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Abstract

We consider the homogenisation of the quasi-stationary Stokes equations in a porous medium that evolves 
over time. The evolution is a priori given. At the interface of the pore space and the solid part, we pre-
scribe an inhomogeneous Dirichlet boundary condition, which enables a no-slip boundary condition at the 
evolving boundary. We pass rigorously to the homogenisation limit employing the two-scale transforma-
tion method. In order to derive uniform a priori estimates, we show a Korn-type inequality for the two-scale 
transformation method. The homogenisation result is a new version of Darcy’s law. It features a time- and 
space-dependent permeability tensor, which accounts for the local pore structure, and a macroscopic inho-
mogeneous divergence condition, which induces a new source term for the pressure. In the case of a no-slip 
boundary condition at the interface, this source term relates to the change of the local pore volume.
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1. Introduction

Effective fluid flow in completely saturated porous media can be described by Darcy’s law. 
Based on results of experiments, it was formulated by Henry Darcy in [1]. This empirical law can 
be justified by means of homogenisation theory on the basis of general laws of fluid dynamics. 
Using the formal two-scale expansion, Darcy’s law was derived from the Stokes equations (see 
for example [2–4]). For a periodically perforated porous medium with disconnected solid matrix, 
L. Tartar proved the convergence of the homogenisation for the following ε-scaled problem in 
[5]. He considered the Stokes equations in a periodic porous medium � with fluid phase �ε (of 
period ε) with homogeneous Dirichlet boundary conditions

−ε2ν�vε + ∇pε = f in �ε, div(vε) = 0 in �ε, vε = 0 on ∂�ε, (1)

where vε and pε denote the velocity and pressure of the fluid, ν the viscosity and f the density of 
the forces acting on the fluid. He proved that the extension of vε to � by 0 converges weakly to v
in L2(�) and that Pε , which is an extension of the pressure pε to the solid part of �, converges 
strongly in L2(�)/R to p, where v and p are the unique solutions of

v = 1

ν
K(f − ∇p) in �, div(v) = 0 in �, v · n = 0 on ∂�, (2)

and K is a positive definite symmetric permeability tensor, which can be computed by means 
of solutions of the Stokes problems on a reference cell. The main task in the proof of the con-
vergence is the derivation of an ε-independent bound for pε. At this point, Tartar had to assume 
that the solid part of a cell is strictly contained inside the cell. Extending the ideas of L. Tartar, 
G. Allaire could omit this assumption and proved the convergence for more general domains in 
[6].

The homogenisation of the instationary Navier–Stokes equations was considered in [7] lead-
ing to a Darcy law. A different ε-scaling of the time-derivative term leads to a Darcy-type law 
with memory, which is an integro–differential equation (see [8,9]). Moreover, by scaling the vis-
cosity, a non-linear Darcy law was derived in [4,10]. In the case of disconnected solid obstacles, 
one can also consider different ε-scalings of the obstacles compared to the cell size see, which 
lead to different limit equations as for instance Brinkman flow (see [11,12]).

The purpose of the present paper is to extend problem (1) to a domain �ε(t) whose mi-
crostructure is evolving in time and to prove the convergence of the homogenisation for this 
new setting. The case of an evolving microstructure is motivated by many different physical, 
chemical and biological applications. For example, for dissolution and precipitation in a porous 
medium, a precipitate layer may be added to or be dissolved from the pore walls, implying that 
the overall solid part (and, implicitly, the void space) is evolving unless there is a local balance 
between precipitation and dissolution, see e.g. [13]. In [13–20], such processes are modelled as 
free boundaries by means of a level-set function or phase-field approaches. However, these mod-
els are only formally upscaled by asymptotic two-scale expansions. For fixed microstructure, 
related (advection–) diffusion problems were homogenised rigorously in [21–23].

For given evolving microstructure evolution, rigorous homogenisation results are presented 
in [24–28]. There, the equations are transformed to a fixed microstructure and the resulting sub-
stitute problems were homogenised. For a general class of transformations, it was shown in 
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[29] that the homogenisation and the transformation commutes, which justifies this transforma-
tion approach. This approach was also used in [30,31] for the rigorous homogenisation of an 
reaction–diffusion problem with free boundary where the evolution of the domain is coupled 
with the unknown concentration.

The homogenisation of fluid flow in evolving porous media is also important for problems in 
poroelasticity. The first linear theory was developed by Biot (cf. [32,33]). Starting with a descrip-
tion of the microporomechanics by equations of elasticity and fluid flow, effective equations can 
also be derived by means of homogenisation (cf. [34], [35]). However, in order to homogenise 
rigorously, the Stokes problem was linearised by assuming that the fluid domain is constant in 
time (cf. [36]). Recently, the corresponding non-linear model received considerable attention 
(cf. [37–39]). However, these works passed to the homogenisation limit only formally. In this 
paper, we provide a rigorous homogenisation result for the decoupled Stokes-problem, which is 
a step towards the homogenisation of the fully coupled fluid–structure interaction problem.

In the present paper, we consider the rigorous homogenisation of the quasi-stationary Stokes 
equations for ε-scaled domains �ε(t) that are evolving in time. The evolution of the domain is a 
priori given. Thus, we consider the Stokes problem

−ε2ν div(2e(vε)) + ∇pε = fε in �ε(t), (3a)

div(vε) = 0 in �ε(t), (3b)

vε = v�ε on �ε(t), (3c)

pεn − ε2ν2e(vε)
�n = pb,εn on ∂�ε(t) \ �ε(t) (3d)

for a force term fε on a time-dependent spatial domain �ε(t) with t ∈ S for the time interval 
S. Thereby, e(vε) := (∇vε + ∇v�

ε )/2 denotes the symmetric gradient of vε, which we use not-
ing that in the standard derivation of the Stokes equation from the momentum balance equation, 
the continuity equation and the axioms of Newtonian fluids originally imply a symmetric stress 
tensor. Indeed, the incompressibility condition allows us to replace 2e(vε) by ∇vε in the strong 
formulation. However, for the weak formulation, this substitution can be done only for certain 
boundary values as for instance homogeneous Dirichlet boundary values, which is not the case 
in our model. For the boundary condition, we distinguish between the interface of pore and 
solid space, which is denoted by �ε(t), and the remaining boundary. At �ε(t), we use a Dirich-
let boundary condition for the fluid velocity with boundary values v�ε . This (inhomogeneous) 
Dirichlet boundary condition (3c) is motivated by the no-slip boundary condition and allows a 
fluid velocity equal to the velocity of the boundary’s deformation, which can be modelled by v�ε . 
By using a normal stress boundary condition with an outer unit normal vector n and a normal 
boundary stress pb,ε at ∂�ε(t) \ �ε(t), we allow fluid in- and outflow at the boundary of the 
porous medium. Thus, even if the total pore volume changes, there is no incompatibility with the 
fluid incompressibility, so that we can consider this case as well. In [40], the homogenisation of 
Stokes flow with such a normal stress boundary condition at the outer boundary is considered for 
the case of a rigid domain and a homogeneous Dirichlet boundary condition at the pore interface.

We prove that the extension of vε(t) by 0 to � converges weakly in L2(�) for a.e. t ∈ S and 
the extension of the pressure pε(t) by a cell-wise mean value converges strongly in L2(�) for 
a.e. t ∈ S to the unique solution (v(t), p(t)) of the following Darcy law:

v(t, x) = 1
K(t, x)(f (t, x) − ∇p(t, x)) in S × �, (4a)
ν
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div(v(t, x)) = −
∫

�x(t)

v�(t, x, y) · ndy

(
= − d

dt
�(t, x)

)
in S × �, (4b)

p = pb on S × ∂�, (4c)

where v� is the two-scale limit of v�ε and �x(t) is the interface of the pore and solid part in 
the reference cell at the macroscopic position x ∈ � at time t ∈ S. If v�ε is the velocity of the 
boundary deformation, the right-hand side of (4b) can be simplified to − d

dt
�(t, x), where � is 

the porosity of the medium.
Compared to the Darcy law (2), the permeability tensor K now depends on time and space 

taking into account the shape of a pore Y ∗
x (t) at the point x ∈ � at the time t ∈ S. Moreover, the 

microscopic incompressibility condition together with the inhomogeneous Dirichlet boundary 
condition gives rise to the macroscopic inhomogeneous divergence condition (4b). Combined 
with (4a), this gives an additional source or sink term for the pressure p. In the case that v�ε is 
the velocity of the boundary deformation, this term captures the suction and compression effects 
arising from the change of porosity.

For the homogenisation of (3), we use the two-scale transformation method. We transform 
the problem to a substitute problem onto a periodic reference domain �ε, where we pass to the 
limit ε → 0 using two-scale convergence. Then, we transform the resulting limit problem back 
(cf. Fig. 1). This method was proposed for the homogenisation of a diffusion problem in [24]. 

Fig. 1. Two-scale transformation method.

It was applied in several works – in the same sense that the homogenisation of the substitute 
problem was proven – (cf. [25–28,30,31]). In [29], a rigorous two-scale convergence concept 
for this transformation method was developed and it was proven that the homogenisation of the 
substitute problem is equivalent to the homogenisation of the actual problem (cf. Fig. 1). Thus, 
the homogenisation result for the periodic substitute problem can be rigorously transferred to a 
homogenisation result of the actual problem.

After the transformation onto the periodic reference domain, we derive uniform a priori es-
timates for the velocity field vε and the pressure field pε . However, the transformation of the 
equation induces coefficients in the symmetric-gradient term. Therefore, we derive a uniform 
Korn-type inequality for the two-scale transformation method, which allows to estimate the trans-
formed symmetric gradient from below.

Since the extension of the inhomogeneous Dirichlet boundary condition inside the domain 
is not necessarily divergence-free, we cannot estimate the velocity directly without estimating 
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the pressure as is done in the existing works on the homogenisation of Stokes flow. Instead, we 
employ a family of ε-scaled operators div−1

ε , which are right-inverse to the corresponding di-
vergences, using the restriction operator that was introduced in [5] and developed further in [6]. 
Employing this Korn-type inequality and the div−1

ε -operator, we can deduce an ε-independent 
estimate on the velocity and the pressure during the existence proof without having an a priori 
estimate on the velocity at hand. For the case of a rectangular macroscopic domain with peri-
odic Dirichlet boundary conditions, such a family of operators was constructed by V. V. Zhikov 
through different means (cf. [41]).

Having obtained these uniform a priori estimates, we can pass to the limit ε → 0 in the ref-
erence configuration. There, we prove the strong convergence of the extension of the pressure. 
Then, we use two-scale compactness results in order to derive a microscopic incompressibility 
condition and a macroscopic inhomogeneous divergence condition. In the next step, we pass to 
the limit ε → 0 in (3a) for divergence-free functions and reconstruct a microscopic pressure. The 
intermediate result is a two-pressure Stokes system in the cylindrical two-scale domain.

Afterwards, we transform this two-pressure Stokes system back into the reference config-
uration. Since the system contains not only microscopic, but also macroscopic derivatives, it 
does not yield a transformation-independent result directly. The same problem occurs also in 
the formal back-transformation after the homogenisation of diffusion and elasticity equations 
in a periodic reference domain (cf. [24,27]). However, recently some two-scale transformation 
rules for gradients have been shown in [29]. These allow for diffusion and elasticity equations, a 
back-transformation yielding a transformation-independent homogenisation result. By develop-
ing these ideas further, we back-transform the two-pressure Stokes system into a transformation-
independent system in the actual evolving two-scale domain. Moreover, the results of [29]
directly transfer the convergence of the substitute velocity field into the convergence of the ac-
tual velocity field. Since the extension of the pressure and the transformation to the periodic 
substitute domain do not commute, the strong convergence of the substitute pressure can not be 
transferred directly to the actual pressure. However, with computations similar to those of [29], 
we can overcome this lack of commutativity.

In the last step, we separate the microscopic from the macroscopic scale and thereby derive 
Darcy’s law for evolving microstructure. This Darcy’s law differs from the standard Darcy’s 
law by its time- and space-dependent permeability tensor, which corresponds to the time- and 
space-dependent microscopic porosity. Moreover, it contains a new source term for the pressure 
equation. This term captures the suction and compression effects arising from the change of the 
porosity.

The paper is organized as follows: in Section 2, we transform the Stokes problems onto the 
periodic domain �ε by the two-scale transformation method. In Section 3, we derive a uni-
form Korn inequality for the two-scale transformation method and a family of ε-scaled operators 
div−1

ε , which are right-inverse to the corresponding divergences. Using these results, we give 
uniform a priori estimates, which allow us to pass to the homogenisation limit. In Section 4, we 
pass to the limit ε → 0 in the reference configuration and derive a two-pressure Stokes equation. 
Finally, in Section 5, we transform this two-scale limit problem back to the actual domain and 
derive (4), which we call Darcy’s law for evolving microstructure.

Notation 1.1. In the following, let C ∈ R be a generic constant independent of t ∈ S and ε > 0. 
Moreover, let 1 ≤ ps ≤ ∞ and C(t) be a generic time-dependent function that is independent 
of ε, where C ∈ Lps (S). For an open set U ⊂ RN , we write (f, g)U for the scalar product of 

f, g ∈ L2(U) and define ‖f ‖U := (f, f )
1
2 . If G ⊂ ∂U is Lipschitz regular, we define H 1 (U) as 
U G
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the closure of smooth functions that are zero in a neighbourhood of G. If U is a subset of (0, 1)N , 
we denote the subset of H 1

G(U) of Y -periodic functions by H 1
G#(U) and, similarly, we use the 

index # to indicate the Y -periodicity for smooth functions.
For a (weakly) differentiable scalar- or vector-valued function u, we write Du for its Jaco-

bian matrix, i.e. (Du)ij := ∂xj
ui and ∇u = Du�. We define the divergence for a matrix-valued 

function A by its columns, i.e. div(A) = div((Aji)
N
j=1)

N
i=1. Thus, we get (div(∇u))i = div(∇ui)

for u : RN → RN . Due to this choice of the matrix-valued divergence, the transformation of the 
Stokes equations resembles the transformation of scalar-valued problems.

2. The Stokes problem on the microscopic scale

Let S = (0, T ) for T > 0 be the finite time interval. For N ∈ N with N ≥ 2, let � ⊂ RN

be a bounded and connected domain that can be represented as a finite union of axis-parallel 
cuboids with corner coordinates in QN , representing the macroscopic domain of the porous 

medium. Thus, there exists a sequence (εn)n∈N such that � = int
(⋃

k∈Iεn
k + εnY

)
for every 

n ∈ N , where Iε := {k ∈ εZN | int(k + εY ) ⊂ �} for ε > 0 and Y := (0, 1)N is the microscopic 
reference cell. We consider in the following such a fixed sequence (εn)n∈N with 0 < εn ≤ 1 for 
every n ∈ N and write shortly ε. Let Y ∗ ⊂ Y be open and Y s := int(Y \ Y ∗). The set Y ∗ is the 
pore part and the set Y s is the solid part of the reference cell. We denote the interface of them by 

� := [0, 1]N ∩ ∂
( ⋃

k∈ZN

k + Y ∗
)

∩ ∂
( ⋃

k∈ZN

k + Y s
)

. We assume that:

1. Y ∗ and Y s have positive measure,
2. Y ∗ is a connected set with Lipschitz boundary,
3. ∂Y ∗ ∩ {xi = 0} + ei = ∂Y ∗ ∩ {xi = 1} for every i ∈ {1, . . . , N},
4. Y ∗

# := int
( ⋃

k∈ZN

k + Y ∗
)

is connected and has a C1-boundary.

We define C∞
�#(Y

∗) := {ϕ ∈ C∞
# (Y ) | supp(ϕ) ⊂ Y ∗

# } and H 1
�#(Y

∗) as its closure with respect to 
the H 1(Y )-norm. In the following, we identify H 1

�#(Y
∗) with {v ∈ H 1

# (Y ) | v|Y\Y ∗ = 0} if the 
function has to be evaluated on Y \ Y ∗.

We define �ε , which represents the pore part in the reference configuration, by �ε :=
int

(⋃
k∈Iε

k + εY ∗
)

, the corresponding solid part by �s
ε := int

(
� \ �ε

)
and the interface of 

these by �ε = ∂�ε ∩ ∂�s
ε . Note that �ε is connected and �ε as well as the remaining part of the 

boundary ∂�ε \ �ε are Lipschitz regular by their construction.
We assume that, for a.e. t ∈ S, the evolving domain �ε(t) and the evolving surface �ε can 

be described by locally periodic transformations ψε ∈ L∞(S; C2(�)N ). That means �ε(t) =
ψε(t, �ε), �s

ε(t) = ψε(t, �s
ε), �ε(t) = ψε(t, �ε) for a.e. t ∈ S, where ψε satisfy Assumption 2.1.

We denote the Jacobians of ψε with respect to x by �ε(t, x) = Dψε(t, x) and Jε(t, x) :=
det(�ε(t, x)).

Assumption 2.1. We assume that

1. ψε(t, ·) is a given C2-diffeomorphism from � onto � for a.e. t ∈ S with inverse ψ−1
ε (t, ·)

for ψε, ψ−1
ε ∈ L∞(S; C2(�)N )

2. there exists cJ > 0 such that Jε(t) ≥ cJ for a.e. t ∈ S,
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3. there exists C > 0 such that εi−1
∥∥∥ψ̌ε

∥∥∥
L∞(S;Ci (�))

≤ C for i ∈ {0, 1, 2}, where ψ̌ε(t, x) :=
ψε(t, x) − x are the corresponding displacement mappings,

4. there exists ψ0 ∈ L∞(S × �; C2(Y )N ) such that
(a) ψ0(t, x, ·) : Y → Y are C2-diffeomorphisms for a.e. (t, x) ∈ S × � with inverses 

ψ−1
0 (t, x, ·) for ψ0, ψ

−1
0 ∈ L∞(S × �; C2(Y )N ),

(b) the corresponding displacement mapping ψ̌0(t, x, y) := ψ0(t, x, y) −y, can be extended 
Y -periodically such that ψ̌ ∈ L∞(S × �; C2

#(Y )N ),
(c) ε|α|−1Dxα ψ̌ε(t) two-scale converges strongly with respect to every Lp-norm for p ∈

(1, ∞) to Dyα ψ̌0(t) for every multiindex α ∈ {0, 1, 2}N with |α| ≤ 2.

For the inverses of the transformations, we denote the corresponding displacement mappings 
by ψ̌−1

ε (t, x) = ψ−1
ε (t, x) − x and ψ̌−1

0 (t, x, y) = ψ−1
0 (t, x, y) − y. While the actual ε-scaled 

domain �ε(t) at time t ∈ S is given by �ε(t) = ψε(�ε), one gets analogously the local reference 
cell Y ∗

x (t) at time t ∈ S and macroscopic position x ∈ � via Y ∗
x (t) := ψ0(t, x, Y ∗). We denote the 

interfaces in these local reference cells by �(t, x) := ψ0(t, x, �). The sets Y ∗
x (t) are independent 

of the chosen diffeomorphism and depend only on the sets �ε. Indeed, one has that χ�ε(t)(x)

two-scale converges to χY ∗
x (t)(y). For a measurable set U , χU denotes the indicator function, 

i.e. χU (x) = 1 if x ∈ U and χU (x) = 0 if x ∈ U .
The domains �ε(t) and their evolution are assumed to be a priori given by the C2-

diffeomorphisms ψε , which have to satisfy only Assumption 2.1. This Assumption is formulated 
in a very generic setting. In particular, it is not required that ψε can be written by an ε-scaled 
two-scale asymptotic expansion. Instead, the asymptotic behaviour is characterised by means of 
two-scale convergence. Indeed, a domain evolution justifying these assumptions arises also in 
free boundary problems (see [30,31]).

An evolution of the domains that satisfies Assumption 2.1 can be obtained for example from 
the following model:

Example 2.2. Let � : [0, T ] × � → (0, 1) be a smooth function with D� small enough. For 
instance, � can describe the local porosity. Let ψ0 : (0, 1) × Y → Y such that, for fixed first 
argument, ψ0(�, ·) is a family of diffeomorphisms and the corresponding displacement mapping 
ψ̄0(�, y) = ψ0(�, y) − y can be extended to a Y -periodic function. For instance, ψ0(�, Y ∗)
could give a cell with porosity �. Then,

ψε(t, x) := x + εψ̃0

(
�(t, x),

x

ε

)
, ψ0(t, x, y) := ψ̃0(�(t, x), y)

fulfil Assumption 2.1.

Assumption 2.3. Let ps ∈ [1, ∞] be fixed. We assume on the data that:

1. fε is a sequence in Lps (S; L2(�)N ) such that ‖fε(t)‖L2(�) ≤ C(t) for a.e. t ∈ S for C ∈
Lps (S)

2. there exists f ∈ Lps (S; L2(�)N ) such that fε(t) two-scale converges weakly with respect to 
the L2-norm to f (t) for a.e. t ∈ S,

3. pb,ε is a sequence in Lps (S; H 1(�)) such that 
∥∥pb,ε(t)

∥∥
L2(�)

≤ C(t) for a.e. t ∈ S for 
C ∈ Lps (S),
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4. there exists (pb, pb,1) ∈ Lps (S; H 1(�)) × Lps (S; L2(�; H 1
# (Y )/R)) such that ∇pb,ε(t)

two-scale converges weakly with respect to the L2-norm to ∇xpb(t) + ∇ypb,1(t) for a.e. t ∈
S,

5. v�ε is a sequence in Lps (S; H 1(�)N ) such that 1
ε

∥∥v�ε (t)
∥∥

L2(�)
≤ C(t) for a.e. t ∈ S and ∥∥∇v�ε (t)

∥∥
L2(�)

≤ C(t) for a.e. t ∈ S for C ∈ Lps (S),

6. there exists v� ∈ Lps (S; L2(�; H 1
# (Y )N )) such that 1

ε
v�ε (t) two-scale converges weakly 

with respect to the L2-norm to v�(t) for a.e. t ∈ S and ∇v�ε (t) two-scale converges weakly 
with respect to the L2-norm to ∇yv�(t) for a.e. t ∈ S,

7. if v�ε should be the velocity of the boundary deformation, i.e. v�ε (t, x) = ∂tψε(t, ψ−1
ε (t, x)), 

we assume that ψε is a sequence in W 1,ps (S; H 1(�)N ) such that 1
ε
‖∂tψε(t)‖L2(�) ≤ C(t)

for a.e. t ∈ S for C ∈ Lps (S). Moreover, we assume that ψ0 ∈ W 1,ps (S; L2(�; H 1
# (Y )N ))

such that ε|α|−1Dxα∂tψε(t) two-scale converges weakly with respect to the L2-norm to 
Dyα∂tψ0(t) for a.e. t ∈ S and every multiindex α ∈ {0, 1}N with |α| ≤ 1.

Since we consider the stationary Stokes equations, time becomes only a parameter. Therefore, 
we have formulated the previous assumptions in a way that allows us to consider the equation 
and the homogenisation process pointwise in time for a.e. t ∈ S. However, we have assumed for 
all used quantities the measurability with respect to time. Thus, we can show that the solutions 
of the ε-scaled problem can be uniformly bounded for a.e. t ∈ S by a Lps (S) bound for a fixed 
ps ∈ [1, ∞], which allows us to translate the two-scale convergence into the time-dependent two-
scale convergence, which is used in parabolic problems. This allows a coupling of this Stokes 
problem with such processes in future works.

In order to derive a weak form for (3), we substitute the boundary values and define wε(t) :=
vε(t) −v�ε (t) and qε(t) := pε(t) −pb,ε(t). Then, we multiply (3a) by test functions ϕ which are 0
on �ε(t) and integrate over �ε(t). After integration by parts and using the boundary conditions 
(3c)–(3d), we get (5a). In addition, we multiply (3b) with a test function φ ∈ L2(�ε(t)) and 
integrate over �ε(t). Then, we obtain the following weak form:

Find (wε, qε) ∈ Lps (S; H 1
�ε(t)

(�ε(t))
N ) × Lps (S; L2(�ε(t))) such that, for a.e. t ∈ S,∫

�ε(t)

νε22e(wε(t, x)) : ∇ϕ(x) − qε(t, x)div(ϕ(x))dx =
∫

�ε(t)

fε(t, x) · ϕ(x)dx

−
∫

�ε(t)

νε22e(v�ε (t, x)) : ∇ϕ(x) + ∇pb,ε(t, x) · ϕ(x)dx,

(5a)

∫
�ε(t)

div(wε(t, x))φ(x)dx = −
∫

�ε(t)

div(v�ε (t, x))φ(x)dx (5b)

for every (ϕ, φ) ∈ H 1
�ε(t)

(�ε(t))
N × L2(�ε(t)).

2.1. Transformation on the periodic reference domain

We transform the given data on the reference configuration by

f̂ε(t, x) := f (t,ψε(t, x)), p̂b,ε(t, x) := pb,ε(t,ψε(t, x)), v̂�ε (t, x) := v�ε (t,ψε(t, x)) (6)
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and define Aε = Jε�
−1
ε as well as the transformed symmetric gradient êε,t(v) := (�−�

ε (t)∇v +
(�−�

ε (t)∇v)�)/2. Then, we transform (7a)–(7b) onto the periodic reference domain and obtain 
the following problem:

Find (ŵε, q̂ε) ∈ Lps (S; H 1
�ε

(�ε)
N ) × Lps (S; L2(�ε)) such that for a.e. t ∈ S∫

�ε

νε2Aε(t, x)2êε,t (ŵε(t, x)) : ∇ϕ(x) − q̂ε(t, x)div(Aε(t, x)ϕ(x))dx

=
∫
�ε

Jε(t, x)f̂ε(t, x) · ϕ(x)dx −
∫
�ε

νε2Aε(t, x)2êε,t (v̂�ε (t, x)) : ∇ϕ(x)dx

−
∫
�ε

A�
ε (t, x)∇p̂b,ε(t, x) · ϕ(x)dx,

(7a)

∫
�ε

div(Aε(t, x)ŵε(t, x))φ(x)dx = −
∫
�ε

div(Aε(t, x)v̂�ε (t, x))φ(x)dx (7b)

for every (ϕ, φ) ∈ H 1
�ε

(�ε)
N × L2(�ε).

The strong form of this transformed Stokes problem (7) is given by

−div(ε2νAε2êε,t (v̂ε)) + A�
ε ∇p̂ε = Jεf̂ε in �ε, (8a)

div(Aε v̂ε)) = 0 in �ε, (8b)

v̂ε = v̂�ε on �ε, (8c)

A�
ε np̂ε − ε2ν2êε,t (ŵε)

�A�
ε n = A�

ε npb on ∂�ε \ �ε. (8d)

Lemma 2.4. Problem (5) is equivalent to (7), in the sense that (wε, qε) solves (5) if and only 
if (ŵε, q̂ε) solves (7), where the solutions can be transformed by ŵε(t, x) = wε(t, ψε(t, x)) and 
q̂ε(t, x) = qε(t, ψε(t, x)).

Proof. Using the product rule, we can transform between (5) and (7). �
3. Existence and uniform a priori estimates

In this section, we show the following existence and uniqueness result for (7) and derive an 
ε-independent bound for the solution.

Theorem 3.1. For ε > 0, there exists a unique solution (ŵε, q̂ε) ∈ Lp(S; H 1
�ε

(�ε)
N ) ×Lp(S;

L2(�ε)) of (7) and a C ∈ Lps (S) for a.e. t ∈ S such that∥∥ŵε(t)
∥∥

�ε
+ ε

∥∥∇ŵε(t)
∥∥

�ε
+ ∥∥q̂ε(t)

∥∥
�ε

≤ C(t). (9)

We want to clarify (9) regarding the question if (9) holds only for every t ∈ S \S′
ε with |S′

ε| = 0
or for every t ∈ S \ S′ with |S′| = 0 and S′ independent of ε. Actually, we need the later and a-
priori stronger condition for the homogenisation because we pass to the limit using the two-scale 
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convergence for fixed t . However, these two conditions are in fact equivalent. Assume that S′
ε

depends on ε. Since ε is a countable sequence, we can choose S′ := ⋃
n∈N

S′
εn

and get |S′| = 0. 

Thus, the estimate holds also for an ε-independent zero-set S′.
For the proof of Theorem 3.1, we use the following generic saddle-point formulation, where 

V and Q are Hilbert spaces and a ∈ L(V ; V ′) and b ∈ L(V ; Q′):
Given f ∈ V ′ and g ∈ Q′, find a solution (v, p) ∈ V × Q such that:

a(v,ϕ) + b(ϕ,p) = 〈f,ϕ〉V ′×V for all ϕ ∈ V, (10a)

b(v,φ) = 〈g,φ〉Q′×Q for all φ ∈ Q. (10b)

The existence and uniqueness of a solution and a corresponding estimate for such saddle-point 
problems are given by the following well-known lemma. A proof is given in [42] Theorem 4.2.3, 
for example.

Lemma 3.2. If there exist constants α, β > 0 such that

a(w,w) ≥ α ‖w‖2
V for all w ∈ V, (11)

inf
u∈Q\{0}

sup
w∈V \{0}

|b(w,u)|
‖w‖V ‖u‖Q

≥ β, (12)

then the saddle-point problem (10) has a unique solution (v, p) ∈ V × Q. Furthermore, the 
following estimates hold for the solution:

‖v‖V ≤ 1

α
‖f ‖V ′ + 2‖a‖L(V ;V ′)

αβ
‖g‖Q′ , (13)

‖p‖Q ≤ 2‖a‖L(V ;V ′)
αβ

‖f ‖V ′ + 2‖a‖2
L(V ;V ′)

αβ2
‖g‖Q′ . (14)

The following Lemma enables us to add time as a parameter in Lemma 3.2. More precisely, 
we use it later to show that (wε, qε) is measurable with respect to time.

Lemma 3.3. For the spaces

A := {a ∈ L(V ;V ′) | a(v, v) ≥ α ‖v‖2
V for all v ∈ V and α > 0},

B :=
{

b ∈ L(V ;Q′) | inf
p∈Q\{0}

sup
v∈V \{0}

|b(v,p)|
‖v‖V ‖p‖Q

≥ β for β > 0

}

of bilinear forms, the unique solution of the corresponding saddle-point problem (10) given by 
Lemma 3.2 depends continuously on the data (a, b, f, g) ∈ A × B × V ′ × Q′.

Proof. Lemma 3.3 can be proven by computations which are similar to those in standard proofs 
of the estimates of Lemma 3.2. �
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In order to derive the uniform estimate (9), we employ (13) and (14). Hence, we equip 
H 1

�ε
(�ε)

N with a proper norm and derive a uniform coercivity and a uniform inf–sup estimate 
for the bilinear forms.

First, we show some uniform estimates for the coefficients (cf. Lemma 3.4). Then, we 
derive a family of ε-scaled Korn-type inequalities for the two-scale transformation method 
(cf. Lemma 3.6). These Korn-type inequalities allow us to estimate the transformed symmet-
ric gradients êε,t (ŵε) uniformly from below, which implies the uniform coercivity for the first 
bilinear form. In order to show the uniform inf–sup estimate for the other bilinear form, we con-
struct a family of ε-scaled operators div−1

ε , which are right inverses to the divergence operator 
(cf. Lemma 3.12).

Lemma 3.4. There exists a constant C > 0 such that

‖Jε‖L∞(S;C(�ε))
+ ‖�ε‖L∞(S;C(�ε))

+
∥∥∥�−1

ε

∥∥∥
L∞(S;C(�ε))

≤ C,

ε
∥∥∂xi

Jε

∥∥
L∞(S;C(�ε))

+ ε

∥∥∥∂xi
J−1

ε

∥∥∥
L∞(S;C(�ε))

≤ C,

ε
∥∥∂xi

�ε

∥∥
L∞(S;C(�ε))

+ ε
∥∥∂xi

Aε

∥∥
L∞(S;C(�ε))

+ ε

∥∥∥∂xi
�−1

ε

∥∥∥
L∞(S;C(�ε))

≤ C

for every i ∈ {0, . . . , N}.

Proof. We note that �ε = 1 +Dψ̌ε . Then the uniform estimate of Dψ̌ε given by Assumption 2.1
shows that ‖�ε‖L∞(S;C(�ε))

≤ C.

Since Jε and the entries of �−1
ε are polynomials with respect to the entries of �ε and J−1

ε , 
the uniform bound of Jε ≥ cJ > 0 from below (cf. Assumption 2.1) and ‖�ε‖L∞(S;C(�ε))

≤ C

implies ‖Jε‖L∞(S;C(�ε))
≤ C and 

∥∥�−1
ε

∥∥
L∞(S;C(�ε))

≤ C.

After rewriting ∂xi
�ε = ∂xi

Dψε = ∂xi
(1 + Dψ̌ε) = ∂xi

Dψ̌ε , Assumption 2.1 shows
ε
∥∥∂xi

�ε

∥∥
L∞(S;C(�ε))

≤ C for every i ∈ {0, . . . , N}.
We note that Aε is the adjugate matrix of �ε = 1 +Dψε . Thus, all of its entries are minors of 

�ε . We rewrite the xi -derivative of these minors with the product rule into the sum of products, 
where each product has (n − 2)-factors which are entries of �ε(t) and one factor which is a 
entry of ∂xi

�ε . Then, the estimates ‖�ε‖L∞(S;C(�ε))
≤ C and ε

∥∥∂xi
�ε

∥∥
L∞(S;C(�ε))

≤ C give 

ε
∥∥∂xi

Aε

∥∥
L∞(S;C(�ε))

≤ C.

We obtain ε
∥∥∂xi

Jε

∥∥
L∞(S;C(�ε))

≤ C by the same argumentation as for the estimate of 

ε
∥∥∂xi

Aε

∥∥
L∞(S;C(�ε))

.

Using the chain rule, we rewrite ∂xi
J−1

ε = −J−2
ε ∂xi

Jε . Then, the uniform bound Jε ≥ cJ > 0
from below and the estimate ε

∥∥∂xi
Jε

∥∥
L∞(S;C(�ε))

≤ C imply the estimate ε
∥∥∂xi

J−1
ε

∥∥
L∞(S;C(�ε))≤ C.

We rewrite �−1
ε = J−1

ε Aε . Then, we obtain ε
∥∥∂xi

�−1
ε

∥∥
L∞(S;C(�ε))

≤ C with the product rule 
and the previous estimates. �
3.1. Korn-type inequality for the two-scale transformation method

In order to derive the Korn-type inequalities for the two-scale transformation method, we need 
the following ε-scaled Poincaré inequality for periodic domains.
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Lemma 3.5. There exists a constant CP ∈R such that

‖v‖�ε
≤ εCP ‖∇v‖�ε

for every v ∈ H 1
�ε

(�ε)
N .

Proof. Lemma 3.5 is a standard result and can be proven by covering �ε with ε-scaled copies of 
Y ∗ and scaling them on Y ∗. Then, applying the Poincaré inequality for piecewise zero boundary 
values there and scaling back yields the estimate. �
Lemma 3.6. There exists a constant α ∈R independent of ε, such that

α ‖∇v‖2
�ε

≤ ∥∥êε,t (v)
∥∥2

�ε
(15)

for ε > 0 and all v ∈ H 1
�ε

(�ε)
N .

Proof. Lemma 3.6 follows directly from Lemma 3.7, since the estimates of Lemma 3.4 show 
that the prerequisites of Lemma 3.7 are fulfilled. �
Lemma 3.7. Let c, C > 0. Then, there exists an ε-independent constant α > 0 such that

α ‖∇v‖2
�ε

≤
∥∥∥Mε∇v + (Mε∇v)�

∥∥∥2

�ε

for any v ∈ H 1
�ε

(�ε)
N and for every Mε ∈ C0,1(�ε) with

‖Mε‖C(�ε)
+ ε ‖Mε‖C0,1(�ε)

≤ C,

det(Mε(x)) ≥ c > 0 for every x ∈ �ε.

Proof. Since 
∥∥Mε∇v + (Mε∇v)�

∥∥2
�ε

= ∑
k∈Iε

∥∥Mε∇v + (Mε∇v)�
∥∥2

k+εY ∗ and

‖∇v‖2
�ε

= ∑
k∈Iε

‖∇v‖2
k+εY ∗ , we can reduce the problem on the reference cell. After transforming 

k + εY ∗ on Y ∗, it is sufficient to show

α ‖∇v‖2
Y ∗ ≤

∥∥∥M∇v + (M∇v)�
∥∥∥2

Y ∗ (16)

for any v ∈ H 1
�(Y ∗)N , ε > 0 and k ∈ Iε where M(x) := Mε(k + εx). From the Lipschitz estimate 

of Mε and the transformation x �→ k + εx, we can conclude that ‖M‖C0,1(Y ∗) ≤ C. The uniform 
bound of the determinant from below remains preserved under the transformation. Hence M ∈
M := {M ∈ C0,1(Y ∗)N×N | ‖M‖C0,1(Y ∗) ≤ C and det(M) ≥ c}.

The uniform Lipschitz continuity of M implies the equicontinuity of M and since M is also 
pointwise bounded, we obtain by the theorem of Arzelà–Ascoli that M is relatively compact 
in C(Y ∗)N×N . Then, we apply Lemma 3.8 on the closure of M in C(Y ∗)N×N and we obtain 
Lemma (3.7). �
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Lemma 3.8. Let U ⊂ RN be an open connected Lipschitz domain and G ⊂ ∂U open with |G| >
0. Let M be a compact subset of C(U)N×N and assume there exists c > 0 such that det(M) ≥ c

for every M ∈ M. Then, there exists α > 0 such that

α ‖∇v‖U ≤
∥∥∥(M∇v + (M∇v)�

∥∥∥
U

for every M ∈ M and v ∈ H 1
G(U)N .

For the case that the set M in Lemma 3.8 consists of Hölder continuous functions the result 
is proven in [43].

Proof. Let M ∈ M, then Lemma 3.9 gives a constant αM such that

αM ‖∇v‖U ≤
∥∥∥M∇v + (M∇v)�

∥∥∥
U

(17)

for every v ∈ H 1
G(U)N . We obtain for B ∈ M∥∥∥M∇v + (M∇v)� − (B∇v + (B∇v)�)

∥∥∥
U

≤ 2‖M − B‖C(U) ‖∇v‖U ,

which implies∥∥∥M∇v + (M∇v)�
∥∥∥

U
≤

∥∥∥B∇v + (B∇v)�
∥∥∥

U
+ 2‖M − B‖C(U) ‖∇v‖U . (18)

Combining (17) and (18) gives for any B ∈ BαM/4(M)

1

2
αM ‖∇v‖U ≤

∥∥∥B∇v + (B∇v)�
∥∥∥

U
. (19)

Then, we cover M by 
⋃

M∈M
BαM/4(M) and, since M is compact, there exists a finite set I such 

that for every B ∈ M there exists M ∈ I with B ∈ BαM/4(M). We choose α = min
M∈I

αM/2 and 

obtain from (19)

α ‖∇v‖U ≤ αM

2
‖∇v‖U ≤

∥∥∥(B∇v + (B∇v)�
∥∥∥

U

for every B ∈M and v ∈ H 1
G(U)N . �

Lemma 3.9. Let U ⊂ RN be an open connected Lipschitz domain and G ⊂ ∂U open with |G| >
0. Let A : U → Rn×n be a continuous mapping with det(A) ≥ c > 0. Then, there is a constant 
α > 0 such that

α ‖∇v‖U ≤
∥∥∥(A∇v + (A∇v)�

∥∥∥
U

for all v ∈ H 1
G(U)N .

Proof. Lemma 3.9 is proven in Theorem [44]. �
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3.2. Right-inverse divergence operator

In order to construct explicitly the operators div−1
ε : L2(�) → H 1

�ε
(�ε)

N , we use the 
following right-inverse divergence operator (see Lemma 3.10) and the restriction operator 
(see Lemma 3.11), which was originally introduced in [5] and developed further in [6].

Lemma 3.10. Let U be a bounded domain. Then, there exists a continuous linear operator 
div−1 : L2(U) → H 1(U)N such that div◦ div−1 = idL2(U).

Proof. See for instance [45, Exercise III.3.1]. �
Lemma 3.11. There exists a linear continuous operator Rε : H 1(�)N → H 1

�ε
(�ε)

N such that

1. u ∈ H 1
�ε

(�ε) implies Rεu = u in �ε

2. div(Rεu) = div(u) + ∑
k∈Iε

χk+εY ∗ 1
|εY ∗|

∫
k+εY s

div(u),

3. there exists a constant C such that

‖Rεu‖�ε
+ ε ‖∇(Rεu)‖�ε

≤ C(‖u‖� + ε ‖∇u‖�)

for every u ∈ H 1(�)N .

Proof. In [6] this restriction operator is explicitly constructed from H 1
0 (�)N to H 1

0 (�ε)
N . In-

deed, the construction is done locally so that the same construction yields an operator Rε :
H 1(�)N → H 1

�ε
(�ε)

N . �
Lemma 3.12. There exists a linear continuous operator div−1

ε : L2(�ε) → H 1
�ε

(�ε)
N , which is 

right inverse to the divergence, i.e. div◦ div−1
ε = idL2(�ε)

, such that∥∥∥div−1
ε (f )

∥∥∥
�ε

+ ε

∥∥∥∇ div−1
ε (f )

∥∥∥
�ε

≤ ‖f ‖L2(�ε)

for every f ∈ L2(�ε).

Proof. By Lemma 3.10 there exists a linear continuous operator div−1 : L2(�) → H 1(�)N such 
that div◦ div−1 = idL2(U). Using this operator and the restriction operator Rε of Lemma 3.11, we 
can define

div−1
ε (f ) := Rε(div−1(f̃ )),

where f̃ denotes the extension of f ∈ L2(�ε) by 0 to �.
The explicit formula for div◦Rε from Lemma 3.11 shows

div(div−1
ε (f )) = div(Rε(div−1(f̃ ))) =

= div(div−1(f̃ )) +
∑
k∈Iε

χk+εY ∗
1

|εY ∗|
∫

s

div(div−1(f̃ (x)))dx
k+εY
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= f̃ +
∑
k∈Iε

χk+εY ∗
1

|εY ∗|
∫

k+εY s

f̃ (x)dx = f.

Moreover, using the estimate of Lemma 3.11, we obtain, for ε ≤ 1,∥∥∥div−1
ε (f )

∥∥∥
�ε

+ ε

∥∥∥∇ div−1
ε (f )

∥∥∥
�ε

≤ C
(∥∥∥div−1(f̃ )

∥∥∥
�

+ ε

∥∥∥∇ div−1(f̃ )

∥∥∥
�

)
≤ C

∥∥∥∇ div−1(f̃ )

∥∥∥
H 1(�)

≤ C
∥∥f̃

∥∥
�

= C ‖f ‖�ε
. �

3.3. Estimates of the data

Lemma 3.13. There exists a constant C ∈ Lps (S) such that∥∥∥f̂ε(t)

∥∥∥
L2(�ε)

+ ∥∥p̂b,ε(t)
∥∥

L2(�ε)
+ ∥∥∇p̂b,ε(t)

∥∥
L2(�ε)

≤ C(t),

1

ε

∥∥v̂�ε (t)
∥∥

L2(�ε)
+ ∥∥∇v̂�ε (t)

∥∥
L2(�ε)

≤ C(t)

for a.e. t ∈ S.

Proof. We note that Dψ−1
ε (t, x) = �−1

ε (t, ψ−1
ε (t, x)). Hence, we get

∥∥∥f̂ε(t)

∥∥∥2

�ε

=
∫
�ε

fε(t,ψε(t, x)))2 dx =
∫

�ε(t)

det(�−1
ε (t,ψ−1

ε (t, x)))fε(t, x)2 dx

≤
∫

�ε(t)

J−1
ε (t,ψ−1

ε (t, x))fε(t, x)2 dx ≤ c−1
J

∫
�ε(t)

fε(t, x)2 dx ≤ C ‖fε(t)‖2
�ε

.

Then, the uniform bound of fε(t) given by Assumption 2.3 implies the uniform bound of ∥∥∥f̂ (t)

∥∥∥
L2(�ε)

≤ C(t) for a.e. t ∈ S. By similar computation, we obtain 
∥∥p̂b,ε(t)

∥∥
L2(�ε))

+
1
ε

∥∥v̂�ε (t)
∥∥

L2(�ε)
≤ C(t). In order to estimate the gradient of p̂b,ε , we use the chain rule and 

rewrite ∇p̂b,ε(t, x) = ��
ε (t, x)∇pb,ε(t, ψε(t, x)). Then, the uniform estimates of Lemma 3.4

yield

∥∥∇p̂b,ε(t)
∥∥2

�ε
=

∫
�ε(t)

J−1
ε (t,ψ−1

ε (t, x))(��
ε (t,ψ−1

ε (t, x))∇pb,ε(t, x))2 dx

≤ C

∫
�ε(t)

J−1
ε (t,ψ−1

ε (t, x))∇p2
b,ε(t, x)dx ≤ C

∫
�ε(t)

∇p2
b,ε(t, x)dx ≤ C

∥∥∇pb,ε(t)
∥∥2

�ε(t)
.

The uniform bound of 
∥∥∇pb,ε(t)

∥∥
�

given by Assumption 2.3 implies the uniform bound of ∥∥∇p̂b,ε(t)
∥∥

L2(�ε
≤ C(t) for a.e. t ∈ S. By similar computation, we obtain 

∥∥∇v̂�ε (t)
∥∥

L2(�ε)
≤

C(t). �
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Proof of Theorem 3.1. First, we show that there exists a solution (ŵε(t), q̂ε(t)) ∈ H 1
�ε

(�ε)
N ×

L2(�ε) of (7) for a.e. t ∈ S. Due to the Poincaré inequality from Lemma 3.5, ‖·‖Vε
:

H 1
�ε

(�ε)
N → R, v �→ ‖v‖Vε

:= ε ‖∇v‖�ε
defines a norm on H 1

�ε
(�ε)

N . We define aε(t) and 
bε(t) for a.e. t ∈ S by

aε(t)(v,w) = (ε2ν2Aε(t)êε,t (v),∇w)�ε for v,w ∈ H 1
�ε

(�ε)
N ,

bε(t)(v,p) = (div(Aε(t)v),p)�ε for v ∈ H 1
�ε

(�ε)
N ,p ∈ L2(�ε).

Using the uniform estimates of Lemma 3.4 and the Korn-type inequality for the two-scale trans-
formation method (see Lemma 3.6), we obtain the following uniform coercivity and continuity 
estimate for aε(t):

aε(t)(w,w) = (ε2νAε(t)2êε,t (w),∇w)�ε = (ε2νJε(t)2êε,t (w),�−�
ε (t)∇w)�ε

= (ε2νJε(t)2êε,t (w), (�−�
ε ∇w + (�−�

ε ∇w)�)/2)�ε

= (ε2νJε(t)2êε,t (w), êε,t (w))�ε

≥ ε2νcJ 2
∥∥êε,t (w)

∥∥2
�ε

≥ ε2νcJ 2α ‖∇w‖2
�ε

≥ C ‖w‖2
Vε

, (20)

aε(t)(v,w) = (ε2νJε(t)�
−1
ε (t)(�−�

ε ∇v + (�−�
ε ∇v),∇w)�ε ≤ C ‖v‖Vε

‖w‖Vε
. (21)

In order to give a uniform estimate of the inf–sup constant, we choose an arbitrary φ ∈ L2(�ε). 
Then, Lemma 3.12 gives a constant C ∈R, independent of ε and φ, and a function v̂ ∈ H 1

�ε
(�ε)

N

such that

div(v̂) = φ, ε
∥∥v̂

∥∥
�ε

≤ C ‖φ‖�ε
. (22)

We define v := J−1
ε (t)�ε(t)v̂ ∈ H 1

�ε
(�ε)

N . Using the product rule, the estimates from 
Lemma 3.4 and the ε-scaled Poincaré inequality (cf. Lemma 3.5), we obtain

‖v‖Vε
= ε

∥∥∥D(J−1
ε (t)�ε(t)v̂)

∥∥∥
�ε

≤ ε

∥∥∥D(J−1
ε (t)�ε(t))v̂

∥∥∥
�ε

+ ε

∥∥∥J−1
ε (t)�ε(t)Dv̂

∥∥∥
�ε

≤ C
∥∥v̂

∥∥
�ε

+ Cε
∥∥Dv̂

∥∥
�ε

≤ C
∥∥v̂

∥∥
Vε

≤ C ‖φ‖�ε
.

With this choice of v, we see that

sup
w∈H 1

�ε
(�ε)N\{0}

|bε(t)(w,φ)|
‖w‖Vε

≥ (φ,φ)�ε

‖v‖Vε

≥ ‖φ‖2
�ε

C ‖φ‖�ε

= C ‖φ‖�ε
(23)

for a.e. fixed t ∈ S.
In order to show the continuity of the bilinear form bε(t), we use the product rule, the Piola 

identity (div(Aε(t)) = 0) and the ε-scaled Poincaré inequality,

bε(t)(v,p) = (div(Aε(t)v),p) = (div(Aε(t))v + Aε(t) : ∇v,p)

≤ C ‖∇v‖�ε
‖p‖�ε

≤ ε−1C ‖v‖Vε
‖p‖�ε

. (24)
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Note that a more precise estimate like for the inf–sup constant does not yield an ε-independent 
constant for bε(t). However, the norm of bε does not appear in the right-hand sides of (13) and 
(14). Nevertheless, the continuity and the coercivity constant of aε(t) as well as the inf–sup 
constant of bε(t), which occur in (13) and (14), do not depend on ε or t .

Now, we estimate the right-hand sides of (7). For the first summand of the right-hand side of 
(7a), we obtain with Lemma 3.4, Lemma 3.13 and the ε-scaled Poincaré inequality∥∥∥Jε(t)f̂ε(t) − A�

ε (t)∇p̂b,ε

∥∥∥
V ′

ε

= sup
v∈H 1

�ε
(�ε)N\{0}

∫
�ε

(Jε(t, x)f̂ε(t, x) − A�
ε (t, x)∇p̂b,ε(t, x)) · v(x)dx

‖v‖Vε

≤ sup
v∈H 1

�ε
(�ε)N\{0}

C(t)‖v‖�ε

‖v‖Vε

≤ sup
v∈H 1

�ε
(�ε)N\{0}

C(t)‖v‖Vε

‖v‖Vε

≤ C(t), (25)

where C ∈ Lps (S). We rewrite the second summand of (7a) and obtain from the continuity esti-
mate (21) of aε(t) ∥∥−aε(t)(v̂�ε (t), ·)

∥∥
V ′

ε
≤ C

∥∥v̂�ε (t)
∥∥

Vε
≤ εC. (26)

Later, this term will also vanish during the homogenisation because it is of order O(ε). We can 
estimate the right-hand side of (7b) with the continuity estimate (24) of bε(t) and Lemma 3.13
by

∥∥−bε(t)(v̂�ε (t), ·)
∥∥

L2(�ε)′ ≤ ε−1C
∥∥v̂�ε (t)

∥∥
Vε

≤ ε−1εC(t) ≤ C(t) (27)

for C ∈ Lp(S). Using Lemma 3.2 with the estimates (20), (21), (23), (25), (26) and (27) yields, 
for ε > 0 small enough and a.e. t ∈ S, the existence of a unique solution (ŵε(t), q̂ε(t)) ∈
H 1

�ε
(�ε)

N × L2(�ε) of (7) such that

∥∥ŵε(t)
∥∥

Vε
+ ∥∥q̂ε(t)

∥∥
�ε

≤ C(t) (28)

for C ∈ Lp(S).
By the definition of the norm of Vε and Lemma 3.5, we can estimate further

∥∥ŵε(t)
∥∥

�ε
+ ε

∥∥∇ŵε(t)
∥∥

�ε
+ ∥∥q̂ε(t)

∥∥
�ε

≤ C(t) (29)

for ε > 0 small enough, a.e. t ∈ S and C ∈ Lp(S).
By Lemma 3.3, we get the continuity of the solution with respect to aε(t) and bε(t) and the 

right-hand sides. Moreover, aε(t) and bε(t) and the right-hand sides are measurable in time. 
Thus, ŵε : S → H 1

�ε
(�ε)

N and q̂ε : S → L2(�ε) are a composition of a continuous and a 
measurable function and hence measurable. With (29) we get the ps integrability, i.e. ŵε ∈
Lps (S, H 1 (�ε)

N ) and q̂ε ∈ Lps (S; L2(�ε)). �
�ε
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Remark 1. Another ansatz for the proof of Theorem 3.1 would be to substitute ŵε , so that we 
obtain a homogeneous divergence condition. Then, we could use the Lemma of Lax–Milgram for 
functions v with div(Aε(t)v) = 0. Using the same preliminary work, we could prove the same 
uniform bounds for the velocity and the pressure. But the difficulty with this ansatz is that the 
measurability with respect to time cannot be concluded directly, since the space of functions v
satisfying div(Aε(t)v) = 0 depends on time.

4. Homogenisation in the periodic reference domain

In this section, we pass to the limit ε → 0 in (7) using the notion of two-scale convergence, 
which was introduced in [46,47] (see also [48]) and derive the following two-pressure Stokes 
system (30) as two-scale limit problem.

Find (ŵ0, q̂, q̂1) ∈ Lps (S; L2(�;H 1
�#(Y

∗))) ×Lps (S; H 1
0 (�)) ×Lps (S; L2(�; L2

0(Y
∗))) such 

that ∫
�

∫
Y ∗

νA0(t, x, y)�−�
0 (t, x, y)∇yŵ0(t, x, y) : ∇yϕ(x, y)dy dx

+
∫
�

∫
Y ∗

A�
0 (t, x, y)∇x q̂(t, x) · ϕ(x, y) + q̂1(t, x, y)divy(A0(t, x, y)ϕ(x, y))dy dx

=
∫
�

∫
Y ∗

(J0(t, x, y)f (t, x) − A�
0 (t, x, y)∇xpb(t, x)) · ϕ(x, y)dy dx (30a)

∫
�

∫
Y ∗

divy(A0(t, x, y)ŵ0(t, x, y))θ1(x, y)dy dx = 0 (30b)

∫
�

divx

(∫
Y ∗

A0(t, x, y)ŵ0(t, x, y)dy
)

θ0(x)dx

= −
∫
�

∫
Y ∗

divy

(
A0(t, x, y)v̂�(t, x, y)

)
dy θ0(x)dx

(30c)

for a.e. t ∈ S and every (ϕ, θ0, θ1) ∈ L2(�;H 1
�#(Y

∗)N ) × H 1
0 (�) × L2(�; L2

0(Y
∗)).

Definition 4.1. Let p, q ∈ (1, ∞) with 1
p

+ 1
q

= 1. We say that a sequence uε two-scale converges 
weakly to u0 ∈ Lp(� × Y) if

lim
ε→0

∫
�

uε(x)ϕ
(
x,

x

ε

)
dx =

∫
�

∫
Y

u0(x, y)ϕ(x, y)dy dx

for every ϕ ∈ Lq(�; C#(Y )). If additionally lim
ε→0

‖vε‖Lp(�) = ‖v0‖Lp(�×Y), we say uε two-scale 

converges strongly to u0.

The following lemma is one of the fundamental compactness results in the notion of two-scale 
convergence.
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Lemma 4.2. Let p ∈ (1, ∞) and let uε be a bounded sequence in Lp(�). Then, there exists a 
subsequence and u0 ∈ Lp(� × Y) such that this subsequence two-scale converges weakly to u0.

The following result allows us to handle the coefficients in the homogenisation.

Lemma 4.3. Let 1 < p, q, r < ∞ with 1
p

+ 1
q

= 1
r
. Let uε be a sequence in Lp(�) which two-

scale converges strongly to u0 ∈ Lp(� × Y) and let vε be a sequence in Lq(�) which two-scale 
converges weakly (resp. strongly) to v0 ∈ Lq(� × Y). Then, uεvε is a sequence of functions in 
Lr(�) which two-scale converges weakly (resp. strongly) to u0v0 ∈ Lr(� × Y).

In order to translate the two-scale convergence of the data and the solution between the actual 
and the transformed configuration, we use the following transformation result of [29].

Lemma 4.4. Let p ∈ (1, ∞) and t ∈ S. Let uε be a sequence in Lp(�) and ûε = uε ◦ ψε(t)

with ψε as in Assumption 2.1. Then, for a.e. t ∈ S, uε two-scale converges weakly / strongly with 
respect to the Lp-norm to u0 ∈ Lp(� ×Y) if and only if ûε two-scale converges weakly / strongly 
with respect to the Lp-norm to û0 ∈ Lp(� × Y). Moreover, û0(x, y) = u0(x, ψ0(t, x, y)) holds 
and, equivalently, u0(x, y) = û0(x, ψ−1

0 (t, x, y)).

Proof. For a proof of Lemma 4.4 see [29] Theorem 3.8 and Theorem 3.14. Note, that there the 
deformations ψε are only defined on �ε ⊂ �, which is why the transformation result has to deal 
with the extension of the functions by 0. However, the results there holds for �ε = �, which 
proves Lemma 4.4. �

Note that Lemma 4.4 translates the two-scale convergence of χ�ε to χY ∗ into the two-scale 
convergence of χ�ε(t) to χY ∗

x (t).
Further two-scale transformation results for weakly differentiable functions can be found in 

[29] Theorem 3.8.

4.1. Two-scale convergence of the transformed data

Lemma 4.5. Let f̂ε, p̂b,ε and v̂�ε be defined by (6). Then,

f̂ε(t) → f (t) weakly in the two-scale sense,

∇p̂b,ε(t) → ∇xpb(t) + ∇y p̂b,1(t) weakly in the two-scale sense,

1

ε
v̂�ε (t) → v̂�(t) weakly in the two-scale sense,

∇v̂�ε (t) → ∇y v̂�(t) weakly in the two-scale sense

for a.e. t ∈ S, where f , pb and v� are the two-scale limits given in Assumption 2.3
and p̂b,1(t, x, y) = pb,1(t, x, ψ0(t, x, y)) + ψ̌0(t, x, y) · ∇xpb(t, x) and v̂�(t, x, y) = v�(t, x,

ψ0(t, x, y)) for a.e. (x, y) ∈ �ε × Y ∗.

Proof. The two-scale convergence of f̂ε(t) and of 1
ε
v̂�ε follows from Lemma 4.4. The two-scale 

convergence of ∇p̂b,ε(t) follows from [29, Theorem 3.10] and the two-scale convergence of 
∇v̂�ε from [29, Theorem 3.9]. �
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Moreover, we need the two-scale convergence of the transformation coefficients, which are 
given by the following result.

Lemma 4.6. Let ψε and ψ0 be given by Assumption 2.1. Then,

�ε(t) → �0(t), �−1
ε (t) → �−1

0 (t), Jε(t) → J0(t), J
−1
ε (t) → J−1

0 (t),

Aε(t) → A0(t), εDxAε(t) → DyA0(t), εDxA
−1
ε (t) → DyA0(t)

strongly in the two-scale sense, for a.e. t ∈ S, where the strong two-scale convergence holds with 
respect to every Lp-norm for p ∈ (1, ∞) and A0 := J0�

−1
0 .

Proof. Using the results of [29], it remains to prove that εDxAε(t) → DyA0(t) and εDxA
−1
ε (t)

→ DyA
−1
0 (t) strongly in the two-scale sense. Therefore, we note that εDx�ε(t) = εDx∇ψ�

ε (t)

two-scale converges strongly to Dy�0(t) = Dy∇yψ
�
0 (t) by Assumption 2.1.

We rewrite DxAε(t) into the sum of polynomials like in the proof of Lemma 3.4. Then, we 
pass to the limit ε → 0 using the two-scale convergence of εDx�ε(t) and �ε(t).

By the same argumentation, we obtain the strong two-scale convergence of εDxJε(t) to 
DyJ0(t). Then, we rewrite A−1

ε (t) = J−1
ε (t)�ε(t). Using the quotient rule and the previously 

proven two-scale convergences, we obtain the strong two-scale convergence of εDxA
−1
ε (t) to 

DyA
−1
0 (t). �

4.2. Homogenisation of the transformed Stokes equations

Theorem 4.7. Let ŵε and q̂ε be the solution of (7). Let Q̂ε be the extension of q̂ε as defined 
in Lemma 4.8 and ˜̂wε ∈ Lps (S; H 1(�)) be the extension of ŵε by 0 on � \ �ε . Then, ˜̂wε(t)

two-scale converges to ŵ0(t) and Q̂ε(t) converges strongly in L2(�) to q̂(t), for a.e. t ∈ S, 
where (ŵ0, q̂, q̂1) ∈ Lps (S; L2(�;H 1

�#(Y
∗)N )) × Lps (S; H 1

0 (�)) × Lps (S; L2(�; L2
0(Y

∗))) is 
the unique solution of (30).

In order to pass to the limit ε → 0 in (7a), we test it by A−1
ε (t)ϕ and obtain

(ε2νAε(t)êε,t (ŵε(t)),∇(A−1
ε (t)ϕ))�ε − (Q̂ε(t),div(ϕ))�ε

= (��
ε (t)f̂ε(t) − ∇p̂b,ε, ϕ)�ε − (ε2νAε(t)êε,t (v̂�ε (t)),∇(A−1

ε (t)ϕ))�ε . (31)

Since A−1
ε (t) is invertible (7a) can be replaced by (31).

First, we prove the strong convergence of Q̂ε(t). Thereto, we transfer the argumentation of 
[6] on our weak form with the different function spaces.

Lemma 4.8. Let q̂ε be the second part of the solution of (7) and Q̂ε be the extension of q̂ε on �
defined by

Q̂ε(t, x) :=
⎧⎨⎩q̂ε(t, x) if x ∈ �ε,

1
|εY ∗|

∫
k+εY ∗

q̂ε(t, x) if x ∈ k + εY s for k ∈ Iε.
(32)
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Then, for a.e. t ∈ S, there exists q̂(t) ∈ L2(�) and a subsequence of Q̂ε(t) which converges 
strongly in L2(�) to q(t).

Proof. Using the restriction operator from Lemma 3.11, we define Fε(t) ∈ (H 1(�)N )′ by

〈Fε(t), ϕ〉H 1(�)′,H 1(�) :=
∫
�ε

q̂ε(t, x)div(Rεϕ(x))dx. (33)

From (31), we obtain ∫
�

q̂ε(t)div(Rεϕ)dx = (ε2νAε(t)2êε,t (ŵε(t)),∇(A−1
ε (t)Rεϕ))�ε

−(��
ε (t)f̂ε(t) − ∇p̂b,ε(t),Rεϕ)�ε − (ε2νAε(t)2êε,t (v̂�ε (t)),∇(A−1

ε (t)Rεϕ))�ε .

Thus, we can estimate Fε(t) using the estimates of ε∇ŵε(t) (cf. (9)), the coefficients 
(cf. Lemma 3.4) and the data (cf. Assumption 2.3) as well as the product rule by

|〈Fε(t), ϕ〉H 1(�)′,H 1(�)| ≤ Cε

∥∥∥∇(A−1
ε (t)Rεϕ)

∥∥∥
�ε

+ C ‖Rεϕ‖�ε
+ ε2

∥∥∥∇(A−1
ε (t)Rεϕ)

∥∥∥
�ε

≤ C(ε + ε2)‖∇Rεϕ‖�ε
+ C(1 + ε)‖Rεϕ‖�ε

.

Then, the estimates of Lemma 3.11 imply, for ε ≤ 1,

|〈Fε(t), ϕ〉H 1(�)′,H 1(�)| ≤ C(‖ϕ‖� + ε ‖∇ϕ‖�) (34)

and in particular ‖Fε(t)‖H 1(�)′ ≤ C.
Because div(Rεϕ) = 0 if div(ϕ) = 0, we obtain

〈Fε(t), ϕ〉H 1(�)′,H 1(�) =
∫
�ε

q̂ε(t, x)div(Rεϕ(x))dx =
∫
�ε

q̂ε(t, x)div(ϕ(x))dx = 0

for every ϕ ∈ H 1(�) with div(ϕ) = 0. Since div has closed range (cf. Lemma 3.10), the closed-
range theorem implies that there exists Q̂ε(t) ∈ L2(�) such that∫

�

Q̂ε(t)div(ϕ)dx = 〈Fε(t), ϕ〉H 1(�)′,H 1(�) =
∫
�ε

q̂ε(t, x)div(Rεϕ(x))dx. (35)

Moreover, we obtain the uniform boundedness of 
∥∥∥Q̂ε(t)

∥∥∥
L2(�)

with Lemma 3.12 and (34) by

∥∥∥Q̂ε(t)

∥∥∥2

L2(�)
=

∫
�

Q̂ε(t)div(div−1(Q̂ε(t))) = |〈Fε(t),div−1(Q̂ε(t))〉H 1(�)′,H 1(�)|

≤ C
(∥∥∥div−1(Q̂ε(t))

∥∥∥
�

+ ε

∥∥∥∇ div−1(Q̂ε(t))

∥∥∥
�

)
≤ C

∥∥∥Q̂ε(t)

∥∥∥
L2(�)

. (36)
192



D. Wiedemann and M.A. Peter Journal of Differential Equations 396 (2024) 172–209
In order to identify Q̂ε(t) with q̂ε(t) on �ε , we note that Rε(ϕ̃) = ϕ for every ϕ ∈ H 1
�ε

(�ε), 
where ϕ̃ is the extension of ϕ by 0 to �. Then, we obtain from (35)∫

�

Q̂ε(t)div(ϕ̃)dx =
∫
�ε

Q̂ε(t)div(ϕ)dx =
∫
�ε

q̂ε(t)div(ϕ)dx.

Lemma 3.12 gives the existence of a function ϕ ∈ H 1
�ε

(�ε) with div(ϕ) = Q̂ε(t) − q̂ε(t). Testing 

with this ϕ implies Q̂ε(t) = q̂ε(t) on �ε .
In order to show the strong convergence of Q̂ε(t), we note that the boundedness of Q̂ε(t)

in L2(�) allows us to pass to a subsequence, which we still denote by Q̂ε(t), such that Q̂ε(t)

converges weakly to a function q̂(t) ∈ L2(�). For the same subsequence ϕε = div−1(Q̂ε(t))

converges weakly to ϕ = div−1(q̂(t)) in H 1(�), where div−1 is given by Lemma 3.10. Then, we 
obtain from (35) and (34)

(Q̂ε(t),div(ϕε − ϕ))�ε ≤ C(‖ϕε − ϕ‖� + ε ‖∇(ϕε − ϕ)‖�).

The compact embedding of H 1(�) into L2(�) implies that ‖ϕε − ϕ‖� → 0 and since 
‖∇(ϕε − ϕ)‖� is bounded, we obtain

(Q̂ε(t), Q̂ε(t) − q̂(t)) = (Q̂ε(t),div(ϕε − ϕ))�ε → 0.

By using additionally the weak convergence of Q̂ε(t) to q̂(t), we obtain∥∥∥Q̂ε(t) − q̂(t)

∥∥∥2

�
= (Q̂ε(t), Q̂ε(t) − q̂(t))� − (q̂(t), Q̂ε(t) − q̂(t))� → 0,

which shows the strong convergence of Q̂ε(t).
The explicit formula (32) of Q̂ε(t) can be directly transferred from [6]. �
In the second step, we pass to the limit ε → 0 in the divergence condition (7b) and derive the 

microscopic incompressibility condition (30b) and the macroscopic inhomogeneous divergence 
condition (30c).

Lemma 4.9. Let ŵε ∈ Lps (S; H 1
�ε

(�ε)
N ) be the first part of the solution of (7) and ˜̂wε de-

fined as in Theorem 4.7. Then, there exists, for a.e. t ∈ S, a subsequence ˜̂wε(t) and ŵ0(t) ∈
L2(�; H 1

�#(Y
∗)N ) such that, for this subsequence, ˜̂wε(t) and ε∇˜̂wε(t) two-scale converge to 

ŵ0(t) and ∇yŵ0(t), respectively. Furthermore, ŵ0(t) satisfies (30b) and (30c).

Proof. The uniform estimate (9) implies that ˜̂wε(t) and ε∇˜̂wε(t) are bounded as well. Then, 
by a standard two-scale compactness result there exists, for a.e. t ∈ S, a subsequence and a 
function ŵ0(t) ∈ L2(�; H 1

# (Y )N ) such that for this subsequence ˜̂wε(t) → w0(t) and ε∇˜̂wε(t) →
∇yw0(t) in the two-scale sense. Using arbitrary two-scale test functions ϕ ∈ C(�; C∞

# (Y )N )

which are 0 on � × Y ∗ shows w0(t) = 0 in � × Y s , which means w0(t) ∈ L2(�; H 1
�#(Y

∗)N ).
By applying the estimates of Lemma 3.4 and Lemma 3.13 on the inhomogeneous divergence 

condition (7b), we obtain
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∥∥div(Aε(t)ŵε(t))
∥∥

L2(�ε)
= ∥∥div(Aε(t)v̂�ε (t))

∥∥
L2(�ε))

≤ C(t)

for a.e. t ∈ S for C ∈ Lps (S). Using this estimate, the Y -periodicity of ŵ0, A0(t) and the two-
scale test functions as well as the strong two-scale convergence of the coefficients given by 
Lemma 4.6, we can conclude for θ ∈ D(�; C∞

# (Y )) and for a.e. t ∈ S:∫
�

∫
Y ∗

divy(A0(t, x, y)ŵ0(t, x, y))θ(x, y)dy dx

= −
∫
�

∫
Y ∗

A0(t, x, y)ŵ0(t, x, y) · ∇yθ(x, y)dy dx

= − lim
ε→0

∫
�ε

Aε(t, x)ŵε(t, x) ·
(

ε∇xθ
(
x,

x

ε

)
+ ∇yθ

(
x,

x

ε

))
dx

= lim
ε→0

∫
�ε

ε div(Aε(t, x)ŵε(t, x))θ
(
x,

x

ε

)
dx = 0.

By the density of D(�; C∞
# (Y )) in L2(�; L2(Y ∗)), we obtain the microscopic incompressibility 

condition (30b).
In order to derive the macroscopic inhomogeneous divergence condition, we test (7b) with 

θ ∈ D(�) and pass to the limit ε → 0. Using the two-scale convergence of Aε(t) and v̂�ε (t) and 
their derivatives yields ∫

�

divx

(∫
Y ∗

A0(t, x, y)ŵ0(t, x, y)dy
)
θ(x)dx

= −
∫
�

∫
Y ∗

A0(t, x, y)ŵ0(t, x, y)dy · ∇xθ(x)dx

= − lim
ε→0

∫
�ε

Aε(t, x, y)ŵε(t, x) · ∇xθ(x)dx

= lim
ε→0

∫
�ε

divx(Aε(t, x)ŵε(t, x))θ(x)dx

= − lim
ε→0

∫
�ε

divx(Aε(t, x)v̂�ε (t, x))θ(x)dx

= −
∫
�

∫
Y ∗

divy

(
A0(t, x, y)v̂�(t, x, y)

)
dy θ(x)dx.

By the density of D(�) in H 1
0 (�), we can deduce the macroscopic inhomogeneous divergence 

condition (30c). �
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In the third step, we can pass to the limit ε → 0 in (31).

Proof of Theorem 4.7. Employing Lemma 4.9 and Lemma 4.8, there exists, for a.e. t ∈ S, a 
subsequence, q̂(t) ∈ L2(�) and ŵ(t) ∈ L2(�;H 1

�#(Y
∗)N ) such that, for this subsequence, Q̂ε(t)

converges strongly to q̂(t), w̃ε(t) and ε∇w̃ε(t) two-scale converge weakly to ŵ0(t) and ∇yŵ0(t), 
respectively. We consider this subsequence in the following.

Let ϕ ∈ C∞(�; C∞
�#(Y

∗)N ) such that divy(ϕ) = 0. Then, we test (31) with ϕ(x, x
ε
) and pass 

to the limit ε → 0, which yields∫
�

∫
Y ∗

νA0(t, x, y)2êy,t (ŵ0(t, x, y)) : ∇y(A
−1
0 (t, x, y)ϕ(x, y))dy dx

−
∫
�

∫
Y ∗

q̂(t, x)divx(ϕ(x, y))dy dx =
∫
�

∫
Y ∗

��
0 (t, x, y)f (t, x) · ϕ(x, y)dy dx

−
∫
�

∫
Y ∗

(∇xpb(t, x) + ∇y p̂b,1(t, x, y)) · ϕ(x, y)dy dx

(37)

for any ϕ ∈ C∞(�; C∞
�#(Y

∗))N such that divy(ϕ) = 0. By density, (37) holds for every ϕ ∈
C∞(�; H 1

�#(Y
∗)N ) with divy(ϕ) = 0.

Moreover, the following integration by parts shows that we can omit ∇yp̂b,1(t)∫
�

∫
Y ∗

∇y p̂b,1(t, x, y) · ϕ(x, y)dy dx = −
∫
�

∫
Y ∗

p̂b,1(t)divy(ϕ(x, y))dy dx = 0.

The boundary term in this integration by parts vanishes since p̂b,1(t) is Y -periodic. Now, we 
choose ϕ = φφi in (37), for φ ∈ C∞(�) and φi ∈ H 1

�#(Y
∗)N , with φi = 0 in Y s, divy(φi) = 0

and 
∫
Y ∗

φi(y) = ei for i ∈ {1, . . . , N}, which can be constructed by the Stokes operator similar to 

the proof of [46, Lemma 2.10]. We obtain∫
�

−q̂(t, x)∂xi
φ(x) − Gi(t, x)φ(x)dx = 0

for

Gi(t, x) = −
∫
Y ∗

νA0(t, x, y)2êy,t (ŵ0(t, x, y)) : ∇y(A
−1
0 (t, x, y)φi(y))dy

+
∫
�

∫
Y ∗

(��
0 (t, x, y)f (t, x) − ∇xpb(t, x)) · φi(y)dy.

Since Gi(t) ∈ L2(�) it follows that q̂(t) ∈ H 1
0 (�). Thus, in (37), we can integrate the pressure 

term by parts and by a density argument the resulting equation holds for all test function in 
ϕ ∈ L2(�;H 1 (Y ∗)N ) with divy(ϕ) = 0.
�#
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Employing the Bogovskiǐ-operator on Y ∗, we obtain that divy : L2(�;H 1
�#(Y

∗)N ) →
L2(�; L2

0(Y
∗)) is surjective because L2(�;H 1

�#(Y
∗)) ⊃ L2(�; H 1

0 (Y ∗)). Then, the closed-range 
theorem gives q̂1(t) ∈ L2(�; L2

0(Y
∗)) such that∫

�

∫
Y ∗

νA0(t, x, y)2êy,t (ŵ0(t, x, y)) : ∇y(A
−1
0 (t, x, y)ϕ(x, y))dy dx

+
∫
�

∫
Y ∗

∇x q̂(t, x) · ϕ(x, y) − q̂1(t, x, y)divy(ϕ(x, y))dy dx

=
∫
�

∫
Y ∗

(��
0 (t, x, y)f (t, x) − ∇xpb(t, x)) · ϕ(x, y)dy dx

(38)

for all ϕ ∈ L2(�;H 1
�#(Y

∗)N ). Since A−1
0 (t) is invertible (38) is equivalent to∫

�

∫
Y ∗

νA0(t, x, y)2êy,t (ŵ0(t, x, y)) : ∇yϕ(x, y)dy dx

+
∫
�

∫
Y ∗

A�
0 (t, x, y)∇x q̂(t, x) · ϕ(x, y) − q̂1(t)divy(A0(t, x, y)ϕ(x, y))dy dx

=
∫
�

∫
Y ∗

(J0(t, x, y)f (t, x) − A�
0 (t, x, y)∇pb(t, x)) · ϕ(x, y)dy dx.

(39)

Furthermore, (30b)–(30c) follow from Lemma 4.9.
In order to simplify (39) to (30a), we show that the microscopic incompressibility condition 

(30b), the Y -periodicity and the zero boundary values of ϕ on � imply that∫
Y ∗

νA0(t, x, y)(�−�
0 (t, x, y)∇yŵ(t, x, y))� : ∇y ϕ̂(y)dy = 0 (40)

for all ϕ̂ ∈ H 1
�#(Y

∗)N and a.e. (t, x) ∈ S ×�. For fixed (t, x) ∈ S ×�, we transform the left-hand 
side of (40) in the actual two-scale coordinates by means of ψ−1

0 for a.e. x ∈ �, which yields∫
Y ∗

ν(∇yw(t, x, y))� : ∇yϕ(y)dy

=
∫

Y ∗
x (t)

νA0(t, x, y)(�−�
0 (t, x, y)∇yŵ(t, x, y))� : ∇y ϕ̂(y)dy,

(41)

for w0(t, x, y) = ŵ0(t, x, ψ−1
0 (t, x, y)) and ϕ(x) = ϕ̂(x, ψ0(t, x, y)). Transforming the micro-

scopic incompressibility condition (30b) shows that w0 is divergence-free

divy(w0(t, x, y)) = 0. (42)
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We note that the divergence-free smooth functions {u ∈ C∞
�(t,x)#(Y

∗
x (t))N | divy(u) = 0} are 

dense in the divergence-free H 1-functions {u ∈ H 1
�(t,x)#(Y

∗
x (t))N | divy u = 0} with respect to the 

H 1-norm (see [45, Chapter III.4]). Thus, we can choose a sequence (un)n∈N in C∞
�(t,x)#(Y

∗
x (t))N

with divy(un) = 0, which converges to w0 with respect to the H 1(Y ∗
x (t))-norm. After integration 

by parts, we get∫
Y ∗

x (t)

(∇yw0(x, y))� : ∇yϕ(y)dy = lim
n→∞

∫
Y ∗

x (t)

∇y(un(y))� : ∇yϕ(y)dy

= − lim
n→∞

∫
Y ∗

x (t)

divy(∇y(un(y))�) · ϕ(y)dy = 0,

(43)

where the boundary integral from the integration by parts vanishes due to the zero boundary 
values of ϕ at �(t, x) and the Y -periodicity of w0 and ϕ. The last equality of (43) follows from

(divy(∇yun(y))�)i =
n∑

j=1

∂yj
((∇un(y))�)ji =

n∑
j=1

∂yj
∂yi

(un)j (y)

= ∂yi

n∑
j=1

∂yj
(un)j (y) = ∂yi

divy(un(y)) = 0.

Combining (41) and (43) shows (40) and, hence, (39) can be simplified to (30a).
Thus, we have shown that the limit ŵ0, q̂ solves (30). Since (30) has a unique solution 

(cf. Lemma 4.11), the convergence holds for the whole sequence. �
In order to show the existence and uniqueness of the solution of (30), we derive the following 

inf–sup estimate for the div-conditions.

Lemma 4.10. There exists a constant C ∈R such that

sup
v∈L2(�;H 1

�#(Y
∗)N )\{0}

(A0(t)v,∇xφ0)�×Y ∗ − (divy(A0(t)v),φ1)�×Y ∗

‖v‖L2(�;H 1
�#(Y

∗)) ‖(φ0, φ1)‖H 1
0 (�)×L2(�;L2

0#(Y
∗))

≥ β (44)

for a.e. t ∈ S and any (φ0, φ1) ∈ H 1
0 (�) × L2(�; L2

0#(Y
∗)).

Proof. Let (φ0, φ1) ∈ H 1
0 (�) × L2(�; L2

0(Y
∗)). From the Bogovskiǐ-operator, we obtain u ∈

L2(�;H 1
�#(Y

∗)N ) such that

divy(u) = φ1, ‖u‖L2(�;H 1
0 (Y ∗)) ≤ C ‖φ1‖L2(�;L2

0#(Y
∗))

for a constant C which only depends on � and Y ∗ and not on φ1.
We define the functions v1, . . . , vn ∈ H 1

�#(Y
∗)N as the solutions of the following Stokes prob-

lems: Find (vi, pi) ∈ H 1 (Y ∗)N × L2(Y ∗) such that
�# 0
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(∇vi,∇ϕ)Y ∗ − (pi,div(ϕ))Y ∗ = (ei, ϕ)Y ∗ ,

(div(vi),φ)Y ∗ = 0

for any (ϕ, φ) ∈ H 1
�#(Y

∗)N × L2
0(�). Choosing ϕ = vj gives

A :=

⎛⎜⎜⎜⎝
...

...∫
Y ∗

v1(y)dy · · · ∫
Y ∗

vn(y)dy

...
...

⎞⎟⎟⎟⎠ =
⎛⎜⎝ (∇v1,∇v1)Y ∗ · · · (∇v1,∇vn)Y ∗

...
...

(∇vn,∇v1)Y ∗ · · · (∇vn,∇vn)Y ∗

⎞⎟⎠ . (45)

Since A is the permeability tensor from the usual Darcy law, it is symmetric and positive definite 
(see for instance [4, Chapter 7, Proposition 2.2]). This guarantees that the following boundary-
value problem is well-defined: Find a solution w ∈ H 1

0 (�) such that

(A∇w,∇ϕ)� = (∇φ0,∇ϕ)� +
(∫
Y ∗

u(·, y)dy,∇ϕ
)

�
(46)

for any ϕ ∈ H 1
0 (�).

By the Theorem of Lax–Milgram, we obtain unique solutions w ∈ H 1
0 (�), which can be 

estimated by

‖w‖H 1
0 (�) ≤ C(‖φ0‖H 1

0 (�) + ‖u‖�×Y ∗).

We define v̄(x, y) := A−1
0 (t, x, y) 

(∑n
i=1 vi(y) ∂xi

w(x) − u(x, y)
)

and estimate

‖v̄‖L2(�;H 1
�#(Y

∗)) ≤ C(‖w‖H 1
0 (�) + ‖u‖L2(�;H 1

�#(Y
∗)))

≤ C(‖φ0‖H 1
0 (�) + ‖φ1‖L2(�;L2

0#(Y
∗)))

for C ∈ R independent of t . Then, we obtain

(A0(t)v̄,∇φ0)�×Y ∗ =
(
A∇w −

∫
Y ∗

u(·, y)dy,∇φ0

)
�

= (∇φ0,∇φ0)�,

divy(A0(t)v̄) =
n∑

i=1

divy(vi(y))∂xi
w(x) − divy(u(x, y)) = −φ1(x).

Using this explicitly constructed v̄, we can deduce (44) for C > 0, which is independent of t . �
Lemma 4.11. There exists a unique solution (ŵ0, q̂, q̂1) ∈ Lp(S; L2(�;H 1

�#(Y
∗)N )) × Lp(S;

H 1(�)) × Lp(S; L2(�; L2 (Y ∗))) of (30).
0 0#
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Proof. Note that the existence of a solution for a.e. t ∈ S is, up to the measurability with re-
spect to time, already secured by the homogenisation process. However, it remains to prove the 
uniqueness. We rewrite (30) in the setting of the generic saddle-point formulation of Lemma 3.2. 
We define the following time-dependent bilinear forms:

at : L2(�;H 1
�#(Y

∗)N ) × L2(�;H 1
�#(Y

∗)N ) → R,

(v,w) �→ (νA0(t)�
−�
0 (t)∇yv,∇yw)�×Y ∗ , (47)

bt : L2(�;H 1
�#(Y

∗)N ) × (H 1
0 (�) × L2(�;L2

0(Y
∗))) →R,

(v, (p0,p1)) �→ (A�
0 (t)∇xp0, v)�×Y ∗ − (p1,divy(A0(t)v))�×Y ∗ . (48)

Using the time-independent boundedness of the transformation ψ0(t), the boundedness of 
J0 ≥ cJ from below and the Poincaré inequality for H 1

�#(Y
∗), we obtain

at (v, v) = (νJ0(t)�
−�
0 (t)∇yv,�−�

0 (t)∇yv)�×Y ∗ ≥ νcJ

∥∥∥�−�
0 (t)∇yv

∥∥∥2

L2(�;H 1
�#(Y

∗))

≥ νcJ

∥∥∥��
0

∥∥∥−2

L∞(S×�×Y ∗)

∥∥∇yv
∥∥2

�×Y ∗ ≥ C ‖v‖2
L2(�;H 1

�#(Y
∗)) ,

|at (v,w)| ≤
∥∥∥√

J0�
−�
0

∥∥∥2

L∞(S×�×Y ∗)

∥∥∇yv
∥∥

�×Y ∗
∥∥∇yw

∥∥
�×Y ∗

≤ C ‖w‖L2(�;H 1
�#(Y

∗)) ‖v‖L2(�;H 1
�#(Y

∗))

for any v, w ∈ L2(�;H 1
�#(Y

∗)N ) for a time-independent constant C.
Let (v, (p0, p1)) ∈ L2(�;H 1

�#(Y
∗)N ) × (H 1

0 (�) × L2(�; L2
0#(Y

∗))). Using the product rule, 
the Poincaré inequalities for H 1

0 (�) and H 1
�#(Y

∗) as well as the Piola identity, we get

|bt (v, (p0,p1))| ≤ |(A�
0 (t)∇xp0, v)�×Y ∗ | + |(p1,divy(A

�
0 (t)v))�×Y ∗ |

= |(A�
0 (t)∇xp0, v)�×Y ∗ | + |(p1,A

�
0 (t) : ∇v))�×Y ∗ |

≤ C ‖∇p0‖� ‖v‖�×Y ∗ + C ‖p1‖�×Y ∗
∥∥∇yv

∥∥
�×Y ∗

≤ C(‖p0‖H 1
0 (�) + ‖p1‖�×Y ∗)‖v‖L2(�;H 1

�#(Y
∗))

for a time-independent constant C.
From Lemma 4.10, we get a time-independent inf–sup constant for bt .
Since the right-hand sides of (30) can be bounded pointwise for a.e. t ∈ S by C ∈ Lps (S), 

we can infer for a.e. t ∈ S with Lemma 3.2 the existence and uniqueness of a solution 
(ŵ(t), q̂(t), q̂1(t)) ∈ L2(�;H 1

�#(Y
∗)N ) × H 1

0 (�) × L2(�; L2
0(Y

∗)) such that∥∥ŵ(t)
∥∥

L2(�;H 1
�#(Y

∗)) + ∥∥q̂(t)
∥∥

H 1(�)
+ ∥∥q̂1(t)

∥∥
L2(�;L2

0#(Y
∗)) ≤ C(t) (49)

for C ∈ Lp(S).
Using the same argumentation as in the proof of Theorem 3.1, we obtain additionally the 

measurability of (ŵ0, q̂, q̂1) with respect to time. �
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5. The limit problem in the evolving domain

5.1. Back-transformation of the limit problem

We transform the two-pressure Stokes problem (30) from the cylindrical substitute domain 
into the actual two-scale domain. The result is the two-pressure Stokes problem (53), which does 
not depend on the transformation ψ0. The two-scale transformation method (cf. [29]) transforms 
the two-scale convergence results from the substitute problem (cf. Theorem 4.7) into two-scale 
convergence results for the untransformed setting (cf. Theorem 5.1).

Moreover, the homogenisation of the Stokes problem yields not only the two-scale conver-
gence for the pressure but a strong convergence for an appropriate extension of it (cf. Theo-
rem 4.8). Using the two-scale transformation method, we can transform the strong convergence 
of Q̂ε back and obtain the strong convergence for the back-transformed extension of the pressure 
Q′

ε = Q̂ε ◦ ψ−1
ε (cf. Theorem 5.1). Indeed, Q′

ε is some extension of the pressure of the origi-
nal problem but this extension is not transformation-independent. In particular, if ψε(k + εY ) =
k+εY for k ∈ Iε , it can be easily seen that Q′

ε is not constant on ψε(k+εY s) = (k+εY ) ∩�s
ε(t). 

Nevertheless, it can be used in order to show the strong convergence for the extension of the pres-
sure Qε that we have chosen in Theorem 5.4. This extension is the transformation-independent 
counterpart of the extension of Lemma 4.8 for the untransformed setting.

In the last step, we separate the y-dependency in the two-pressure Stokes problem (53) and 
derive the Darcy law for evolving microstructure (4).

Theorem 5.1. Let (wε, qε) ∈ Lps (S; H 1
�ε(t)

(�ε(t))
N ) × Lps (S; L2(�ε(t)) be the solution of (5)

and let w̃ε ∈ Lps (S; H 1(�)N ) be the extensions by 0 and Q′
ε ∈ Lps (S; L2(�)) the extension of 

qε(t) defined by Q′
ε(t, x) := Q̂ε(t, ψε(t, x)), where Q̂ε is given by (32). Then, for a.e. t ∈ S,

w̃ε(t) → w̃0(t) two-scale converge weakly , (50)

ε∇̃wε(t) → ∇yw̃0(t) two-scale converge weakly , (51)

Q′
ε(t) → q(t) converges strongly in L2(�), (52)

where w̃0 is the extension of w0 by 0 on S × � × Y and (w0, q, q1) the solution of (53).

The transformation-independent two-pressure Stokes problem in the actual two-scale do-
main is given by: Find (w0, q, q1) ∈ Lps (S; L2(�; H 1

�(t,x)
(Y ∗

x (t))N )) × Lps (S; H 1
0 (�)) ×

Lps (S; L2(�;L2
0(Y

∗
x (t)))) such that∫

�

∫
Y ∗

x (t)

ν∇yw0(t, x, y) : ∇yϕ(x, y) + ∇xq(t, x) · ϕ(x, y)dy dx

−
∫
�

∫
Y ∗

x (t)

q1(t, x, y)div(ϕ(x, y))dy dx =
∫
�

∫
Y ∗

x (t)

(f (t, x) − ∇xpb(t, x)) · ϕ(x, y)dy dx,

(53a)

∫
�

∫
Y ∗

x (t)

divy(w0(t, x, y))φ1(x, y)dy dx = 0,
(53b)
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∫
�

divx

( ∫
Y ∗

x (t)

w0(t, x, y)dy
)

φ0(x)dx = −
∫
�

∫
Y ∗

x (t)

divy(v�(t, x, y))dy φ0(x)dx (53c)

for every (ϕ, φ0, φ1) ∈ L2(�; H 1
�(t,x)#(Y

∗
x (t))N ) × H 1

0 (�) × L2(�; L2
0(Y

∗
x (t))).

Proof. Let t ∈ S be fixed and let w̃ε, Q′
ε be defined as in Theorem 5.1. Then, we obtain from 

Lemma 2.4 that w̃ε(t, ψε(t, x)) = ˜̂wε(t, x) for a.e. x ∈ �ε . The two-scale transformation rule 
(cf. Lemma 4.4) shows that w̃ε(t) and ∇̃wε(t) two-scale converge to w̃0(t) with w̃0(t, x, y) =
ŵ0(t, x, ψ−1

0 (t, x, y)) and ∇yw̃0(t, x, y), respectively, where ŵ0 is the two-scale limit of ˜̂wε

given by Theorem 4.7. Moreover, the strong convergence of Q̂ε(t) to q̂(t) in L2(�) gives the 
strong two-scale convergence of Q̂ε(t). Lemma 4.4 transforms this into the strong two-scale 
convergence of Q′

ε(t) to q̂(t) = q(t) ∈ L2(�) and, since q(t) is independent of y, it implies the 
strong convergence in L2(�).

It remains to derive the transformation-independent limit problem (53) in its actual co-
ordinates. We test (30a) with ϕ̂(x, y) = ϕ(x, ψ0(t, x, y)) and transform the Y ∗-integral with 
ψ−1

0 (t, x, ·). Then, we obtain∫
�

∫
Y ∗

x (t)

ν∇yw0(t, x, y) : ∇yϕ(x, y)dy dx

+
∫
�

∫
Y ∗

x (t)

��
0 (t, x,ψ−1

0 (t, x, y))(∇xq(t, x) + ∇xpb(t, x)) · ϕ(x, y)dy dx

−
∫
�

∫
Y ∗

x (t)

q̂1(t, x,ψ−1
0 (t, x, y))div(ϕ(x, y))dy dx =

∫
�

∫
Y ∗

x (t)

f (t, x) · ϕ(x, y)dy dx.

(54)

Note that the transformation coefficients vanish in front of the y-derivatives because of the prod-
uct rule. In order to remove them in front of the x-gradient, we note

�−�
0 (t, x,ψ−1

0 (t, x, y)) = ∇yψ
−1
0 (t, x, y) = 1+ ∇yψ̌

−1
0 (t, x, y). (55)

Thus, we can rewrite the macroscopic pressure terms and obtain after integration by parts∫
�

∫
Y ∗

x (t)

�−�
0 (t, x,ψ−1

0 (t, x, y))(∇xq(t, x) + ∇xpb(t, x)) · ϕ(x, y)dy dx

=
∫
�

∫
Y ∗

x (t)

(∇xq(t, x) + ∇xpb(t, x)) · ϕ(x, y)dy dx

+
∫
�

∫
Y ∗

x (t)

∇yψ̌
−1
0 (t, x, y)(∇xq(t, x) + ∇xpb(t, x)) · ϕ(x, y)dy dx (56)

=
∫
�

∫
∗

(∇xq(t, x) + ∇xpb(t, x)) · ϕ(x, y)dy dx
Yx (t)
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−
∫
�

∫
Y ∗

x (t)

ψ̌−1
0 (t, x, y)(∇xq(t, x) + ∇xpb(t, x))divy(ϕ(x, y))dy dx.

The boundary integral, which arises in the integration by parts in (56), vanishes on ∂Y ∗ ∩ ∂Y

because all the terms are Y -periodic and on ∂Y ∗ \ ∂Y because ϕ = 0 there. As the last term of 
(56) has only a microscopic contribution, we can add it to the microscopic pressure. We define

q1(t, x, y) := q̂1(t, x,ψ−1
0 (t, x, y)) + ψ̌−1

0 (t, x, y) · (∇xq(t, x) + ∇xpb(t, x))

so that the pressure terms of (54) transform to the pressure terms in (53a).
By a similar transformation of (30a) and (30b), we get∫

�

∫
Y ∗

x (t)

divy(w0(t, x, y))φ1(x, y)dy dx = 0, (57)

which shows (53b) and∫
�

divx

( ∫
Y ∗

x (t)

�−�
0 (t, x,ψ−1

0 (t, x, y))w0(t, x, y)dy
)
φ0(x)dx

= −
∫
�

∫
Y ∗

x (t)

divy(v�(t, x, y))dy φ0(x)dx.

(58)

Using again (55) and integration by parts, we can rewrite (58)

−
∫
�

divx

( ∫
Y ∗

x (t)

�−�
0 (t, x,ψ−1

0 (t, x, y))w0(t, x, y)dy
)
ϕ(x)dx

= −
∫
�

divx

(∫
�

∫
Y ∗

x (t)

w0(t, x, y) + ψ̌−1
0 (t, x, y)divy(w0(t, x, y))dy

)
ϕ(x)dx.

(59)

The second summand on the right-hand side of (59) vanishes because of the microscopic incom-
pressibility condition (57). Thus, we have rewritten the left-hand side of (58) into the left-hand 
side of (53c). �

For the case of a no-slip boundary condition at the interface �ε , in which v�ε (t, x) =
ψε(t, ψ−1

ε (t, x)) models the boundary deformation, we can simplify the right-hand side of the 
macroscopic inhomogeneous divergence condition (53c) in the two-pressure Stokes system.

Corollary 5.2. If v�ε is the velocity of the boundary deformation, i.e. v�ε (t, x) = ∂tψε(t,

ψ−1
ε (t, x, y)), the right-hand side of (30c), and equivalently the right-hand side of (53c), can 

be rewritten as

−
∫ ∫

∗
divy(A0(t)v̂�(t, x, y))dy ϕ0(x)dx = −

∫
∂t |Y ∗

x (t)|ϕ0(x)dx (60)
� Y �
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Proof. First, we note that v�ε (t, x) = ∂tψε(t, ψ−1
ε (t, x)) yields v̂�ε = ∂tψε , which implies v̂� =

∂tψ0. Thus, we can rewrite the right-hand side of (53c) by

−
∫
�

∫
Y ∗

divy(A0(t)v̂�(t, x, y))dy ϕ0(x)dx = −
∫
�

∫
Y ∗

divy(A0(t)∂tψ0(t, x, y))dy ϕ0(x)dx.

The Piola identity implies divy(J0�
−1
0 ∂tψ0) = ∂tJ0, which gives

−
∫
�

∫
Y ∗

divy(A0(t)∂tψ0(t, x, y))dy ϕ0(x)dx = −
∫
�

∫
Y ∗

∂tJ0(t, x, y)dy ϕ0(x)dx

= −
∫
�

∂t

∫
Y ∗

x (t)

dy ϕ0(x)dx = −
∫
�

∂t |Y ∗
x (t)|ϕ0(x)dx. �

In the next step, we consider the limit ε → 0 of the actual fluid velocity vε, i.e. we add the 
Dirichlet boundary values to wε. We extend vε on � by 0, which is not regularity preserving but 
conforms with the physical model that no fluid flow happens in the solid phase.

Corollary 5.3. Let vε := wε −v�ε ∈ Lps (S; H 1
�ε(t)

(�ε(t))
N ), where wε is the solution of (5). Let 

ṽε and ∇̃vε be the extension by zero on � × Y . Then, ṽε(t) and ε∇̃vε(t) two-scale converge to 
the extension by 0 of w0(t) and ∇yw0(t), respectively, where w0 is the solution of (53).

Proof. We note that ṽε(t) − w̃ε(t) = χ�ε(t)v�ε and ∇̃vε(t) − ∇̃wε(t) = χ�ε(t)∇v�ε . Since ∥∥v�ε (t)
∥∥

�
+ ε

∥∥∇v�ε (t)
∥∥

�
≤ εC(t) for a.e. t ∈ S for C ∈ Lps (S), we can identify the two-scale 

limit of ṽε and ε∇̃vε with the two-scale limits of w̃ε and ε∇̃wε , respectively, which are given by 
Theorem 5.1 gives the desired two-scale convergence. �
Theorem 5.4. Assume that |k + εY ∩ �ε(t)| ≥ c for every ε > 0 and k ∈ Iε with a time- and 
space-independent constant c > 0. Let

Qε(t, x) :=
⎧⎨⎩qε(t, x) if x ∈ �ε(t),

1
|k+εY∩�ε(t)|

∫
k+εY∩�ε(t)

qε(t, z)dz if x ∈ k + εY ∩ �s
ε(t) for k ∈ Iε,

(61)

where qε is the second part of the solution of (5). Then, Theorem 5.1 holds for Qε(t) instead of 
Q′

ε(t), i.e. for a.e. t ∈ S, Qε(t) converges strongly in L2(�) to q(t), where q ∈ Lps (S; H 1(�))

is the second part of the solution of (53).

Proof. In the following, we use the unfolding operator Tε : Lp(�) → Lp(� × Y), which was 

introduced in [49,50], see also [51]. We use the notation [x]Y =
N∑

i=1
ei�xi� for x ∈RN and ei the 

Euclidean unit vectors. It allows us to translate between strong two-scale convergence and strong 
convergence in Lp(� × Y) (cf. [29]). Thus, Qε(t) two-scale converges strongly to q(t) if and 
only if Tε(Qε(t)) converges strongly in L2(� × Y) to q(t). Let q̃ε(t) be the extension of qε(t)

by 0 to �. With the definition of Tε, we can rewrite
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Tε(Qε(t))(x, y) =
⎧⎨⎩

qε(t, ε
[

x
ε

]
Y

+ εy) if ε
[

x
ε

]
Y

+ εy ∈ �ε(t),
1∣∣�ε(t)∩(

ε
[

x
ε

]
Y
+εY

)∣∣ ∫
ε
[

x
ε

]
Y
+εY

q̃ε(t, z)dz if ε
[

x
ε

]
Y

+ εy ∈ �s
ε(t)

= Tε (̃qε(t))(x, y) + Tε(χ�s
ε(t)

)(x, y)
1∣∣�ε(t) ∩ (

ε
[

x
ε

]
Y

+ εY
)∣∣∫

Y

Tε(q̃ε(t))(x, z)dz

= Tε (̃qε(t))(x, y) + Tε(χ�s
ε(t)

)(x, y)
1∫

Y

Tε(χ�ε(t))(x, z)dz∫
Y

Tε(q̃ε(t))(x, z)dz. (62)

In order to pass to the limit ε → 0, we rewrite Tε (̃qε(t)) = Tε(χ�ε(t))Tε(Q
′
ε(t)). We translate 

the strong two-scale converges of Q′
ε(t) and χ�ε(t) in

Tε(Q
′
ε(t)) → q(t) in L2(� × Y), (63)

Tε(χ�ε(t)) → χY ∗
x (t) in Lp(� × Y) for every p ∈ (1,∞), (64)

Due to the fact that 
∥∥Tε(χ�ε(t))

∥∥
L∞(�×Y)

is uniformly bounded, we can combine (63)–(64) to

Tε (̃qε(t)) = Tε(χ�ε(t))Tε(Q
′
ε(t)) → χY ∗

x (t)q(t) in L2(� × Y). (65)

Using the Hölder inequality on (64) and (65) with respect to Y yields∫
Y

Tε(χ�ε(t))(x, y)dy →
∫
Y

χY ∗
x (t)(y)(x, y)dy in Lp(�) for every p ∈ (1,∞), (66)

∫
Y

Tε (̃qε(t))(x, y)dy →
∫
Y

χY ∗
x (t)(y)dy q(t) in L2(�). (67)

Since 
∫
Y

Tε(χ�ε(t))(·x, z) dz ≥ c > 0 is uniformly bounded from below, (66) yields together with 

(67) ∫
Y

Tε(q̃ε(t))(x, z)dz∫
Y

Tε(χ�ε(t))(x, z)dz
→

∫
Y

χY ∗
x (t)(z)dzq(t)∫

Y

χY ∗
x (t)(z)dz

= q(t) in L2(�). (68)

Moreover, (64) gives Tε(χ�s
ε(t)

) → χY s
x (t) in Lp(� × Y) for every p ∈ (1, ∞). Due to fact that ∥∥Tε(χ�s (t))

∥∥ ∞ is uniformly bounded, we obtain with (68)

ε L (�×Y )
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Tε(χ�s
ε(t)

)

∫
Y

Tε(q̃ε(t))(·x, z)dz∫
Y

Tε(χ�ε(t))(·x, z)dz
→ χY s

x (t)q(t) in L2(� × Y). (69)

By combining (62), (65) and (69), we can pass to the limit ε → 0 for Tε(Qε(t)) and obtain:

Tε(Qε(t)) → χY ∗
x (t)q(t) + χY s

x (t)q(t) = q(t) in L2(� × Y). (70)

Therefore, Qε(t) two-scale converges strongly to q(t) and, since q(t) is independent of y, Qε(t)

converges strongly in L2(�). �
5.2. The Darcy law for evolving microstructure

In the last step, we derive the Darcy law (4) by separating the y-dependence in (53). It contains 
the time- and space-dependent permeability tensor K ∈ L∞(S×�)N×N , which can be computed 
explicitly by

K(t, x)ij =
∫

Y ∗
x (t)

∇yui(t, x, y) : ∇yuj (t, x, y)dy =
∫

Y ∗
x (t)

ui(t, x, y) · ej dy, (71)

where ui ∈ L∞(S × �; H 1
�#(Y

∗
x (t))N ) are the unique solution of the local Stokes problems on 

the cell domains Y ∗
x (t),

−�yui(t, x, y) − ∇yπi(t, x, y) = ei in Y ∗
x (t), (72a)

divy(ui(t, x, y)) = 0 in Y ∗
x (t), (72b)

ui(t, x, y) = 0 on ∂�x(t), (72c)

y �→π(t, x, y), ui(t, x, y) is Y -periodic. (72d)

The corresponding weak formulation of (4) consists of the following Dirichlet boundary-
value problem (73) for the pressure and the explicit equation for the fluid velocity (74), where 
p = q + pb: Find q ∈ Lps (S; H 1

0 (�)) such that, for a.e. t ∈ S,∫
�

1

ν
K(t, x)∇q(t, x) · ∇ϕ(x)dx =

∫
�

1

ν
K(t, x)(f (t, x) − ∇pb(t, x)) · ∇ϕ(x)dx

−
∫
�

∫
Y ∗

x (t)

divy(v�(t, x))dyϕ(x)dy dx (73)

for every ϕ ∈ H 1
0 (�), where K ∈ L∞(S × �)N×N is defined by (71) and let

v(t) = 1

ν
K(t) (f (t) − ∇p(t)) , (74)

where p = q + pb .
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In the case of a no-slip boundary conditions, i.e. v̂� = ∂tψε , Corollary 5.2 simplifies the last 
term of (73) to

−
∫
�

∫
Y ∗

x (t)

divy(v�(t, x, y))dy ϕ(x)dy = −
∫
�

∂t |Y ∗
x (t)|ϕ(x)dx.

Theorem 5.5. Let (ṽε, Qε) be defined by Corollary 5.3 and Theorem 5.4, respectively. Then, for 
a.e. t ∈ S, Qε(t) converges strongly in L2(�) to q(t), where q ∈ Lps (S; H 1

0 (�)) is the unique 
solution of (73). Moreover, ṽε(t) converges weakly in L2(�) to v(t), where v ∈ Lps (S; L2(�)N )

is given by (74).

Proof. The linearity of (53a) gives

w0(t, x, y) = 1

ν

N∑
i=1

(fi(t, x) − ∂xi
(q(t, x) + pb(t, x)))ui(t, x, y), (75)

q1(t, x, y) = 1

ν

N∑
i=1

(∂xi
(q(t, x) + pb(t, x)) − fi(t, x))πi(t, x, y), (76)

where (ui, πi) is the solution of (72) for i = {1, . . . , N}. Taking the integral over Y ∗
x (t) gives 

(74) for v(t, x) := ∫
Y ∗

x (t)

w0(t, x, y) dy. Moreover, with (53c), we obtain the inhomogeneous di-

vergence condition div(v) = − 
∫

Y ∗
x (t)

div(v�(t, x, y)) dy and in the case of Corollary 5.2, we can 

simplify it to div(v) = −∂t |Y ∗
x (t)|. Combining this inhomogeneous divergence condition with 

(74) yields (73). �
By stating separately the inhomogeneous divergence condition div(v) =

− 
∫

Y ∗
x (t)

div(v�(t, x, y)) dy (= −∂t |Y ∗
x (t)|), which we have derived in the proof of Theorem 5.5, 

we obtain the strong formulation of the Darcy law for evolving microstructure (4). It differs in 
three points from the Darcy law for fixed microstructure (2). The first is the time- and space-
dependent permeability tensor, which arises from the time- and space-dependent (evolving) 
microstructure. The second and most interesting difference is the macroscopic inhomogeneous 
divergence condition, which arises from the homogenisation of the inhomogeneous Dirichlet 
boundary condition. The last difference is the Dirichlet boundary condition in (4) which is caused 
from the homogenisation of the pressure boundary condition.

Remark 2. Instead of doing the homogenisation for a.e. t ∈ S separately, the two-scale con-
vergence with respect to the Lps (S; L2(�))-norm for 1 < ps < ∞ could have been used. In this 
case, the data do not have to be bounded pointwise in time. Instead, it suffices if they are bounded 
in Lps (S).

6. Conclusion

We derived a Darcy law for porous media with evolving microstructure by means of ho-
mogenisation. The microscopic evolution is a priori known and features a time- and space-
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dependent permeability tensor, which accounts for the local pore structure. Moreover, we con-
sidered an inhomogeneous Dirichlet boundary condition at the fluid–solid interface, modelling 
a no-slip boundary condition for moving interfaces or general compression and suction effects 
caused by the moving interface. Combined with the microscopic incompressibility condition, this 
inhomogeneous boundary condition becomes a macroscopic inhomogeneous divergence condi-
tion for the fluid in the homogenisation process. Thus, a new source term for the pressure occurs. 
In the case of the inhomogeneous Dirichlet boundary condition modelling a no-slip boundary 
condition, this source term relates to the change of the local pore volume.

In order to perform the homogenisation on the evolving domain, we applied the two-scale 
transformation method. The homogenisation in the periodic substitute domain required the 
derivation of a new Korn-type inequality for the two-scale transformation method. Moreover, 
we showed new two-scale transformation rules for the divergence operator and thus obtained a 
transformation-independent limit problem.

In various applications, the evolution of the microstructure is a priori not known and is affected 
by different processes as for example by dissolution or precipitation processes. This results in 
highly non-linear systems of reaction–advection–diffusion processes coupled with Stokes flow 
and evolving microstructure. The homogenisation of reaction–diffusion processes coupled with 
an a priori unknown evolving microstructure is considered in [31,30]. The homogenisation of the 
Stokes flow presented here constitutes a framework for the addition of advective transportation 
in such models.
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