denser instances, for which we cannot compute the optimum in
reasonable time. Another observation is that for the smallest instances
the quality of the upper bound increases with the density of the graph,
but it is unclear whether this is also the case for bigger instances.

Overall, the MILP approach is clearly outperformed by our method
for dense graphs but also for graphs having 40 or 50 vertices, indepen-
dent of their density.

5. Conclusion and outlook

We presented an SDP based approach to compute lower and upper
bounds on the cutwidth. In order to obtain tight bounds, we derive
several classes of valid inequalities and equalities and a heuristic for
separating those inequalities and equalities and add them iteratively
in a cutting-plane fashion to the SDP relaxation. The solution obtained
from the SDP relaxation also serves to compute an upper bound on the
cutwidth. Our experiments show that we obtain high quality bounds in
reasonable time. In particular, our method is by far not as sensitive to
varying densities as MILP approaches.

As the number of vertices gets larger, solving the SDPs becomes
the time consuming part and thus the bottleneck. This is due to the
increasing size of the matrix, but even more due to the huge number
of constraints. Therefore, in our future research we will investigate
using alternating direction methods of multipliers (ADMM) instead
of an interior-point method, as ADMM proved to be successful in
solving SDPs with many constraints, see for example de Meijer et al.
(2023). Also including our bounds in a branch-and-bound framework
and thereby having an exact solution method is a promising future
research direction.

In our experiments we observe that we were not able to push the
gap significantly below 0.30. We want to further investigate this to find
theoretical evidence of this behavior. And finally, we want to apply
our approach to computing related graph parameters, i.e., those that
can also be formulated in terms of orderings of the vertices, like the
treewidth or the pathwidth of a graph.

CRediT authorship contribution statement

Elisabeth Gaar: Conceptualization, Methodology, Software, Formal
analysis, Writing – original draft, Writing – review & editing. Diane
Puges: Methodology, Software, Formal Analysis, Data Curation, Writ-
ing – original draft, Writing – review & editing, Visualization. Angelika
Wiegele: Conceptualization, Methodology, Formal analysis, Writing –
original draft, Writing – review & editing, Funding acquisition.

Data availability

The code and the instances are available as ancillary files from the
arXiv page at https://arxiv.org/abs/2301.03900.

References

Adams, Elspeth, Anjos, Miguel F., Rendl, Franz, Wiegele, Angelika, 2015. A hierarchy
of subgraph projection-based semidefinite relaxations for some NP-hard graph

optimization problems. INFOR. Inf. Syst. Oper. Res. 53 (1), 40–47.

https://arxiv.org/abs/2301.03900
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb1
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb1
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb1
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb1
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb1

Computers and Operations Research 161 (2024) 106449E. Gaar et al.
Adams, Warren P., Sherali, Hanif D., 1986. A tight linearization and an algorithm for
zero-one quadratic programming problems. Manage. Sci. 32 (10), 1274–1290.

Anon, 2018. CPLEX Optimization Studio, 22.1.0 IBM ILOG, Accessed 04 April 2022.
Bodlaender, Hans L., 1986. Classes of Graphs with Bounded Tree-Width. Technical

Report RUU-CS-86-22, Utrecht University.
Bodlaender, Hans L., Fomin, Fedor V., Koster, Arie M.C.A., Kratsch, Dieter, Thi-

likos, Dimitrios M., 2012. A note on exact algorithms for vertex ordering problems
on graphs. Theory Comput. Syst. 50 (3), 420–432.

Boisvert, Ronald F., Pozo, Roldan, Remington, Karin, Barrett, Richard F., Don-
garra, Jack J., 1997. Matrix market: A web resource for test matrix collections.
Qual. Numer. Software: Assess. Enhanc. 125–137.

Buchheim, Christoph, Wiegele, Angelika, Zheng, Lanbo, 2010. Exact algorithms for the
quadratic linear ordering problem. INFORMS J. Comput. 22 (1), 168–177.

Casel, Katrin, Day, Joel D., Fleischmann, Pamela, Kociumaka, Tomasz, Manea, Florin,
Schmid, Markus L., 2019. Graph and string parameters: connections between
pathwidth, cutwidth and the locality number. In: 46th International Colloquium
on Automata, Languages, and Programming. In: LIPIcs. Leibniz Int. Proc. Inform.,
vol. 132, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 109, 16.

Christof, Thomas, Löbel, Andreas, 1997. PORTA: Polyhedron representation transforma-
tion algorithm. http://comopt.ifi.uni-heidelberg.de/software/PORTA/. (Accessed 27
February 2018).

Chung, Fan R.K., Seymour, Paul D., 1989. Graphs with small bandwidth and cutwidth.
Discrete Math. 75 (1–3), 113–119.

Coudert, David, 2016a. A Note on Integer Linear Programming Formulations for Linear
Ordering Problems on Graphs (Ph.D. thesis). Inria; I3S; Universite Nice Sophia
Antipolis; CNRS.

Coudert, David, 2016b. Linear ordering problems on graphs. https://grafo.etsii.urjc.
es/optsicom/cutwidth.htmlhttp://www-sop.inria.fr/members/David.Coudert/code/
graph-linear-ordering.shtml. (Accessed 01 September 2021).

de Meijer, Frank, Sotirov, Renata, Wiegele, Angelika, Zhao, Shudian, 2023. Partitioning
through projections: Strong SDP bounds for large graph partition problems.
Comput. Oper. Res. 151, 106088.

Di, Giuseppe, Garg, Ashim, Liotta, Giuseppe, Tamassia, Roberto, Tassinari, Emanuele,
Vargiu, Francesco, 1997. An experimental comparison of four graph drawing
algorithms. Comput. Geom. 7 (5–6), 303–325.

Díaz, Josep, Petit, Jordi, Serna, Maria, 2002. A survey of graph layout problems. ACM
Comput. Surv. 34 (3), 313–356.

Fischer, Anja, Fischer, Frank, Hungerländer, Philipp, 2019. New exact approaches to
row layout problems. Math. Program. Comput. 11 (4), 703–754.

Gaar, Elisabeth, 2020. On different versions of the exact subgraph hierarchy for the
stable set problem. arXiv e-prints, https://arxiv.org/abs/2003.13605.

Gaar, Elisabeth, Rendl, Franz, 2019. A bundle approach for SDPs with exact subgraph
constraints. In: Lodi, Andrea, Nagarajan, Viswanath (Eds.), Integer Programming
and Combinatorial Optimization. Springer, ISBN: 978-3-030-17953-3, pp. 205–218.

Gaar, Elisabeth, Rendl, Franz, 2020. A computational study of exact subgraph based
SDP bounds for max-cut, stable set and coloring. Math. Program. 183 (1-2, Ser. B),
283–308.

Gaar, Elisabeth, Siebenhofer, Melanie, Wiegele, Angelika, 2022. An SDP-based approach
for computing the stability number of a graph. Math. Methods Oper. Res. 95 (1),
141–161.

Giannopoulou, Archontia C., Pilipczuk, Michał, Raymond, Jean-Florent, Thilikos, Dim-
itrios M., Wrochna, Marcin, 2019. Cutwidth: Obstructions and algorithmic aspects.
Algorithmica 81 (2), 557–588.
11
Gruber, Gerald, Rendl, Franz, 2003. Computational experience with stable set
relaxations. SIAM J. Optim. 13 (4), 1014–1028.

Heggernes, Pinar, van ’t Hof, Pim, Lokshtanov, Daniel, Nederlof, Jesper, 2012. Comput-
ing the cutwidth of bipartite permutation graphs in linear time. SIAM J. Discrete
Math. 26 (3), 1008–1021.

Heggernes, Pinar, Lokshtanov, Daniel, Mihai, Rodica, Papadopoulos, Charis, 2011.
Cutwidth of split graphs and threshold graphs. SIAM J. Discrete Math. 25 (3),
1418–1437.

Hungerländer, Philipp, Rendl, Franz, 2013. Semidefinite relaxations of ordering
problems. Math. Program. 140 (1, Ser. B), 77–97.

Johnson, David S., Aragon, Cecilia R., McGeoch, Lyle A., Schevon, Catherine, 1989.
Optimization by simulated annealing: An experimental evaluation; Part I, graph
partitioning. Oper. Res. 37 (6), 865–892.

Kloeckner, Benoît, 2009. Cutwidth and degeneracy of graphs. CoRR abs/0907.5138.
Korach, Ephraim, Solel, Nir, 1993. Tree-width, path-width, and cutwidth. Discrete Appl.

Math. 43 (1), 97–101.
López-Locés, Mario C., Castillo-García, Norberto, Huacuja, Héctor J. Fraire, Bou-

vry, Pascal, Pecero, Johnatan E., Rangel, Rodolfo A. Pazos, Barbosa, Juan J.G.,
Valdez, Fevrier, 2014. A new integer linear programming model for the cutwidth
minimization problem of a connected undirected graph. In: Recent Advances on
Hybrid Approaches for Designing Intelligent Systems. Springer, pp. 509–517.

Lovász, László, Schrijver, Alexander, 1991. Cones of matrices and set-functions and 0-1
optimization. SIAM J. Optim. 1 (2), 166–190.

Luttamaguzi, Jamiru, Pelsmajer, Michael, Shen, Zhizhang, Yang, Boting, 2005. Integer
programming solutions for several optimization problems in graph theory. In: 20th
International Conference on Computers and their Applications. CATA 2005.

Martí, Rafael, Campos, Vicente, Piñana, Estefanía, 2008. A branch and bound algorithm
for the matrix bandwidth minimization. European J. Oper. Res. 186 (2), 513–528.

Martí, Rafael, Pantrigo, Juan J., Duarte, Abraham, Pardo, Eduardo G., 2013. Branch
and bound for the cutwidth minimization problem. Comput. Oper. Res. 40 (1),
137–149.

MOSEK ApS, 2018. MOSEK Optimization API for Python. Version 10.0. https://docs.
mosek.com/latest/pythonapi/index.html. (Accessed 08 August 2022).

Pantrigo, Juan J., Martí, Rafael, Duarte, Abraham, Pardo, Eduardo G, 2010.
Cutwidth minimization problem, Optsicom project. https://grafo.etsii.urjc.es/
optsicom/cutwidth.html. (Accessed 01 September 2021).

Raspaud, André, Schröder, Heiko, Sỳkora, Ondrej, Torok, Lubomir, Vrt’o, Imrich, 2009.
Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Math.
309 (11), 3541–3552.

Raspaud, André, Sýkora, Ondrej, Vrťo, Imrich, 1995. Cutwidth of the de Bruijn graph.
RAIRO Inf. Théor. Appl. Theor. Inform. Appl. 29 (6), 509–514.

Rendl, Franz, Sotirov, Renata, Truden, Christian, 2021. Lower bounds for the bandwidth
problem. Comput. Oper. Res. 135, 105422.

Santos, Vinícius Gandra Martins, de Carvalho, Marco Antonio Moreira, 2021. Tai-
lored heuristics in adaptive large neighborhood search applied to the cutwidth
minimization problem. European J. Oper. Res. 289 (3), 1056–1066.

Schwiddessen, Jan, 2022. A semidefinite approach for the single row facility layout
problem. In: Trautmann, Norbert, Gnägi, Mario (Eds.), Operations Research Pro-
ceedings 2021. Springer International Publishing, ISBN: 978-3-031-08623-6, pp.
45–51.

Yannakakis, Mihalis, 1985. A polynomial algorithm for the min-cut linear arrangement
of trees. J. ACM 32 (4), 950–988.

http://refhub.elsevier.com/S0305-0548(23)00313-1/sb2
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb2
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb2
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb3
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb4
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb4
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb4
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb5
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb5
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb5
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb5
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb5
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb6
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb6
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb6
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb6
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb6
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb7
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb7
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb7
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb8
http://comopt.ifi.uni-heidelberg.de/software/PORTA/
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb10
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb10
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb10
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb11
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb11
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb11
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb11
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb11
https://grafo.etsii.urjc.es/optsicom/cutwidth.htmlhttp://www-sop.inria.fr/members/David.Coudert/code/graph-linear-ordering.shtml
https://grafo.etsii.urjc.es/optsicom/cutwidth.htmlhttp://www-sop.inria.fr/members/David.Coudert/code/graph-linear-ordering.shtml
https://grafo.etsii.urjc.es/optsicom/cutwidth.htmlhttp://www-sop.inria.fr/members/David.Coudert/code/graph-linear-ordering.shtml
https://grafo.etsii.urjc.es/optsicom/cutwidth.htmlhttp://www-sop.inria.fr/members/David.Coudert/code/graph-linear-ordering.shtml
https://grafo.etsii.urjc.es/optsicom/cutwidth.htmlhttp://www-sop.inria.fr/members/David.Coudert/code/graph-linear-ordering.shtml
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb13
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb13
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb13
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb13
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb13
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb14
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb14
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb14
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb14
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb14
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb15
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb15
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb15
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb16
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb16
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb16
https://arxiv.org/abs/2003.13605
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb18
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb18
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb18
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb18
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb18
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb19
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb19
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb19
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb19
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb19
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb20
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb20
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb20
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb20
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb20
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb21
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb21
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb21
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb21
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb21
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb22
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb22
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb22
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb23
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb23
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb23
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb23
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb23
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb24
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb24
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb24
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb24
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb24
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb25
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb25
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb25
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb26
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb26
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb26
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb26
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb26
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb27
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb28
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb28
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb28
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb29
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb30
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb30
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb30
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb31
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb31
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb31
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb31
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb31
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb32
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb32
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb32
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb33
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb33
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb33
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb33
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb33
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
https://grafo.etsii.urjc.es/optsicom/cutwidth.html
https://grafo.etsii.urjc.es/optsicom/cutwidth.html
https://grafo.etsii.urjc.es/optsicom/cutwidth.html
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb36
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb36
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb36
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb36
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb36
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb37
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb37
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb37
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb38
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb38
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb38
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb39
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb39
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb39
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb39
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb39
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb40
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb41
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb41
http://refhub.elsevier.com/S0305-0548(23)00313-1/sb41

	Strong SDP based bounds on the cutwidth of a graph
	Introduction
	New bounds for the minimum cutwidth problem
	Our new basic SDP relaxation
	Strengthening the SDP relaxation
	3-dicycle equations
	Triangle inequalities
	Inequalities obtained from the squared linear ordering polytope
	Liftings of inequalities from the linear ordering polytope

	Algorithms
	Algorithm for computing our new lower bound
	Separating constraints
	Outline of the overall algorithm

	Our new heuristic for computing an upper bound

	Computational experiments
	Computational setup
	Instances
	Benchmark instances in the literature
	Erdos-Renyi graphs and random geometric graphs

	Numerical results
	Numerical results on the benchmark instances in the literature
	Numerical results on Erdos-Renyi graphs and random geometric graphs

	Conclusion and outlook
	CRediT authorship contribution statement
	Data availability
	References

