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Abstract
Affine flows on vector bundles with chain transitive base flow are lifted to linear flows and
the decomposition into exponentially separated subbundles provided by Selgrade’s theorem
is determined. The results are illustrated by an application to affine control systems with
bounded control range.

Keywords Affine flows · Selgrade’s theorem · Chain transitivity · Poincaré sphere · Affine
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1 Introduction

For linear (skew product) flows on vector bundles, Selgrade’s theorem describes the decom-
position into subbundles obtained from the chain recurrent components of the induced flow
on the projective bundle. This coincides with the finest decomposition into exponentially
separated subbundles. It is a simple observation that affine flows can be lifted to linear flows
on an augmented state space and the main purpose of the present paper is to connect the
resulting Selgrade decomposition to properties of the original affine flow.

The theory of linear flows was developed in the second half of the last century. We refer,
in particular, to Sacker and Sell [22], Salamon and Zehnder [23], Bronstein and Kopanskii
[5], Johnson et al. [13]; cf. also Kloeden and Rasmussen [16] and Colonius and Kliemann
[7, 8]. An affine flow on a vector bundle π : V → B over a compact metric space B is a
continuous flow � on V preserving fibers such that the induced maps on the fibers are affine.
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We will only consider (topologically) trivial vector bundles of the form V = B × H , where
H is a Hilbert space and suppose that the base flow on B is chain transitive.

Selgrade’s theorem for linear flows � (Selgrade [24], [8, Theorem 9.2.5]) states that the
induced flow P� on the projective bundle PV has finitely many chain recurrent components
(this coincides with the finest Morse decomposition). The chain recurrent components define
invariant subbundles which yield the finest decomposition of V into exponentially separated
subbundles. Generalizations include Patrão and San Martin [18] for semiflows on fiber bun-
dles, Alves and San Martin [3] for principal bundles, and Blumenthal and Latushkin [4] for
linear semiflows on separable Banach bundles.

The essence of our set-up is to lift an affine flow � to a linear flow �1. When we apply
Selgrade’s theorem to the linear flow �1, the projection to the projective bundle has a geo-
metric interpretation: It is a version of the projection to the Poincaré sphere, which (in the
autonomous case) is obtained by attaching a copy of R

d to the sphere S
d in R

d+1 at the north
pole and by taking the central projection from the origin in R

d+1 to the northern hemisphere
S
d,+ of S

d . Then the equator of S
d represents infinity. This is closely related to the classical

construction of the Poincaré sphere from the global theory of ordinary differential equations
going back to Poincaré [20]; cf., e.g., Perko [19, Section3.10].

The main contributions of this paper are the following: Affine flows on vector bundles are
lifted to linear flows by multiplying the inhomogeneous term by an additional state variable,
which is constant. This linear flow on the extended state space can be projected to a flow on
the projective bundle, where the equator can be interpreted as representing the original flow
at infinity. Selgrade’s theorem for linear flows provides a decomposition of the extended state
space. It turns out that there is a unique Selgrade bundle, whose projection is not contained
in the equator. We call it the central Selgrade bundle. The projections of the other Selgrade
bundles are contained in the equator, hence we call them the Selgrade bundles at infinity.
Since the projective flow restricted to the equator is conjugate to the flow of the projectivized
linear part of the original flow the Selgrade bundles at infinity are obtained by the Selgrade
bundles of the linear part of the original flow. The flow on projective space outside of the
equator is conjugate to the original affine flow. The projection of the central Selgrade bundle
contains the image of the chain transitive set of the original affine flow. Furthermore, the
Morse spectra of the various Selgrade bundles can be characterized. The special cases of
uniformly hyperbolic and split affine systems allow sharper results. For affine control flows
generated by affine control systems chain controllability properties can be characterized.

The contents of this paper are as follows. In Sect. 2 on preliminaries we formulate Sel-
grade’s theorem for linear flows on vector bundles and the Morse spectrum after recalling
the required notions from the topological theory of flows on metric spaces. In Sect. 3 affine
flows are defined and lifted to linear flows to which Selgrade’s theorem is applied. Theorem
12 shows that there is a unique central Selgrade bundle and the other Selgrade bundles are
“at infinity”. Section4 deduces a formula for the central Selgrade bundle of split affine flows,
where the homogeneous and the inhomogeneous part can be separated, and Sect. 5 describes
the uniformly hyperbolic case. In Sect. 6 first some notions from control theory are intro-
duced, in particular, the correspondence between maximal invariant chain transitive sets of
the control flow and chain control sets is recalled. Then it is proved that chain control sets are
unique for split affine control systems, the previous results are applied to the affine control
flows generated by affine control systems, and several examples are presented.
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2 Preliminaries

This section collects notation and results for continuous flows on metric spaces and recalls
Selgrade’s theorem for linear flows as well as the Morse spectrum.

2.1 Flows onMetric Spaces

For the following concepts for flows on metric spaces cf. Alongi and Nelson [1], Robinson
[21], and Colonius and Kliemann [7, 8].

Aflowon ametric space X withmetric d is given by a continuous function� : R×X → X
satisfying �(0, x) = x and �(t + s, x) = �(t,�(s, x)) for all t, s ∈ R and x ∈ X . Where
convenient, we also write �t (x) = �(t, x). A conjugacy of flows �′ on X ′ and �′′ on X ′′ is
a homeomorphism h : X ′ → X ′′ with h(�′

t (x)) = �′′
t (h(x)) for all (t, x) ∈ R × X ′.

For ε, T > 0 an (ε, T )-chain ζ for � from x to y is given by n ∈ N, T0, . . . , Tn−1 ≥ T ,
and x0 = x, . . . , xn−1, xn = y ∈ X with d(�(Ti , xi ), xi+1) < ε for i = 0, . . . , n − 1. For
x ∈ X the ω-limit and the α-limit set are

ω(x) = {y ∈ X |∃tk → ∞ : �(tk, x) → y} and
α(x) = {y ∈ X |∃tk → −∞ : �(tk, x) → y },

respectively. The (forward) chain limit set is

	(x) = {y ∈ X |∀ε, T > 0 ∃(ε, T )-chain from x to y }.
A point x ∈ X is called chain recurrent if x ∈ 	(x), and a set Y ⊂ X is called chain
transitive if y ∈ 	(x) for all x, y ∈ Y . Observe that any subset of a chain transitive set is
chain transitive, and (cf. [1, Proposition 2.7.10]) a set is chain transitive if and only if its
closure is chain transitive. A chain recurrent component is a maximal chain transitive set. On
a compact metric space these are the connected components of the chain recurrent set and the
flow restricted to a chain recurrent component is chain transitive. If X is chain transitive for
a flow on X , then also the flow is called chain transitive. For a continuous map f : X → X
and x, y ∈ X an ε-chain from x to y is given by x0 = x, x1, . . . , xn−1, xn = y in X with
d( f (xi ), xi+1) < ε for all i .

The next result is proved in [1, Theorem 2.7.18].

Theorem 1 The following properties are equivalent for a flow � on a compact metric space
X and points x, y ∈ X.

(i) The points x and y satisfy y ∈ 	(x) and x ∈ 	(y).
(ii) For the map �1 : X → X and every ε > 0 there exists an ε-chain from x to y and an

ε-chain from y to x.

It immediately follows that the product of two chain transitive flows is chain transitive.
A related concept are Morse decompositions introduced next. Note first that a compact

subset K ⊂ X is called isolated invariant for � if the following holds: �t (x) ∈ K for all
x ∈ K and all t ∈ R and there exists a set N with K ⊂ int N , such that �t (x) ∈ N for all
t ∈ R implies x ∈ K .

Definition 2 A Morse decomposition of a flow � on a compact metric space X is a finite
collection {Mi |i = 1, . . . , 
 } of nonvoid, pairwise disjoint, and compact isolated invariant
sets such that
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(i) for all x ∈ X the limit sets satisfy ω(x), α(x) ⊂ ⋃

i=1 Mi , and

(ii) suppose that there are M j0 ,M j1 , . . . ,M jn and x1, . . . , xn ∈ X\⋃

i=1 Mi with

α(xi ) ⊂ M ji−1 and ω(xi ) ⊂ M ji for i = 1, . . . , n; then M j0 
= M jn .

The elements of a Morse decomposition are called Morse sets. An order is defined by the
relation Mi � M j if there are indices j0, . . . , jn with Mi = M j0 ,M j = M jn and points
x ji ∈ X with

α(x ji ) ⊂ M ji−1 and ω(x ji ) ⊂ M ji for i = 1, . . . , n.

We enumerate the Morse sets in such a way that Mi � M j implies i ≤ j . Thus Morse
decompositions describe the flow as it goes from a lesser (with respect to the order �) Morse
set to a greater Morse set for trajectories that do not start in one of the Morse sets. A Morse
decomposition {M1, . . . ,M
} is called finer than a Morse decomposition

{M′
1, . . . ,M′


′
}
,

if for all j ∈ {
1, . . . , 
′} there is i ∈ {1, . . . , 
} with Mi ⊂ M′

j .
The following theorem relates chain recurrent components and Morse decompositions;

cf. [8, Theorem 8.3.3].

Theorem 3 For a flow on a compact metric space there exists a finest Morse decomposition
if and only if the chain recurrent set has only finitely many connected components. Then the
Morse sets coincide with the chain recurrent components.

2.2 Linear Flows and Selgrade’s Theorem

We will consider vector bundles V = B × H , where B is a compact metric base space and
H is a finite dimensional Hilbert space of dimension d . A linear flow � = (θ, ϕ) on B × H
is a flow of the form

� : R × B × H → B × H , �t (b, x) = (θt b, ϕ(t, b, x)) for (t, b, x) ∈ R × B × H ,

where θ is a flow on the base space B and ϕ(t, b, x) is linear in x , i.e., ϕ(t, b, α1x1 +
α2x2) = α1ϕ(t, b, x1) + α2ϕ(t, b, x2) for α1, α2 ∈ R and x1, x2 ∈ H . We also write
�t (b, α1x1+α2x2) = α1�t (b, x1)+α2�t (b, x2). A closed subset V of B×H that intersects
each fiber {b} × H , b ∈ B, in a linear subspace of constant dimension is a subbundle. Let
PH be the projective space for H and denote the projection H \ {0} → PH as well as the
corresponding map B × (H \ {0H }) → B × PH by the letter P. A linear flow � induces a
flow P� on the projective bundle B × PH . A metric on PH is defined by

d(p1, p2) = min

{∥
∥
∥
∥

x

‖x‖ − y

‖y‖
∥
∥
∥
∥ ,

∥
∥
∥
∥

x

‖x‖ + y

‖y‖
∥
∥
∥
∥

}

for p1 = Px, p2 = Py. (1)

Then B × PH becomes a compact metric space by defining the metric as the maximum of
the distances in B and PH .

Recall that for a linear flow� two nontrivial invariant subbundles (V+,V−)with B×H =
V+ ⊕ V− are exponentially separated if there are c, μ > 0 with

∥
∥�t (b, x

+)
∥
∥ ≤ ce−μt

∥
∥�t (b, x

−)
∥
∥ , t ≥ 0, for (b, x±) ∈ V±,

∥
∥x+∥

∥ = ∥
∥x−∥

∥ . (2)

The following is Selgrade’s theorem for linear flows; cf. [8, Theorem 9.2.5], and [7, Theorem
5.1.4] for the result on exponential separation.

Theorem 4 Let� = (θ, ϕ) : R×B×H → B×H bea linear flowon the vector bundle B×H
with chain transitive flow θ on the base space B. Then the projected flow P� on B×PH has
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a finite number of chain recurrent components M1, . . . ,M
, 1 ≤ 
 ≤ d = dim H. These
components form the finest Morse decomposition for P�, and they are linearly ordered. The
Morse sets will be numbered such that M1 � · · · � M
. Their lifts

Vi = P
−1Mi := {(b, x) ∈ B × H |x 
= 0 ⇒ (b, Px) ∈ Mi } ,

are subbundles, called the Selgrade bundles. They form a continuous bundle decomposition
(a Whitney sum)

B × H = V1 ⊕ · · · ⊕ V
.

This Selgrade decomposition is the finest decomposition into exponentially separated sub-
bundles: For any exponentially separated subbundles (V+,V−) there is 1 ≤ j < 
 with

V+ = V1 ⊕ · · · ⊕ V j and V− = V j+1 ⊕ · · · ⊕ V
.

Conversely, subbundles V+ and V− defined in this way are exponentially separated.

2.3 TheMorse Spectrum for Linear Flows

For linear flows � on vector bundles, a number of spectral notions and their relations have
been considered; cf., e.g., Sacker and Sell [22], Johnson et al. [13], Kawan and Stender [15].
An appropriate spectral notion in the present context is provided by the Morse spectrum
defined as follows; cf. Colonius and Kliemann [8] and Alves and San Martin [3], and for
generalizations cf. Grüne [12] and Patrão and San Martin [18].

For ε, T > 0 let an (ε, T )-chain ζ of P� be given by n ∈ N, T0, . . . , Tn−1 ≥ T ,
and (b0, p0), . . . , (bn, pn) ∈ B × PH with d(P�(Ti , bi , pi ), (bi+1, pi+1)) < ε for i =
0, . . . , n − 1. With total time τ = ∑n−1

i=0 Ti let the exponential growth rate of ζ be

λ(ζ ) := 1

τ

(
n−1∑

i=0

log ‖�(Ti , bi , xi )‖ − log ‖(bi , xi )‖
)

with Pxi = pi .

Define the Morse spectrum of a subbundle Vi = P
−1Mi generated by Mi as

�Mo(Vi ;�) =
{

λ ∈ R : there are εk → 0, T k → ∞ and
(εk, T k)-chains ζ k in Mi with λ(ζ k) → λ as k → ∞

}

.

The Morse spectrum has the following properties; cf. [8, Theorem 9.3.5 and Theorem 9.4.1]

Theorem 5 For a linear flow� on a vector bundle B×H with chain transitive base space B
the Morse spectrum�Mo(Vi ;�) of a Selgrade bundle Vi is a compact interval, and for every
(b, x) ∈ B × (H \ {0H }) the Lyapunov exponent λ(b, x) = lim supt→∞ 1

t log ‖ϕ(t, b, x)‖
is contained in some �Mo(Vi ;�).

The spectral intervals �Mo(Vi ;�) need not be disjoint. In particular, there may exist two
“center” subbundles with 0 in the Morse spectrum; cf. Salamon and Zehnder [23, Example
2.14] and also Example 39.

3 Selgrade’s Theorem for Affine Flows and the Poincaré Sphere

In this section, affine flows are lifted to linear flows on an augmented state space and the
Selgrade decomposition on this space is analyzed.
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The following construction of affine flows is taken from Colonius and Santana [9].

Definition 6 Let B × H be a vector bundle with compact metric base space B. A continuous
map � = (θ, ψ) : R × B × H → B × H is called an affine flow on B × H if there are a
linear flow � = (θ, ϕ) and a function f : B → L∞(R, H) such that f satisfies

f (b)(t + s) = f (θsb)(t) for all b ∈ B and almost all t, s ∈ R, (3)

and for all (t, b, x) ∈ R × B × H

�t (b, x) = (θt b, ψ(t, b, x)) = (θt b, ϕ(t, b, x) +
∫ t

0
ϕ(t − s, θsb, f (b)(s))ds). (4)

The base flows of � and � coincide and the integral in (4) is a Lebesgue integral in the
H -component. The flow property of� is expressed by the cocycle propertyψ(t + s, b, x) =
ψ(t, θsb, ψ(s, b, x)), which follows from (3). With f (b, s) := f (b)(s), s ∈ R, formula (4)
can be written in the more concise form

�t (b, x) = �t (b, x) +
∫ t

0
�t−s(θsb, f (b, s))ds. (5)

We will always assume that the base flow θ on B is chain transitive. Next we formulate a
simple but fundamental construction for the present paper.

Proposition 7 Any affine flow � = (θ, ψ) on B × H can be lifted to a linear flow �1 on
B × H1, H1 := H × R, by defining for (t, b, x, r) ∈ R × (B × H × R),

�1
t (b, x, r) = (

θt b, ψ
1(t, b, x, r

)
, r) =

(

�t (b, x) + r
∫ t

0
�t−s(θsb, f (b, s))ds, r

)

.

Proof Continuity and the flow properties are obvious. We prove linearity. For α, β ∈ R and
(b, x, r), (b, y, s) ∈ B × H × R one has

�1
t (b, α(x, r) + β(y, s))

=
(
�t (b, αx + β y) + (αr + βs)

∫ t
0 �t−σ (θσ b, f (b, σ ))dσ, αr + βs

)

= (α(�t (b, x) + r
∫ t
0 �t−σ (θσ b, f (b, σ ))dσ

+ β(�t (b, y) + s
∫ t
0 �t−σ (θσ b, f (b, σ ))dσ), αr + βs)

= α�1
t (b, x, r) + β�1

t (b, y, s). ��
We will apply Selgrade’s theorem to the linear flow �1. Define subsets of H1 by H1,0 =

H × {0} and H1,1 = H × (R\{0}). One obtains subsets of PH1 given by

PH1,0 = {P(x, 0) ∈ PH1 |x ∈ H }, PH1,1 = {P(x, r) ∈ PH1 |x ∈ H , r 
= 0 }.
Note that PH1,1 = P (H × {1}). The projective space PH1 = PH1,1 is the disjoint union of
these subsets, the setPH1,0 is closed and the setPH1,1 is open. For the unit sphereSH1 of H1

denote the northern hemisphere and the equator by S
+H1 := {

(x, r) ∈ SH1 |x ∈ H , r > 0
}

and S
0H1 = {(x, 0) ∈ SH1 |x ∈ H }, respectively. Note that PH1,1 can be identified with

the northern hemisphere S
+H1.

Definition 8 The Poincaré sphere bundle is given by B × SH1 and the projective Poincaré
bundle is B × PH1.
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The linear flow �1 on B × H1 induces a flow P�1 on the projective bundle B × PH1. It
can be restricted to B×PH1,i , i = 0, 1, since under the flow�1 the last component remains
fixed. The following proposition shows that P�1 restricted to B × PH1,0 is conjugate to
the flow induced by the linear part � of � on B × PH , and that the flow � on B × H is
conjugate to the flow P�1 restricted to B × PH1,1.

Proposition 9 (i) For (b, x) ∈ B × H the equality �1
t (b, x, 0) = (�t (b, x), 0), t ∈ R,

holds, and the projective map

h0 : B × PH → B × PH1,0, h0(b, Px) = (b, P(x, 0)),

is a conjugacy of the flows P� and P�1 restricted to B × PH1,0. In particular, the
chain recurrent components Mi = PVi of P� yield the chain recurrent components
h0(Mi ) = P (Vi × {0}) , i ∈ {1, . . . , 
}, of P�1 restricted to B × PH1,0, and their
order is preserved.

(ii) The map

h1 : B × H → B × PH1,1, (b, x) �→ P(b, x, 1) = (b, P(x, 1)),

is a conjugacy of the flows � on B × H and P�1 restricted to B × PH1,1.
(iii) For ε, T > 0 any (ε, T )-chain in B × H is mapped by h1 onto a (2ε, T )-chain in

B × PH1,1, hence any chain transitive set C ⊂ B × H is mapped onto a chain
transitive set h1(C) ⊂ B × PH1,1.

(iv) For a subset C ⊂ B × H the set {x ∈ H |(b, x) ∈ C for some b ∈ B } is bounded if
and only if h1(C) ∩ (B × PH1,0) = ∅.

Proof (i), (ii) The first assertion in (i) is clear by the definition of �1. Recall that PH =
(H \ {0H })/ ∼, where ∼ is the equivalence relation x ∼ y if y = λx with some λ 
= 0.
Given a basis of H an atlas of PH is given by n charts (Ui , αi ), where Ui is the set of
equivalence classes [x1 : · · · : xd ] with xi 
= 0 (using homogeneous coordinates) and
αi : Ui → R

d−1 is defined by

αi ([x1 : · · · : xd ]) =
(
x1
xi

, . . . ,
x̂i
xi

, . . . ,
xd
xi

)

;

here the hat means that the i-th entry is omitted. In homogeneous coordinates, the levels
PH1,i are described by

PH1,i =
{
[x1 : · · · : xd : i]

∣
∣
∣(x1, . . . , xd) ∈ R

d
}
for i = 0, 1.

Observe that, by homogeneity, PH1,0 = {[x1 : · · · : xd : 0] | ‖(x1, . . . , xd)‖ = 1 }. Any tra-
jectory of P�1 is obtained as the projection of a trajectory of �1 with initial condition

satisfying r0 = 0 or 1, since [x01 : · · · : x0d : r0] = [ x01
r0

: · · · : x0d
r0

: 1] for r0 
= 0. A

trivial atlas for PH1,1 is given by {(Ud+1, αd+1)} proving that PH1,1 is a manifold which is
diffeomorphic to R

d . Observe also that PH1,0 is diffeomorphic to P
d−1.

In homogeneous coordinates the spaces PH and PH1,0 are diffeomorphic under the
map associating to [x1 : · · · : xd ] the value [x1 : · · · : xd : 0]. For any trajec-
tory (θt b, ψ1(t, b, x0, r), r) of �1 in B × H1,1, the projection to PH1,1 ⊂ PH1 is
(θt b, [ψ1

1 (t, b, x0, r) : · · · : ψ1
d (t, b, x0, r) : r ]), where ψ1

i (t, b, x0, r) is the i-th com-
ponent of ψ1(t, b, x0, r). Now the conjugacy properties in (i) and (ii) follow. The assertion
in (i) on the chain recurrent components holds, since the state spaces are compact.
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(iii) In view of assertion (ii) it suffices to show that d((b, x), (b′, x ′)) < ε in B × H
implies d(h1(b, x), h1(b′, x ′)) < 2ε in B × PH1. Here the metric in PH is defined in (1).
Since d(b, b′) < ε it suffices to estimate the components in the Poincaré sphere PH1. For
the projections to SH1 we obtain

∥
∥
∥
∥

(x, 1)

‖(x, 1)‖ − (x ′, 1)
‖(x ′, 1)‖

∥
∥
∥
∥ =

∥
∥
(∥
∥(x ′, 1)

∥
∥ x − ‖(x, 1)‖ x ′,

∥
∥(x ′, 1)

∥
∥ − ‖(x, 1)‖)∥∥

‖(x, 1)‖ ‖(x ′, 1)‖ .

Observe that ‖x‖ − ∥
∥x ′∥∥ ≤ ∥

∥x − x ′∥∥ < ε and ‖(x, 1)‖ − ∥
∥(x ′, 1)

∥
∥ < ε. Thus the last

component satisfies
∥
∥(x ′, 1)

∥
∥ − ‖(x, 1)‖

‖(x, 1)‖ ‖(x ′, 1)‖ < ε.

Concerning the other components we find δ(ε) with |δ(ε)| < ε such that
∥
∥(x ′, 1)

∥
∥ =

‖(x, 1)‖ + δ(ε). Hence
∥
∥
∥
∥(x ′, 1)

∥
∥ x − ‖(x, 1)‖ x ′∥∥ ≤ ‖(x, 1)‖ ∥

∥x − x ′∥∥ + δ(ε) ‖x‖ < ‖(x, 1)‖ ε + δ(ε) ‖x‖
implying

∥
∥
∥
∥(x ′, 1)

∥
∥ x − ‖(x, 1)‖ x ′∥∥

‖(x, 1)‖ ‖(x ′, 1)‖ ≤ ‖(x, 1)‖ ε + δ(ε) ‖x‖
‖(x, 1)‖ ‖(x ′, 1)‖ < ε + δ(ε) < 2ε.

(iv) Consider a sequence (bn, xn), n ∈ N, in C . For the images h1(bn, xn) =
(bn, P(xn, 1)) the points P(xn, 1) have homogeneous coordinates satisfying

[xn1 : · · · : xnd : 1] =
[

xn1
‖xn‖ : · · · : xnd

‖xn‖ : 1

‖xn‖
]

.

Then ‖xn‖ → ∞ if and only if 1
‖xn‖ → 0 for n → ∞ meaning that the distance of

(bn, P(xn, 1)) to B × PH1,0 converges to 0. ��
Observe that chain transitivity of h1(C) for C ⊂ B × H implies chain transitivity of the

closure h1(C) ⊂ B × PH1.
The Selgrade decomposition provided by Theorem 4 can be used for the linear flow �1

on B × H1. We obtain

B × H1 = V1
1 ⊕ · · · ⊕ V1


1
with 1 ≤ 
1 ≤ d + 1 and

∑
1

j=1
dim V1

j = d + 1, (6)

and let M1
j := PV1

j , j ∈ {1, . . . , 
1}, be the associated chain recurrent components of P�1

on B × PH1. Furthermore, Mi := PVi ⊂ B × PH denotes the chain recurrent component
corresponding to a Selgrade bundle Vi of the linear part � of �.

Note that a Selgrade bundle V1
j of�

1 satisfies V1
j ∩

(
B × H1,1

) 
= ∅ if and only if there is

(b, x, r) ∈ V1
j with r 
= 0 and this is equivalent toM1

j ∩ (
B × PH1,1

) 
= ∅. Furthermore, a

Selgrade bundle satisfies V1
j ∩

(
B × H1,0

) = B×{(0H , 0)} if and only ifM1
j ⊂ B×PH1,1.

The detailed description of the Selgrade bundles V1
j of �1 will be based on dimension

arguments.We prepare this analysis by the following lemma discussing the relations between
the subbundles Vi × {0} and the Selgrade bundles V1

j .

Lemma 10 (i) For every i ∈ {1, . . . , 
} there is j(i) ∈ {1, . . . , 
1} with P (Vi × {0})
⊂ M1

j(i) and Vi × {0} ⊂ V1
j(i).
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(ii) A subbundle Vi × {0}, i ∈ {1, . . . , 
}, is a proper subset of the Selgrade bundle V1
j

containing it if and only if

dim V1
j >

∑

k∈I ( j) dim (Vk × {0}) =
∑

k∈I ( j) dim Vk, (7)

where I ( j) is the set of all indices k with Vk × {0} ⊂ V1
j .

Proof (i) The Selgrade decomposition for � yields that the projections Mi = PVi to
B × PH are the chain recurrent components of P�. By Proposition 9(i) it follows
that h0(Mi ) = P (Vi × {0}) is a chain recurrent component of P�1 restricted to B ×
PH1,0 ⊂ B × PH1. Hence P (Vi × {0}) is chain transitive for P�1. Thus for every
i ∈ {1, . . . , 
} there is j with P (Vi × {0}) ⊂ M1

j and Vi × {0} ⊂ V1
j .

(ii) The inequality dim V1
j ≥ ∑

k∈I ( j) dim (Vk × {0}) holds, since the sum of the sub-

bundles Vk × {0}, k ∈ I ( j), is direct, and equality holds if and only if V1
j =

⊕
k∈I ( j) (Vk × {0}).

Suppose thatVi×{0} is a proper subset ofV1
j . Since byProposition 9(i) the setsMk×{0}

are chain recurrent components of P�1 restricted to B × H1,0 it follows that there
exists (b, x, r) ∈ V1

j with r 
= 0. Thus
⊕

k∈I ( j) (Vk × {0}) ⊂ V1
j is a proper inclusion

implying (7). Conversely, suppose that (7) holds. If |I ( j)| > 1 it follows trivially that
Vi × {0}, i ∈ I ( j), is a proper subset of V1

j(i). If there is a single Vk × {0} ⊂ V1
j the

inequality dim V1
j > dim Vk implies that the inclusion Vk × {0} ⊂ V1

j is proper. ��

The following lemma contains basic information on the Selgrade bundles of �1.

Lemma 11 There exists a unique Selgrade bundle V1
j of�

1 such that V1
j ∩

(
B × H1,1

) 
= ∅.

The dimension of V1
j is given by

dim V1
j = 1 +

∑

i
dim Vi , (8)

where the summation is over all i ∈ {1, . . . , 
} such that Vi × {0} ⊂ V1
j . The other Selgrade

bundles of �1 are the subbundles Vi × {0} which are not contained in V1
j .

Proof Due to the decomposition (6) there is at least one Selgrade bundle V1
j with V1

j ∩ (B ×
H1,1) 
= ∅ or, equivalently, M1

j ∩ (
B × PH1,1

) 
= ∅. By Lemma 10 (i) the projections

P (Vi × {0}) , i ∈ {1, . . . , 
}, are chain transitive for P�1. Let M1
j , j ∈ J , be the chain

recurrent components of P�1 with M1
j ∩ (

B × PH1,1
) 
= ∅ and containing some set

P (Vi × {0}), and let I be the set of all i ∈ {1, . . . , 
} such that Vi × {0} is contained in some
V1
j , j ∈ J .
Case 1: Suppose that J 
= ∅. Certainly Vi ×{0}, i ∈ I , is a proper subset of the Selgrade

bundle V1
j containing it. Applying Lemma 10(ii) for every j ∈ J one finds that

∑

j∈J
dim V1

j ≥ |J | +
∑

i∈I dim Vi . (9)

By Lemma 10(i) also the sets P (Vi × {0}) , i ∈ {1, . . . , 
}\I , are contained in some chain
recurrent component M1

j(i) of P�1. Using (9) we get

d + 1 ≥
∑

j∈J
dim V1

j +
∑

j∈{1,...,
1}\J dim V1
j
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≥ |J | +
∑

i∈I dim(Vi × {0}) +
∑

i∈{1,...,
}\I dim (Vi × {0})

= |J | +
∑


i=1
dim Vi = |J | + d. (10)

Since |J | ≥ 1 here equalities hold and |J | = 1. In particular, there is a unique Selgrade bundle
V1
j containing some Vi × {0} and these are the subbundles with index i ∈ I . Furthermore,

one obtains

dim V1
j +

∑

j∈{1,...,
1}\J dim V1
j = dim V1

j +
∑

i∈{1,...,
}\I dim (Vi × {0}) . (11)

If there is i ∈ {1, . . . , 
}\I such that P (Vi × {0}) is properly contained in a chain recur-
rent component M1

j(i) with j(i) /∈ J , then Lemma 10(ii) implies that dim V1
j(i) ≥

1 + dim (Vi × {0}). This yields a contradiction to (11) and shows that Vi × {0} is a Sel-
grade bundle for all i ∈ {1, . . . , 
} \ I .

We conclude that the Selgrade bundles of�1 are given by V1
j and the subbundles Vi ×{0}

which are not contained in V1
j . This proves the assertion in case 1.

Case 2: Suppose that J = ∅, i.e., the subbundles V1
j withM1

j ∩
(
B × PH1,1

) 
= ∅ do not

contain any Vi × {0}. Now define J1 as the set of indices withM1
j ∩ (

B × PH1,1
) 
= ∅ and

note that |J1| ≥ 1. Since V1
j ∩ (Vi × {0}) = B ×{(0, 0)} for all j ∈ J1 and all i ∈ {1, . . . , 
}

Lemma 10(i) implies that

d + 1 ≥
∑

j∈J1
dim V1

j +
∑


i=1
dim Vi =

∑

j∈J1
dim V1

j + d.

It follows that equality holds here and |J1| = 1, thus there is a unique Selgrade bundle V1
j

with M1
j ∩ (

B × PH1,1
) 
= ∅ and dim V 1

j = 1. By Lemma 10(i) every set P (Vi × {0}) is
contained in some chain recurrent componentM1

j(i) of P�1. Let J2 be the set of all Selgrade
bundles containing some Vi × {0}. If there is a subbundle Vi × {0} which is a proper subset
of V1

j(i) Lemma 10(ii) implies the contradiction

d + 1 ≥ 1 +
∑

j∈J2
dim V1

j > 1 +
∑

i∈{1,...,
} dim Vi = 1 + d.

We conclude that, in addition to V1
j , all subbundles Vi × {0}, i ∈ {1, . . . , 
}, are Selgrade

bundles of �1. This proves the assertion in case 2. ��
Proposition 9(iv) shows that B×PH1,0 may be interpreted as a representation of B×H at

infinity. This motivates us to call subbundle at infinity any subbundle of the form V∞
i := Vi ×

{0} ⊂ B × H1, i ∈ {1, . . . , 
}, since the projection P (Vi × {0}) is contained in B × PH1,0.
The following theorem describes the Selgrade decomposition of the lifted flow �1. There

is a unique Selgrade bundle for�1 which is not at infinity. We will call it the central Selgrade
bundle and denote it by V1

c (cf. also its spectral properties in Theorem 16).

Theorem 12 Consider an affine flow � on a vector bundle B × H.

(i) The Selgrade decomposition of the lifted flow �1 defined in Proposition 7 is given by

B × H1 = V∞
1 ⊕ · · · ⊕ V∞


+ ⊕ V1
c ⊕ V∞


++
0+1 ⊕ · · · ⊕ V∞

 , (12)

for some numbers 
+, 
0 ≥ 0 with 
+ + 
0 ≤ 
, and the central Selgrade bundle V1
c is

the unique Selgrade bundle having nonvoid intersection with B × H1,1.
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(ii) The intersection of the central Selgrade subbundle V1
c with the subbundle B × H1,0 is

V1
c ∩ (

B × H1,0) =
i=
++
0⊕

i=
++1

V∞
i =: V∞

c .

(iii) The dimension of V1
c is given by dim V1

c = 1 + dim V∞
c , and dim V1

c = 1 holds if and
only if V1

c ∩ (
B × H1,0

) = B × {(0H , 0)}.
(iv) If h1(Vi ) is chain transitive on the projective Poincaré bundle B×PH1, then V∞

i ⊂ V1
c .

Proof Theorem 4 applied to the linear flow �1 yields the Selgrade decomposition (6) of
B×H1. By Lemma 11 there is a unique Selgrade bundle V1

j with V1
j ∩ (

B × H1,1
) 
= ∅ and

the other Selgrade bundles have the form Vi ×{0}. We write V1
c := V1

j . Let 

0 the number of

subbundles Vi × {0} contained in V1
c . Since the chain recurrent components for the Selgrade

bundles are linearly ordered, we can define 
+ ≥ 0 such that the Selgrade decomposition
has the form (12).

The definitions imply that
⊕i=
++
0

i=
++1 V∞
i ⊂ V1

c . Thus the assertion in (ii) follows from
(8), which in the present notation yields

dim V1
c = 1 +

i=
++
0∑

i=
++1

dim V∞
i .

This also implies assertion (iii). In order to prove assertion (iv), suppose that h1(Vi ) =
P(Vi × {1}) is chain transitive. It follows that P(Vi × {1} is contained in the chain recurrent
component M1

c , since the other chain recurrent components are PV∞
i , which are subsets of

B × PH1,0. For (b, x) ∈ Vi and n ∈ N the sequence

P(b, x,
1

n
) = P(b, nx, 1) ∈ P (Vi × {1}) ⊂ M1

c

converges for n → ∞ to P(b, x, 0) ∈ P (Vi × {0}), hence V∞
i ⊂ V1

c . ��
Remark 13 If there is an equilibrium e ∈ B of θ , i.e., θt e = e, t ∈ R, with f (e) = 0 ∈
L∞(R, H), it follows that the north pole (e, 0H , 1) of the Poincaré sphere {e} × SH1 is in
V1
c . This holds since (e, 0H , 1) is an equilibrium of �1 implying (e, P (0H , 1)) ∈ M1

c .

Next we relate chain recurrence properties of the affine flow � on B × H and the flow

P�1 on the projective Poincaré bundle. Observe that the map
(
h1

)−1
may not preserve chain

transitivity, since this is a homeomorphism between the non-compact spaces B ×PH1,1 and
B × H .

Corollary 14 Consider an affine flow� on B×H with central Selgrade bundleV1
c in B×H1.

(i) If (b, x) ∈ B × H is chain recurrent for �, then h1(b, x) ∈ M1
c .

(ii) The inclusion M1
c ⊂ B × PH1,1 holds if and only if

Nc := (h1)−1 (M1
c ∩ (

B × PH1,1))

is compact. In this case Nc = (
h1

)−1
(M1

c) is the chain recurrent set of �.

Proof (i) By Proposition 9(iii) any chain recurrent point (b, x) of � is mapped to a chain
recurrent point h1(b, x) of P�1. Since M1

c is the only chain recurrent component of
P�1 intersecting B × PH1,1, it follows that h1(b, x) ∈ M1

c .
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(ii) Let M1
c ⊂ B × PH1,1. Since the flow P�1 restricted to the compact connected chain

recurrent setM1
c is chain transitive, it follows that also Nc is compact, connected, and

chain transitive, and by (i) Nc is the chain recurrent set. Conversely, if Nc is compact,
also h1(Nc) = M1

c ∩ (
B × PH1,1

)
is compact. Define neighborhoods of h1(Nc) and

B × PH1,0 in B × PH1 by

N1(ε) = {
P(b, x, 1)

∣
∣∃P(b′, x ′, 1) ∈ h1(Nc) : d(P(b, x, 1), P(b′, x ′, 1)) < ε

}
,

N2(ε) = {
P(b, x, 1)

∣
∣∃P(b′, x ′, 0) ∈ B × PH1,0 : d(P(b, x, 1), P(b′, x ′, 0)) < ε

}
,

respectively. The sets B × PH1,0 and h1(Nc) are disjoint compact sets, hence there
is ε > 0 such that N1(ε) ∩ N2(ε) = ∅. Since the connected set M1

c is contained in
the union of the disjoint open sets N1(ε) and N2(ε), it follows that M1

c ∩ N2(ε) = ∅,
hence M1

c ⊂ B × PH1,1.
��

Remark 15 Although Nc is always nonvoid, the trivial example ẋ = 1 shows that � may
have no chain recurrent point. Note thatM1

c ⊂ B×PH1,1 is equivalent toV1
c ∩(B×H1,0) =

B × {(0H , 0)}.
Next we discuss the Morse spectrum of the Selgrade bundles; cf. Sect. 2.3.

Theorem 16 (i) For an affine flow � with linear part � the Morse spectrum of the
central Selgrade bundle V1

c satisfies �Mo(Vi ;�) ⊂ �Mo(V1
c ;�1) for every i ∈{


+ + 1, . . . , 
+ + 
0
}
.

(ii) If the flow� has a periodic trajectory, thenV1
c is the unique Selgrade bundle containing

the lift �1
t (b, x, 1), t ∈ R, of any periodic trajectory of �, and

co

{

{0} ∪
⋃
++
0

i=
++1
�Mo(Vi ;�)

}

⊂ �Mo(V1
c ;�1).

(iii) For all i ∈ {1, . . . , 
} the Morse spectra of the Selgrade bundles at infinity satisfy

�Mo(V∞
i ;�1) = �Mo(Vi ;�).

Proof (i) According to Theorem 12 Vi × {0} ⊂ V1
c for all i ∈ {
+ + 1, . . . , 
+ + 
0}. Thus

for all ε, T > 0 any (ε, T )-chain ζ with (b0, Px0), . . . , (bn, Pxn) for P� in PVi yields an
(ε, T )-chain ζ 1 for P�1 in P (Vi × {0}) ⊂ PV1

c with (b0, P(x0, 0)), . . . , (bn, P(xn, 0)). This
follows since, by the definition of the distance in PH1 and PH in (1),

d(P(x, 0), P(y, 0)) = min

{∥
∥
∥
∥

(x, 0)

‖(x, 0)‖ − (y, 0)

‖(y, 0)‖
∥
∥
∥
∥ ,

∥
∥
∥
∥

(x, 0)

‖(x, 0)‖ + (y, 0)

‖(y, 0)‖
∥
∥
∥
∥

}

= min

{∥
∥
∥
∥

x

‖x‖ − y

‖y‖
∥
∥
∥
∥ ,

∥
∥
∥
∥

x

‖x‖ + y

‖y‖
∥
∥
∥
∥

}

= d(Px, Py).

The definition of�1 shows that�1(t, b, x, 0) = (�(t, b, x), 0) for all (t, b, x) ∈ R×B×H .
Hence, with total time τ = ∑n−1

i=0 Ti , the exponential growth rates of ζ 1 and ζ are

λ(ζ 1) = 1

τ

n−1∑

i=0

(
log

∥
∥�1(Ti , bi , xi , 0)

∥
∥ − log ‖(bi , xi , 0)‖

)

= 1

τ

n−1∑

i=0

(log ‖(�(Ti , bi , xi ), 0)‖ − log ‖(bi , xi , 0)‖) = λ(ζ ).
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This implies �Mo(Vi ;�) ⊂ �Mo(V1
c ;�1) for Vi × {0} ⊂ V1

c .
(ii) Suppose that the flow � has a periodic solution satisfying �τ (b, x) = (b, x) for some

τ > 0. This yields a periodic solution of �1 given by �1
τ (b, x, 1) = (b, x, 1) ∈ B × H1,1

implying that P(b, x, 1) ∈ B × PH1,1 is in a chain recurrent component of P�1 and by
Theorem 12 P(b, x, 1) ∈ M1

c . Thus the central Selgrade bundle of�
1 is the Selgrade bundle

containing the lift of any periodic trajectory of �. The τ -periodic trajectory of �1 yields
(ε, T )-chains ζ k (without jumps) with exponential growth rates λ(ζ k) = 0: Define for any
k ∈ N the chain ζ k with n = 1 by

T0 = kτ, (b0, x0, 1) = (b1, x1, 1) = (b, x, 1).

Then
∥
∥�1(T0, b0, x0, 1)

∥
∥ = ∥

∥�1(kτ, b, x, 1)
∥
∥ = ‖(b, x, 1)‖ and λ(ζ k) = 0. The assertion

on the convex hull follows, since by Theorem 5 the Morse spectrum of a Selgrade bundle is
an interval.

(ii) By Proposition 9(i) the flows P� on B × PH and P�1 restricted to B × PH1,0 are
conjugate. Thus the (ε, T )-chains in B × PH correspond to (ε′, T )-chains in B × PH1,0

with ε → 0 if and only if ε′ → 0, and also the exponential growth rates of the corresponding
chains coincide. ��

4 Split Affine Flows

In this section we determine the central Selgrade bundle for a class of affine flows, which
can be split into a linear, homogeneous part and an inhomogeneous part.

We consider the following class of affine flows. The base space of the vector bundle is the
product B1 × B2 of compact metric spaces B1 and B2. We suppose that chain transitive flows
θ1 on B1 and θ2 on B2 are given. It follows from Theorem 1 that this is equivalent to chain
transitivity of the product flow θt (b1, b2) = (θ1t b

1, θ2t b
2), t ∈ R, on B1 × B2. Furthermore,

we suppose that there is an equilibrium of θ1 denoted by e1 ∈ B1, hence θ1t e
1 = e1, t ∈ R.

Definition 17 A split affine flow is an affine flow � on a vector bundle (B1 × B2) × H of
the form

�t (b
1, b2, x) =

(

θ1t b
1,�t (b

2, x) +
∫ t

0

(
θ1t b

1,�t−s(θ
2
s b

2, f (b1, s))
)
ds

)

,

where� is a linear flow on B2 ×H and f : B1 → L∞(R, H), f (b1, s) := f (b1)(s), s ∈ R,
satisfies

f (e1) = 0 and f (b1, t + s) = f (θ1s b
1, t) for all b1 ∈ B1 and almost all t, s ∈ R.

Note that the base flow on B1 × B2 of � is θ , and

�t (e
1, b2, x) = (e1,�t (b

2, x)), t ∈ R, for all b2 ∈ B2, x ∈ H .

In a trivial way, every linear flow may be viewed as a split affine flow: Define B1 := {e1}
and f (e1) = 0 ∈ L∞(R, R). Linear control systems and, more generally, split affine control
systems define split affine control flows; cf. Sect. 6.

Lemma 18 The linear part of � is the flow �̃t (b1, b2, x) = (
θ1t b

1,�t (b2, x)
)
, t ∈ R, on

B1 × B2 × H, and the Selgrade bundles of �̃ are given by B1 ×Vi , where Vi ⊂ B2 × H , i ∈
{1, . . . , 
}, are the Selgrade bundles of �.
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Proof By the definitions, �̃ is the linear part of�. By Theorem 4 the Selgrade decomposition
is the finest decomposition into exponentially separated subbundles. Hence the Selgrade
bundles Vi are exponentially separated. Since the two components θ1t b

1 and �t (b2, x) are
independent, it follows that the subbundles B1 × Vi are exponentially separated. Theorem 1
implies that the product flow on B1 × PVi is chain transitive, hence the subbundles B1 × Vi
are the Selgrade bundles. ��

Any subbundleV ⊂ B2×H which is invariant for� yields the invariant subbundle B1×V
for �̃. For b2 ∈ B2 the points (b2, 0H ,±1) ∈ B2 × H × R = B2 × H1 are the poles of the
Poincaré sphere {b2} × S

d . Define the polar subbundle P of B2 × H1 by

P := B2 × {0H } × R = {
(b2, 0H , r) ∈ B2 × H × R

∣
∣b2 ∈ B2, r ∈ R

}
. (13)

Then dimP = 1 andP is a line bundle containing all poles. It is invariant for�1
t (b

2, x, r) :=
(�t (b2, x), r), t ∈ R. The set {e1} × P is invariant for the lift �1 to B1 × B2 × H1. For
a Selgrade bundle Vi of � the subbundle V∞

i = Vi × {0} of B2 × H1 yields the invariant
subbundle B1 × V∞

i of B1 × B2 × H1 for �1. By Lemma 18 the subbundles B1 × V∞
i are

the subbundles at infinity for �1.

Theorem 19 For a split affine flow � on B1 × B2 × H with lift �1 to B1 × B2 × H1 the
central Selgrade bundle V1

c ⊂ B1 × B2 × H1 satisfies

V1
c ∩ ({e1} × B2 × H1) = {e1} ×

(
P ⊕

⊕

i
V∞
i

)
,

where P is the polar bundle and the sum is taken over all indices i ∈ {1, . . . , 
} such that
h1(Vi ) = P(Vi × {1}) ⊂ B2 × PH1 is chain transitive.

Proof Theorem 12 yields that the central Selgrade bundleV1
c is the unique Selgrade bundle of

�1 such thatM1
c∩

(
B1 × B2 × PH1,1

) 
= ∅. The setPP = B2×P ({0} × {1}) ⊂ B2×PH1,1

is chain transitive, since B2 is chain transitive. It follows that also {e1}×PP is chain transitive.
Thus the set {e1} × PP ⊂ B1 × (

B2 × PH1,1
)
is contained in a chain transitive component

of P�1, hence in M1
c . This implies that {e1} × P ⊂ V1

c . We claim that

V1
c ∩ ({e1} × B2 × H1) = {e1} ×

(
P ⊕

⊕

i
V∞
i

)
, (14)

where I is the set of all indices i ∈ {1, . . . , 
} such that B1 ×V∞
i ⊂ V1

c . In fact, the inclusion
“⊃” is clear. Since B1 × V∞

i are the subbundles at infinity for �1, Theorem 12(iii) shows
that the dimension of V1

c is

1 +
∑

i∈I dim
(
B1 × V∞

i

) = 1 +
∑

i∈I dim V∞
i .

This equals the dimension of P ⊕ ⊕
i V∞

i , hence equality (14) holds.
It remains to show that the summation in (14) can be taken over all i such thatP(Vi ×{1}) is

chain transitive. If h1(Vi ) = P (Vi × {1}) is chain transitive, then {e1}×P (Vi × {1}) is chain
transitive, and as in the proof of Theorem 12(iv) it follows that {e1}×V∞

i ⊂ V1
c . Conversely,

suppose that {e1} × V∞
i ⊂ V1

c . Equality (14) implies that for (e1, (b2, x)) ∈ B1 × Vi
(e1, b2, x, 1) = (e1, b2, 0H , 1) ⊕ (e1, b2, x, 0) ∈ ({e1} × P) ⊕ ({e1} × V∞

i

) ⊂ V1
c .

This shows that {e1} × Vi × {1} ⊂ V1
c , hence {e1} × P (Vi × {1}) ⊂ M1

c is chain transitive.
It follows that P (Vi × {1}) is chain transitive. ��

123



Journal of Dynamics and Differential Equations

Remark 20 Theorem 19 applies, in particular, to linear flows �, where B1 is trivial and
hence may be omitted. The lift �1 has the form �1

t (b, x, r) = (�t (b, x), r) for (b, x, r) ∈
B × H × R, and the points (b, 0H ,±1) are the poles of the Poincaré sphere {b} × S

d . The
central Selgrade bundle satisfies

V1
c = P ⊕

⊕

i
V∞
i ,

whereP = B×{0H }×R is the polar bundle and the sum is takenover all indices i ∈ {1, . . . , 
}
such that h1(Vi ) ⊂ B × PH1 is chain transitive.

We have seen that the subbundles Vi for linear flows �, which yield chain transitive sets
on the projective Poincaré bundle, play a special role. The paper Colonius [6] has discussed
the lift of linear flows to B × H1 and chain transitivity for the projection to the northern
hemisphere of the Poincaré sphere bundle. The following theorem formulates similar results
in the projective Poincaré bundle. Since the proofs are completely analogous, we omit them.

Theorem 21 Let Vi be a Selgrade bundle of a linear flow � on B × H. Then the following
assertions are equivalent:

(a) The set h1(Vi ) = P(Vi × {1}) is chain transitive in the projective Poincaré bundle
B × PH1.

(b) The subbundle Vi contains a line l = {(b, αx0) |α ∈ R } for some x0 
= 0 such that
h1(l) is chain transitive in B × PH1.

A sufficient condition for (b) (or (a)) is 0 ∈ int�Mo(Vi ;�).

Proof It is clear that (a) implies (b). The converse follows using the same construction as in
the proof of [6, Theorem 4.3]. The last assertion follows as [6, Theorem 4.7]. ��

Remark 22 Recall that by Theorem 16 the Morse spectrum �Mo(V1
c ;�1) of the central

Selgrade bundle V1
c contains 0 if � possesses a periodic trajectory. If 0 ∈ int�Mo(V1

c ;�1)

one can apply Theorem 21 to the linear flow �1. With H2 := H1 × R and

h2 : B × H1 → B × PH2, h2(b, x, r) := (b, P(x, r , 1)),

one deduces that h2(V1
c ) = P

(V1
c × {1}) is chain transitive on B × PH2.

5 Uniformly Hyperbolic Affine Flows

In this sectionwe determine for uniformly hyperbolic affine flows the central Selgrade bundle
for the lifted flow �1.

First we define uniformly hyperbolic affine flows; cf. Colonius and Santana [9].

Definition 23 An affine flow � on B × H with linear part � is uniformly hyperbolic if �

admits a decomposition B × H = V1 ⊕V2 into �-invariant subbundles V1 and V2 such that

(i) the restrictions �i
t (b, x) = (

θt b, ϕi (t, b, x)
)
to V i , i = 1, 2, satisfy for constants

α, K > 0 and for all b ∈ B
∥
∥�1

t (b, ·)
∥
∥ ≤ Ke−αt for t ≥ 0 and

∥
∥�2

t (b, ·)
∥
∥ ≤ Keαt for t ≤ 0,
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(ii) there is M > 0 with ‖ f (b)‖∞ ≤ M for all b ∈ B, and the following maps defined on
B with values in H are continuous:

b �→
∫ 0

−∞
ϕ1(−s, θsb, f (b, s))ds and b �→

∫ 0

−∞
ϕ2(s, θ−sb, f (b,−s))ds.

The next result follows by [9, Corollary 1 and Theorem 2.5].

Theorem 24 Consider a uniformly hyperbolic affine flow � on B × H with linear part �.

(i) Then for every b ∈ B there is a unique bounded solution (θt b, e(b, t)), t ∈ R, for the
flow � and the map e : R × B → H is continuous.

(ii) The affine flow � and its homogeneous part � are conjugate by the homeomorphism

ha f f = (idB , h0a f f ) : B × H → B × H satisfying ha f f (�t (b, x)) = �t (ha f f (b, x)),

where h0a f f (b, x) = x − e(b, 0), b ∈ B.

Note that

h0a f f (θt b, ψ(t, b, x)) = ϕ(t, b, h0a f f (b, x)) for all t ∈ R, b ∈ B, x ∈ H .

Again we assume throughout that the base space B is chain transitive. The following result
characterizes the chain recurrent set for hyperbolic affine flows.

Theorem 25 Suppose that � is a uniformly hyperbolic affine flow. Then the chain recurrent
set of the linear part � of � isR = B × {0H } and ha f f (R) = {(b,−e(b, 0)) |b ∈ B } is the
chain recurrent set for the affine flow �. The set ha f f (R) is compact and chain transitive.

Proof For the linear flow� every chain recurrent point in the stable subbundleV1 is contained
in the product B×{0H }, which is chain transitive, and the same holds for the unstable bundle
V2. Since B×H = V1⊕V2 it follows that the chain recurrent set of� isR = B×{0H }. For
the proof of these assertions, note that similar arguments as for Antunez et al. [2, Corollary
2.11] can be used, where hyperbolic linear operators on Banach spaces are considered. By
Theorem 24

ha f f (R) = {(b, h0a f f (b, x)) |(b, x) ∈ R } = {(b,−e(b, 0)) |b ∈ B }.
Thus ha f f (R) is compact since B is compact and e(·, 0) is continuous.

The map ha f f is uniformly continuous: In fact, for ε > 0 it follows by compactness
of B and continuity of e(·, 0) that there is δ(ε) ∈ (0, ε/2) such that d(b, b′) < δ(ε) and∥
∥x − x ′∥∥ < δ(ε) implies
∥
∥x − e(b, 0) − (

x ′ − e(b′, 0)
)∥
∥ ≤ ∥

∥x − x ′∥∥ + ∥
∥e(b, 0) − e(b′, 0)

∥
∥ < δ(ε) + ε/2 < ε.

Hence d(b, x), (b′, x ′)) < δ(ε) implies d(ha f f (b, x), ha f f (b′, x ′)) < ε. Analogously one
proves that the inverse of ha f f given by

h−1
a f f (b, x) = (b, x + e(b, 0))

is uniformly continuous. Let ε, T > 0 and consider h(b, 0H ), h(b′, 0H ) ∈ ha f f (R) with
b, b′ ∈ B. By chain transitivity of B there is a (δ(ε), T )-chain in B × {0H } from (b, 0H ) to
(b′, 0H ). Then ha f f maps it onto an (ε, T )-chain from ha f f (b, 0H ) to ha f f (b′, 0H ). Since
ε, T > 0 are arbitrary, this proves that ha f f (R) is chain transitive.

It remains to prove that ha f f (R) is the chain recurrent set of �. Let ε > 0. By uni-
form continuity of h−1

a f f there is δ′(ε) > 0 such that d(b, x), (b′, x ′)) < δ′(ε) implies
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d(h−1
a f f (b, x), h

−1
a f f (b

′, x ′)) < ε. For any chain recurrent point (b, x) of � and T > 0

there is a (δ′(ε), T )-chain from (b, x) to (b, x). This is mapped by h−1
a f f to an (ε, T )-

chain of � from h−1
a f f (b, x) to h−1

a f f (b, x). This proves that h−1
a f f (b, x) ∈ R and hence

(b, x) = ha f f (h
−1
a f f (b, x)) ∈ ha f f (R). ��

Next we determine the Selgrade bundles and their Morse spectra.

Theorem 26 Suppose that � is a uniformly hyperbolic affine flow.

(i) Then the Selgrade bundles of �1 are V∞
i , i ∈ {1, . . . , 
}, together with the central

Selgrade bundle V1
c , which is the line bundle in B × H1 given by

V1
c = {(b,−re(b, 0), r) ∈ B × H × R |b ∈ B, r ∈ R }. (15)

The projectionM1
c = PV1

c to B×PH1 is a compact subset of B×PH1,1 and coincides
with the image of the chain recurrent set of �, i.e.,

M1
c = {

(b, P(x, 1))
∣
∣(b, x) ∈ ha f f (R)

}
. (16)

(ii) The Morse spectra of the Selgrade bundles are

�Mo(V∞
i ;�1) = �Mo(Vi ;�) for i ∈ {1, . . . , 
} and �Mo(V1

c ;�1) = {0}.
Proof (i) By Theorem 25 the chain recurrent set of the affine flow � is ha f f (R) =
{(b,−e(b, 0)) |b ∈ B }, and it is compact and chain transitive. Denote by V1∗ the right hand
side of (15). First we claim that V1∗ is a subbundle. The projection of V1∗ to B ×PH1 satisfies

PV1∗ = {(b, P (−e(b, 0), 1)) ∈ B × H × R |b ∈ B }
= {(b, P (x, 1)) ∈ B × H × R

∣
∣(b, x) ∈ ha f f (R) } = h1(ha f f (R)).

By Proposition 9(ii) the compact and chain transitive set ha f f (R) is mapped to the compact
set PV1∗ = h1(ha f f (R)) ⊂ B × H1,1 which is chain transitive for P�1.

For every b ∈ B the fiber {(b,−re(b, 0), r), r ∈ R}, is one dimensional and V1∗ is closed.
In fact, suppose that a sequence (bn,−rne(bn, 0), rn), n ∈ N in V1∗ converges to (b, x, r) ∈
B×H×R. Then bn → b and rn → r , and by continuity of e(·, 0) it follows that rne(bn, 0) →
re(b, 0). This shows that (b, x, r) = (b,−re(b, 0), r) ∈ V1∗ . According to Colonius and
Kliemann [7, Lemma B.1.13] it follows that V1∗ is a one dimensional subbundle of B × H1.

By Proposition 9(i) the sets PV∞
i ⊂ B × PH1,0 are chain recurrent components of P�1

restricted to B×PH1,0, hence they are chain transitive forP�1. Furthermore, the intersection
satisfies

V1∗ ∩
⊕


i=1
V∞
i = B × {(0H , 0)} ⊂ B × H1,

since r = 0 implies re(b, 0) = 0. It follows that

V1∗ ⊕
⊕


i=1
V∞
i = B × H1, (17)

since the fibers on the left hand side have dimension d + 1. The sets PV1∗ and PV∞
i are

contained in chain recurrent componentsM1 andM1
j with j in some index set J , respectively,

of P�1. Lemma 10(ii) implies that, actually, the sets PV1∗ and PV∞
i are chain recurrent

components, since otherwise the subbundles for M1 and M1
j would satisfy

dim
(
V1 ⊕

⊕

j∈J
V1
j

)
> d + 1 = dim(B × H1),
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which is a contradiction. It follows that V1∗ and V∞
i are Selgrade bundles, and J = {1, . . . , 
}.

Thus (17) is a decomposition into Selgrade bundles, and Theorem 12(i) shows that V1∗ = V1
c .

Since dim V1
c = 1, Theorem 12 (iii) implies that M1

c ⊂ B × PH1,1. Equality (16) is a
consequence of Theorem 25.

(ii) The assertion for the Selgrade bundles V∞
i follows by Theorem 16(iii). For the central

Selgrade bundle V1
c equality (15) implies that the projection to the projective bundle is

PV1
c = {(b, P(−e(b, 0), 1) |b ∈ B }.

Consider an (ε, T ) chain in PV1
c given by T0, . . . , Tn−1 ≥ T , and (b0, p0), . . . , (bn, pn) ∈

B × PV1
c with d(P�(Ti , bi , pi ), (bi+1, pi+1)) < ε for i = 0, . . . , n − 1. Then pi =

P(e(bi , 0), 1) and with total time τ = ∑n−1
i=0 Ti the exponential growth rate of ζ is

λ(ζ ) = 1

τ

n−1∑

i=0

(
log

∥
∥�1(Ti ,−e(bi , 0), 1)

∥
∥ − log ‖(e(bi , 0), 1)‖

)
.

By definition and Theorem 24(i)

�1(Ti ,−e(bi , 0), 1) = (θTi bi ,−e(bi , Ti ), 1). (18)

Recall that by assumption ‖ f (b)‖∞ ≤ M for all b ∈ B. This implies that the bounded
solutions e(b, t), t ∈ R, are uniformly bounded for b ∈ B (cf. Colonius and Santana [9,
formula (13) andCorollary 1]). Thus by (18) also

∥
∥�1(Ti , e(bi , 0), 1)

∥
∥ is uniformly bounded.

It follows that for T large enough and Ti > T

λ(ζ ) =
n−1∑

i=0

Ti
∑n

j=0 Tj

1

Ti

(
log

∥
∥�1(Ti ,−e(bi , 0), 1)

∥
∥ − log ‖(−e(bi , 0), 1)‖

)

≤
n−1∑

i=0

Ti
∑n−1

j=0 Tj
ε = ε.

Since ε > 0 is arbitrary, it follows that �Mo(V1
c ;�1) = {0}. ��

Remark 27 For a linear uniformly hyperbolic flow � the bounded solutions are given by
(θt b, 0H ), t ∈ R, hence the central Selgrade bundle of the lift �1 coincides with the polar
bundle P (cf. (13))

V1
c = {(b, 0H , r) ∈ B × H1 |b ∈ B, r ∈ R } = P.

6 Control Systems and Examples

In this section we study control systems which provide a rich class of affine flows. After
introducing some notation for control systems, the existence and uniqueness of chain control
sets inR

d is analyzed. Thenwe apply the results of the previous sections to affine control flows
defined by affine control systems with bounded control range and present several examples.
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6.1 Control Systems

Control-affine systems have the form

ẋ(t) = X0(x(t)) +
m∑

i=1

ui (t)Xi (x(t)), u(t) = (u1(t), . . . , um(t)) ∈ 	, (19)

where X0, X1, . . . , Xm are smooth (C∞-)vector fields on a manifold M and 	 ⊂ R
m . We

assume that for every admissible control u in

U := {u ∈ L∞(R, R
m) |u(t) ∈ 	 for almost all t }

and every initial state x(0) = x0 ∈ M there exists a unique (Carathéodory) solution
ψ(t, x0, u), t ∈ R.

Suppose that the control range	 ⊂ R
m is a convex and compact neighborhood of 0 ∈ R

m ,
endow the setU of controlswith ametric compatiblewith theweak∗ topology on L∞(R, R

m),
and fix a metric (compatible with the topology) on M . The control flow is defined as� : R×
U×M → U×M, (t, u, x0) �→ (u(t+·), ψ(t, x0, u)), where u(t+·)(s) := u(t+s), s ∈ R,
is the right shift. The control flow � is continuous and U is compact and chain transitive; cf.
Colonius and Kliemann [7, Chapter 4] or Kawan [14, Section 1.4].

Maximal chain transitive sets of a control flow enjoy a characterization in the state space
M of the control system. Fix x, y ∈ M and let ε, T > 0. A controlled (ε, T )-chain ζ from
x to y is given by n ∈ N, x0 = x, . . . , xn−1, xn = y ∈ M, u0, . . . , un−1 ∈ U , and
T0, . . . , Tn−1 ≥ T with

d(ψ(Tj , x j , u j ), x j+1) < ε for all j = 0, . . . , n − 1.

Define a chain control set of system (19) as a maximal nonvoid set E ⊂ M such that (i) for
all x ∈ E there is u ∈ U such that ψ(t, x, u) ∈ E for all t ∈ R and (ii) for all x, y ∈ E and
ε, T > 0 there is a controlled (ε, T )-chain from x to y.

For control affine systems of the form above, [14, Proposition 1.24] shows that a chain
control set E yields a maximal invariant chain transitive set E of the control flow � via

E := {(u, x) ∈ U × M |ψ(t, x, u) ∈ E for all t ∈ R }, (20)

and for any maximal invariant chain transitive set in U × M the projection to M is a chain
control set.

6.2 Affine Control Systems

General affine control system have the form

ẋ(t) = A0x(t) + a0 +
∑m

i=1
ui (t)[Ai x(t) + ai ], u ∈ U, (21)

where Ai ∈ R
d×d , ai ∈ R

d , i ∈ {0, 1, . . . ,m}. If the control range 	 ⊂ R
m is a convex and

compact neighborhood of 0 ∈ R
m , the system generates an affine control flow � on U ×R

d .
We also consider the following special case.

Definition 28 Split affine control systems have the form

ẋ(t) =
[
A0 +

∑p

i=1
vi (t)Ai

]
x(t) + Bu(t) = A(v(t))x(t) + Bu(t), (22)
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where A0, A1, . . . , Ap ∈ R
d×d , A(v) := A0 + ∑p

i=1 vi Ai for v ∈ R
p , and B ∈ R

d×m . The
set of admissible controls is

U1 × U2 = {(u, v) ∈ L∞(R, R
m) × L∞(R, R

p) |u(t) ∈ 	1, v(t) ∈ 	2 for t ∈ R },
where 	1 ⊂ R

m and 	2 ⊂ R
p .

Split affine control systems are affine control systems: Define A′
i := 0 for i = 1, . . . ,m,

and um+i := vi and A′
m+i = Ai for i = 1, . . . , p. Furthermore, denote the columns of B by

a′
i , i = 1, . . . ,m, and let a′

i := 0, i = m + 1, . . . ,m + p. Then, with A′
0 := A0 and a′

0 := 0,
system equation (22) is equivalent to

ẋ(t) = A′
0x(t) + a′

0 +
m+p∑

i=1

ui (t)
[
A′
i x(t) + a′

i

]

with controls in U := {u ∈ L∞(R, R
m+p) |u(t) ∈ 	 := 	1 × 	2 for t ∈ R }.

The following theorem presents results on existence and uniqueness of chain control sets
for split affine control systems in R

d . The considered systems may not generate a control
flow, since the assumptions on the control range are more general. Thus a chain control set
need not be related to a chain transitive component of a flow.

Theorem 29 For every split affine control system of the form (22), where 0 ∈ 	2 and the
control range 	1 is a convex neighborhood of 0 ∈ R

m, there exists a unique chain control
set E in R

d .

Proof First note that for u ≡ 0 the origin 0 ∈ R
d is an equilibrium, hence there exists a chain

control set E with 0 ∈ E . The trajectories x(t) = ψ(t, x0, u, v), t ∈ R, of (22) satisfy for
α ∈ (0, 1)

αẋ(t) = A0αx(t) +
∑m

i=1
vi (t)αx(t) + Bαu(t).

It follows that

ψ(t, αx0, αu, v) = αψ(t, x0, u, v), t ∈ R, (23)

and ψ(·, αx0, αu, v) is a trajectory of (22), since 	1 is a convex neighborhood of 0 ∈ R
m

implying that the controls αu are in U1.
Suppose that E ′ is any chain control set and let x ∈ E ′. First we will construct controlled

(ε, T )-chains from x to 0 ∈ E .
Step 1: There is a controlled (ε, T )-chain from x to αx for some α ∈ (0, 1).
For the proof consider a controlled (ε/2, T )-chain ζ in E ′ from x to x given by x0 =

x, x1, . . . , xn = x, (u0, v0) . . . , (un−1, vn−1) ∈ U1 × U2, and T0, . . . , Tn−1 > T with

‖ψ(Ti , xi , ui , vi ) − xi+1‖ < ε/2 for i = 0, . . . , n − 1.

Let α ∈ (0, 1) with (1 − α) ‖x‖ < ε/2, hence

‖ψ(Tn−1, xn−1, un−1, vn−1) − αxn‖
≤ ‖ψ(Tn−1, xn−1, un−1, vn−1) − x‖ + ‖x − αx‖ < ε.

This defines a controlled (ε, T )-chain ζ (1) from x to αx .
Step 2: Replacing xi by αxi and ui by αui for all i we get by (23)

‖ψ(Ti , αxi , αui , vi ) − αxi+1‖ = α ‖ψ(Ti , xi , ui , vi ) − xi+1‖ < ε/2
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and
∥
∥ψ(Tn−1, αxn−1, αun−1, vn−1) − α2x

∥
∥

≤ ‖ψ(Tn−1, αxn−1, αun−1, vn−1) − αx‖ + ∥
∥αx − α2x

∥
∥ < ε.

This defines a controlled (ε, T )-chain ζ (2) from αx to α2x . The concatenation of ζ (2) and
ζ (1) yields a controlled (ε, T )-chain ζ (2) ◦ ζ (1) from x to α2x .

Repeating this construction, we find that the concatenation ζ (k) ◦ · · · ◦ ζ (1) is a controlled
(ε, T )-chain from x ∈ E ′ to αk x . Since αk → 0 for k → ∞, we can take k ∈ N large
enough, such that the last piece of the chain ζ (k) satisfies

∥
∥
∥ψ(Tn−1, α

k−1xn−1, α
k−1un−1, vn−1)

∥
∥
∥ < ε.

Thus we may take 0 ∈ E as the final point of this controlled chain showing that the concate-
nation ζ (k) ◦ · · · ◦ ζ (1) define a controlled (ε, T )-chain from x ∈ E ′ to 0 ∈ E .

Step 3: Together with (22) we consider the time reversed system

ẏ(t) = −
[
A0 +

∑p

i=1
vi (t)Ai

]
y(t) − Bu(t), (u, v) ∈ U1 × U2, (24)

with trajectories ψ−(t, y, u, v), t ∈ R. For S > 0 and z := ψ−(S, y, u, v) the trajectories
are related by

ψ−(t, y, u, v) = ψ(S − t, z, u(S − ·), v(S − ·)) for t ∈ [0, S]. (25)

This holds, since the right hand side of (25) satisfies

d
dt ψ(S − t, z, u(S − ·), v(S − ·)) = −ψ̇(S − t, z, u(S − ·), v(S − ·))
= − [

A0 + ∑p
i=1 vi (S − t)Ai

]
ψ(S − t, z, u(S − ·), v(S − ·)) − Bu(S − t)

with ψ(S − S, z, u(S − ·), v(S − ·)) = z.
The chain control sets of the time reversed system coincide with the chain control sets of

the original system. Using the relation (20) of chain control sets and maximal chain transitive
sets, this follows from the fact that chain transitive sets are invariant under time reversal (cf.
Colonius and Kliemann [8, Proposition 3.1.13(ii)]) or it can be proved directly (using similar
arguments as below).

The result from Step 2 can be applied to the time reversed system (24) and yields
controlled (ε, T )-chains from x ∈ E ′ to 0 ∈ E . Let ζ− be such a chain, given by
y0 = x, y1, . . . , yn−1, yn = 0, (u0, v0), . . . , (un−1, vn−1) ∈ U1×U2, and T0, . . . , Tn−1 > T
with

∥
∥ψ−(Ti , yi , ui , vi ) − yi+1

∥
∥ < ε for i = 0, . . . , n − 1.

Define a controlled (ε, T )-chain ζ for (32) by going backwards in ζ−: The point 0 ∈ R
d is

an equilibrium for control u = 0, v = 0, hence define x0 = 0, u0 = 0, v0 = 0, T0 > T , and
for i = 1, . . . , n

T ∗
i := Tn−i , xi := ψ−(Tn−i , yn−i , un−i , vn−i ),

u∗
i (t) := un−i (Tn−i − t), v∗

i (t) := vn−i (Tn−i − t), t ∈ [0, Tn−i ],
and let xn+1 := x . This defines a controlled (ε, T )-chain from x0 = 0 ∈ E to xn+1 = x ∈ E ′,
since for i = 1, . . . , n − 1,

∥
∥ψ(T ∗

i , xi , u
∗
i , v

∗
i ) − xi+1

∥
∥ = ∥

∥yn−i − ψ−(Tn−i−1, yn−i−1, un−i−1, vn−i−1)
∥
∥ < ε.

Together with Step 2 it follows that the chain control sets E and E ′ coincide. ��
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Next we illustrate the results from Sect. 3 on the Selgrade decomposition by the simplest
case of autonomous differential equations.

Example 30 Consider the autonomous affine differential equation ẋ(t) = Ax(t) + a with
A ∈ R

d×d and a ∈ R
d . Here subbundles are just subspaces. The Selgrade subspaces of the

linear part ẋ = Ax are the Lyapunov spaces L(λi ), which are the sums of the generalized
real eigenspaces for eigenvaluesμwith real part λi . The lifted system in R

d ×R is described
by

(
ẋ(t)
ż(t)

)

=
(
A a
0 0

)(
x(t)
z(t)

)

. (26)

For the lifted system the eigenvalues are given by the eigenvalues of A together with the
additional eigenvalue μ = 0. With the Lyapunov spaces at infinity L(λi )

∞ := L(λi ) × {0}
the Selgrade decomposition has the form

R
d+1 = L(λ1)

∞ ⊕ · · · ⊕ L(λ
+)∞ ⊕ L1
c ⊕ L(λ
++
0+1)

∞ ⊕ · · · ⊕ L(λ
)
∞;

here λi < 0 for i ∈ {1, . . . , 
+} and λi > 0 for i ∈ {
+ + 
0 + 1, . . . , 
} The number

0 = 0 if and only if A is hyperbolic and 
0 = 1 otherwise. The subspace L1

c is the Lyapunov
space for the Lyapunov exponent λ = 0. In particular, if A is hyperbolic, the unique bounded
solution is the equilibrium x0 = −A−1a, and by Theorem 26 the central Selgrade subspace
is

L1
c = {(r x0, r) ∈ R

d × R |r ∈ R } with dim L1
c = 1.

Remark 31 An in-depth analysis of nonautonomous affine differential equations is given in
the classical treatise by Massera and Schäffer [17].

An application of Theorems 12 and 26 to affine control system (21) and the associated
affine control flow � yields the following results. The map f : U → L∞(R, R

m) is given
by f (u)(t) = a0 +∑m

i=1 ui (t)ai , t ∈ R, and the linear part � of � is the linear control flow
associated with the bilinear control system

ẋ(t) =
[
A0 +

∑m

i=1
ui (t)Ai

]
x(t), u ∈ U . (27)

Corollary 32 Consider an affine control system of the form (21), where the control range 	

is a convex and compact neighborhood of 0 ∈ R
m, and denote by � the associated affine

control flow on U × R
d . For i ∈ {1, . . . , 
} let Vi ⊂ U × R

d be the Selgrade bundles of the
linear flow � associated with control system (27), and let V∞

i = Vi × {0}.
(i) The Selgrade decomposition of the lifted flow �1 has the form

U × R
d+1 = V∞

1 ⊕ · · · ⊕ V∞

+ ⊕ V1

c ⊕ V∞

++
0+1 ⊕ · · · ⊕ V∞


 , (28)

for some numbers 
+, 
0 ≥ 0 with 
+ + 
0 ≤ 
.
(ii) The central Selgrade bundle V1

c satisfies

V1
c ∩

(
U × R

d × {0}
)

=
i=
++
0⊕

i=
++1

V∞
i := V∞

c and

(iii) The dimension of V1
c is given by dim V1

c = 1 + dim V∞
c , and dim V1

c = 1 holds if and
only if V1

c ∩ (U × R
d × {0}) = U × {0} × {0}.
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(iv) If (27) is uniformly hyperbolic, the central Selgrade bundle is the line bundle

V1
c = {(u,−re(u, 0), r) ∈ U × R

d × R |u ∈ U, r ∈ R }, (29)

where e(u, t), t ∈ R, is the unique bounded solution of (21) for u ∈ U , and M1
c ⊂

U × P
d,1.

We can give a more explicit description of the central Selgrade bundle V1
c for split affine

control systems of the form (22). Here we suppose that 	1 and 	2 are convex and compact
neighborhoods of the origin. Hence the associated control flow �t (u, v, x), t ∈ R, on U1 ×
U2 × R

d is a well defined split affine flow with compact metric spaces B1 := U1, B2 := U2

and equilibrium e1 := 0U1 ∈ U1, and

�t (u, v, x) = (u(t + ·), v(t + ·), ψ(t, x, u, v)) ∈ U1 × U2 × R
d . (30)

The homogeneous part is given by the bilinear control system

ẋ(t) = A(v(t))x(t), v ∈ U2, (31)

which does not depend on u ∈ U1.
The following corollary is an immediate consequence of Theorem 19.

Corollary 33 Consider the split affine control flow � given by (30) associated with a control
system of the form (22). Then the central Selgrade bundleV1

c of the lift�
1 toU1×U2×R

d×R

satisfies

V1
c ∩

(
{0U1} × U2 × R

d+1
)

= {0U1} ×
(
P ⊕

⊕

i
V∞
i

)
.

Here P := U2 × ({0} × R) ⊂ U2 × R
d+1 is the polar bundle, Vi ⊂ U2 × R

d , i ∈ {1, . . . , 
},
are the Selgrade bundles of the homogeneous part (31), and the sum is taken over all indices
i such that h1(Vi ) = P(Vi × {1}) ⊂ U2 × P

d is chain transitive.

Remark 34 A particular case of (22) are linear control systems, which have the form

ẋ(t) = Ax(t) + Bu(t), u ∈ U, (32)

with A ∈ R
d×d and B ∈ R

d×m . Here U2 is trivial and omitted. The homogeneous part has a
very simple structure, since it is determined by the autonomous differential equation ẋ = Ax .
The corresponding Selgrade bundles are Vi = U × L(λi ) with the Lyapunov spaces L(λi )

of A. The polar subspace is P = {0} × R ⊂ R
d+1 and the central Selgrade bundle satisfies

V1
c ∩

(
{0U } × R

d+1
)

= {0U } ×
⊕

i
(L(λi ) × R) ,

where the sum is taken over all indices i such that P(L(λi ) × {1}) is chain transitive.

Next we exploit the relation between chain recurrent components of control flows and
chain control sets. System (21) can be embedded into a bilinear control system in R

d+1 of
the form (cf. Elliott [11, Subsection 3.8.1])

(
ẋ(t)
ż(t)

)

=
(
A0 a0
0 0

)(
x(t)
z(t)

)

+
m∑

i=1

ui (t)

(
Ai ai
0 0

)(
x(t)
z(t)

)

, u ∈ U, (33)

with trajectories denoted by ψ1(t, x0, z0, u), t ∈ R. This control system induces a control
system on projective space P

d (cf., e.g., Colonius and Kliemann [7, Chapter 6]) with trajec-
tories Pψ1(t, P(x0, z0), u), t ∈ R, for (x0, z0) 
= (0, 0). The linear control flow generated
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by (33) is the lift�1 of the control flow� for (21) and the control flow of the induced control
system on P

d is the projective flow P�1.
Projective space P

d can be written as the disjoint union P
d = P

d,1∪̇P
d,0, where P

d,1 :={
P(x, 1)

∣
∣x ∈ R

d
}
and P

d,0 := {
P(x, 0)

∣
∣0 
= x ∈ R

d
}
. Note that Pd,1 can be identified with

the northern hemisphere S
d,+ of the unit sphere S

d and P
d,0 corresponds to the equator of

S
d .
The following theorem clarifies the relation between chain control sets E in R

d and the
chain control set E1

c in projective Poincaré space P
d .

Theorem 35 Consider an affine control system of the form (21), where the control range 	

is a convex and compact neighborhood of 0 ∈ R
m.

(i) Then there is a unique chain control set E1
c of the induced control system on the pro-

jective Poincaré space P
d such that E1

c ∩ P
d,1 
= ∅. It is given by E1

c = {P(x, r) ∈
P
d
∣
∣∃u ∈ U : (u, P(x, r)) ∈ M1

c }, where M1
c is the projection of the central Selgrade

bundle V1
c .

(ii) If there is a chain control set E in R
d of the affine control system (21), the image

P (E × {1}) in the projective Poincaré space P
d is contained in E1

c .
(iii) If (21) is uniformly hyperbolic, then there is a unique chain control set E inR

d . It is com-
pact and the chain control set E1

c given by the image of E, i.e., E
1
c = {P (x, 1) |x ∈ E },

is a compact subset of P
d,1. For every u ∈ U there exists a unique element x ∈ E with

ψ(t, x, u) ∈ E for all t ∈ R.

Proof (i) The correspondence (20) between maximal invariant chain transitive sets of the
control flow and chain control sets implies that there is a chain control set E1

c in P
d

with

M1
c = {(u, P (x, r))

∣
∣Pψ1(t, P (x, r) , u) ∈ E1

c for t ∈ R }.
SinceM1

c is the only chain recurrent component of P�1 having a nonvoid intersection
with U × P

d,1, it follows that E1
c is the unique chain control set with E1

c ∩ P
d,1 
= ∅.

(ii) Let E ⊂ R
d be a chain control set of (21). An application of Corollary 14(i) shows

that the maximal chain transitive set E of the affine control flow � associated with E
satisfies h1(E) ⊂ M1

c . By (i) it follows that P (E × {1}) ⊂ E1
c .

(iii) The assertions follow by Theorem 26: The chain recurrent set ha f f (R) of� is compact
and chain transitive and is mapped onto the chain transitive setM1

c . Thus ha f f (R) cor-
responds to the unique chain control set E of control system (21), andM1

c corresponds
to the chain control set E1

c of the control system on P
d . Since M1

c is a compact subset
of U × P

d,1 it follows that E1
c is a compact subset of P

d,1. The last assertion follows,
since V1

c is one dimensional.
��

We briefly indicate how for linear control systems of the form (32) stronger results
can be obtained under additional assumptions. Suppose that the matrices A, B satisfy
rank[B, AB, . . . , Ad−1B] = d . Define a control set D as a maximal nonvoid set in R

d

such that (i) for all x ∈ D there is a control u ∈ U with ψ(t, x, u) ∈ D for all t ≥ 0 and (ii)
for all x, y ∈ D and all ε > 0 there are u ∈ U and T > 0 with ‖ψ(T , x, u) − y‖ < ε. Then
one can deduce from Sontag [25, Corollary 3.6.7] that there is a unique control set D with
nonvoid interior and

L(0) ⊂ D ⊂ L(0) + F,
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where F is a compact and convex subset of R
d . The map eS : R

d → S
d,+, x �→ (x,1)

‖(x,1)‖ to
the northern hemisphere of the Poincaré sphere is a homeomorphism. By Colonius et al. [10,
Theorem 15(ii)] the induced control system on S

d,+ has a unique control set with nonvoid
interior, which is given by eS(D), and its intersection with the equator S

d,0 satisfies

eS(D) ∩ S
d,0 = eS(L(0)) ∩ S

d,0. (34)

For the projective Poincaré space P
d it similarly follows that P (D × {1}) is a control set with

nonvoid interior in P
d,1 and its closure in P

d satisfies

P (D × {1}) ∩ P
d,0 = P(L(0) × {1}) ∩ P

d,0.

Since P (D × {1}) is a control set with nonvoid interior, Kawan [14, Proposition 1.24(ii)]
implies that it is contained in a chain control set, hence in E1

c . The intersection in (34) is
nontrivial if and only if L(0) is nontrivial, i.e., if A is nonhyperbolic.

We proceed to discuss several simple examples of linear control systems. Recall that they
generate split affine control flows.

Example 36 Consider the linear control system
(
ẋ
ẏ

)

=
(
1 0
0 −1

)(
x
y

)

+
(
1
1

)

u(t) with u(t) ∈ 	 = [−1, 1]. (35)

The system is hyperbolic and the Lyapunov spaces of the linear part are L(−1) = {0}×R and
L(1) = R × {0}. The subbundles V1 = U × L(−1) and V2 = U × L(1) yield the Selgrade
bundles at infinity V∞

1 = V1 × {0} and V∞
2 = V2 × {0} with associated chain recurrent

components in the projective Poincaré bundle U × P
2,0 ⊂ U × P

2 given by

M1
1 = PV∞

1 = U × {P(0, 1, 0)} ,M1
2 = PV∞

2 = U × P(1, 0, 0),

respectively. Inspection of the phase portrait in R
2 shows that the unique chain control set

is the compact set E = [−1, 1] × [−1, 1] and for every u ∈ U the unique bounded solution
e(u, ·) is contained in E . As indicated in (20) the lift of E to U × R

2 is a maximal chain
transitive set E . Corollary 32(iv) implies that the central Selgrade bundle has the form (29)
with dim V1

c = 1 and projectionM1
c = PV1

c ⊂ U × P
2,1. Furthermore, the chain control set

satisfies E1
c = P (E × {1}).

The following linear control system is nonhyperbolic.

Example 37 Consider
(
ẋ
ẏ

)

=
(
0 0
0 1

)(
x
y

)

+
(
1
1

)

u(t) with u(t) ∈ 	 = [−1, 1].

Here the Lyapunov spaces of the linear part are L(0) = R × {0} and L(1) = {0} × R. With
V1 = U × L(0) and V2 = U × L(1) this yields the subbundles at infinity V∞

1 = V1 × {0}
and V∞

2 = V2 × {0} with associated chain recurrent components in U × P
2,0 given by

M1
1 = PV∞

1 = U × {P(1, 0, 0)} ,M1
2 = PV∞

2 = U × P(0, 1, 0),

respectively. By Corollary 33 and Remark 34 the central Selgrade bundle V1
c has dimension

dim V1
c = 1 + dim L(0) = 2. Thus V∞

1 ⊂ V1
c and V∞

2 is a Selgrade bundle at infinity.
Inspection of the phase portrait in R

2 shows that the unique chain control set E is given by
the strip E = R × [−1, 1]. The lift of the chain control set E is the maximal chain transitive
set E for the affine control flow �. The orthogonal projection of the system on the northern
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Fig. 1 Chain control set E1
c and

phase portraits for u = ±1 in
Example 37

hemisphere S
2,+ to the unit disk yields the phase portrait for u = ±1 and the chain control

set E1
c = P(E × {1}) sketched in Fig. 1. The Morse spectra satisfy

�Mo(V∞
1 ;�1) = �Mo(L(0)) = {0}, �Mo(V∞

2 ;�1) = �Mo(L(1)) = {1},
and the inclusion in Theorem 16(ii) implies 0 ∈ �Mo(V1

c ;�1).

In the next example the eigenvalue 0 of the matrix A is not semisimple.

Example 38 Consider
(
ẋ
ẏ

)

=
(
0 1
0 0

)(
x
y

)

+
(
1
0

)

u(t) with u(t) ∈ 	 = [−1, 1].

The Lyapunov space is L(0) = R
2 which is chain transitive for u ≡ 0: The x-axis consists

of equilibria and for y 
= 0 all trajectories move on parallels to the x-axis (to the right for
y > 0 and to the left for y < 0). Thus the chain control set E coincides with R

2. Note
that the (ε, T )-chains become unbounded for T → ∞. On the equator S

1 × {0} of S
2 there

are two equilibria given by the intersection with the eigenspace R × {0}. For �1 there is
no Selgrade bundle at infinity and the central Selgrade bundle is V1

c = U × R
2 × R. This

yields the chain recurrent componentM1
c = PV1

c = U × P
2, and the chain control set on the

projective Poincaré space is E1
c = P

2.

For a linear flow � Remark 20 characterizes the central Selgrade bundle using the sub-
bundles Vi such that h1(Vi ) is chain transitive. The following example of a bilinear control
system shows that there may exist several subbundles Vi with this property; cf. [6, Example
5.2] which is based on [7, Example 5.5.12].

Example 39 Consider the bilinear control system given by
(
ẋ
ẏ

)

=
[(

0 − 1
4− 1

4 0

)

+ u1

(
1 0
0 1

)

+ u2

(
0 1
0 0

)

+ u3

(
0 0
1 0

)](
x
y

)

with

u(t) = (u1(t), u2(t), u3(t)) ∈ 	 = [−1, 1] × [−1/4, 1/4] × [−1/4, 1/4] ⊂ R
3.

This defines a linear flow �t (u, x) = (u(t + ·), ϕ(t, x, u)) , t ∈ R, on the vector bundle
U × R

2. With

A1 =
{(

x
αx

) ∣
∣
∣
∣α ∈

[

−√
2,− 1√

2

]}

, A2 =
{(

x
αx

) ∣
∣
∣
∣α ∈

[
1√
2
,
√
2

]}

,
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the Selgrade bundles are, for i = 1, 2,

Vi = {
(u, x, y) ∈ U × R

2 |ϕ(t, x, y, u) ∈ Ai for t ∈ R
}
with dim Vi = 1.

One obtains the two chain recurrent components Mi = PVi of P� on the projective bundle
U × P

1 ordered by M1 � M2. The Morse spectra are

�Mo(V1) = [−2, 1/2] and �Mo(V2) = [−1/2, 2] .

Since, for i = 1, 2, one has 0 ∈ int�Mo(Vi ), Theorem 21 implies that h1(Vi ) is chain
transitive in the projective Poincaré bundle U × P

2. By Remark 20 the central Selgrade
bundle is

V1
c = P ⊕ V∞

1 ⊕ V∞
2 = U×R

3,

where P = U × {0} × R ⊂ U × R
2 × R is the polar bundle. There is no Selgrade bundle at

infinity.
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