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A B S T R A C T   

Objective: Intracranial volume (ICV) represents the maximal brain volume for an individual, attained prior to late 
adolescence and remaining constant throughout life after. Thus, ICV serves as a surrogate marker for brain 
growth integrity. To assess the potential impact of adult-onset multiple sclerosis (MS) and its preceding pro-
dromal subclinical changes on ICV in a large cohort of monozygotic twins clinically discordant for MS. 
Methods: FSL software was used to derive ICV estimates from 3D-T1-weighted-3 T-MRI images by using an atlas 
scaling factor method. ICV were compared between clinically affected and healthy co-twins. All twins were 
compared to a large healthy reference cohort using standardized ICV z-scores. Mixed models assessed the impact 
of age at MS diagnosis on ICV. 
Results: 54 twin-pairs (108 individuals/80female/42.45 ± 11.98 years), 731 individuals (375 non-twins, 109/69 
monozygotic/dizygotic twin-pairs; 398female/29.18 ± 0.13 years) and 35 healthy local individuals (20male/ 
31.34 ± 1.53 years). In 45/54 (83 %) twin-pairs, both clinically affected and healthy co-twins showed negative 
ICV z-scores, i.e., ICVs lower than the average of the healthy reference cohort (M = -1.53 ± 0.11, P<10− 5). 
Younger age at MS diagnosis was strongly associated with lower ICVs (t = 3.76, P = 0.0003). Stratification of 
twin-pairs by age at MS diagnosis of the affected co-twin (≤30 versus > 30 years) yielded lower ICVs in those 
twin pairs with younger age at diagnosis (P = 0.01). Comparison within individual twin-pairs identified lower 
ICVs in the MS-affected co-twins with younger age at diagnosis compared to their corresponding healthy co-twins 
(P = 0.003). 
Conclusion: We offer for the first-time evidence for strong associations between adult-onset MS and lower ICV, 
which is more pronounced with younger age at diagnosis. This suggests pre-clinical alterations in early neuro-
development associated with susceptibility to MS both in individuals with and without clinical manifestation of 
the disease.   

Abbreviations: ICV, intracranial volume; EDSS, Expanded Disability Status Scale; MS, multiple sclerosis; MSSS, Multiple Sclerosis Severity Score; SCNI, subclinical 
neuroinflammation. 
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1. Introduction 

Intracranial volume (ICV) correlates to the maximal brain volume an 
individual achieves during brain growth up to late adolescence (Adams 
et al., 2016; Bethlehem et al., 2022; Mills et al., 2016). ICV remains 
constant throughout adult life and is not altered by adult-onset disorders 
affecting the brain, thus serving as a measure for maximal brain size 
before disease onset (Buckner et al., 2004). ICV serves as a surrogate 
marker of brain growth’s integrity during neurodevelopment and is 
considered a suitable proxy of brain reserve (Buckner et al., 2004; van 
Loenhoud et al., 2018). ICV can be assessed reliably using 3D T1- 
weighted MRI sequences (Buckner et al., 2004). 

The development and growth of the brain consists of various key 
components, such as synaptic pruning, which have been shown to be 
impacted by different elements of the immune system (Coulthard et al., 
2018; Morimoto and Nakajima, 2019). Therefore, early immune per-
turbations in the brain, like infections or autoimmunity, could change 
the architecture of the brain (Zengeler and Lukens, 2021; Han et al., 
2021; Tanabe and Yamashita, 2018). Neuroinflammatory changes dur-
ing brain development can lead to long-lasting structural and functional 
alterations (Tanabe and Yamashita, 2018). The impact of neuro-
inflammation on ICV has been demonstrated in pediatric multiple 
sclerosis (MS), where disease onset is closer in time to critical neuro-
developmental stages. Children with MS have been reported to have 
altered brain growth trajectories, resulting in lower ICVs and brain 
volumes than would be expected for their age and sex (Aubert-Broche 
et al., 2014; Aubert-Broche et al., 2017; Banwell, 2019; Bartels et al., 
2019; Kerbrat et al., 2012; Fenu et al., 2018; Weier et al., 2016). Lower 
brain volumes were observed in children with MS even shortly after first 
clinical presentation (Aubert-Broche et al., 2017; Bartels et al., 2019; 
Giorgio et al., 2017; Weier et al., 2016), suggesting alterations in brain 
growth possibly even before clinical disease onset. 

There is consensus that MS is associated with neuroinflammation and 
neurodegeneration from the early stages of radiological and clinical 
onset (Filippi et al., 2016; Rocca et al., 2017; Thompson et al., 2018), 
which is preceded by a prodromal phase characterized by subtle sub-
clinical neuroinflammation (Buscarinu et al., 2020; Lebrun-Frenay et al., 
2020; Makhani and Tremlett, 2021; Tremlett and Marrie, 2021). Inci-
dental white matter lesions and diffuse brain parenchymal changes and 
atrophy have been described in clinically healthy individuals at familial 
risk for MS, which may reflect the earliest prodromal phase (Beltrán 
et al., 2019; De Stefano et al., 2006; Gerdes et al., 2020; Xia et al., 2017). 
Investigating the impact of adult-onset MS on ICV is challenging due to 
the heterogeneity of genetic and environmental confounders. The po-
tential impact of adult-onset MS on earlier brain growth as a possible 
indicator of preclinical disease activity during neurodevelopment re-
mains to be elucidated. 

We aimed to evaluate MRI-based ICV as a surrogate marker of pre- 
disease brain growth in an ideally matched cohort of monozygotic 
twins clinically discordant for MS and compared these to a large refer-
ence cohort of healthy individuals (Human Connectome Project S1200 
release), while incorporating a local cohort of adult healthy controls. 

2. Materials and methods 

2.1. Ethics committee approval 

All investigations including MRI analysis in the MS-TWIN STUDY 
and our local control cohort were approved by the local ethics com-
mittee at Ludwig-Maximilian University of Munich (MS-TWIN STUDY, 
project-ID 267-13). All participants provided written informed consent 
according to the principles of the declaration of Helsinki (Goodyear 
et al., 2007). 

2.2. Participants 

Fig. 1 provides a synopsis of all cohorts included in this study. 

2.3. Multiple sclerosis twin cohort 

The MS twin cohort is part of the MS-TWIN STUDY and represents a 
cohort of monozygotic twins with clinical discordance for MS. The MS- 
TWIN STUDY is a monocentric study conducted at the Institute of 
Clinical Neuroimmunology, University Hospital LMU, Munich, Ger-
many. Recruitment started in May 2012 and is ongoing; samples used for 
the present study were collected until December 2017. Table 1 sum-
marizes basic clinical characteristics. Previous publications on different 
subsets from the MS-TWIN STUDY investigated immune profiles in CSF 
(N = 8 twin-pairs) and blood (N = 43 twin-pairs; N = 61 twin-pairs) 
(Beltrán et al., 2019; Gerdes et al., 2020; Ingelfinger et al., 2022), 
DNA methylation patterns (N = 45 twin-pairs) (Souren et al., 2019), 
altered lipid signaling (N = 73 twin-pairs) (Penkert et al., 2020), the role 
of the gut microbiota as a disease trigger (N = 34 twin-pairs) (Berer 
et al., 2017) as well as an broadened T cell reaction to EBV in MS (N = 34 
twin-pairs) (Schneider-Hohendorf et al., 2022). In this manuscript we 
investigated ICV which has never been assessed in the MS-TWIN STUDY 
before. 

Inclusion criteria for study participation were met if one co-twin of a 
monozygotic twin-pair had a diagnosis of MS (MS-co-twin) according to 
the revised McDonald criteria (Thompson et al., 2018), whereas the co- 
twin sibling was clinically healthy (H-co-twin). Exclusion criteria were 
treatment with corticosteroids in the last three months before study 
inclusion and any MR-related contra-indications. Monozygotic twin- 
pairs clinically discordant for MS (N = 54) underwent a detailed inter-
view, neurological examination, blood sampling, and MRI examinations 
on the same 3 T MR scanner (Magnetom Skyra, Siemens Healthineers). 
Medical records including prior MRI scans were obtained and reviewed 
to confirm the diagnosis of MS. As previously described (Beltrán et al., 
2019; Gerdes et al., 2020), Subclinical neuroinflammation (SCNI) were 
detected in a subset of clinically healthy co-twins, reflected either by 
suspicious lesions in MRI and/or inflammatory changes in CSF, indi-
cating a possible prodromal stage of MS in this high risk cohort; (the 
concordance rate in monozygotic twins is estimated to be up to 20 % 
(Westerlind et al., 2014). These H-co-twins are labelled SCNI-co-twins, 
(N = 13), whereas in the rest of H-co-twins no SCNI was detected 
(truly healthy co-twins N = 23, see Fig. 6). The results on SCNI were 
inconclusive in some H-co-twins (N = 18), and therefore these H-co- 
twins were not included in the analyses that examined the effects of 
SCNI on ICV, to obtain a clearer SCNI dichotomy. EDSS (Kurtzke, 1983) 
and MSSS39 were used as measures of disease severity in MS-co-twins. 
EDSS is a clinical neurological examination assessing all functional 
systems and provides a score to evaluate MS related neurological 
disability from 0 to 10 and MSSS compares an individual’s EDSS to a 
reference population with a similar disease duration, offering insights 
into disease severity and prognosis. 

2.4. Reference cohort 

To calculate population-based standardized z-scores, data from a 
reference cohort consisting of healthy individuals with no history of 
neurological and psychiatric disorders, including monozygotic and 
dizygotic twins and non-twin individuals, retrieved from the Human 
Connectome Project (HCP, S1200 data release) were used (Van Essen 
et al., 2012; Glasser et al., 2013). These healthy subjects had reported no 
parental history of Alzheimer disease, schizophrenia, and Parkinson 
disease. 

2.5. Local control cohort 

A local control cohort was included, consisting of healthy individuals 
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who were examined in the same 3 Tesla MRI scanner (Magnetom Skyra, 
Siemens Healthineers). Part of this cohort was previously published to 
assess effects of bifrontal transcranial direct current stimulation on brain 
glutamate levels and resting state connectivity (Mezger et al., 2021). 

2.6. MRI data acquisition 

MRI for the MS-TWIN STUDY and our local control cohort was per-
formed using a 3 T MR scanner (Magnetom Skyra, Siemens Healthi-
neers) with a 32-channel head coil. Sequence details are provided in the 

Supplement. The MRI acquisition protocols of the reference cohort, of 
which we used only the T1-weighted 3D sequence, were previously 
described (Van Essen et al., 2012). 

2.7. Intracranial volume calculation 

We calculated the estimated total ICV for each individual using linear 
registration of a T1-weighted image to a standard atlas space and sub-
sequent computation of the inverse determinant of the affine trans-
formation matrix, which serves as an atlas scaling factor (Buckner et al., 
2004) (please see Supplement for more technical details). To calculate 
the estimated total ICV for every subject, this scaling factor was multi-
plied by the volume of the MNI atlas (1948.105 cm3; MNI 152 T1 
nonlinear 6th Generation (Grabner et al., 2006). This approach (Buckner 
et al., 2004) to estimate ICV has been validated using manual mea-
surements which outline cranial cavity on T1-weighted sagittal planes 
with the aid of structural landmarks such as supratentorial dura margin, 
the contour of cerebral lobes, foramen magnum, and the craniovertebral 
junction. ICV estimates based on only one image processing method 
have been questioned (Katuwal et al., 2016). Thus, we calculated the 
atlas scaling factor with two separate pre-processing algorithms in FSL 
(version 6.0) and Freesurfer (version 6.0; https://surfer.nmr.mgh.har 
vard.edu/) using publicly available pipelines provided by the ENIGMA 
consortium (http://enigma.ini.usc.edu/). The resulting atlas scaling 
factors from both methods were highly correlated (r > 0.85, p < 0.0001; 
FSL: 0.79 ± 0.01, range = 0.65–1.05; Freesurfer: 0.75 ± 0.01, range =
0.6–0.93). Since a more rigorous semi-automatic quality control was 
performed on the FSL image processing outputs, we only show statistical 
results using FSL ICV estimates in this report. Nevertheless, all the 
regression models and pair-wise comparisons were also calculated using 
Freesurfer ICV estimates and resulted in same findings as the ones re-
ported here (see Supplementary table 2 for a comparative summary 
statistic of atlas scaling factors derived using the two methods). 

2.8. Statistical analysis 

Analyses were performed on three different levels using the 
following three different outcome variables: 1) individual level: ICV 

Fig. 1. Synopsis of the Cohorts.  

Table 1 
Main demographic and clinical characteristics of patients with MS and their 
healthy co-twins of the MS-TWIN STUDY.   

MSTWIN Cohort (N = 108 co- 
twins) 

Reference Cohort (N 
= 731)  

Healthy co- 
twins 

Co-twins 
with MS  

N co-twins 54 54 NT (368), MZ (225), 
DZ (138) 

Female/Male 40/14 40/14 398/333 
Mean age at MRI, years 

(SD) 
42.54 (11.98) 42.54 

(11.98) 
29.18 (3.5) 

Range (Median) 21 – 69 (30) 21 – 69 (30) 22 – 36 (29) 
Disease course (N co- 

twins) 
Without SCNI 
(23) 

RRMS (43)  

With SCNI 
(13) 

SPMS (9)  

PPMS (2) 
Mean age at MS 

diagnosis, years (SD) 
30.8 (8.75) 30.8 (8.75)  

Median 30 30 
Disease Duration at MRI, 

years (SD)  
11.72 (93)  

Mean EDSS (SD) 0.23 (0.5) 2.89 (1.91)  
Range (Median) 0–1.5 (0) 0–8.5 (2.75) 

N = number; EDSS = Expanded Disability Status Scale; MS = Multiple Sclerosis, 
SD = standard deviation, RRMS = relapsing remitting multiple sclerosis; SPMS 
= secondary progressive multiple sclerosis; PPMS = primary progressive mul-
tiple sclerosis; SCNI = Subclinical Neuroinflammation; MZ = Monozygotic, DZ 
= Dizygotic, NT = Not twin 
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value; 2) twin-pair level: twin-pair specific ICV ratio calculated for each 
co-twin (ICV value of the co-twin / average ICV value of the respective 
twin-pair); 3) population level: standardized ICV z-score for all MS- 
TWIN STUDY participants and local healthy controls using a sex- 
matched mean and standard deviation of the reference cohort. 

Multiple regression models were used to assess how our ICV outcome 
variables on all three levels of analysis (ICV, twin-specific ICV ratio, and 
ICV z-scores) were modulated by the clinical phenotype of co-twins (MS- 
co-twins vs. H-co-twins) and the age at diagnosis of MS (in the MS-co- 
twin of the twin-pair). Models were adjusted for sex and education 
level (with vs. without higher education, defined as having completed 
post-secondary education). Body mass index (BMI), as a known risk 
factor for adult-onset MS, was also added as a covariate to account for 
possible influence of cardiovascular and metabolic factors in brain 
development (Song et al., 2020; Morys et al., 2023). Age at time of study 
or disease duration for MS patients were not included in the models 
since ICV reaches a maximum before adulthood and has not been shown 
to change considerably thereafter with age or brain pathology/atrophy 
(Buckner et al., 2004; Stern et al., 2020; Schippling et al., 2017). An 
adjusted R-squared value, accounting for the number of predictors in the 
model, and a Cohen’s f2 and Cohen’s d, as measures of effect size, are 
reported for regression models and pairwise group comparisons, 
respectively. 

The ICV z-scores of the MS-TWIN study participants were contrasted 
against a “z-score = 0”, representing the mean of the reference cohort, 
using one-way Wilcoxon ranked tests. Polynomial regression analyses 
were performed to investigate how clinical phenotype and age at diag-
nosis in the twinship affected the likelihood of co-twins having ICV 
scores comparable to the average of a healthy population. A categorical 
variable with 4 levels served as the outcome variable, and each co-twin 
was assigned to one category based on their individual ICV z-score: a) 
ICV z-scores > 0; b) − 1 < ICV z-scores < 0; c) − 2 < ICV z-scores < -1, 
and d) ICV z-score < -2. Sex, education level, and BMI were also 
controlled. 

To evaluate the effects of SCNI, all regression models were also 
performed separately in two sub-groups of the twin-pairs: 13 twin-pairs 
with confirmed signs of SCNI versus 23 twin-pairs without signs of SCNI 
in H-co-twins. 

Direct correlations between any two variables were investigated 
using the Spearman correlation test. Comparisons between groups were 
performed using Wilcoxon signed ranked tests or chi-squared tests, 
depending on the outcome variable. For all analyses, the threshold for 
statistical significance was set at p-value < 0.05. The robustness of p- 
values against multiple comparisons (performed on three levels with 
three outcomes) were tested by applying a Bonferroni-adjusted signifi-
cance threshold of p = 0.017. Nevertheless, in case of explorative post- 
hoc analysis in smaller sub-groups, the uncorrected p-values were 
preferred to avoid type II errors resulting from lower statistical power of 
moderate size samples. Descriptive statistics are shown as mean ±
standard error of the mean. 

The R language (R Core Team, 2020) in Rstudio environment 
(RStudio Team, 2020) was used for all statistical analyses and 
visualizations. 

3. Results 

3.1. Study Sample 

54 twin-pairs (MS-TWIN STUDY: 108 individuals, 80 females, mean 
age = 42.45 ± 11.98 years) and 35 healthy individuals (local control 
cohort: 20 males; mean age = 31.34 ± 1.53 years) were included (see 
Supplementary Fig. 1). As a reference cohort, data of 731 healthy adults 
from the Human Connectome Project were included (398 female, age 
range: 22–36 years, 29.18 ± 0.13 years; including 109 monozygotic 
twin-pairs: 130 female, mean age = 29.4 ± 0.2; and 69 dizygotic twin- 
pairs: 84 female, 29.17 ± 0.29 years). 

3.2. ICV values (individual level) 

Supplementary Table 1 provides a summary of the regression models 
of all three levels of analyses with the different ICV outcome variables. 
The regression model with ICV values as the outcome variable was 
significant (F(5, 102) = 29.34; P<10− 5). Clinical phenotype was not a 
significant predictor of ICV (P = 0.96), indicating comparable ICVs be-
tween MS-co-twins (1538.58 ± 22.01 cm3) and H-co-twins (1541 ±
19.2 cm3; see Fig. 2a). Younger age at diagnosis in a twin-pair was 
significantly correlated with lower ICV in the MS-TWIN STUDY (rs =

0.35; P < 0.001; see Fig. 2b). Age at diagnosis also was a significant 
predictor of the model (P = 0.0002), showing a lower ICV value for a 
clinically healthy twin when MS diagnosis of the co-twin was made at a 
younger age. ICV values were significantly higher in the group with 
older age at diagnosis (P = 0.010; CI = [-0.06, − 0.008]; Cohen’s d = 4; 
older diagnosis age: 1581.6 ± 22.84 cm3; younger diagnosis age: 
1494.76 ± 15.44 cm3; see Supplementary Fig. 2a). An interaction term 
between clinical phenotype and age at diagnosis was not found to be 
significant (P > 0.05) and failed to improve the model. Sex and educa-
tion level were significant predictors of ICV value, showing higher ICVs 
for males and for participants with higher education. A sex by clinical 
phenotype interaction term was tested in the model, which was not 
significant (P > 0.05) and did not improve the model. 

3.3. Twin-specific ICV ratios (twin level) 

A twin-specific ICV ratio as an outcome variable allowed us to 
directly compare the two co-twins of individual twin-pairs. The regres-
sion model was not significant overall (F(5, 102) = 0.93; P = 0.46), and 
none of the predictors and control variables were significant (all P- 
values > 0.1). Adding an interaction term between clinical phenotype 
and age at diagnosis improved the model and resulted in significance (F 
(6, 101) = 4.31; P = 0.0007; Cohen’s f2 = 0.03); the interaction term was 
also significant (P<10− 4). Further post-hoc analyses of the interaction 
term in the two stratified sub-groups (age at diagnosis ≤ 30 years and >
30 years), revealed significantly lower ICV ratios in the MS-co-twins 
(0.99 ± 0.0) compared to their corresponding H-co-twins (1.01 ± 0.0; 
t = -3.1; P = 0.003; Cohen’s d = 1) only in the subgroup with the 
younger age at diagnosis (see Fig. 4a). 

3.4. ICV z-scores (population level) 

The regression model with ICV z-scores as the outcome variable was 
significant (F(5, 102) = 29.34; P<10− 5). The results of this model were 
identical to those of the model with ICV values as the outcome variable 
(level of individual analyses; see Table 1 for more statistical details). MS- 
co-twins and H-co-twins had comparable ICV z-scores (P > 0.1) and 
younger age at diagnosis in the MS-co-twin of the twin-pair was signif-
icantly associated with lower ICV z-scores (P = 0.0003, see Supple-
mentary Fig. 2b). In polynomial logistic regression, younger age at 
diagnosis in a twin-pair was associated with a significantly increased 
likelihood of having negative ICV z-scores below “-1” and “-2” (P =
0.003 and P = 0.001 for outcome categories “c” and “d”; model’s re-
sidual deviance = 190.01, AIC = 220.02). Clinical phenotype was not 
identified as a significant predictor in previous regression models with 
ICV z-scores as the outcome variable and was therefore not included in 
this polynomial regression model. 

The ICV z-scores of the MS-TWIN STUDY (-1.53 ± 0.11) were 
significantly lower than the mean of the reference cohort (i.e., z-score of 
“0″; P < 10-5; MS-co-twins (-1.53 ± 0.11; P<10− 5) and H-co-twins (-1.53 
± 0.11; P<10− 5); Fig. 5). The ICV z-score was lower regardless of the age 
at diagnosis. A strong significant interaction term between sex and age 
at diagnosis in the regression model prompted us to run post-hoc tests on 
sub-groups formed based on these two factors. Female co-twins had 
significantly negative ICV z-scores, irrespective of age at diagnosis (-2.1 
± 0.11; P < 10-5 versus − 2.06 ± 0.14; P<10− 5), whereas male co-twins 
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Fig. 2. (a) Violin plots compare intracranial volume (ICV) between H-co-twins and MS-co-twins of the MS-TWIN STUDY. Points represent individual co-twins and 
the box-plot shows the median for each group. Left Panel: comparing ICV between all H-co-twins with all MS-co-twins showed no significant difference (P = 0.96); 
Middle Panel: comparing all H-co-twins with all MS-co-twins only in twin-pairs where H-co-twins had no subclinical neuroinflammation (SCNI; truly healthy H-co- 
twins) showed no significant difference (P > 0.05); Right Panel: comparing all H-co-twins with all MS-co-twins only in twin-pairs where H-co-twins expressed 
confirmed SCNI (SCNI-co-twins) showed no significant difference (P > 0.05). (b) Scatter-plot with a regression line between ICV and age at diagnosis in a twin-pair. 
Histograms represent the distribution of the variables on the axis parallel to them. A younger age at diagnosis in a twin-pair was significantly correlated with lower 
ICV in the MS-TWIN STUDY (rs = 0.35; P < 0.001). (n.s: not significant, P > 0.05). 

Fig. 3. Violin plots comparing ICV between H-co-twin and MS-co-twin of the same twin-pair, by mean of a twin-specific ICV ratio (ICV of a co-twin/average ICV of 
the twin-pair). Points represent ICV ratios of individual co-twins and the box-plot shows the median for each group. Left Panel: Comparison includes all twin-pairs in 
the MS-TWIN STUDY and shows comparable ICV ratios between MS-co-twins and their corresponding H-co-twins (P > 0.05); Middle Panel: Significantly higher ICV 
ratios for H-co-twins without SCNI in comparison with their corresponding MS-co-twins (P < 0.01); Right Panel: Comparable ICV ratios between SCNI-co-twins and 
their corresponding MS-cotwins (P > 0.05). (b) Stratifying the twin-pairs including H-co-twins without SCNI based on age at diagnosis in the MS-co-twins: Higher 
ICV ratios in H-co-twins compared to their corresponding MS-cotwins, only when the patients are diagnosed at a younger age (≤30 years old; P < 0.001). (n.s: not 
significant, P > 0.05; **: P < 0.01; ***: P < 0.001). 
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with younger age at diagnosis in their twin-pair only showed signifi-
cantly negative ICV z-scores (-0.64 ± 0.19; P = 0.02). Males with older 
age at diagnosis in their twin-pair had ICV z-scores comparable to z- 
score of “0” (0.04 ± 0.24; P = 0.73; Fig. 4b and Supplementary Fig. 2c). 

ICV z-scores for our local healthy control participants were compa-
rable to “0″ on one-way Wilcoxon test and no difference was found to the 
reference population (P > 0.1). The same comparison was performed for 
monozygotic and dizygotic co-twins of the reference cohort which 
showed ICV z-scores comparable to “0” for both types of twins (P > 0.1). 
ICV values of the MS-TWIN STUDY were found to be lower than those of 
the monozygotic co-twins of the reference cohort (W = 9758; P = 0.012; 
95 %; CI = [-0.042, − 0.005]; Supplementary Fig. 3). These findings 
make it less likely for the significantly negative ICV z-scores in the MS- 
TWIN STUDY to be due to a scanner-related effect or an effect related to 
twinship. 

3.5. ICV and subclinical neuroinflammation 

Twin-pairs with confirmed SCNI in the H-co-twins and those without 

detection of SCNI were comparable in terms of disease duration, age at 
diagnosis, intra-twin-pair lesion difference score (Schmidt et al., 2012) 
(see Supplement) EDSS and MSSS (P-values > 0.4). ICV values and z- 
scores were comparable between MS-co-twins and H-co-twins with or 
without SCNI (Figs. 2 and 5a). On the twin-level, a significant model was 
found only in the sub-group without SCNI (F(6, 39) = 4.62; P = 0.001; 
Cohen’s f2 = 0.12), where H-co-twins had higher ICV ratios compared to 
their corresponding MS-co-twins (P<10− 4). These higher ICV ratios in 
the H-co-twins without SCNI were more prominent when the corre-
sponding MS-co-twin had a younger age at diagnosis, highlighted by a 
significant interaction between clinical phenotype and age at diagnosis 
(P = 0.0002) in this sub-group (Fig. 3b). 

4. Discussion 

To investigate the potential impact of adult-onset MS on prior brain 
growth, we assessed MRI-derived ICV as a surrogate marker of pre- 
morbid maximal brain volume in an ideally matched cohort of mono-
zygotic twins clinically discordant for MS in comparison to a large 
reference cohort from the Human Connectome Project and local healthy 
controls. In 45/54 (83 %) twin-pairs, both clinically affected and healthy 
co-twins showed ICVs lower than the average of the healthy reference 
cohort (M = -1.53 ± 0.11, P < 10–5). Younger age at time of MS diag-
nosis was strongly associated with lower ICVs (t = 3.76, P = 0.0003). 
Our findings suggest disease-related preclinical alterations in brain 
development prior to the onset of MS in adulthood. The monozygotic 
twin study design allowed us to identify preclinical disease states in the 
clinically non-affected, at-risk individuals based on imaging or labora-
tory manifestations. Reduced ICV underscores a decrease in maximum 
attained brain volume and therefore likely an even earlier disease onset 
than assumed. 

Genes involved in immunity and inflammation are implicated in 
brain growth and development of various subcortical brain structures, as 
reported by a recent genome-wide association study (GWAS (Satizabal 
et al., 2019). The lower ICVs found in our study cannot be solely 
attributed to twinship or scanner-related factors since such low ICVs 
were not observed in our local healthy control sample or in the healthy 
co-twins of the reference cohort. Moreover, co-twins of the MS-TWIN 
had lower ICVs when compared to monozygotic co-twins of the refer-
ence cohort. While clinically discordant, twin-pairs in our MS-TWIN 
study share a genetic and environmental susceptibility to MS. Our 
findings could also indicate an association between susceptibility to MS 
and lower ICV, as a surrogate marker of brain growth. Since ICV reaches 
a maximum during adolescence and does not change thereafter (Buck-
ner et al., 2004), our findings are suggestive of preclinical alterations 
during brain growth in patients with adult-onset MS as well as in their 
healthy co-twins. 

A reduced head and brain size due to failure of age-expected brain 
growth has been reported for children with pediatric-onset MS, even at 
first clinical presentation (Aubert-Broche et al., 2014; Bartels et al., 
2019; Kerbrat et al., 2012; Fenu et al., 2018). There is also evidence of 
impaired brain growth in other pediatric demyelinating diseases, 
including monophasic demyelination, even without chronicity or severe 
clinical outcomes (Bartels et al., 2019; Aubert-Broche et al., 2017; Weier 
et al., 2016). In our study, the diagnosis of adult-onset MS at a younger 
age was strongly associated with lower ICV in both co-twins. All 14 
clinically healthy co-twins with comparable ICVs to the average of a 
healthy population (z-scores > 0) belonged to twin-pairs in which MS 
was diagnosed at an age above 30 years. 

In our study, healthy co-twins with no signs of SCNI had higher ICVs 
than their corresponding MS-co-twins, while healthy co-twins with signs 
of SCNI had comparable ICVs to their MS-co-twins. A recent scoping 
review (Mortazavi et al., 2021) summarized 16 MRI studies demon-
strating focal white matter lesions and diffuse brain parenchymal al-
terations in a substantial proportion of healthy individuals with familial 
risk of MS. This report is the first to show similarity in ICV as an outcome 

Fig. 4. Twin-pairs of the MS-TWIN STUDY are stratified into two sub-groups 
based on the age at diagnosis in the MS-co-twins (≤30 and > 30 years old). 
(a) Violin plots comparing ICVs between the H-co-twin and MS-co-twin of the 
same twin-pair using the twin-specific ICV ratio (=ICV of a co-twin/average 
ICV of the twin-pair). Points represent ICV ratios of individual co-twins and 
the box-plot shows the median for each group. Only in the younger age at 
diagnosis sub-group the H-co-twins had higher ICV ratios compared to their 
corresponding MS-co-twins (P < 0.01). (b) Points indicate the standardized ICV 
z-scores of individual co-twins of the MS-TWIN STUDY (calculated using the 
ICVs of the reference cohort). The dashed-blue line shows “ICV z-score = 0”, 
representing the average ICV of the reference cohort. In 45/54 twin-pairs, both 
MS- and H-co-twins had negative ICV z-scores, meaning lower ICVs than the 
average ICV of the healthy population. Only 14/108 co-twins (including 13 
males and 13 co-twins from the age at diagnosis > 30 sub-group) had positive 
ICV z-scores. (n.s: not significant, P > 0.05; **: P < 0.01). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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of brain growth between patients with MS and healthy individuals with 
confirmed subclinical traces of the disease. 

There are limitations to our study. First, our study design was cross- 
sectional and we could not directly examine the trajectory of brain 
growth. Second, disease modifying and steroid treatments were not 
accounted for, but this should not impact ICV, as ICV does not change 
after reaching its maximum in adolescence. Third, the exact contribu-
tions of genetic and environmental risk factors of MS to the low ICVs 
found were not disentangled. 

In conclusion, lower intracranial volumes in patients with adult- 
onset MS and their healthy monozygotic co-twins compared to a refer-
ence cohort of healthy adults suggest an impact of adult-onset MS on 
brain growth during childhood or adolescence, possibly related to a 
clinically silent prodromal disease stage and/or genetic and environ-
mental risk factors of MS. Our findings encourage the understanding of 
neurological disorders in general, and MS in specific, as a continuum, 
entailing very early clinically silent periods which could affect devel-
opment of the brain, also in healthy individuals who remain clinically 
unaffected by the disease, but are susceptible to it. Future studies with a 
longitudinal design will need to disentangle the contributions of genetic 
and environmental risk factors of MS to intracranial volume. 
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Writing – review & editing. Öznur Hizarci: Data curation, Project 
administration. Tania Kümpfel: Conceptualization, Data curation, 
Funding acquisition, Resources. Katja Anslinger: Formal analysis. 
Frank Padberg: Data curation, Funding acquisition, Supervision. 
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