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1
Motivation

Malaria, an infectious disease more ancient than humanity, still imposes a global
burden with 240 million annual cases worldwide, as estimated in 2020 [1]. Due to the
interplay of various factors, such as the ongoing COVID-19 pandemic, the disruption
of measures against malaria and the global climate change, the number of cases has
been increasing from 227 million in 2019 again [1]. This circumstance has a large
influence on the mortality, if the infection is not promptly and effectively treated,
which is often the case in endemic regions [2].

This vector borne disease in humans is caused by five species of the Plasmodium
genus, where P. falciparum is the most widespread and mainly responsible for severe
malaria [2]. Following the mosquito bite and the symptom-free liver stage of the
infection, the parasites burst out into the blood stream to start an asexual life
cycle. In this 48 hours long intra-erythrocytic cycle, they mature through the ring,
trophozoite and schizont forms. At the end of the cycle, they multiply and the
merozoites begin the next cycle by invading new red blood cells (RBCs) [3]. The
intra-erythrocytic cycle has been the subject of intense research because it causes
the main clinical symptoms and is the major target of diagnostics and antimalarial
treatment [3, 4].

Nowadays, the gold-standard diagnostic tool is still light microscopy on Giemsa-
stained thin blood films, which relies on human performance both in terms of
sample preparation and visual inspections, making this method time-consuming and
subjective [5]. The persistence of microscopy, that is rooted in its long worldwide
tradition and the general concept of seeing is believing, defers the spread of other
methods. Currently, rapid diagnostic tests represent the most competitive alternative
of light microscopy due to their easy usability and affordable price. However, they are
not quantitative and impose a compromise on sensitivity and species specificity [6, 7].
There have also been other methods like polymerase chain reaction (PCR) [8], flow
cytometry [8] and magneto-optical detection [9, 10] developed for malaria diagnosis,
however, currently they are not available in a point-of-care format required for
high-throughput in-field diagnostics.
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During maturation, the parasites change the topography [11–14] and the optical
properties of the host RBCs [15]. In fact, it is well-established that malaria-infected
RBCs can be characterised by their morphological properties, that can also be
correlated with their characteristic fluorescence patterns [16, 17]. These new insights
and the widespread use of microscopy triggered new approaches for the automatised
recognition of malaria infected RBCs in thin blood films, which can lead to a
breakthrough in malaria diagnosis. These efforts are well exemplified by recent works
reporting on neural network (NN)-based algorithms for the recognition of infected
RBCs [18–23], which can run even on standard cell phones. While these pioneering
studies clearly demonstrate the potential of NNs for automatised malaria diagnosis,
this approach still requires substantial improvement in terms of sensitivity, specificity
to different malaria species and stages, as well as robustness against the imperfectness
of microscopy images. The other challenge is to improve the performance while
keeping the computational costs low.

As an important new direction, it has been shown recently that NNs do not only
work on images of Giemsa-stained thin blood films but also perform well on label-free
light microscopy images [17]. This also gives the hint that malaria diagnosis can
benefit from the advantages of NNs in analysing images recorded by microscopy
methods other than light microscopy. In fact, recently there is an increasing number
of techniques successfully applied for high-resolution imaging of malaria infected
RBCs, including topographic imaging by atomic force microscopy (AFM) [13,14, 16]
and infrared nano-imaging [12].

Despite the rapid progress in treatment and diagnosis, malaria is still a burden in
African, American, Eastern Mediterranean, South-East Asian, and Western Pacific
regions [1]. The recent increase in deaths by 13% compared to 2019 due to the
COVID-19 pandemic requires a better understanding of the alterations in RBC
structure during the maturation of malaria parasites. Tracing the morphological
and optical changes may contribute to the development of new and more effective
antimalarials. If such changes are characteristic to the intra-erythrocytic stages of
malaria, they could improve diagnosis by NNs.

This thesis aims to investigate the structural alterations in RBCs during the intra-
erythrocytic cycle of malaria, using a combination of imaging techniques. The
experimental work is complemented by the development of a neural network-based
stage-specific detection method for the diagnosis of malaria in microscopy images.
Along this line, I prepared data base of microscopy images. This step required a
detailed investigation of morphological and optical changes of infected RBCs upon
the maturation of the malaria parasites by combining multiple microscopic imaging
tools, including atomic force, optical, and fluorescence microscopy. Based on these
results, I developed a NN-based application for the identification of infected RBCs
in microscopy images and for their further classification according to the parasite
age.
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The outline of the thesis is as follows. In the introduction, the biology and diagnosis
of malaria are explained. After this, the experimental methods used in this work
are described in chapter three, focusing on the culturing of P. falciparum and the
principles of atomic force and fluorescence microscopy. The methodology is concluded
by the introduction of the basic concepts of NNs. Next, the results are discussed
following the phases of the model described above, where the main focus lies on
the creation of a data base for the neural network-based stage-specific detection of
malaria. The results section is concluded with the presentation of an application for
the classification of intra-erythrocytic malaria stages in microscopy images, which
may help to improve malaria diagnosis on the global scale and is a prerequisite for
the elimination of this infectious disease.
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Introduction

In 2020, an estimated number of 241 million malaria cases occurred worldwide, most of
them in the African regions, South East Asia, and South America. Due to the ongoing
COVID-19 pandemic and the disruption of measures against malaria, the number of
cases and deaths increased between 2019 and 2020 [1]. The infection is caused by
the malaria parasite, a mosquito-transmitted protozoan. Malaria parasites belong to
the Plasmodium genus. Five species infecting humans of the genus Plasmodium are
known: P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Among them,
P. falciparum causes the most deaths. It is widely spread in Africa, New Guinea
and in Haiti [24]. Treatment and elimination of the disease require fast and reliable
diagnosis, as the detection of malaria in patient blood samples enables specific and
effective treatment. Since most endemic areas suffer from low resources, they require
simple diagnostic methods. While the standard methods, such as light microscopy
of stained samples and PCR offer reliable diagnosis, they are time-consuming and
require trained experts. For this reason, the application of neural networks for
detection and classification of malaria parasites in RBCs is rising. Starting from
simple categorisation into healthy and infected cells, newly developed NNs are now
able to classify all malaria blood stages.

The first part of this chapter presents the well-explored course of the malaria infection
inside the human body and the induced morphological and optical changes of the
host RBC. The effective treatment of the disease requires reliable and fast diagnostic
methods, which will be highlighted in the subsequent section. In the last part, the
focus rests on the latest application of NNs in malaria diagnosis and research.

2.1 What is malaria?
The course of the infection that is depicted in figure 2.1 starts with the female anophe-
line mosquito transmitting the plasmodial sporozoites into the human body. From
the place of injection, they enter the bloodstream directly or via lymph channels,
targetting the hepatic cells, where they begin to reproduce asexually. After approx-
imately 6-10 days, the sporozoites have proliferated to form merozoites, which are
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released into the circulation from the hepatocyte [4]. The merozoites are oval shaped
forms of the parasite, circulating in the blood stream and invading erythrocytes by
boring or wriggling into the membrane. In this phase, invasion of a single RBC by
multiple parasites can happen.

The blood cycle of malaria is divided into three stages, corresponding to the asexual
forms: ring, trophozoite, and schizont. Engulfed by the erythrocyte cytosol, the
parasites form a circular ring of cytoplasm around their central food vacuole in the
first 12 hours. The ring appears with a darkly stained chromatin in the nucleus, as
shown in figure 2.1. Inside the cell, the parasites are moving freely. During maturation,
the main focus is to uptake nutrients from the host erythrocyte, as the haemoglobin
provides the energy and resources for replication and division of the parasite. Since
the heme monomer, freed as a result of haemoglobin digestion, is toxic to the parasite,
it is polymerised to hemozoin, an inert crystalline substance also called malaria
pigment. This metabolic by-product is assembled inside the food vacuole. While
growing, the width of the cytoplasm increases until it has reached the size of the
nucleus (0 - 26 h). The stage between 26 and 36 hours is called trophozoite. To
prevent invasion by other merozoites, the parasite exports antigens, increasing the
stiffness of the RBC. For further growth, the parasite needs nutrients, which it draws
from outside of the erythrocyte. To make the cell more permeable, it inserts proteins,
which disrupt the membrane. In case of P. falciparum, the parasites exhibit antigens,
causing the RBC to stick to the blood vessel walls. To support the adhesion, other
exported proteins form knob-like bulges on the cell membrane [4]. Upon further
growth, the amount of genomic Deoxyribonucleic acid (DNA) increases due to the
replication, which is visible as blue stain under the microscope, when stained Giemsa
and causes a morphological change in the RBC. After 36 hours, the replicated DNA
is separated into individual daughter cells called schizogony. While the nuclei are
already present in the trophozoite stage, they are not yet separated visually. After
approximately 48 hours, the reproduced parasites burst out of the RBC and the
cycle begins anew. To transmit the infection, a subpopulation of parasites develop
into gametocytes, the sexual forms of P. falciparum, also depicted in figure 2.1. If a
female anopheline mosquito bites a human that carries gametocytes, the male and
female gametocytes picked up by the mosquito, form a zygote within the latter host.
Invading the stomach of the mosquito, the zygote matures to an oocyst, expands
and bursts to free sporozoites. These move to the salivary glands to await the next
blood meal of the mosquito, releasing them into the next human. These phases of
the infection are also indicated in figure 2.1 [3, 4].

2.1.1 Morphological properties of malaria parasites
With maturation the morphology of the P. falciparum parasite changes. Figure 2.2
shows asexual (Phases 2 - 26) and sexual (Phases 27 - 30) blood stages of P. falciparum
parasites within the RBCs. The corresponding age of the parasites in hours is also
listed in the caption. In the ring stage, the parasite adopts the form of circular discs
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Figure 2.1: Schematic of the malaria parasite life cycle. The female anopheline
mosquito transmits plasmodial sporozoites into the human body (1). The sporozoites
infect liver cells and mature into schizonts (2), which rupture and release merozoites,
which invade the RBCs (3). As part of the human blood stage, the parasites
mature from the ring stage (4) into trophozoites (5) and schizonts, which release new
merozoites into the blood stream (6). The infection is transmitted to a mosquito
by gametocytes (7), which form a zygote (8) inside its new host. After maturing
to an oocyst (9), new sporozoites (10) are freed, which are transmitted during the
mosquito’s next blood meal. Reproduced with some modifications from [25–28].
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(Phases 2 - 11 in figure 2.2). In this phase, the parasites are motile in the cell. Upon
transition from ring to trophozoite, the parasites develop a central cavity and become
cup-shaped. This cavity increases towards the end of the trophozoite phase. During
digestion, the parasite forms a food vacuole, hosting the hemozoin crystals. From
several small food vacuoles in the ring stage, it becomes a prominent feature in the
trophozoite stage, when they fuse to a single one. Over the progress of maturation,
the food vacuole settles to one side of the parasite (Phases 12 - 18). As in the former
phase, the parasite is still moving around inside the cell, showing an irregular, rounder
shape (Phases 19 - 20). When reaching the final phase of the trophozoite stage, the
cavity inside the parasite disappears and the parasite increases in size. The food
vacuole then moves to a central position (Phases 23 - 24). A few hours before egress,
the cell shows a ruffled appearance and is completely filled by the parasite (Phase 25).
The food vacuole has by then assumed a compact, fully-connected layer form [11,29].
As the hemozoin crystals assemble inside the food vacuole during infection, it appears
as a protrusion inside the parasite [12]. After bursting out, the merozoites leave the
hemozoin and the remains of the cell behind, ready to invade new RBCs.

A closer look into the morphology of infected erythrocytes reveals knobs on the surface
of infected RBCs, appearing in the early trophozoite stage, which are not present in
the ring stage [13]. The number of knobs increases towards the schizont stage and
was found to be directly proportional to number of parasites per host RBC. Upon
formation of the knobs on the host cell membrane in the early trophozoite stage, the cell
becomes stiffer, less deformable and more fragile. This development is accompanied
by a collapse of the cytoskeletal network of the infected erythrocyte [14].

2.1.2 Optical properties of malaria parasites
The protein fraction of a RBC consists up to approximately 95% of haemoglobin.
During the malaria blood cycle, the parasites digest 60 - 80% of the haemoglobin
inside its host cell. The released heme is stored as malaria pigment. In the early stage
of the blood cycle, the haemoglobin ingestion is limited. The parasite only digests
small portions of the cytoplasm. Upon maturation, the parasite takes up more of
the haemoglobin and forms one large digestive vacuole, containing the metabolised
hemozoin. The highest amount of haemoglobin is digested in the trophozoite stage [15].
By optical microscopy, the depletion of haemoglobin can be observed. When bound
to oxygen in the blood, its light absorption reaches its maximum at 415 nm, while
the maximum is shifted to a slightly higher wavelength, 432 nm, in its free form, as
seen in figure 2.3).

Figure 2.4 shows microscopy images of cells excited at 405 nm [17]. At this wavelength,
the haemoglobin inside the RBC absorbs most of the light and the healthy cell appears
dark in the microcopy image, as clear from figure 2.4 (a). Since this is the dominant
effect in the ring stage parasite, which contains no to little haemoglobin, these
young parasites appear bright on a dark background, as seen in figure 2.4 (b). The
centre of the ring stage is filled with a central food vacuole, which looks dark in
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Figure 2.2: Representative drawings of microscopy images of RBCs infected
with P. falciparum. The colours are based on Giemsa-stained thin blood films
detected with simple light microscopy. To enhance the features of the parasites, the
images were coloured artificially. 1: healthy RBCs, 2 - 5: early ring stage 0 - 6 h, 6 -
7: mid ring stage 6 - 16 h, 8 - 11: late ring stage 16 - 26 h, 12 - 15: early trophozoite
stage 26 - 30 h, 16 - 18: mid trophozoite stage 30 - 34 h, 19 - 20: late trophozoite
stage 34 - 38 h, 21 - 23: early schizont stage 38 - 44 h, 24 - 25: late schizont 44 -
48 h, 26: ruptured merozoites, 27 - 28: mature macrogametocytes, 29 - 30: mature
microgametocytes. Reproduced from [30]
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Figure 2.3: Optical absorption of haemoglobin. Absorption spectrum of
haemoglobin (Hb, red) and haemoglobin bound to oxygen (HbO2, blue). Repro-
duced from [31]

the image. During maturation, more haemoglobin is ingested and the RBC loses its
absorption capability, appearing brighter than the healthy cell and the ring stage.
As the crystals inside the food vacuole absorb the light, they are visible as a dark
spot inside the parasite. Investigated by UV-Vis spectroscopy, hemozoin shows a
maximum in absorbance at 384 nm [32], which is slightly shifted to 415 nm for the
heme group [33]. Due to the spatial reordering of the hemozoin crystals during
maturation, the trophozoite and schizont stages, shown in Figs. 2.4 (c) and (d) are
easily distinguishable from earlier stages [17].

While the infection can be monitored with visible light, studies on fluorescing P.
falciparum parasites strongly rely on fluorescence markers binding to specific cell
components, which emit fluorescence upon excitation [34,35]. These techniques also
enable live-cell imaging, but they require a set of fluorescing dyes to visualise the
parasite [36]. The occurrence of autofluorescence in malaria-infected RBCs due to
the presence of zinc protoporphyrin IX (ZnPPIX) with a fluorescence excitation
maximum of ZnPPIX at 425 nm [37–39], which binds to the surface of hemozoin
crystals during their formation, shows that it is also possible to distinguish malaria
parasites based on their fluorescence properties [40].
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Figure 2.4: Optical properties of malaria-infected RBCs excited at 405 nm.
(a) - (d): representative images of a healthy cell, and RBCs infected with ring-,
trophozoite-, and schizont-stage parasites. Reproduced from [17].

2.2 Diagnostics
From optical diagnosis to rapid diagnostic tests, current diagnostic techniques con-
tribute to the fight against malaria. Recently, newer techniques such as the rotating-
crystal magneto-optical detection (RMOD) method have been developed, which offer
a sensitivity close to nucleic acid amplification test (NAAT)s. Since most of these
methods rely on trained experts, in the last few years, NNs were introduced to
facilitate and to speed up diagnosis.

2.2.1 State of the art in the diagnosis of malaria
Optical microscopy-based diagnosis

Malaria is normally diagnosed by optical microscopic analysis of dried thick and thin
blood films on microscopy slides, which requires a blood sample from a fingertip.
While thick blood films are used to detect the infection, thin blood films provide
information about the species and possible mixed infections. To investigate thin blood
films, the slides are exposed to the stain for 8-10 min, after drying for approximately
2 min. The stain is then flushed from the slide by adding drops of buffered water
at neutral pH of 7.0 to ensure good staining and left to dry. As an alternative to
Giemsa’s stain, this procedure can be done with KwikDiff [41], where the components
are in separate tubes for faster staining. The slide is first dipped into a fixing agent,
followed by an exposure of 2 s to Eosin (red stain), and 1 min to Methylene blue.
After dipping the slide in red and blue stain, the parasites exhibit a strong contrast
compared to the RBCs. Each part of the parasite is coloured differently. Eosin
binds to positively charged organic matters such as the membrane of the RBC, while
Methylene blue binds to negatively charged molecules, e.g. DNA. If the parasite
already contains a visible food vacuole, the malaria pigment appears in dark colours
from golden-brown to black [5]. Figure 2.2 shows representative drawings of Giemsa-
stained asexual (2 - 26) and sexual (27 - 30) blood stages of P. falciparum-infected
RBCs with corresponding duration of the cycle in hours. For visualisation, the slides
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are examined with a 100× oil immersion objective in a systematic manner. There are
two parameters, which are used to quantify the number of parasites in the peripheral
blood: parasite density and parasitemia. To determine the parasite density, the
number of white blood cells and infected RBCs is counted in several fields in parallel
until a number of 200 white blood cells and more than 100 parasites or 500 white
blood cells and less than 100 parasites is reached. This number then serves as a proxy
for the blood volume examined based on the assumption that 1 µl of blood contains
approx. 8000 white blood cells. Thus, the number of infected RBCs can be calculated.
As the other measure for the level of infection, the parasitemia is defined by

parasitemia = infected RBCs
healthy RBCs . (2.1)

Microscopic diagnosis is nowadays the gold-standard to identify malaria and is able
to provide details about the species, age, and number of parasites. Depending on the
expertise of the examiner, the detection levels are around 50-100 parasites/µl [42].
Moreover, it is not only labour-intensive and time-consuming but also requires an
effective management system. This contains a central coordinator to manage the qual-
ity assurance, a reference group of microscopists with expertise in training and slide
validation, training systems, supply management and maintenance of microscopes,
standard operating procedures, and funding for malaria case management [43]. In
spite of these drawbacks, optical microscopy is still considered to be the gold-standard
approach for malaria diagnosis. Due to the widespread use of microscopy for malaria
diagnosis, further development of this method, e.g. via NN-based recognition and
classification, may be more desired than complete replacement by an alternative
approach.

Rapid diagnostic tests

Especially in regions with limited access to microscopes, rapid diagnostic tests greatly
improve the detection of malaria as they require limited training and rapidly provide
results [43]. There are various types of rapid diagnostic tests. By targeting Plasmodium
species-specific proteins and antigens, mixed malaria infections and non-P. falciparum
infections can be distinguished from falciparum infections using a drop of blood
within 15-30 minutes. The principle of rapid diagnostic malaria tests works similar
to COVID-19 tests. Dye-labelled antibodies are captured and produce a visible band
on a strip of nitro-cellulose encased by a plastic housing. It contains a square hole
for blood and a round hole for the buffer. When the antibody binds to a parasite
antigen, it forms a complex and is captured on the nitro-cellulose, forming a visible
line in the results window. To determine the validity, a control line appears [43].
While rapid diagnostic tests offer a fast, simple way to detect malaria, they vary in
sensitivity. Currently, they need to be supplied by other methods to confirm the
results, characterise infection, and monitor treatment, which is not always possible in
remote areas [42].
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Nucleic acid amplification-based diagnostics

While microscopy and rapid diagnostic tests fail for low density malaria infections,
nucleic acid amplification-based diagnostics are able to detect infections below 1
parasite/µl. NAATs are able to detect sexual- and asexual-stage parasites as well as
all five malaria species: Plasmodium falciparum, P.vivax, P. ovale, P. malariae, and P.
knowlesi. The first step of NAATs is the extraction of nucleic acid, which is followed
by amplification. One of the key NAATs is PCR. The detection or quantification can
be visually performed, done on an agarose gel, through examination of reaction tubes,
or through incorporation of fluorescent labels in the reaction [43]. While NAATs are
sensitive, they require high expertise for the analysis of the blood samples [43].

Polymerase chain reaction

PCR-based techniques are one of the most sensitive diagnostic methods. The are
very sensitive and able to detect a parasitemia level of 1-5 parasites/µl, which is 10×
lower than the sensitivity of microscopy or rapid diagnostic tests. They also allow
for identification of infective species, mixed infections, and drug-resistant parasites.
Although PCR is an accurate tool for malaria diagnosis, it is cost- and labour-intensive
and requires trained experts, which makes this method unsuitable for remote endemic
areas [42].

Potential diagnostic approaches under development

Given the drawbacks of current methods used for the diagnosis of malaria, many new
tools are being developed. Based on molecular biology, loop-mediated isothermal
amplification, microarray, and flow cytometric assay techniques offer a way to charac-
terise the parasite by targeting its DNA [42,44]. Other methods exploit the optical
and magnetic properties of hemozoin crystals, such as the RMOD, which is able to
quantify hemozoin crystals by magnetically induced rotation [9, 45]. Further tech-
niques are magnetic field enriched Raman spectroscopy [46], magnetic purification of
infected cells [47], and the breath analyser, which is able to detect malaria-associated
biomarkers in the breath of infected patients [48].

2.2.2 Neural networks as boosters for microscopic diagno-
sis

The main goal of NN-based algorithms developed for malaria infected RBC recognition
in light microscopy images is to increase the throughput of diagnosis by reducing the
image processing time and to enhance its reliability by eliminating human errors [49].
The most efficient approaches typically apply a two-step scheme, where healthy
and infected RBCs are distinguished in the first step, followed by a stage-specific
classification of infected RBCs in the second step [50–53]. Most of the efforts have
been focused so far on Giemsa-stained images, where several attributes of the infected
RBCs have been successfully exploited in the recognition process, including the
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characteristics of the colour scheme [51], the morphology of the RBCs [52] and
their other statistical features [53]. The accuracy of these methods ranges between
∼80-98%. Similar performance levels have recently been achieved by an unbiased
convolutional neural network (CNN) with minimal or no pre-processing of microscopy
images [54–57].

All the above mentioned imaging techniques have two important limitations for
NN-based recognition. They can provide limited training sets with typically a few
thousands images, where healthy RBCs and RBCs containing the different stages
are rather unevenly represented. This is due to the labour-intensive imaging and
manual categorisation. Even when working with parasite-enriched cultures [58–60],
the number of uninfected RBC images is approx. 10 times larger than that of the
infected ones. Such imbalance in the data set can result in the so-called overfitting
of the images [61, 62], lowering the accuracy of the NN-based recognition. As a
common solution for this problem, data augmentation can be used to equalise the
number of images in the different categories (ring-, trophozoite-, schizont-stage, and
healthy RBCs) by generating more data for the training set [54,55]. This has been
demonstrated to improve the performance of the NN [56,57] and to further increase
the generalisation ability.

Even after the data augmentation process, the image set is usually too small to
properly train a two-dimensional CNN for the stage-specific classification of RBCs
due to the large number of parameters to be fitted by the NN. One way to overcome
this challenge is to reduce the dimension of the input data, namely the dimension of
the images in the present case. It is known that, under such conditions, dimension
reduction may increase the performance of NNs [62]. The reduction of dimension
naturally comes with a massive loss of data, unless characteristic features are selected,
as was done by Das [52], Kareem [63], Pinkaew [53], and their co-workers.

Despite the challenges, the application of neural networks gains more and more
attention, especially for the analysis of large data sets. Neural networks can not
only speed up the data evaluation but also improve the classification compared to
humans.
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Applied methodology

From molecules to entire populations, biological systems present one of the most
complex processes in our life, such as the origin and course of diseases. Understanding
those requires detailed investigation of the underlying cellular processes. To access
information on a cellular level, magnifications beyond the limitations of human vision
are necessary. Light microscopy provides a way to investigate cells in a non-invasive
manner. While this is a clear advantage for imaging of living systems, morphological
properties remain hidden. In biological studies, not only the analysis but also the
sample preparation plays an important role, as reproducible and reliable protocols for
sample preparation lay the foundation for successful data acquisition. Especially in
case of cellular mechanisms, culturing the biological systems in controlled conditions
is essential for representative and high-quality measurements.

This chapter introduces the fundamentals of in vitro cultivation of malaria, which pro-
vide the basis for optical and morphological measurements by fluorescence microscopy
and AFM. A general introduction to both techniques is presented. Subsequently, an
overview about the basics, applications, and evaluation of neural networks is given,
followed by the routines for sample preparation and measurement setup.

3.1 In vitro cultivation of Plasmodium falciparum
In 1976, Traeger and Jensen [64] developed a protocol for the continuous cultivation of
P.falciparum under laboratory conditions, which was designed to reproduce the con-
ditions in the human body during the intra-erythrocytic cycle. This method enabled
the in-depth exploration of cell modifications during parasite maturation.

Figure 3.1 shows the workflow of culturing. Cultures, which are stored in liquid
nitrogen for cryopreservation [65], can be initiated using preserved stocks of laboratory-
adapted parasite strains or field isolates. Thawing is done by adding sodium chloride
(NaCl) solutions of various concentrations to the culture in a stepwise manner. This
step is performed in a flow box to ensure sterile environment. After thawing, nutrient
medium and human RBCs as hosts for parasites are added to the culture. To ensure
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optimal growth, the erythrocytes are kept in a shallow layer covered by Roswell
Park Memorial Institute cell medium (RPMI 1640) supplemented with Hepes buffer
(25 mM), human serum or serum replacements such as Albumax, Hypoxanthine for
purine biosynthesis, and gentamicin. The cells are placed in a petri dish with a layer
depth of approximately 2 mm. To maintain the growth of the parasites, they are
incubated at 37◦C in an atmosphere of 5% carbon dioxide (CO2) and 5% oxygen
(O2) [64]. The continuous cultivation requires keeping the culture at 5% haematocrit
and 1% parasitemia, where haematocrit denotes the ratio of RBCs and medium and
parasitemia is a measure for the percentage of infected cells. To provide optimal
parasite gain, the cells should be kept in an extracellular pH of 7.2 to 7.45 and a
lactate concentration below 12 mM [66]. Monitoring the growth of the parasites is
achieved through thin smearing a drop of blood from the culture on a glass slide, which
is stained with KwikDiff [41], see section 2.2.1. The parasitemia is then estimated
by counting approximately 20 fields of 200 cells. By calculating the percentage of
infected cells in the thin blood film, the parasitemia can be adjusted to < 1% through
diluting the culture with uninfected RBCs. Repeating this procedure every day
ensures optimal growth of the parasites [67].

Figure 3.1: Workflow of culturing. The malaria parasites are stored in liquid
nitrogen. To start a new culture, they are thawed in a flow box (a), which ensures
a sterile environment. Optimal growth is provided by an incubator (b) at 37◦C in
an atmosphere of 5% CO2 and 5% O2. To check the state of the culture, thin blood
films are investigated under a light microscope (c), showing the healthy and infected
RBCs (d).

To preserve cultures, the parasitised RBCs can be frozen with the Stockholm Sorbitol
method. This method works best with a parasitemia of > 5%. The erythrocytes are
centrifuged and the remaining supernatant discarded. Then, freezing solution (28%
glycerol, 3% sorbitol, 0.65% NaCl, distilled water) is added drop-wise to the pellet
and the resulting solution is stored in a liquid nitrogen tank. To reuse the frozen
cultures, they are thawed and then diluted with two NaCl solutions consecutively
1.6% NaCl and 12% NaCl. After washing the blood with culture medium, the solution
is centrifuged and the remaining pellet resuspended in a flask, ready to use for
cultivation [68].
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In most experiments, the synchrony of malaria parasites plays an important role.
The most common method is the use of sorbitol treatment. By adding a 5% sorbitol
solution (in distilled water), the RBCs infected with late stages are lysed, while
the RBCs infected with ring stages are preserved. Centrifuging and resuspending
the pellet in medium returns a synchronised culture with parasites in the ring
stage [60]. To separate the late stage parasites, the cells are sorted by sedimentation
in Percoll [58,59]. The culture is layered on top of a 70% Percoll solution in RPMI
1640. After centrifugation in tubes, the fractions of erythrocytes are collected and
evaluated. Since the density of parasitised cells varies with the maturity of the
parasite, the schizont stage can be recovered from the top layer, while the ring stage
and healthy cells remain in the bottom of the tube. The isolated late schizont-stage
parasites are then washed with culture medium and diluted with 50% uninfected
RBCs to a 5% haematocrit culture [67].

3.2 Atomic force microscopy
Studying the intracellular structures of biological samples requires high resolution in
the range of a few hundred nanometers. Among other methods, e.g. transmission
electron microscopy [69] or scanning near-field optical microscopy [70, 71], AFM is a
common tool to investigate the morphology and mechanical properties of RBCs [12,
14, 72]. AFM relies on the interaction between the sample surface and a sharp tip,
which also qualifies this technique for other applications in physics, chemistry and
nanotechnology [73–75].

The fundamental concept of AFM is based on measuring atomic forces between probe
and sample surface. This is achieved by scanning the surface with a cantilever of
known spring constant, which acts as a force sensor over a sample. The deflection
of the cantilever is proportional to the measured forces. One of the most common
methods to detect the deflection is by a laser beam [76]. By focusing a laser on
the backside of the cantilever, the reflected light is monitored using a segmented
photodiode via the relative photocurrent produced in the segments, see figure 3.2.
This method allows for distinguishing between lateral forces (torsion) and deflection
(up or down) of the cantilever.

To move the tip across the sample surface, piezoelectric actuators are used. There
are three actuators, two for scanning in xy plane and one for regulating the z height.
The sample can be either positioned on a piezo tube or a piezo-stack. An additional
piezo actuator drives the oscillation of the cantilever.

3.2.1 Interactions between tip and sample
AFM enables the measurement of forces between atoms at the tip and the sample,
which can be classified into attractive and repulsive. Among the attractive forces are
van der Waals interaction, electrostatic, and chemical forces, while the repulsive forces
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Figure 3.2: Schematic setup of AFM. The cantilever is scanned over the sample
surface by piezo elements. Interaction between sample and tip is monitored by
beam-reflection. Reproduced from [77].

result from Pauli-exclusion and electron-electron Coulomb interaction. Generally,
these are short-ranged and decay exponentially with distance. When the AFM is
used in liquid, capillary forces contribute to the attractive forces. Assuming that the
AFM is operated in vacuum and only considering two neutral atoms, the interaction
between tip and sample is defined by the Lennard-Jones potential.

VLennard-Jones = −4ϵ

(
σ6

z6 − σ12

z12

)
, (3.1)

where ϵ is the depth of the potential well and σ the distance at which the force is zero.
The first term results from the van der Waals force due to interaction between dipoles
and chemical interactions, while the other originates from repulsive forces caused by
the overlapping of electron clouds of the tip and sample atoms. Figure 3.3 shows the
tip-sample interaction and the contributions from the attractive and repulsive forces
individually [78, 79].

Upon approaching the surface, the tip is pulled down due to the attractive forces.
When it is close enough, the tip jumps into contact. Moving closer to the surface and
into the repulsive regime bends the cantilever away from the surface. Upon retracting,
the tip remains in contact with the surface until the elastic force of the cantilever
overcomes the attractive forces between tip and sample [78]. These characteristics
form the basis for the two types of AFM: static and dynamic. While the static type
is operated in contact mode, in case of dynamic AFM, the cantilever is oscillated at
its resonance frequency f0 in non-contact mode. In contact mode, the interacting
force between tip and sample is proportional to the cantilever deflection. In case of
soft samples, e.g. biological materials, the resolution is compromised by elastic and
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Figure 3.3: Tip-sample interaction. Schematic plot of the Lennard-Jones potential
with attractive and repulsive contributions. In the attractive regime (orange), the
AFM is operated in non-contact mode and in the repulsive regime (blue) in contact
mode.

plastic deformations [80]. This limitation is overcome by non-contact mode AFM.
The cantilever is vibrated at a fixed frequency, which is close to f0. Upon approaching
the sample, the interactions between tip and surface cause changes in amplitude,
phase, and resonance frequency of the cantilever, which are used as a feedback signal
for topographic imaging. This mode enables imaging with atomic resolution, which
can be limited by the geometry and chemical properties of the tip [81].

In static AFM, the measurement is either controlled by height or force. If the height
is kept constant during the measurement, the deflection ∆z is monitored, which can
be directly translated into the interaction force Fhook by Hooke’s law

Fhook = k · ∆z, (3.2)

where k denotes the spring constant of the cantilever. The constant height mode
enables high-speed atomic resolution images. In constant force mode, the height of
the sample is adjusted by a feedback loop during scanning to maintain a constant
deflection of the cantilever. While providing not only information about topography
but also other characteristics, e.g. friction forces, the response time of the feedback
system imposes limitations to the scanning speed.

For non-contact measurements, the AFM is generally used in dynamic mode, which is
further divided into two modes, amplitude-modulation or tapping mode and frequency-
modulation mode, depending on the feedback parameter. In tapping mode, the tip
is moved close enough to the surface to be partially influenced by the repulsive
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regime, leading to a reduction in amplitude, which is then adjusted to be constant
by a feedback circuit. The interactions between tip and sample shift the resonance
frequency of the cantilever, which is proportional to the gradient of the interaction
force Fint, f0, and k

∆f = − f0

2k

∂Fint

∂z
. (3.3)

Furthermore, the induced changes in phase describe if attractive or repulsive forces
govern the interaction between tip and sample, which qualifies the phase as an
indicator for the current mode of the system. This mode enables qualitative imaging
of a large variety of surfaces. While amplitude-modulation is unsuitable for measuring
in vacuum, as the feedback is too slow, frequency-modulation reacts instantaneously
to tip-sample interactions. In this mode, the cantilever is oscillated at its resonant
frequency. When a shift is induced by forces between tip and sample, the probe-sample
distance is adjusted, which allows for measuring the chemical bond formation of single
molecules [81,82]. The sensitivity of the method depends on the Q-factor, which is
a measure for the changes in amplitude due to the frequency shift. In response to
variations in sample topography, a cantilever with a high Q-factor causes a larger
change in amplitude than a low Q cantilever, which increases the sensitivity, allowing
high resolution imaging. Working with high Q cantilevers is a compromise between
fast scan speeds and resolution [83,84].

3.2.2 Probe characteristics

The accuracy of AFM measurements depends on the shape and spring constant of
the cantilever probing the sample. Probes are generally microfabricated from silicon
wafers by lithography [85]. The spring constant is defined by the geometry of the
cantilever and ranges from 0.1-100 N/m, which also influences the Q factor and hence
plays a crucial part for the sensitivity and resolution. Figure 3.4 shows the probe
geometry of an OTESPA-R3 cantilever, which was used for the AFM measurements
performed in this work.

Spring constants are chosen slightly stiffer than the stiffness of the probed sample to
prevent adhesion of the cantilever. For cell studies, the cantilever stiffness typically
ranges between 0.01 - 0.6 N/m [88].

Resolution is further limited by size and shape of the tip, e.g. if the tip width is
larger than the lateral dimensions of surface features, which causes artefacts due to
the dilation of the sample surface. Optimum tip geometries depend on their similarity
to the measured surface. In case of biological samples, such as cells, the choice of
tips is determined by the aim of the measurement. For understanding the cellular
mechanical response, large colloidal probes are preferable, while sharp tips enable
high-resolution mapping of cell topography and mechanics [89].
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Figure 3.4: Typical cantilever geometries. Dimensions of the OTESTPA-R3
cantilever tip. Reproduced from [86,87]

3.2.3 Topography measurements
High-resolution topography images are acquired by smart combination of the param-
eters mentioned above. In case of biological samples the topography is measured by
tapping mode, which reduces the interaction between sample and tip, preserving soft
matter, such as cells. The drive frequency of the cantilever during the measurement is
determined from the resonance frequency of the cantilever in air, as shown in figure 3.5.
For imaging in fluid environment, the resonance frequency is determined by applying
a range of oscillation frequencies to the cantilever. The frequency with the largest
response is then the resonance frequency. For amplitude-modulated mode imaging,
the drive amplitude is used as feedback parameter for the tip-sample distance and
remains constant during the scan. The tip is approached towards the surface until
it reaches the set point amplitude. Deviations in amplitude are recorded as error
signal. Additionally, the phase monitors if the interaction is governed by attractive
or repulsive forces.
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Figure 3.5: Resonance frequency in air. The resonance frequency is denoted by a
peak, and the black, vertical line shows the drive frequency. The teal line shows the
phase, which is set to 90 ◦ at the resonance frequency.

3.3 Fluorescence microscopy
In the field of biology and medical sciences, fluorescence microscopy offers a non-
invasive way to investigate biological matter, e.g. cells or tissue. A wide range
of organic fluorescent dyes and proteins enables sensitive and selective imaging.
Due to the large spectral range of fluorophores, simultaneous imaging of multiple
cellular, subcellular, and molecular components is possible, and even imaging of living
systems.

3.3.1 Basic principles of fluorescence emission
Fluorescence is the emission of light due to absorption of light with typically shorter
wavelength. By filtering the excitation wavelength, the contrast between fluoresc-
ing objects and background is strong enough to visualise even single fluorescent
molecules. Organic substances with intrinsic fluorescence (autofluorescence) are called
fluorophores. When a fluorophore is hit by a photon, all of its energy is absorbed and
the molecule is excited from its ground state to higher energy levels, which include
triplet and singlet states. In the triplet state, the spin orientation is flipped upon
excitation, while it is preserved in the singlet state. Depending on the wavelength,
the electrons of the fluorophore can be excited to one or more energy levels. The
absorbed energy is released by fluorescence emission, which takes a few nanoseconds.
The physical process can be illustrated by the Jablonski diagram [90, 91], see fig-
ure 3.6. The absorption process spans a time range of 10−18 s. In its excited state, the
molecule loses energy by transitioning to the lowest vibrational level. This vibrational
relaxation requires approximately 10−12 − 10−14 s. Energy loss can also occur through
intersystem crossing from singlet to triplet state. In the latter case, when the molecule
relaxes to its ground state, the light emission is referred to as phosphorescence, which
occurs within a timescale of 10−3 − 1 s [92]. Internal conversion is much slower and
results in the relaxation of the molecule into the lowest excited state or into the lowest
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ground state. Due to the energy loss caused by vibrational relaxation or intersystem
crossing, the wavelength of the emission is higher and the frequency lower relative to
the absorption (Stokes shift) [93].

Figure 3.6: Jablonski diagram. The energy states of a molecule are divided into
the ground state S0 and excited singlet S1, S2 and triplet T1 states. Upon absorption,
the energy is either re-emitted as fluorescence or phosphorescence or dissipated
by relaxation processes (vibrational relaxation, internal conversion or intersystem
crossing).

3.3.2 Fluorescence microscopy techniques
The application of fluorescence microscopy techniques depends on their field of
use. While wide-field microscopy is fast, allowing direct image observation, image
acquisition with confocal microscopes is time-consuming, but contrast and resolution
are improved [94]. In wide-field microscopy, the sample is completely exposed to
the light source. In confocal microscopy, the specimen is illuminated with a focused
scanning laser beam. Additionally, a pinhole aperture is placed in the image plane in
front of an electronic photon detector. The incoming light signal is converted into a
continuously changing voltage by the detector, see figure 3.7 [95].

The wide-field microscope is equipped with a fluorescence objective, a system of
emission and excitation filters, a dichromatic mirror and a light source. After passing
through an excitation filter, the light beam from the source is refracted on a dichroic
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Figure 3.7: Illumination in wide-field and confocal fluorescence microscopy.
(a) Light path in wide-field microscopy, illuminating the whole sample. (b) Illumina-
tion of the specimen with a focused laser beam through a pinhole aperture by using
confocal microscopy, which filters out fluorescence light emitted below and above the
focal plane. Reproduced from [95,96].

mirror, which is oriented in such a way that the emission wavelengths pass through,
while the excitation wavelengths are reflected. The fluorescence signal emitted from
the sample is collected by a camera. This setup has some inherent limitations. As
the entire sample is illuminated, regions above and below the focal plane are excited
by the light source. The additional background fluorescence decreases resolution
and contrast in the image [96]. In confocal microscopy, out-of-focus light is removed
by a pinhole aperture, see figure 3.7(b). The sample is excited by a laser beam
spot, which is moved over the sample in a raster. The emitted fluorescence signal
is spatially filtered by the pinhole aperture and received by a photomultiplier tube
(PMT) detector for different fluorescent wavelengths [95]. Despite the improved image
quality, raster-scanning comes with long exposure times, which can influence the
fluorescence response of the sample, e.g. by photobleaching, and increases the image
acquisition time compared to wide-field microscopy [97].

3.4 Neural networks
Machine learning algorithms are inspired by the human brain. They are designed to
find features in a data set and to generalise from these experiences, such as comparing
cell images for the diagnosis of diseases in blood samples. The term machine learning



24 3.4. NEURAL NETWORKS

is used for a process describing the field of predictive modelling, where the goal is to
make the most accurate prediction with the help of algorithms from many different
fields, such as statistics. These search for relationships between variables and predict
an outcome based on these connections. One prominent example used for data sets
with high complexity are deep learning algorithms. They are widely used in the
fields of computer vision, speech recognition, and bioinformatics, where they are
able to produce results comparable to human experts and even to surpass human
performance.

3.4.1 The process of machine learning
The development of a machine learning model requires the assignment of possible
data sources and conditions, as well as the choice of suitable algorithms for learning.
These are divided into four categories: supervised, unsupervised, semi-supervised,
and reinforcement learning. In supervised models, the algorithm develops a prediction
based on predefined samples, while it autonomously clusters the data in unsupervised
models. As a combination of both methods, in semi-supervised learning only a part
of the data is predefined and the algorithm clusters the rest based on the predefined
samples. The fourth method is inspired by human learning, as the learning process is
controlled by reward and punishment, teaching the algorithm a strategy to react in
known and unknown situations.

As not all data is fit to be used as input for a machine learning algorithm, it requires
modifications in order to be applicable for models, such as NNs. In most cases,
the data has to be extracted from data bases, signals, images etc., to be converted
into numerical input for the network. These kinds of data normally contain a high
amount of features and hence high dimensionality, such as 2D RBC images, which
requires measures to reduce the dimension in the data set. In case of working with
more-dimensional data, the “curse of dimensionality” often degrades the performance
of the network. If the data set contains too many dimensions, and therefore too
many features, the network is not able to form meaningful clusters. One way out
of this dilemma is dimensionality reduction, which refers to methods for projecting
the data to a lower dimensional subspace, while still capturing the essence of the
data [62].

The performance of the machine learning model not only depends on the dimensionality
but also on the amount and distribution of the input data. In case of supervised
learning, where the algorithm detects features based on a predefined categorisation
of the data, these categories should be evenly distributed to guarantee accurate
predictions on unknown data. To increase the data set or to equalise the number of
images for each category, data augmentation can be employed, which generates new
data from already existing data by applying minor geometric transformations, such
as rotation or shearing. This step not only improves the performance and results
of the machine learning model but also saves time in terms of data collection and
labelling. Especially in case of NNs, the size of the input data set plays an important
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role for accurate predictions. One of the most popular data augmentation methods is
position augmentation. It includes operations like cropping, reflection, rotation, and
scaling. While there are many ways to increase the data set, the application of data
augmentation requires careful selection of operations as some are not fit for a specific
set of images [98].

3.4.2 Principles and architectures of neural networks
The idea of machine learning laid the foundation for artificial neural networks (ANNs),
which are based on the processes observed in biological NNs, where the brain is the
control unit with different subunits for vision, hearing, movement and senses. Through
the brain, the human body reacts to stimuli, which are processed by the nervous
system. It contains approximately 109 neurons, receiving and transmitting the stimuli
as signals. Each neuron consists of three major parts, a cell body with extensions,
the dendrites, and the axon, see figure 3.8.

Figure 3.8: Components of a biological NN. The cell body of the neuron receives
signals from the dendrites. Received information is transmitted as electric signals by
axons, which are connected to other cells by synapses. Reproduced from [99]

The signals are collected by dendrites. Informations between the nervous cells are
transferred by electric impulses through the axon, which are connected to other cells
by synapses [100]. The concept of information transmission between neurons has
formed the basis for creating mathematical models for ANNs, designed to learn and
adapt to situations and inputs.

The predecessors to artificial neurons are perceptrons, which imitate the biological
neurons using mathematical operations. In this simplified model, the perceptron
receives an input information x, where xi indicates the i-th element of the vector x,
through the axon connection between neurons. Each input element is multiplied by
weights wi, which define the importance of the connections. The weighted inputs are
then given to the cell body by the dendrites, where all contributions are summed
up with an additional weight b (bias). The sum s = ∑

i wixi + b is translated into a
binary output y by the activation function a, see figure 3.9.

y = b + a

(∑
i

wixi

)
(3.4)
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This process is evaluated by comparing the output with the desired value d. The
difference between both scalar values (y and d) is used to adapt the weights accordingly.
With these basic concepts, perceptrons are able to perform logic operations, such as
AND, OR, and NAND [101].

Figure 3.9: Schematics of a simple perceptron. The input xi is provided to
the neurons by the axons, which are connected to the dendrites by synapses. The
connections between neurons are weighted and fed to the cell body. The sum of all
connections is then converted to an output by an activation function. Reproduced
from [99,102]).

In case of samples, which are not linearly separable, the perceptron is not able to divide
the data into two classes. A possible solution for this problem is the combination
of multiple perceptron layers, which contain an input layer, an arbitrary number of
intermediate or hidden layers, and an output layer [103]. This new approach requires
a learning rule to repeatedly adjust the weights of the connections between neurons
in the network in order to minimise the difference between the actual output y and
the desired output d. This difference is defined as the total error E:

E = (y − d)2 , (3.5)

The minimisation of E is performed by gradient descent, which computes the partial
derivative of E with respect to each weight in the network. These are calculated in
two ways: forward and backward. In the first step, y is determined by giving the
input xm from one layer to the next, see figure 3.10. In the first layer, fk is defined
as

fk = tk0 + a

(∑
m

tkmxm

)
, (3.6)

where tk0 is the bias and xm the input. In the next layer, gj is calculated by

gj = uj0 + a

(∑
k

ujkfk

)
(3.7)

with the weight ujk and bias uj0, then hi by

hi = vi0 + a

∑
j

vijgj

 (3.8)
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and finally y by

y = w0 + a

(∑
i

wihi

)
. (3.9)

The difference E between y and the desired output d (Equation 3.4.2) is then used to
calculate the error on each layer, which is expressed by its partial derivative in the
respective layer

∂E

∂gj

=
∑

i

a′ (hi) vij
∂E

∂hi

(3.10)

and equivalent for the other layers in figure 3.10. ∂E
∂gj

shows if gj should be higher or
lower and if hi was too high or too low. With the partial derivative the error in the
weight affecting gj is computed:

∂E

∂ujk

= ∂E

∂gj

a′ (gj) fk (3.11)

In the final step, the weight is updated by

∆u = −η
∂E

∂ujk

, (3.12)

where η describes the learning rate [104]. In this way the error propagates backwards
through the layers, as denoted by the blue arrows in figure 3.10.

Figure 3.10: Schematics of backpropagation in a neural network. Multilayered
network with output layer, three hidden layers, and input layer. The grey arrows
show the connections between the neurons and the black arrows a sample path for
the forward calculation of weights and output. The path of the backpropagation
for adjusting the weights based on error minimisation is shown by blue arrows.
Reproduced from [105].

The concept of backpropagation has some limitations, as the partial derivative of
the error is calculated separately for each input sample. For a large data set, this is
quite time consuming. The stochastic gradient descent provides a solution for this
problem. Computing the gradient for a small sample of randomly chosen inputs gives
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an estimation of the true gradient and speeds up the learning. When the algorithm
has run through all the input data, one epoch of training is completed [106].

One important element of neural networks is the activation function, which was
introduced for the perceptron but not discussed in detail. It serves as a measure
for the importance of a connection between neurons and decides, which neurons are
activated. Depending on the complexity of the problem given to the network, the
activation function can be a binary step function, a linear activation function or
non-linear, see figure 3.11. The most common non-linear functions are sigmoid, tanh,
ReLU, and softmax. While the sigmoid function is applied for classification problems,
which require the probability of the respective category as output, the tanh function
is mainly used for binary problems. In contrast to sigmoid and tanh, the rectified
linear unit (ReLU) does not activate all neurons simultaneously. The function is not
only more efficient but also accelerates the learning process, qualifying this function
for use in CNNs or deep learning. In case of multi-class classifications, the softmax
function – a combination of multiple sigmoids – maps the output as a probability
distribution for all possible classes [107,108].

Figure 3.11: Common activation functions. (a) Binary step function, (b) linear
activation function, (c) sigmoid activation function, (d) tanh activation function, (e)
ReLU, and (f) softmax.

When working with NNs, a typical problem is overfitting, which describes the inability
of the network to generalise, i.e. the network performs well on the training set but
fails on unknown data. The easiest way to overcome this is to increase the training
data set, which is not always feasible, if the data is difficult to acquire or expensive.
Another possibility is to introduce regularisation techniques, which add an extra term
to the error E, such as L2 regularisation:

λ

2n

∑
w

w2, (3.13)
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where λ is the regularisation parameter, n the size of the input data set, and w the
weight. The idea is to make the network learn on small weights, only allowing large
weights, if they improve the cost function, which is regulated by λ [109]. The concepts
of back propagation and refinement of the learning process by using suitable error and
activation functions pave the way for more complex networks with multiple layers of
hidden neurons, such as deep neural networks. Due to their complexity, they are able
to understand edges, simple geometric shapes, and can learn hierarchies of knowledge,
which is especially useful for image recognition.

3.4.3 Convolutional neural networks
The most prominent example of deep neural networks are CNNs. Their purpose is
to learn features from a sample by applying convolving filters to the input, which
are connected to a small region in the sample. For image recognition, the CNN is
composed of several filters, the feature maps, each reacting to a different property.
Each neuron in the feature map is connected to a field in the image, which enables the
network to find features, independent of their scaling factor or location. This concept
is inspired by the visual system of monkeys and allows the network to learn how to
see [110]. To improve the efficiency of the CNN, pooling layers are used between
convolutional layers. Their purpose is to return information about the presence of a
feature, while discarding its exact location, which reduces the dimensionality. After
the network has successfully learned the features, their representations are fed to
fully-connected layers for classification, where each neuron from one layer is connected
to the next, see figure 3.12.

Figure 3.12: Representation of a CNN. The network learns characteristic features
of the the input image by convolution, which are classified by a regular NN. Reproduced
from [111].

While CNNs provide a stable and fast way for image recognition, the performance of
the algorithm is compromised by vanishing or exploding gradients, i.e. the speed of
learning decays towards earlier hidden layers or by large error gradients, which in turn
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results in an unstable network [112]. Despite these problems, deep neural networks
have gained importance in a wide range of applications, especially in diagnosis of
diseases, such as malaria.

3.4.4 Evaluation of neural networks
One way to evaluate the quality of a NN is the confusion matrix, which displays
information about the actual and predicted classifications of a model. It shows the
distribution of correctly and incorrectly classified data. In case of a binary problem,
the data is divided into true positive (TP) for the number of correct predictions and
false positive (FP) for incorrect predictions for the positive output, true negative
(TN) for correct predictions, and false negative (FN) for incorrect predictions for
the negative output. To represent the performance of NNs, precision and recall
are introduced. The precision is defined as the ratio of TP and all results classified
as positive, while recall is a measure of the ratio of TP and all predictions for the
positive output [113,114].

precision = TP

TP + FP
. (3.14)

recall = TP

TP + FN
. (3.15)

Figure 3.13: Confusion matrix for a binary classification problem. The fields
in the table show the number of data denoted as TP, FP, TN, FN.

For multi-class problems, the definitions from eq. 3.4.4 and eq. 3.4.4 are modified
to

precisioni = Cii∑N
j=1 Cij

(3.16)

recalli = Cii∑N
i=1 Cij

. (3.17)

The overall accuracy of the classification is calculated as the ratio of correct predictions,
independent of the categories, to the total of values in the confusion matrix [115].

accuracy =
∑N

i=1 Cii∑N
i=1

∑N
j=1 Cij

, (3.18)
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where N the number of classes, i the row index and j the column index. Figure 3.14
shows a four category classification, containing the classes A, B, C, and D, which is
later used in the thesis, as confusion matrices are a powerful tool for the evaluation
of the performance of the NN on the data sets.

Figure 3.14: Confusion matrix for a four category classification. The diagonal
elements correspond to the number of objects correctly classified by the NN, while the
off-diagonal elements show false classifications. In each field, the number of counts
as well as the corresponding percentage with respect to the total set rij are shown.
Precision and recall are displayed in the green column and the row. The accuracy
is displayed in the grey field in the bottom right corner.

3.5 Experimental equipment and methods
The optical and morphological measurements of RBCs in this work were performed
with several microscopes. In the following, each microscope and the setup of the
experiment are described.

AFM All morphological measurements of RBCs on Giemsa-stained and unstained
thin blood films were carried out with a MFP-3D AFM (Asylum Research, Oxford
Instruments). The set up and acquisition of the AFM was performed with using
Igor Pro 6.37. For the morphological measurements, the AFM was operated in AC
mode with amplitude as feedback parameter (Amplitude-modulation) in air at a
scanning speed of 0.25 Hz. Each scan was carried out on an area of 90 x 90 µm with
a resolution of 512 x 512 pixels. For the measurements, an OTESPA-R3 cantilever
from Bruker with a rectangular shape, a tip radius of 7 - 10 nm, and a spring constant
of 26 N/m, was operated at a frequency of 280 - 300 kHz with a drive amplitude of
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250 - 300 mV. To prepare the images for further analysis, they were preprocessed by
using the image analysis provided by the Igor Pro software. By applying the “Flatten”
function in first order, the background tilt was removed, increasing the contrast of
the images. The height information was then saved as a matrix in text format with
corresponding x- and y-values. The measurements of RBCs in liquid were performed
with the same AFM in AC mode in phosphate-buffered saline (PBS) at a scanning
speed of 0.25 Hz. Images were obtained by operating a BL AC 40 cantilever from
Bruker with a rectangular shape, a tip radius of 8 - 15 nm, a spring constant of
0.09 N/m, at a frequency of 38 - 41 kHz with drive amplitude of 300 - 600 mV.

Fluorescence microscope The emission of autofluorescence in malaria-infected
RBCs, was observed on thin blood films on coverslips (nominal thickness 150 µm). The
samples were excited by an OMICRON (Rodgau-Dudenhofe, Germany) LaserHub,
which contained four independent laser sources (405 nm 120 mW CW diode, 488 nm
200 mW CW diode, 561 nm 156 mW CW diode, 642 nm 140 mW CW diode), operated
at 5 - 20% power. Wavelength and power were controlled by the OMICRON Control
Center software (v.3.3.19). To record the fluorescence microscopy images, an Olympus
IX81 inverted microscope combined with Olympus TIRF objective (UApo N, 100x,
1.49NA) was used. The RBCs were observed through immersion oil. An EM-CCD
camera (Andor iXon DU-885KCSO-VP, Oxford instruments) collected the images
through a quad-band dichroic mirror and emission filter set (TRF89901-EM-ET-
405/488/561/640, Chroma Technology, Bellows Falls, VT USA). For high resolution,
the exposure time of the samples was set to 0.5 s. To identify the stage of the RBCs,
each image was supplemented by a light microscopy image of the same area.

Light microscope For the investigation of Giemsa-stained thin blood films, a
Nicon Eclipse E 100 with a Nicon BE Plan 100x 1.25 NA oil objective was used. The
stained thin blood films were prepared following the standard procedure [5].

Maintenance of P. falciparum cultures b The cultures of P. falciparum par-
asites, used for the experiments described in this work, were from the laboratory
adapted strain 3D7, which were provided by Dr. Kai Wengelnik, University of Montpel-
lier, Montpellier, France. As the parasites require host erythrocytes, RBC concentrate
was purchased form the National Blood Services of Hungary. Following the recommen-
dations of the Malaria Research and Reference Reagent Resource Center [116], the
culture medium was prepared by supplementing RPMI 1640 (Gibco, thermo Fisher
Scientific, Waltham, MA USA) with Albumax I (ThermoFisher Scientific, Waltham,
MA, USA), Hypoxanthine and Gentamicin (VWR International, Radnor, PA, USA).
Before use, the medium was sterile filtered. The detailed composition is shown in
table 3.1. For continuous growth, the cultures were kept at 1% parasitemia with a
5% haematocrit value in a New Brunswick Eppendorf 170R incubator at 37oC in an
atmosphere of 5% CO2, 5% O2, and 90% N2. The investigation of the three main
erythrocytic asexual stages required synchronised cultures. Therefore, the ring-stage
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Medium composition concentration

Albumax I 1.25 g/l
D-Glucose 11.1 mM
Gentamicin 0.05 mg/ml
Hepes 25 mM
Hypoxanthine µM
KCl 5.4 mM
L-Glutamine 2 mM
NaCl 85.6 mM
NaHCO3 23.8 mM

Table 3.1: Components of the culture medium used for the experiments on RBCs in
this work.

parasites were sorted out by supplementing the cultures with 5% Sorbitol and kept
at 37oC for 10 min. Subsequently, RPMI 1640 was added, the mixture centrifuged for
5 min with 800 g and the supernatant removed. These three steps complete one cycle
of washing. After two more washing steps, the cultures were set to 5% haematocrit.
To access the schizont-stage parasites, 70% Percoll was layered on top of a RBC pellet
with supernatant and centrifuged for 11 min with 1500 g [67]. The schizont-stage
parasites were collected from the top layer and the ring-stage from the bottom of the
tube. Trophozoite-stage parasites were collected after entering the early trophozoite
phase based on optical microscopic analysis of Giemsa-stained thin blood films. To
obtain high parasitemia in the samples for microscopy analysis, the synchronised
cultures were grown up to 5% - 10% parasitemia for approx. three cycles and har-
vested the parasites with their host RBCs upon reaching either ring, trophozoite or
schizont stage. The samples were then prepared by collecting 1 µl of the pellet, which
was smeared on a glass slide, following the standard procedure for preparing thin
blood films [5]. For light and atomic force microscopy, VWR microscope slides with
90° ground edges and nominal thickness 0.8 - 1.0 mm were used and precision cover
glasses of a thickness of 170 µm (Superior Marienfeld, No. 1.5H) for the fluorescence
microscopy measurements to guarantee high-quality imaging.



4
Results

4.1 High-parasitemia cultures for in vitro analysis
of P. falciparum under physiological condi-
tions

Addressing the challenge of efficient malaria treatment and diagnosis requires in-
depth understanding of the parasite maturation during the intra-erythrocytic cycle.
Exploring the structural and functional changes of the parasite through the intra-
erythrocytic stages and their impact on RBCs is a cornerstone of antimalarial drug
development. Especially for diagnosis, such insights are relevant for developing
autonomous and reliable techniques.

Upon the five species, P. falciparum is responsible for the vast majority of severe
cases in Africa [43]. Due to its high infection rate and multidrug resistance [43,117],
antimalarial research is mostly focused on this malaria species. Studying the changes
and mechanisms during parasite growth requires preparation protocols for dried and
liquid samples of P. falciparum-infected RBCs. This section presents a routine for the
preparation and measurement of samples for atomic force and fluorescence microscopy
under physiological conditions.

Preparation of high-parasitemia samples for studies of RBCs
in culture medium
Microscopy studies on dried and fixed thin blood films have some inherent limitations.
Under such conditions, the shape of the RBCs is deformed, i.e. the cells are flattened
and their mechanical properties altered by partial dehydration [118]. Furthermore, thin
blood films only show a snapshot of the parasite life cycle. This section introduces a
protocol for the preparation of liquid samples together with the setup requirements for
the AFM and fluorescence microscope. Additionally, an outlook on the investigation
of RBCs with AFM in liquid environment is given with the purpose of gaining a more
detailed and realistic view about the maturation of P. falciparum.
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Studies of living cells with AFM impose major challenges to the sample preparation
and microscope settings. Due to the elasticity of the RBC, tip-induced deformation
significantly reduces the resolution and complicates mapping of the actual cell sur-
face [119]. The proper analysis of individual RBCs in liquid environment requires a
single cell layer. To determine the necessary cell concentration, the volume Vcells of
all cells needed to cover the complete area of the chamber used for the experiments
(BioHeaterT M closed fluid cell [120]) was calculated. With the average values for radius
and thickness of RBCs proposed by Diez-Silva et al. [121] (rcell ≈ 4 µm, hcell ≈ 2 µm),
the area occupied by a single cell was estimated to Acell ≈ 50 µm2. From this follows
that ≈ 107 are required to cover the complete surface of the closed fluid cell chamber
with a diameter of 25 · 103 µm, which equals a volume of Vcell ≈ 108 µm3 = 10−1 µl
and 0.1% of the holding capacity of the chamber. Based on this estimation, various
concentrations of RBCs, ranging from 0.1% to 0.5% were tested. Figure 4.1 shows
representative images for the cell coverage observed at 0.1%, 0.25%, and 0.5% of the
volume of the chamber, revealing the optimal cell coverage at a RBC concentration
of 0.1%.

Figure 4.1: Cell coverage at various RBC concentrations: 0.5% (a), 0.25% (b),
and 0.1% (c). The images were taken via simple light microscopy on unstained cells.

Prior to scanning, the cells need to be immobilised on the glass surface to prevent
them from being moved by the cantilever of the AFM. For this purpose, various
cantilevers were tested on cells immobilised either with poly-L-lysine (0.5 mg/ml) for
20 min [122] or an additional coating of glutaraldehyde for another 20 min [123]. The
RBCs were then left to settle for 30 min on the glass, which ensures cross-linking
between the cells and the glass surface. Table 4.1 shows the used cantilevers with
corresponding spring constant and an additional column for the success of RBC
imaging. The first and second row display the settings and success on samples only
coated with poly-L-lysine. In both settings, the RBCs were moved by the cantilever
and detached from the surface. With the additional coating of glutaraldehyde, when
using pnp-TR, MSCT, and BL-RC-150 the cells remained attached to the surface but
were distorted by the cantilever, making it impossible to image the RBCs (Figure 4.2
(a) - (c)). When scanning the sample with the BL-AC-40 cantilever, the RBCs were
clearly visible in the image, see figure 4.2 (d) - (e).
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Cantilever Spring constant Imaging success

BL-RC-150B [124] 0.006 N/m no
BL-AC-40 [125] 0.09 N/m no

BL-RC-150B 0.006 N/m no
pnp-TR [126] 0.0.08 N/m no
MSCT [127] 0.07 N/m no
BL-AC-40 0.09 N/m yes

Table 4.1: Cantilever type and spring constant with corresponding success of RBC
imaging. First and second row: samples coated with poly-L-lysine. Third to sixth
row: samples coated with poly-L-lysine and glutaraldehyde.

Figure 4.2: AFM image of a healthy RBCs in liquid environment. (a) - (c):
Single RBCs measured with BL-RC-150, pnp-TR, and MSCT. (d) - (e): Multiple
RBCs imaged with BL-AC-40 and corresponding colour bar showing the height of
the cells.
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The AFM measurements of RBCs in liquid environment revealed the best result
for sample surfaces coated with both poly-L-lysine and glutaraldehyde. Testing
cantilevers with various spring constants showed that RBCs are deformed and can be
displaced upon contact with the cantilever due to their high compliance. While the
cells remained attached to the surface of the substrate, they also showed a tendency to
adhere to the cantilever tip. Choosing the BL-AC-40 cantilever significantly reduced
these effects and enabled the imaging of healthy RBCs in liquid environment, as
demonstrated in figure 4.2. However, the current data set obtained on RBCs in
liquid environment is limited and systematic studies are planned in the future. The
sample preparation routine for AFM measurements under physiological conditions
can straightforwardly be adapted for imaging RBCs with fluorescence microscopy.
Thus, the experiments shown in this chapter provide the basis for the characterisation
and detection of P. falciparum-infected RBCs presented in this work.

4.2 Imaging, identification, and manual classifica-
tion of malaria

The growth of malaria parasites comes with alterations of the RBC structure, which
show up as modifications of the cytoskeleton and composition. While light microscopy
captures the modifications based on dyes binding to specific parasite components,
mechanical alterations inside the cell cannot be understood by the optical observation.
For this matter, AFM qualifies as an ideal tool to image the mechanical changes
during the intra-erythrocytic cycle. As AFM and light microscopy alter the RBCs
during or prior to measurement, fluorescence microscopy is employed as a non-invasive
technique to monitor changes based on their optical properties. The throughput of
cell imaging requires a compromise between resolution and the duration of image
acquisition. Instead of individual cells, a microscopy image typically contains 20-
50 RBCs with lower resolution, i.e. single cells are only accessible through image
processing. This plays a large role for applications in NNs, where a high amount of
single RBC images is required. To overcome this challenge and to prepare the images
for the NN, a detection algorithm is employed. This allows for identification and
classification of individual cells, forming the basis for the stage-specific detection of
malaria in RBCs. Starting with a method for cell detection, this section elucidates a
step-wise approach for the processing of microscopy images with the aim to extract
single RBCs for further analysis, such as stage classification.

4.2.1 Imaging of the morphological and autofluorescent prop-
erties of P. falciparum-infected RBCs

Employing atomic force and fluorescence microscopy to resolve the alterations in RBCs
during parasite growth provides an in-depth view of the intra-erythrocytic stages. To
build a data base for the stage-specific morphological and optical characteristics, RBC
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images were recorded by all three imaging methods. Throughout the experiments,
light microscopy was used as a control and to evaluate the alternative imaging methods.
In table 4.2, the distribution of healthy and infected RBCs is listed, according to
the respective imaging method. For a data base that can be used as input for a

Imaging method number of cells parasitemia level

AFM 7151 23%
Fluorescence microscopy 41287 12%
Light microscopy 2025 11%

Table 4.2: Number of recorded RBCs and ratio of infected cells (parasitemia) for
atomic force, fluorescence, and light microscopy

NN that detects malaria-infected RBCs irrespective of the imaging technique, the
number of cells should be comparable for each microscopy method. As a way out of
this dilemma, I wrote an algorithm to process each image prior to feeding it to the
NN.

4.2.2 Identification of RBCs in microscopy images
Image processing was performed in two steps: contrast adjustment and cell detection.
From the microscopy measurements, the algorithm received two kinds of input, text
files from AFM and images from fluorescence and light microscopy, see figure 4.3. To
enhance the cell features in the images, atomic force and fluorescence microscopy
images are artificially coloured. Both inputs were treated as matrices and converted
to greyscale for further processing.

Figure 4.3: Visualisation of microscopy images with artificial colouring.
Input data from atomic force (a), fluorescence (b), and light microscopy images (c).

In case of AFM and some fluorescence and light microscopy images, the contrast
between background and RBCs is not strong enough to locate single cells, which
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impacts the accuracy of the detection. Hence, the images were binarised based on
pixel intensities by Otsu’s method [128], see figure 4.4.

Figure 4.4: Binarised AFM image. The pixels in the image are set to 0 (black), if
their value is below or equal to the global threshold and to 1 (white), if it is above.

While the processing of AFM images requires an additional step, it is sufficient to
enhance brightness, sharpness, and contrast in the fluorescence and light microscopy
images. Python offers a module for automatic enhancement of images by a manually
chosen factor [129], which was applied to highlight the RBCs.

Subsequent to contrast adjustment, the Hough gradient method was employed.
Objects, such as cells are detected in three steps: localising edges, finding the centre
of the object, and calculating its radius [130]. The method is controlled by five
parameters, mDist, par1, par2, minR, and maxR. For a graphical representation of
the parameters see figure 4.5.

Figure 4.5: Graphical representation of the Hough circle method. par1 is
used to define the threshold for the Canny edge detector, while par2 denotes the
threshold for the centre detection. mDist, minR, and maxR are shown in the right
image:

mDist defines the minimum pixel distance between the centres of two objects. par1
is the threshold value for edge detection by the Canny edge detector [131]. par2 sets
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the threshold for the number of edge points to declare the object a circle. minR
and maxR set the minimum and maximum size of the radius in pixels. To find the
optimum value for each parameter, a number of images was analysed with the Hough
gradient method. The quantitative results for all microscopy techniques are shown
in table 4.3. These results highlight the influence of strong contrast between RBC

Imaging method mDist par1 par2 minR maxR

[px] [px value] [px value] [px] [px]

AFM 28 10 8 14 30
Fluorescence/light microscopy 28 20 18 14 30

Table 4.3: Optimum values for the sensitivity of the Hough gradient method for
various imaging methods.

and background, i.e. the greyscale fluorescence and light microscopy images require
stronger threshold parameters (par1, par2) than the binarised AFM images. As the
Hough gradient method was designed for the detection of circles, it is unsuitable for
not circular shapes. The cells depicted in figure 4.6 for example, strongly deviate from
the average shape of RBC. Hence, such images are excluded from the analysis.

Figure 4.6: Representative images of not circular RBCs, recorded by different
imaging techniques.

Figure 4.7 shows images of detected RBCs. The cyan circle denotes a successful
identification, which was assessed for all imaging techniques. A visual comparison of
the detected cells and the actual number of cells in the images revealed that more
than 95% of all RBCs (approx. 7000 for each imaging technique) were localised
with the cell detection algorithm, which worked best on the fluorescence microscopy
images, see table 4.4. The centre and radius of the cells, detected by the Hough
gradient method, define the image coordinates associated with the RBC, which are
used for the calculation of the geometric and gravitational centre in sections 4.3.1 and
4.4.1.
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Figure 4.7: Cell detection on microscopy images. RBCs detected by the Hough
gradient method are marked by cyan circles.

Imaging method Detection probability

AFM 96%
Fluorescence microscopy 97%
Light microscopy 95%

Table 4.4: Probability of cell detection for different imaging techniques.

Despite the high performance, RBCs strongly deviating from a circular shape impose a
challenge to my approach. However, only a negligible amount of those cases occurs in
the field samples. Additionally, the detection accuracy is reduced by overlapping cells,
as the algorithm is not always able to separate them. While the presented detection
method has some limitations, especially if the RBCs are not circular, it reflects a
compromise between computation time and detection accuracy. Other approaches,
such as neural networks, require more complicated calculations at the expense of
time, while reaching a comparable detection accuracy of 70-95% [132–135].

4.2.3 Manual classification of intra-erythrocytic stages
To build a database for the NN, I manually classified the cell images into four cat-
egories: healthy, ring, trophozoite, schizont. In case artefacts, such as overlapping
RBCs occurred, they were excluded from the analysis. The accuracy of the classi-
fication was approved by two experts, Richard Izrael and Petra Molnár. Figure 4.8
shows microscopy images and individual RBCs classified and coloured according to
their intra-erythrocytic stage: red (healthy), blue (ring), yellow (trophozoite), green
(schizont).

The complete classification of RBCs in the recorded images, see table 4.2, forms the
full data base for the stage-specific detection of malaria. Compared to atomic force
and fluorescence microscopy, the data base contains a low number of RBC images
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Figure 4.8: Images of manually classified RBCs. (a)-(c) Microscopy images, red:
healthy RBCs, blue: ring-stage parasites, yellow: trophozoite-stage parasites, green:
schizont-stage parasites. (d) - (f): Individual cells, the star marks their position in
the microscopy image.

from light microscopy samples. Therefore, the set was supplemented with publicly
accessible images from Abbas et al. [136]. The distribution of the categories, including
the added microscopy images, is shown in table 4.5.

Imaging method total healthy ring trophozoite schizont

AFM 7386 5679 350 558 799
Fluorescence microscopy 45726 40874 1946 1598 1265
Light microscopy 26223 24586 502 575 560

Table 4.5: Distribution of healthy RBCs and intra-erythrocytic stages in the recorded
microscopy images.

As obvious from these numbers, the stages are inadequately represented. The amount
of healthy RBCs exceeds all other categories. Such imbalance in the data set can
lead to overfitting and reduce the performance of the network [98]. To equalise the
number of images for each category, I augmented the single cell images by three
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geometrical operations: rotation, scaling, and reflection. Rotation angle and scaling
factor were chosen randomly (between 0 o and 180 o and 0.5 - 2) for each augmentation
to guarantee a large variety of images. The reflection was performed along the
horizontal axis, see figure 4.9.

Figure 4.9: Geometric augmentations on single RBC images. (a) Original, (b)
rotated, (c) scaled, and (d) reflected image

In this section, I presented a step-wise approach for image processing with the goal
to prepare data for the application in NNs. The first step contained the detection of
objects in the recorded images, which was shown by the example of RBCs. Its success
required a compromise of accuracy and expenditure of time. I opted for the Hough
gradient method, which was fast but at the cost of precision. Nevertheless, apart from
minor limitations, such as overlapping or not circular cells, my algorithm was able to
find more than 95% of all measured RBCs. In the second step, I classified the detected
cells according to figure 2.2 into the four categories: healthy, ring, trophozoite, and
schizont. Since the sample preparation, culturing, and imaging are time consuming
and difficult, I could only record a limited number of images, which provide small
data sets, where healthy RBCs and intra-erythrocytic stages are rather unevenly
represented. Thus, in the final step, I employed geometric operations to augment the
data set and hence equalised the number of RBC images in the categories. Despite
some limitations, the introduced three step approach allows fast preprocessing to
prepare microscopy images for their application in NNs.

4.3 Exploring characteristic features of P. falci-
parum

For the realisation of a reliable classification algorithm, feature engineering is a crucial
step, as predictions are based on prominent features of the input data. Therefore,
they are required to be characteristic to the intra-erythrocytic stages and should be
accessible through statistical analysis or image processing.

Atomic force and fluorescence microscopy enable an in-depth investigation of the
alteration in RBCs during the intra-erythrocytic cycle. These techniques allow probing
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of the morphology and the observation of autofluorescence. In what sense those
properties are specific to the malaria stages is the subject of this section.

4.3.1 Statistical analysis for the characterisation of RBCs
The main goal of this step is to present a statistical analysis of characteristic RBC
features. For this purpose, I determined cross-sections through the single RBC
images. Their orientation and length were defined by the following calculations.
Using the circles fitted around the RBC by the Hough gradient method introduced
in section 4.2.2 as contour, I determined the geometric centre r⃗geo based on the
conventional definition:

r⃗geo = 1
n

∑
i,j

r⃗i,j, (4.1)

where r⃗i,j denotes the position of the pixel (i, j) with the x and y coordinates i and j,
respectively, and the summation goes over all n pixels within the interior of the RBC.
In order to determine characteristic features in the radial profile of infected RBCs,
as a first approach, I calculated 18 equally (10o) spaced cross-sections through the
geometric centre of the cells. Subsequently, the length of the cuts was restricted by
the intersections between cut and contour. A representation of the cross-sections is
displayed in figure 4.10.

Figure 4.10: Illustration of radially spaced cross-sections using the example of
a single cell AFM image. The yellow circle represents the contour of the cell.

Figure 4.11 shows the height- and intensity-profile curves corresponding to these
cross-sections as well as their average for representative sample images with insets
displaying the corresponding RBC. The height is denoted as hRBC and the intensity
as Ipx and their average as hRBC and Ipx. For visualisation, the height-profile curves
are displayed with the same colour as the corresponding cuts in figure 4.11. Four
cross-sections, namely the horizontal, vertical and two diagonal ones, are also shown
in the insets of figure 4.11 and the corresponding height-profile curves are highlighted
as thick lines in the plots. While AFM represents the height profile, fluorescence and
light microscopy demonstrate how the pixel intensity changes. As both are connected
to the parasite maturation in RBCs, they serve as the basis for finding prominent
features characteristic to the intra-erythrocytic stages.
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Figure 4.11: Radial cross-sections through representative RBC images. (a):
Cross-sections through an AFM image representing the height profile of the RBC.
(b) and (c): Pixel intensity profiles of RBCs in fluorescence and light microscopy
images. Panels (d), (e) and (f) display the average radial height profile corresponding
to panels (a), (b) and (c), respectively. The shaded area around the average cut
shows the standard deviations from the mean values. Small insets with coloured
lines show the RBCs related to the profiles. The height- and intensity-profile curves
corresponding to the four cuts, depicted in the insets, are highlighted as thick lines.
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4.3.2 Morphological properties of malaria-infected erythro-
cytes

AFM is a surface sensitive technique and provides information about the morphology
of an object. As such, this method is perfectly suitable for monitoring the alterations
in RBCs caused by P. falciparum. While AFM enables measurements with high
resolution, image acquisition is time consuming, which may impose limitations to
routine use. However, AFM is performed without contrast material, e.g. Giemsa’s
stain, which is a clear advantage over light microscopy, as the cells are not altered
prior to the measurements. In this section, the topographical alteration in RBCs
during the intra-erythrocytic cycle is quantitatively analysed with the goal of assigning
characteristic features to the malaria stages. Additionally, the influence of Giemsa’s
stain on the morphology of RBC is explored.

Topographical alterations in RBCs

Figure 4.12 shows the one representative image for each of the intra-erythrocytic
stages, recorded on a thin blood film. The radial and average height profiles reveal
the detailed topographical changes in each cell. For all images, the absolute height
was measured relative to the surface of the substrate. Healthy RBCs show only minor
surface deflection and appear almost flat. Following the invasion of the unperturbed
RBC, which serves as reference for infected cells, the parasite induces the development
of a cavity in the ring stage, showing an indentation in the height profile at its
position. Upon maturation to the trophozoite-stage parasite, this cavity manifests as
a sharp drop in height. In the further course of the cycle, the cavity widens, occupying
up to half of the RBC diameter. In the final stage, the RBC develops a flat and
featureless surface, similar to the healthy one, albeit displaying strong roughness. In
addition, the schizont-stage parasite deforms the cell contour that strongly contrasts
with the cylindrical shape observed for healthy RBCs and earlier intra-erythrocytic
stages.

To quantify the relation between the growth of P. falciparum and the topographical
alterations in RBCs, I analysed the set of radial height- and intensity-profile curves
and their average, which are shown in figure 4.12 (i) - (p) for a representative set
of RBCs. Notably, the height profiles of the healthy RBC and the schizont-stage
parasite are symmetric with respect to the centre of the cell. In case of ring- and
trophozoite-stage parasites, an asymmetric behaviour was observed. Figure 4.13 shows
typical RBCs infected with ring and early trophozoite. The radial cross-sections
covering the parasite are displayed as solid lines, indicating the parasite as reason for
the asymmetry inside the cell.

A quantitative analysis of the measured RBC images revealed that the majority
of ring-stage parasites was off-centred (60%), whilst the opposite was true for the
trophozoite (39%). This observation is supported by data in the literature, see
chapter 2.1.1, stating that malaria parasites are motile inside the RBC during the
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Figure 4.12: Topographical alterations of P. falciparum-infected erythro-
cytes. (a) - (d): Light microscopy images of Giemsa-stained RBCs. (e) - (h):
Corresponding AFM topography images recorded over the same areas as the light
microscopy images. To provide guidance for the features displayed by the radial cross-
sections, the centre of the RBCs is indicated by a black cross. (i) - (l): Radial height
profiles of RBCs, as obtained by following the description in section 4.3.1. (m) - (p):
Mean height profiles with standard deviations from the mean values corresponding to
the radial cross-sections in panels (i) - (l).
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Figure 4.13: Asymmetric height profiles of P. falciparum-infected RBCs.
First and second row: Light microscopy images of erythrocytes infected with ring and
early trophozoite stage parasites in stained thin blood films and AFM topography
images of the respective cells. The black cross indicates the centre of each RBC.
Third and fourth row: Corresponding radial cross-sections showing the cross-sections
covering the parasite, indicated as solid lines in (d) and (h).
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ring and early trophozoite stage. Upon growth, they lose their ability to move around
and settle in a more central position. With this approach, it is also possible to resolve
food vacuole in trophozoite- and schizont-stage parasites, which is visible as a broad
peak in the height profile. Representative images for each stage are presented in
figure 4.14. The cross-sections showing the profile of the food vacuole, where the
hemozoin crystals are accumulated, are indicated as solid lines in the cell images and
in the plot.

While the radial cross-sections provide a lot of information about the features of
the intra-erythrocytic stages, it is not straightforward how to systematically sort
out the relevant characteristics of the RBCs. As my first attempt to simplify this
representation, the 18 height-profile curves were averaged to a single radial height-
profile for each RBC, as shown in figures 4.12 (m)-(p). With these curves, I was
able to reproduce the features observed in the two-dimensional images: the flat,
featureless, discoid shape of the healthy RBC, the development of the cavity in the
ring- and trophozoite-stage parasite, and the rough landscape, characteristic to the
schizont-stage parasite. Even though the asymmetry of the cells is not directly visible
in the curve, it is partially captured by the standard deviation of the mean values, as
represented by the shaded area.

Characteristic height profiles of intra-erythrocytic stages

To quantify the topographical alterations observed for single RBCs, I sorted the cells
according to the parasite stages into healthy, ring, trophozoite, and schizont by the
corresponding light microscopy images. The next part of this section contains a
thorough analysis of the key features provided by the radial height profiles. As part
of this analysis, the influence of Giemsa-staining on the morphology of the RBCs
is explored. In the final part, an outlook on the investigation of RBCs in liquid
environment is given.

To obtain representative curves for each intra-erythrocytic stage, I determined the
mean height along the cell radius by averaging the radial cross-sections of the
RBCs belonging to the respective stage. Figure 4.15 shows the representative curves
obtained for the stained, marked by a star, and unstained samples. Their distribution
is displayed in table 4.6.

Imaging method total healthy ring trophozoite schizont

AFM 7151 5505 355 540 751

Giemsa-stained 1743 1217 122 209 195
unstained 5408 4288 233 331 556

Table 4.6: Distribution of Giemsa-stained and unstained RBCs in the AFM images.
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Figure 4.14: Characteristic cross-sections of infected RBCs indicating the
location of the food vacuole. The food vacuole and its corresponding height profile
are surrounded by a red rectangle. First and second row: Light microscopy images of
RBC containing a trophozoite- and schzont-stage parasite with corresponding AFM
images. Third and fourth row: Radial cross-sections representing the height profile of
the food vacuole are shown as solid lines.
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Figure 4.15: Height profiles of Giemsa-stained and unstained P. falciparum-
infected RBCs. First row: Mean height profiles of stained cells, marked by a blue
star. Second row: Mean height profiles of unstained cells.

A comparison with figure 4.12 reveals similar features as observed for individual
RBCs. To provide a statistical analysis of these features, the mean height hmean of
the cell and the height drop hdiff from the maximum at the cell edge to the minimum
near the centre were calculated for each intra-erythrocytic stage and separately for
Giemsa-stained (*) and unstained cells. Statistical significance was proven with a
t-test between the stages (Table A.3-A.4). The results are shown in table 4.7, revealing
a reduction in mean height from healthy RBC to the schizont-stage parasite. As

healthy ring trophozoite schizont

hmean 0.91*, 0.99 0.84*, 0.95 0.83*, 0.90 0.67*, 0.76
hdiff -0.02*, -0.03 -0.02*, -0.03 -0.12*, -0.07 -0.03*, 0.04

Table 4.7: Characteristic values from the analysis of mean height profiles, representing
the healthy RBC and each intra-erythrocytic stage. hmean describes the average height
of the RBCs and hdiff the height drop from the maximum at the cell edge to the
minimum near the centre of the cell, which is denoted by a minus sign, if it describes
a local minimum and by a positive sign in case of a local maximum. The values
obtained for the Giemsa-stained images are marked with a star.

second parameter, the height drop remains similar throughout the stages but shows a
significant increase in the trophozoite stage. While the radial variation of the height
is approximately 14% of the mean height for the trophozoite-stage parasite in the
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stained case and 8% in the unstained, the variations for the other stages are negligible.
The numbers in table 4.7 clearly show that Giemsa-staining reduces the height of
the RBC and enhances the morphological features of the characteristic profile. This
observation is supported by an independent t-test (A.1) proving that the hmean and
hdiff of Giemsa-stained images are significantly different from unstained ones. For
this reason, the Giemsa-stained RBCs are qualified for the study of morphological
alterations. Therefore, in the further course of the thesis, both stained and unstained
samples are merged into a single data set.

Due to the limitations of the cell identification method presented in section 4.2.2,
background noise, such as edge effects caused by overlapping cells or a tilt of the
sample, may be introduced. These are reduced by weighting down the periphery of
the RBCs using a Gaussian filter. Compared to the characteristic values obtained
for the unprocessed data set, the radial variation of the height increased to 20%
of the mean height in the trophozoite, to 14% in the schizont stage, to 7% in the
ring stage and to 8% in case of the healthy cell, see table 4.8. This also leads to an
increase in the standard deviation of the average profiles. As the features in the
radial height profiles become more pronounced, the differences between the single
cells increase. These results show that the Gaussian filter not only preserves the

healthy ring trophozoite schizont

hmean 0.97 0.95 0.87 0.76
hdiff -0.06 -0.03 -0.07 0.05

hGF mean 0.99 0.95 0.90 0.76
hGF diff -0.08 -0.07 -0.18 0.11

Table 4.8: Characteristic values from the analysis of mean height profiles of RBCs
before and after applying a Gaussian filter to the images. The data set contains both
Giemsa-stained and unstained images.

observed topographical alterations but also significantly enhances the characteristic
features, see figure 4.16 and tables A.2 and A.6.

In summary, the topographical alterations obtained P. falciparum-infected RBCs for
thin blood films reveal characteristic features for the intra-erythrocytic stages. In the
first phase of the cycle, I observed small indentations caused by the presence of the
parasites. Due to their motility, they are not restricted to a certain location inside
the RBC as reflected in the asymmetry of the height profiles. For the trophozoite-
stage parasite, a cavity was observed, which proved to be a characteristic feature to
this stage. Depending on the age of the schizont, the RBC is mostly filled by the
parasite, showing as a ruffled, rather flat surface. Capturing the hemozoin crystals,
the height profiles also serve as an indicator for the location of the food vacuole.
With the statistical analysis of height profiles based on the calculation of cross-
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Figure 4.16: Comparison of averaged height profiles of RBCs infected with
the intra-erythrocytic stages of P. falciparum before and after image
processing. (a)-(d): Mean height profiles of unprocessed images. (e)-(h): Mean
height profiles after removing background noise by applying a Gaussian filter.

sections through single RBC images, I was able to corroborate these observations
with the experiments of Grüring and Bannister et al. [11,29]. Moreover, my statistical
evaluation provided characteristic mean height profiles and parameters for healthy
RBCs and the intra-erythrocytic stages.

4.3.3 Optical properties of malaria-infected erythrocytes

As observed above, the morphology of RBCs is strongly affected by P. falciparum.
Such changes are connected with the restructuring of the RBC and the formation of
hemozoin. While AFM provides information about the topography, it may alter the
cytoskeleton during image acquisition, as it is an invasive technique. In addition, AFM
is not suitable for generating a high throughput of images. As an alternative approach,
in this section, optical microscopy, specifically fluorescence microscopy, is introduced
as a tool for the investigation of alterations in RBCs during the intra-erythrocytic
cycle. Autofluorescence emission is known to emerge in RBC at around 400 nm. How
this wavelength can be used to uncover malaria parasites inside their host erythrocytes
is explored in this section. Starting with the analysis of autofluorescence patterns,
the investigation is further supplemented with a comparison to the emergence of
fluorescence in living parasites.
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Fluorescence patterns in single red blood cells

The effect of laser excitation on P. falciparum-infected RBCs was studied on thin
blood films, employing various wavelengths. Samples were prepared according to
section 3.5 and the microscope operated with the setting described in section 3.5.
Figure 4.17 shows autofluorescence patterns of a healthy RBC and each of the intra-
erythrocytic stages supplemented with light microscopy images as reference, excited
at four different wavelengths. Upon excitation wavelengths of 405 and 488 nm, the
parasites are clearly visible inside the cell, while the RBCs and the parasites are
barely distinguishable from the background when excited with the wavelengths 561 nm
and 642 nm. In addition, the trophozoite and schizont-stage parasite display weak
autofluorescence at 642 nm.

Figure 4.17: Fluorescence maps of P. falciparum-infected erythrocytes at various
excitation wavelengths. First column: Light microscopy images. Second - fifth column:
Autofluorescence patterns of the corresponding cells excited at various wavelengths,
indicated on the top of the columns.

Based on these observations, all additional experiments were performed with an
excitation wavelength 405 nm. For the identification of the intra-erythrocytic stage, I
recorded light microscopy images, while simultaneously monitoring the emergence of
autofluorescence. Figure 4.18 shows representative RBCs with characteristic autofluo-
rescence patterns.
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Figure 4.18: Autofluorescence maps of P. falciparum-infected erythro-
cytes. The fluorescence images are artificially coloured to enhance the contrast.
First and second row: Light microscopy with corresponding fluorescence microscopy
images showing the fluorescence properties of a healthy RBC together with the
intra-erythrocytic stages, as studied at an excitation wavelength of 405 nm. The white
cross marks the centre of the RBCs. Third row: Radial fluorescence intensity profiles.
Colouring of the curves follows the colour convention introduced in figure 4.10. Forth
row: Average intensity profiles, obtained by averaging the 18 intensity-profile curves
in the panels above with the standard deviation from the mean values.
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As observed in figure 4.17, the malaria parasite clearly stands out from the non-
fluorescent RBC. Following the concept established in section 4.3.1, I analysed the
radial fluorescence pattern and determined characteristic average curves for the intra-
erythrocytic stages. As the haemoglobin inside the healthy RBC absorbs most of the
light at 405 nm, the radial and mean intensity profiles display a low and uniform signal.
For the ring stage, a distinct peak at the position of the parasite below the white cross
was observed, manifesting as a small elevation in the average profile. With maturation
to the trophozoite stage, the fluorescence intensity increases, followed by the formation
of a region with low fluorescence emission, appearing as a dark spot on top of the
parasite, visible as a drop in the intensity profile in figure 4.19 (b), represented by
the blue and orange solid lines. Parasite maturation leads to an increasing and more
distinct elevation in the mean intensity profile. As the schizont-stage parasite fills up
the whole cell, broad fluorescence signal is visible in the image and in the intensity
profiles. In addition, the region with low fluorescence has increased, which can be
seen in the radial intensity profile, displayed in figure 4.19(d) by solid lines.

Figure 4.19: Radial intensity profiles corresponding to the trophozoite- and
schizont-stage parasites in figure 4.18. The matching images are marked with
stars. Cross-sections covering the regions of low fluorescence are shown as solid lines
in the microscopy images and intensity profiles.

An additional autofluorescence study on hemozoin crystals extracted from infected
RBCs, presented in figure 4.20 (d), revealed that hemozoin exhibits no fluorescence
upon excitation at 405 nm. This observation strongly suggests that the regions in
question, see figure 4.20 (e) and (f), show the food vacuole.

Characteristic fluorescence maps of intra-erythrocytic stages

Stage-specific autofluorescence patterns were determined as shown in section 4.3.2 for
the topographical alterations in RBCs. The fluorescence maps presented in figure 4.21
reveal distinct patterns, close to those observed for individual cells in figure 4.18,
which are further enhanced after removing background noise from the images with a
Gaussian filter.

Equivalent to the definitions of the characteristic height profile values in section 4.3.2,
I determined the mean intensity Imean of the cell and the intensity drop Idiff from
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Figure 4.20: Autofluorescence maps of hemozoin crystals, as observed at an
excitation wavelength of 405 nm. Light microscopy with corresponding fluorescence
microscopy images of extracted hemozoin crystals, and RBCs containing trophozoite-
and schizont-stage parasites. Regions of high absorbance are marked with a red
arrow.

the maximum at the cell edge to the minimum near the centre. The analysis of the
intensity patterns, see table 4.9, reveals a significant increase of the mean fluorescence
intensity towards the schizont stage, which goes along with a change in radial variation
of the intensity from 9% of the mean height in the healthy RBC to 20% of the mean
height in RBCs infected with schizont-stage parasites. This dependency further
increases by 20-40% in case of the intra-erythrocytic stages for Gaussian filtered
images. For proof of statistical significance, see tables A.7- A.9.

Autofluorescence studies of living parasites in culture medium

Imaging of living malaria parasites was carried out on samples prepared according to
the protocol presented in section 4.1. The emergence of fluorescence was monitored
with the microscope settings described in section 3.5. With this setup, I was able to
record images of living parasites inside RBCs, see figure 4.22.
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Figure 4.21: Characteristic autofluorescence maps of P. falciparum-infected
RBCs. Mean intensity profiles with standard deviation from the mean values for
healthy RBCs and the intra-erythrocytic stages before (first row) and after removing
background noise (second row).

healthy ring trophozoite schizont

Imean 69.52 79.00 84.58 111.06
Idiff -6.09 7.53 19.58 22.35

IGF mean 69.89 79.00 84.58 111.06
IGF diff -6.14 20.92 51.58 54.31

Table 4.9: Analysis of stage-specific intensity patterns obtained from fluorescence
microscopy images of individual RBCs. Characteristic values for images before and
after removing background noise.
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Figure 4.22: RBC images showing the emergence of autofluorescence in
living parasites. Light microscopy images of P. falciparum-infected erythrocytes in
cell culture medium with corresponding fluorescence maps.

In agreement with the observations on thin blood films, the parasites exhibit visible
autofluorescence. While the healthy RBC emits no signal, the intra-erythrocytic
stages and also the food vacuole could be resolved. Compared to the thin blood films,
the resolution and contrast of the images was reduced. Additionally, the power of
the excitation laser was increased to detect the autofluorescence signal, suggesting
that the presence of the culture medium is the cause for the higher absorbance of
light during imaging. As a component in the culture medium, phenol red shows a
peak in absorbance at the excitation wavelength of 415 nm [137–140], used for the
experiments, which supports the above suggestion.

In this section, I demonstrated that P. falciparum not only alters the morphology of
RBCs but also results in the emergence of autofluorescence upon excitation at 405 nm.
Monitoring the fluorescence emission in thin blood films revealed patterns specific to
the parasites, which turned out to be characteristic to the intra-erythrocytic stages.
Furthermore, the low fluorescence signal of hemozoin crystals at 405 nm, enables the
detection of the food vacuole in RBCs. While the optical properties of ZnPPIX hint
that it plays a role in the emergence of autofluorescence in malaria-infected RBCs,
the revelation of the molecular origin of fluorescence goes beyond the scope of this
work.
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Imaging the emergence of autofluorescence in a label-free manner offers a way to
follow the intra-erythrocytic development without disturbing the environment of the
parasites. Thus, I was able to observe fluorescence in living parasites, which showed
close correlations with the patterns presented for thin blood films. The imaging
routine established for the live measurements provides the basis for recording the
autofluorescence of P. falciparum during a complete intra-erythrocytic cycle.

4.3.4 Intensity profiles of Giemsa-stained erythrocytes

To complete the investigation of optical properties in RBCs infected with P. falciparum,
this section finishes the analysis of cell features with a thorough study of single Giemsa-
stained RBCs, supplemented by a statistical evaluation of the intra-erythrocytic stages
and the calculation of characteristic intensity profiles.

The representative single RBC images in figure 4.23 show a clear variation of the
intensity profile with progressing parasite maturation. While the healthy RBC
is almost featureless, the presence of ring-stage parasite in the bottom and the
trophozoite-stage parasites on the left side of the cell leads to a drop in intensity.
Caused by hemozoin crystals located in the middle of the schizont, the intensity
profile forms a broad minimum in the centre. Upon averaging the radial cross-sections,
these distinct features appear less pronounced.

Figure 4.24 presents the analysis of the Giemsa-stained RBC images. In case of the
healthy RBC and ring-stage parasite, a broad local maximum is observed, while
trophozoite- and schizont-stage show a local minimum caused by the presence of the
parasite. In case of the ring-stage, the effect of the parasite on the overall intensity is
lower than was observed for the single image. The image processing by the Guassian
filter leads to smoothing of the curves in the trophozoite and schizont stage, while
also introducing a large standard deviation from the mean intensity values. From the
healthy RBC to the schizont-stage parasite, the average intensity decreases by 26%,
going along with a change in curvature direction from ring to trophozoite, denoted
by a negative sign in table 4.10. For the definition of Imean and Idiff see section 4.3.3.
Despite the occurrence of a large standard deviation in the curves caused by the
application of the Gaussian filter, after removing the background noise, the prominent
features observed for each intra-erythrocytic stage remain visible.

As already shown for RBCs imaged with AFM and fluorescence microscopy, the
statistical evaluation of Giemsa-stained thin blood films revealed distinct patterns
and parameters for healthy RBCs and the intra-erythrocytic stages. These results
prove that the approach, presented in this section, is a valid tool for exploring the
characteristic features of malaria-infected RBCs and further enables a stage-specific
classification of RBCs.
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Figure 4.23: Light microscopy images of Giemsa-stained erythrocytes in-
fected with P. falciparum. (a) - (d): Giemsa-stained images of the intra-
erythrocytic stages with a black cross indicating the centre of each cell. (e) - (h):
Corresponding radial intensity profiles. (i) - (l): Average intensity profiles with the
standard deviation from the mean intensity values indicated by the shaded area.

healthy ring trophozoite schizont

Imean 170.86 163.76 145.22 121.76
Idiff 10.56 7.63 -14.38 -22.39

IGF mean 170.86 163.76 132.43 126.48
IGF diff 31.42 25.82 -9.16 -10.47

Table 4.10: Characteristic statistical values for the intensity curves of Giemsa-stained
RBCs with and without background noise.
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Figure 4.24: Statistical analysis of Giemsa-stained erythrocytes infected
with P. falciparum. Characteristic intensity curves with standard deviation from
the mean values of intra-erythrocytic stages with ((a) - (d)) and without background
noise ((i) - (l)).

4.4 Reduction of dimensionality as a tool for fea-
ture selection in RBCs

In machine learning applications, dimension reduction is often employed to increase
the performance NNs and to improve their generalisation ability. Since a reduction
comes with a massive loss of information, careful selection of features is required in
order to keep the essence of the data.

The studies on morphological and optical properties of the intra-erythrocytic stages
presented in section 4.3 revealed the parasite as the most prominent feature of RBCs
infected with P. falciparum. In this respect, there are various possible choices of
measures or indicators, for instance, the sum of local changes over the whole RBC or
its asymmetry.

This section introduces a method that yields cross-sections containing the character-
istic features of RBCs, which is followed by the assessment of its efficiency.

4.4.1 Dimension reduction of two-dimensional RBC images
A suitable measure for the characteristic features of the intra-erythrocytic stages
should be insensitive to external noise, which is often present in AFM and fluorescence
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microscopy images due to tip contamination or background illumination, leading to
low contrast, as shown in figure 4.25.

Figure 4.25: Artefacts in atomic force and fluorescence microscopy images
due to external noise. (a) AFM image (b) Fluorescence microscopy image.

To obtain the characteristic cross-sections of RBC images, I determined two measures:
the geometric centre, see section 4.3.1, and the centre of gravity, which is defined
by:

r⃗g = 1
n

∑
i,j

h(r⃗ij)r⃗ij, (4.2)

where h(r⃗i,j) denotes the height (AFM) or intensity (fluorescence and light microscopy)
of a pixel at position r⃗i,j . The coordinates inside the RBCs were calculated as described
in section 4.2.2. The idea behind this approach is to localise the parasites inside
the cell, i.e. the coordinates are weighted by their corresponding height or intensity
values. Figure 4.26 shows the effect of a region with lower intensity on two images
of cylinders. The presence of the hole inside the cylinders leads to a shift of the
gravitational centre, either away or towards the hole, which is indicated by an arrow.
In case of the dark cylinder, the shift is higher, as the image values of black pixels
are 0 and the values of white pixels 255. Therefore, the presence of the white hole
has a larger effect on the position of the gravitational centre. Similarly, this shift can
be observed for RBC images. From this follows that the height or intensity values
along the straight line through both centres represent a cross-sections of the parasite.
In the further course of the thesis, this line is defined as the parasite cut.

To evaluate the efficiency of the presented measure, I visually examined, if the parasite
cut detects the presence of the parasite. The percentage of successful detections is
shown in table 4.11. The results reveal that the parasite cut only captures 25-50% of
the ring-stage parasites in light and atomic force microscopy images, while reaching a
significantly higher rate of 88% on fluorescence images. For trophozoite-stage parasites,
the rate is much higher with more than 77% for atomic force and fluorescence images,
and 81% for light microscopy images. The schizont-stage parasites typically fill up
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Figure 4.26: Location of the geometric and gravitational centre in simple
cylinders with holes. Geometric and gravitational centre are shown as an orange
and blue cross. The effect of the hole on the location of the gravitational centre is
shown for a black (a) and white cylinder.

Imaging method ring trophozoite schizont

AFM 55% 77% 100%
Fluorescence microscopy 88% 79% 100%
Light microscopy 25% 81% 100%

Table 4.11: Percentage of successful parasite detection with the parasite cut.

most of the RBC, thus parasite cuts going through the cell always intersect the
parasite. Background noise, such as edge effects like overlapping cells or misaligned
contours caused by the limitations of the cell identification method, see section 4.2.2,
may compromise the detection of parasites. As shown for the mean height profiles
in section 4.3, the application of a Gaussian filter successfully removes noise and
additionally enhances the cell features. The effect of this procedure on the parasite
cut can be seen in table 4.12. The successful detection of ring-stage parasites in

Imaging method ring trophozoite

AFM 59% 86%
Fluorescence microscopy 88% 95%
Light microscopy 51% 88%

Table 4.12: Percentage of successful parasite detection with the parasite cut after
removing background noise from the image.

atomic force and light microscopy images improved to 50-60% and the rate for
trophozoite-stage parasites to more than 85% and even 95% for the fluorescence
microscopy images. Despite of capturing the parasite, the parasite cut may not
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contain enough information to fully characterise the features of the intra-erythrocytic
stage. For this reason, I determined three additional cuts spanning 90o and ±45o

with it, see figure 4.27. The parasite cut is shown in blue, connecting the geometric
and gravitational centre. Additional cuts are coloured in orange, cyan, and red. The
three displayed combinations of cuts are later used in section 4.5.3 for the stage-
specific classification of RBCs. In the further course of the thesis, the combinations
of cuts in figure 4.27 are denoted as follows: four cuts (parasite cut, 90o), parasite
plus cuts (parasite cut, 90o), and parasite cut. For the purpose of comparing the
influence of a controlled dimensionality reduction on the stage-specific classification
of intra-erythrocytic stages with an arbitrary choice of cuts, I calculated randomly
oriented cuts for each RBC image. A sample RBC is shown in figure 4.27(g)-(l) with
corresponding intensity profiles in greyscale colours.

In the following, the features captured by the parasite cut and the additional cuts are
explained. Figure 4.28 shows a set of RBCs with corresponding cross-sections. The
cross-sections clearly reveal the presence of the parasite. In case of the AFM images,
see figure 4.28 (a) - (h), the healthy RBC shows a uniform height profile. In the ring
stage, a drop occurs in the parasite cut, which is reproduced by all other cuts but the
orange, which indicates the asymmetry of the cell. As the trophozoite-stage parasite is
located in the centre of the RBC, the cuts uniformly represent the characteristic cavity.
In the schizont stage, the height profile again looks rather uniform, albeit revealing
the uneven surface of the cell. These observations are reproduced for the fluorescence
and light microscopy images. In addition, the orange cut serves as measure for the
asymmetry of the RBC, i.e. it shows a uniform profile, if the parasite is off-centred
and follows the parasite cut, if the parasite is centred. A comparison of figure 4.28
to the radial cross-sections through the same cells (see figures 4.12,4.18,4.23) reveals
that the cross-sections determined for each RBC capture the features associated with
the presence of the parasite.

In this section, I introduced an approach for dimensionality reduction, which provides
a simple measure for detecting the characteristic features of malaria parasites. The
method localises the parasite by calculating the centre of gravity. As the presence of
a parasite introduces changes in height or intensity, the centre is shifted relative to
the geometric centre of the RBC. The straight through both centres then represents
the cross-sections of the parasite. To evaluate the efficiency of my approach, I visually
examined the detection rate of the parasite cut, which revealed a hit rate of >
50% for ring- and > 85% for trophozoite-stage parasites after removing background
noise from the images. As the symmetry properties of the RBCs profiles contain
information about the stage and also the location of the parasite, I supplemented
the parasite cut with three additional cuts. In agreement with the observations of
characteristic cell features in section 4.3, my method for dimensionality reduction
successfully compresses two-dimensional images into a set of single cuts.
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Figure 4.27: Characteristic cross-sectionss of a parasite. Light microscopy
image of a ring-stage parasite with the four cuts (a), parasite plus cuts (b), and
parasite cut (c). (d) - (e): Corresponding intensity profiles for each cut. (g)-(l):
Light microscopy image with four randomly oriented cuts and corresponding intensity
profiles in greyscale colours.
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Figure 4.28: Cross-sections of malaria-infected RBCs imaged with atomic
force, fluorescence, and light microscopy. Atomic force (a) - (h), fluorescence
(i) - (p), and light microscopy images (q) - (x) of representative intra-erythrocytic
stages with corresponding stages. The coloured circles show the cell contour, each
colour denoting the intra-erythrocytic stage, as defined in section 4.2.3. The parasite
cut is shown in blue and the other cuts in orange, cyan, and red. Geometric and
gravitational centre are denoted in orange and blue.
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4.5 Stage-specific classification of P.falciparum
For the establishment of neural networks as diagnostic tools for disease control, they
are required to work fast and reliable in order to support or replace human perception.
One of the central points is the increase in throughput of diagnosis, whilst ensuring
low image processing time. In addition, such networks are designed to eliminate
human errors to improve the reliability of disease detection and surveillance. In
case of malaria diagnosis, it is helpful, if the network is not only able to distinguish
between healthy and infected RBCs but also between the intra-erythrocytic stages
for effective treatment. Creating new networks based on these guidelines is important
for the fight against malaria, especially in regions with low resources. As preparation
for the implementation of a neural network-based stage-specific classification, the
previous sections focused on understanding and categorising morphological and optical
features of RBCs and compressing those into one dimension. How this influences
the success of CNNs compared to two-dimensional images, will be explored in this
section. Starting with the architecture of the NN, the second part focuses on how the
appropriate selection of RBC features influences the performance of the classification.
The networks were run on a standard laptop with windows 10, x64-based processor,
and a processor speed of 2.50 GHz.

4.5.1 Neural network architecture

The success of NNs not only depends on the input data but also on its architecture.
When dealing with images, the most suitable models are CNNs. As described in
section 3.4.3, they contain convolutional, pooling, and fully-connected layers. These
layers should be combined in such a way as to fulfil the following conditions: ap-
plicability to RBC images and stage-specific cuts, classification into four categories:
healthy, ring, trophozoite, schizont, minimum performance of > 90%, smallest possible
amount of fit parameters to guarantee short computation time. The models were
tested on a set of malaria-infected RBC images, recorded by AFM and balanced with
data augmentation by rotation. For a representative result, all models were run for 20
epochs. In each model, the convolutional layers are followed by a pooling layer and
two fully-connected layers at the end of the network. In table 4.13, the influence of the
amount of feature maps is shown on a selection of the tested architectures. Model M4
provides the best compromise between the amount of fit parameters and classification
accuracy. As the network was prone to overfitting, I added the kernel regulariser
L2 with a hyperparameter of 0.001 to the first fully-connected layer. The complete
architecture for the two possible inputs is given in figures A.1 and A.2. Instead of
a 2D convolutional layer, the network for the classification of single cuts contains a
one-dimensional convolutional layer, which reduces the number of fit parameters to
34494. Thereby, the network fulfils all conditions imposed at the beginning of the
section. The network not only applicable to images and cuts but also able to classify
the input into four categories. In addition, the model performed with 96% accuracy
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Network feature map performance parameters

M1 4 × 32 80% 81566
M2 2 × 32, 2 × 64 87% 68446
M3 4 × 64 92% 114878
M4 1 × 32, 3 × 64 96% 96126

Table 4.13: Classification accuracy on a test set of RBCs for various network archi-
tectures.

on the test data with a relatively low amount of parameters. In the further course of
the thesis, both network architectures are used for classification.

4.5.2 Stage-specific classification of two-dimensional RBC
images

Neural networks have proven to successfully classify RBCs in microscopy images.
With a few exceptions [17], most of the approaches deal with Giemsa-stained light
microscopy images [54–57]. Inspired by these works, I designed my network in such a
way as to recognise not only light but also atomic force and fluorescence microscopy
images. For the evaluation of the network performance, the RBC images were divided
into a random training and test set at a ratio of 90% to 10%. The first test of the
NN was performed on the set of single RBC images, obtained in section 4.2.2. These
cut-outs were classified into four categories: healthy, ring, trophozoite, and schizont.
The results are summarised in confusion matrices, presented in figure 4.29(a), (c),
and (e), showing the performance of the classification for each microscopy technique
on the test set. The labels of the rows are the categories predicted by the NN-
based classifier, while the labels of the columns indicate the classification by human
experts. Correspondingly, the sum over a given column/row gives the number of cases
falling into that category by human/NN classification. The confusion matrix further
shows the precision, recall, and overall accuracy values defined in section 3.4.4. For
visual guidance, the diagonal fields with percentages >18% are highlighted by a blue
background, while fields with the precision values (last column) have background
colours according to the common colour bar on the right. The overall accuracy of
83-95%, as shown in the grey box is the result of the extremely high success rate
on the healthy cells. As a known consequence of a strongly imbalanced set, when
80-90% of the data belongs to one category, the neural network is prone to overfitting,
which significantly reduces the success rate on the minor categories. Therefore, the
network is not able to reach a performance beyond the percentage of data belonging
to the largest category. Thus, in the present case, the NN always predicts a healthy
RBC.



70 4.5. STAGE-SPECIFIC CLASSIFICATION OF P.FALCIPARUM

Figure 4.29: Classification performance of the NN on microscopy images.
The performance parameters, as obtained on imbalanced (non-augmented) sets of
atomic force, fluorescence, and light microscopy images, are respectively summarised
in the confusion matrices of panels (a), (c), and (e). The confusion matrices obtained
for the corresponding balanced (augmented) data sets are shown in panels (b), (d),
and (f).
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For this reason, I implemented a data augmentation method to balance the data set,
see section 4.2.3. Figure 4.29(b), (d), and (f), shows the confusion matrices of the
tests, performed by using the same NN but a balanced data set. The results reveal
a large improvement with respect to the non-augmented data set. Except for the
prediction of trophozoite stages in fluorescence microscopy images, the precision of
the prediction (last column of the confusion matrix) is above 90% for all four RBC
categories and imaging techniques. Overall, the NN achieved a high classification
accuracy for all microscopy techniques, 94.4% for atomic force, 90.6% for fluorescence,
and 96.6% for light microscopy.

A dive into the stage-specific precision on the augmented data sets shows that early
stages of malaria, i.e. rings and trophozoites, are best recognised in Giemsa-stained
light microscopy images, while the schizont stage is captured most in atomic force and
fluorescence microscopy images. The precision levels further reveal a high sensitivity to
the quality and contrast of the images. Due to the high amount of training parameters
for the NN, the analysis of the two-dimensional images required high computation
time, ranging from 117 ms per RBC for atomic force to 49 ms for fluorescence, and
48 ms for light microscopy images. The performance reached for the classification of
each microscopy technique is similar to that achieved, e.g., in reference [57], showing
that the NN presented in this section qualifies well for the purpose of a stage-specific
detection of malaria. As the balancing of the categories significantly improved the
performance of the NN, throughout the thesis, the balanced data set will be used as
input and for the dimension reduction in the next section.

4.5.3 Evaluation of the stage-specific classification on char-
acteristic features of single-RBC images

Dimension reduction is a well established tool to improve the performance of NNs.
Following the thorough analysis of morphological and optical properties of RBC,
presented in section 4.3, I compressed the cell features into one-dimensional cuts,
thus capturing the presence or absence of the parasite. Therefore, these cuts contain
the most important features of the RBC. In the following, the NN introduced for
the classification of two-dimensional images is tested on various combinations of the
1D cuts. The section is concluded with a comparison to a set of randomly chosen
cuts.

Radial cross-sections

As shown in section 4.3, the radial cross-sections contain information about the
presence of the parasite, its asymmetry and also the location of the food vacuole.
Therefore, they are well suited as input for the stage-specific classification. The
test results, displayed in figure 4.30, range from 95.4% for AFM to 97.4% for light
microscopy, revealing a significant improvement compared to the 2D images. Moreover,
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the training time per RBC was significantly reduced to 4.0 ms for atomic force, 4.1 ms
for fluorescence, and 4.2 ms for light microscopy.

A detailed investigation of the stage-specific predictions revealed the lowest precision
for the ring-stage parasites. As their height or intensity profile closely resembles that
of a healthy RBC, it can lead to false detection.

Characteristic cuts

Based on the observations in section 4.4, the one-dimensional cuts can be used to
represent the characteristic cell features. In contrast to the radial cross-sections,
only the most important features are captured. In the following, the performance
of the NN on three different combinations of the cuts is evaluated: four cuts, the
parasite plus cuts, and the parasite cut, as calculated in section 4.4. Table 4.14 shows
the most relevant performance parameters for all three combinations. More details
are presented in figures A.3-A.5. The results show that the reduction of dimension

Imaging technique Cuts Network performance

AFM Four cuts (4n) 98.8%
parasite plus cuts (2n) 99.3%
parasite cut (1n) 98.0%

Fluorescence microscopy Four cuts (4n) 97.5%
parasite plus cuts (2n) 98.0%
parasite cut (1n) 95.3%

Light microscopy Four cuts (4n) 97.7%
parasite plus cuts (2n) 98.7%
parasite cut (1n) 96.9%

Table 4.14: Classification accuracy on the four cuts, parasite plus cuts, parasite cut.

to four cuts (4n) significantly improved the performance of the NN with respect
to the classification of the 2D images and the radial cross-sections, increasing the
accuracy to 98.9% for the atomic force, 97.5% for the fluorescence, and 97.7% for
the light microscopy images. With further reduction of the input dimension to
two cuts (2n), the performance increases to 98.0% - 99.3%. This proves to be the
maximum possible accuracy, as the performance on the single parasite cut is lowered
to 98.0 % for the atomic force, 95.3% for the fluorescence, and 97.7% for the light
microscopy images. Furthermore, for all combinations of cuts, the computation time
was reduced to 3.7 ms for atomic force, 3.9 ms for fluorescence, and 3.8 ms for light
microscopy. An additional test series on the characteristic cuts calculated without
removing background noise revealed a lower classification accuracy on all three cut
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Figure 4.30: Classification of the NN on radial cuts. The confusion matrices
show the summary of performance parameters for atomic force (a), fluorescence (b),
and light microscopy (c), as obtained using radial cuts through single-RBC images.
Notations, labels and colours follow the same convention as in Figure 4.29.
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combinations, see table 4.15, as compared to the cuts extracted from processed images
(Table 4.14). Corresponding performance parameters are presented in figures A.6-
A.8. The limitations discussed for the success rate of the parasite cut influence

Imaging technique Cuts Network performance

AFM Four cuts (4n) 98.5%
parasite plus cuts (2n) 97.3%
parasite cut (1n) 97.7%

Fluorescence microscopy Four cuts (4n) 95.4%
parasite plus cuts (2n) 96.7%
parasite cut (1n) 93.9%

Light microscopy Four cuts (4n) 97.3%
parasite plus cuts (2n) 98.6%
parasite cut (1n) 96.6%

Table 4.15: Classification accuracy on the four cuts, parasite plus cuts, parasite cut.
The orientation of the cuts was calculated without removing background noise.

the performance of the NN, as it gets the most characteristic features from this
step. While incorrectly classified cells mostly originate from this issue, the NN still
outperforms the success rate, as the relation between both cuts also contributes to the
classification. This statement is supported by tests on the sensitivity of the NN to the
order of the parasite cut and its perpendicular counterpart by swapping both cuts in
the test set, see table 4.16, which revealed a significant reduction of the performance
to < 53%. These observations further corroborate the parasite plus cuts are the best
choice for the stage-specific classification. To conclude the evaluation of the network

Imaging technique Accuracy

AFM 37.7%
Fluorescence microscopy 52.7%
Light microscopy 37.2%

Table 4.16: Prediction accuracy of swapped parasite plus cuts (2n).

performance, the three combinations of cuts were replaced with randomly oriented
cuts, spanning the dimensions 4n, 2n, and 1n. Representative images are shown in
figures A.9-A.11. Figure 4.31 shows the results on random cuts with relation to the
parasite plus cuts (ppc) for atomic force (AFM, black), fluorescence (FM, green), and
light microscopy (LM, orange).
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Figure 4.31: Classification performance of the NN on randomly oriented
cuts. The random cuts span the dimensions 4n, 2n, and 1n. Their performance is
shown for atomic force (black), fluorescence (green), and light microscopy (orange) in
relation to the parasite plus cuts (ppc) (2n), denoted by the dashed lines, separately
labelled for each microscopy technique.

The combination of parasite plus cuts clearly exceed the performance of the NN on
randomly oriented cuts in all three tested dimensions, irrespective of the imaging
technique. Ranging from 98.5% to 98.8%, the classification accuracy for atomic force
microscopy is lowered by 0.5%. For fluorescence microscopy, the reduction is 2.1% and
2% for light microscopy. As well as the previous observations, the tests on random
cuts again prove that the parasite plus cuts provide the highest classification accuracy
and therefore best represent the characteristic features of healthy and malaria-infected
RBCs.

In this section, I designed a neural network for the stage-specific classification of
malaria-infected RBCs. On this basis, I conducted a test series to determine the
performance of the NN on a data set of RBC images. In the further course of
the section, I showed how the input dimension influences the classification. The
performance results are summarised in figure 4.32, which shows the overall accuracy
of the malaria stage detection versus the step-wise reduction of input data supplied
to the NN from n2 to 1n for all three imaging methods. These results are further
supplemented with the computation time per RBC.
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Figure 4.32: Classification performance of the convolutional NN and compu-
tation time per RBC versus the amount of input data for light microscopy,
AFM, and fluorescence microscopy images. The NN was trained and tested on 2D
RBC images (n2 pixels), four cross-sections (4n), two characteristic cross-sections (2n),
and one single cross-section (n), the asymmetric cut. These four cases are illustrated
by exemplary fluorescence images on the top. Asymmetric cuts are indicated with
blue lines, while the 90o, +45o and −45o cuts are shown in orange, cyan and red,
respectively.

The reduction of n2 to 18n significantly increased the performance of the NN to >
95%, providing more stability to the network. While the four characteristic cuts
boosted the classification accuracy to > 97.5%, the optimum is achieved at 2n for
the parasite plus cuts. With further reduction to 1n, the performance of the NN
drops to < 98%. This observation suggests that the additional cut helps the system
to work on a differential basis and not be affected by the actual values of the height
or intensity. As another important effect discernible in figure 4.32, the reduction
of dimension not only improves the classification but also reduces the computation
time per RBC by a factor of 18 from 71.3 ms to 3.8 ms. While the calculation of the
gravitational centre requires 115 ms per RBC, the overall computation time for 2D
images already exceeds this additional time span by 12%, when training for more than
one epoch. Furthermore, the lower performance on random cross-sections shows that
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the orientation of the parasite cut plays a large role in the stage-specific classification.
As shown in section 4.4, the success rate of the parasite cut was significantly lower for
images with background noise. With tests on cuts extracted from such unprocessed
images, I was able to show that this leads to a reduction in the performance of
the NN. Together with the observed dependence of the classification accuracy on
the order of the cuts, the test results corroborate the parasite plus cuts as the best
representation for two-dimensional images of healthy RBCs and the intra-erythrocytic
stages. Additionally, I proved that the concept of reducing images to two characteristic
cuts is applicable on various imaging methods and therefore has the potential to be
extended for the analysis of general objects.

4.6 The malaria stage classifier
The final thesis point was to create an efficient and reliable method for the stage-
specific detection of malaria blood stages, which is able to handle images from multiple
microscopy techniques. In this section, the results presented in the four preceding
sections, are combined into an application. Following the structure of the thesis,
the application is divided into four main steps: (i) imaging, (ii) cell identification,
(iii) dimension reduction, and (iv) classification. Starting with an overview of the
algorithm, the architecture of the application is described. Subsequently, the section
ends with a detailed explanation of how the application is used.

4.6.1 Design and Implementation
The Malaria Stage Classifier is designed to facilitate and accelerate the staging of
malaria infected RBCs in microscopy images. Due to its robustness against imaging
platform-specific features, it is applicable to a wide range of light microscopy images.
The interface of the application is arranged in tabs, which makes it easy to follow the
image processing steps. The Malaria Stage Classifier further offers the possibility to
manually optimise the cell detection and classification.

From the microscopy measurement, the algorithm receives two kinds of input, text
files from atomic force microscopy, as the evaluation software (Igor Pro 6.37) used
for the AFM measurements only allows for exporting text files, and images from
fluorescence and light microscopy. Both inputs are treated as matrices and converted
to greyscale for further processing. Due to the strong contrast between cell and
parasite, the conversion did not influence the classification. In case of atomic force
and some light and fluorescence microscopy images, the contrast between background
and RBCs is not strong enough to locate single cells, which impacts the accuracy of
the detection. Hence, the images are binarised based on pixel intensities by Otsu’s
method [128]. While the processing of atomic force microscopy images requires an
additional step, it is sufficient to enhance brightness, sharpness, and contrast in the
light and fluorescence microscopy images. Python offers a module for automatic
enhancement of images by a manually chosen factor [129], which can be applied to
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highlight the RBCs in contrast to the image background. The processed images
are then used for cell detection, employing the Hough gradient method. While the
detection parameters are preset, they can be manually adjusted by the user. This
step is then followed by the reduction of the image dimension to the parasite plus
cuts, containing the characteristic features of the cells. In the final part, the detected
RBCs are classified by the NN presented in section 4.5.1.

The underlying network was taken from the classification of the parasite plus cuts,
see section 4.5.1, which showed the best performance on the RBCs. The training,
test and validation data are provided within the software package for each of the
microscopy techniques. As the data base is relatively small for a neural network, the
data set can be extended by adding more cross-sections after the stage classification
step. The prediction for each cell is returned in form of an image, where all cells are
assigned to one of the four categories. In case of false classifications, the algorithm
offers the option to change the assigned category. The detected cells can be added to
the pre-trained NN to increase the training data set, which is then retrained with
the new input. After the classification of the microscopy images, the results can
be saved as a csv or text-file, returning the amount and ratio of healthy RBCs and
intra-erythrocytic stages.

The Malaria Stage Classifier is accessible as a GUI, which is arranged in tabs. It has
been developed using Python 3.7 with the following dependencies: numpy [141] and
pandas [142] for the data analysis. For the cell detection, OpenCV [143] together
with skimage [144] and matplotlib 3.5.2 [145] for the data visualisation are needed.
To integrate the pre-trained NN, tensorflow [146] with keras has to be included in the
algorithm. The interface further requires tkinter [147] and the libraries os, sys, csv,
traceback for handling errors and the output files, as well as the library webbrowser
to open system folders and external links.

Common errors are prevented by messages, detailing the problem and providing a
solution. Furthermore, the errors saved in a log file to allow for bug-fixing by any
developer. While the user is able to modify a few parameters through the GUI,
suitable values are suggested for each case and all parameters can be set back to the
default values.

4.6.2 User manual
The package is available open source on git hub repository https://github.c
om/KatharinaPreissinger/Malaria_stage_classifier or the archive https:
//zenodo.org/record/7261800. In the following, the program structure is explained
on a sample atomic force microscopy image. The interface of the package is built
with five tabs, where each performs one step of the stage-specific classification of
RBCs. Starting with the general settings, the algorithm only allows text or image
files as input. Depending on the file type, the user can set the number of header lines
the input text file contains. In case of the sample image, the value is set to three and

https://github.com/KatharinaPreissinger/Malaria_stage_classifier
https://github.com/KatharinaPreissinger/Malaria_stage_classifier
https://zenodo.org/record/7261800
https://zenodo.org/record/7261800
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confirmed by the button “Set file format”. As the program is designed for multiple
imaging methods, the respective technique determines the possible actions on the
input file. The settings are completed by selecting an output path and the output
file type, see figure 4.33.

Figure 4.33: Setting of initial parameters: input image, its format, imaging
method, memory location of the results

In the second tab, the input image is displayed to show the location and stage of the
cells. A screenshot of the interface is presented in figure 4.34.

If the image was recorded by AFM the next step requires thresholding to enhance its
contrast. While the value can be adapted by the user, the algorithm suggests a pre-
calculated number, as shown figure 4.35. In case of the light microscopy techniques,
this step is skipped.

The next tab triggers the cell detection algorithm. Depending on the size, contrast,
and brightness of the image, the algorithm offers the option to control the detection
by manually changing the calculation parameters and further allows contrast enhance-
ment. Optionally, the parameters can be set back to the default value. During this
step, the dimension of the input data is reduced to the two characteristic cuts to
capture the strongest features associated with the presence or absence and the stage
of the malaria parasites, see figure 4.36.

In the final part of the program, the user can load the pre-trained NNs and start the
stage-specific prediction of the detected RBCs. This triggers the option to change
false predictions accordingly. The algorithm further provides the possibility to add
new data and to retrain each NN. The last step then returns the statistics of the
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Figure 4.34: Show image. The input file is shown as image.

analysed RBCs in form of a text file or table. The corresponding tab is shown in
figure 4.37.

In this section, I presented a software, which I developed for the stage-specific detection
of malaria in RBC images. The detection is based on dimensionality reduction, using
only two characteristic cuts to classify the cells. The program is freely accessible and
can handle text data and images from various microscopy techniques as input. The
user interface is divided into tabs, making it easy to follow the step-wise analysis of
the data from input to cell detection and finally the classification of the RBCs. It
also allows manual corrections of the predictions, which are saved in a table. Due to
its simple concept, the method can easily be extended beyond the evaluation and
classification of parasites and cells to include the analysis of arbitrary objects. Given
the rising number of techniques, successfully applied for the imaging of RBCs, the
algorithm can be augmented for any method with high contrast, formatted as text or
image file. Moreover, it offers the opportunity to increase the data set used to train
the NN to improve the classification accuracy. After loading the NN and visually
verifying the accuracy of the classifications, the characteristic single-RBC cuts can be
added to the original images to retrain the NN with the new data set. The algorithm
is available on https://github.com/KatharinaPreissinger/Stage_specific_c
lassification_of_RBCs. Details about the implementation can be read in the
appendix B or on https://stage-specific-classification-of-rbc.readthedo
cs.io/en/latest/index.html#

https://github.com/KatharinaPreissinger/Stage_specific_classification_of_RBCs
https://github.com/KatharinaPreissinger/Stage_specific_classification_of_RBCs
https://stage-specific-classification-of-rbc.readthedocs.io/en/latest/index.html#
https://stage-specific-classification-of-rbc.readthedocs.io/en/latest/index.html#
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Figure 4.35: Threshold image. This tab provides the option to enhance the image
contrast by thresholding (disabled for light and fluorescence microscopy)
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Figure 4.36: Detect cells. RBCs in the images are detected by the cell detection
algorithm. To fine-tune, the algorithm offers the possibility to enhance the image
and to set the parameters for the detection manually.
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Figure 4.37: Cell classification. The intra-erythrocytic stages are predicted and
can be altered manually. Optionally, the neural network can be retrained with new
data.



5
Summary and thesis points

Caused by global climate change and the ongoing COVID-19 pandemic, the numbers
of malaria infections are increasing again. This development imposes numerous
challenges for effective malaria treatment and diagnosis. As the intra-erythrocytic
cycle of the malaria parasite causes the main clinical symptoms, gaining insight into
the mechanical and optical alterations in RBCs inhibited by P. falciparum is the major
target of antimalarial treatment and diagnostics. Moreover, especially in areas with
low resources, early detection is difficult and closely linked with access to laboratories
and trained scientists. Due to this, the application of NNs has become one major
area in the field of malaria research, as it has the potential to increase the throughput
in diagnosis and eliminate human error. During my PhD work, I focused on these
two major fields of malaria research in order to provide a deeper understanding of the
changes in RBCs inhibited during the intra-erythocytic cycle and to present a new
neural network-based approach to improve and facilitate the diagnosis of the disease.
The most important results obtained in this work are summarised in the following
thesis points.

1. High-parasitemia cultures for in vitro analysis of P. falciparum under physiological
conditions
I tested two methods for the immobilisation of RBCs on a glass surface in liquid
environment by exposing them to cantilevers of different spring constant. Furthermore,
I calculated the required concentration of RBCs to obtain a single cell layer on the
sample surface and confirmed the calculated value by tests with various concentrations.
With the determined settings, I successfully imaged healthy RBCs under physiological
conditions. Based on these experiments, I derived a sample preparation routine for
imaging RBCs under physiological conditions, which can also be applied for imaging
of the autofluorescence in living cells. These results provide the basis for the studies
of optical properties in RBCs infected with P. falciparum.

2. Exploring characteristic features of malaria-infected RBCs
To create a data base for studies of morphological and optical properties of malaria-
infected RBCs, I recorded all atomic force and fluorescence microscopy images used in
this thesis. I designed an algorithm to extract single cells from microscopy images and
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evaluated its performance. I found that the algorithm can detect cells with a precision
of more than 95%. Furthermore, I showed that the presented detection method is not
limited to a certain type of imaging technique. This was a crucial step for the analysis
of single RBC images, which showed that the morphological and optical changes
during the maturation of the parasite are reflected in the height and fluorescence
intensity profiles of the host cell. Furthermore, I revealed diagnostic patterns in the
topographical structure of infected erythrocytes, showing close correlation with their
fluorescence map. I showed that atomic force and fluorescence microscopy can be used
to locate hemozoin crystals based on the topographical and optical features. These
observations revealed connections between the structure and the hemozoin content of
RBCs, and their consequences on the optical properties. I further confirmed statistic
significance between average profiles characteristic to the intra-erythrocytic stages.
Additionally, I showed that malaria-infected RBCs under physiological conditions
emit fluorescence patterns similar to the patterns I observed in thin blood films.
Publication 1

3. Reduction of dimensionality as a tool for feature selection in RBCs boosts the
stage-specific classification of P.falciparum
I showed that in malaria-infected RBCs, the most important features are associated
with the presence or absence of the parasite. I determined the position of the parasite
by using the gravitational centre, which is shifted by the presence of the parasite. I
further tested the influence of background noise on the position of the gravitational
centre and showed that removing background significantly improved the localisation
method. In the next step, I used this method to reduce the two-dimensional images of
single RBCs to the parasite cut, which goes through the parasite, and three additional
cuts spanning 90o and ±45o with it. The experiments revealed that this method for
parasite localisation works with high accuracy on atomic force, fluorescence, and light
microscopy images, providing the characteristic properties of RBC in the form of four
one-dimensional cuts.
To find a suitable network for the stage-specific classification of RBC, I tested various
architectures of networks. In the next step, I used the network with the highest
performance for the classification of single RBC images and the cuts characteristic to
the parasite features. I found that the network reaches a sensitivity of > 87% on the
2D images. By the smart reduction of data dimension to 2n with a careful selection
of features, I significantly boosted the performance of the NN-based classification
to > 96%, independent of the microscopy technique. I demonstrated that the
characterisation method I developed in my work captures the most important features
of extracted, single RBCs from microscopy images and provides a reliable tool for an
automatised stage-specific recognition of malaria. Publication 2

4. The malaria stage classifier
I developed a software package for the neural network-based stage-specific detection
of malaria. I wrote a user friendly interface and implemented dimension reduction
method introduced in the previous point. In the algorithm, I implemented the cell
detection introduced in the second point. I further wrote a documentation, detailing
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the use and implementation of the package. In addition, the package provides a
pre-trained NN for the blood stage classification and further offers the possibility to
retrain the NN with additional data. Publication 3

5.1 Publications related to the thesis points
1. Preißinger, K., Molnár, P., Vértessy, B. G., Kézsmárki, I. & Kellermayer,

M. Stage-Dependent Topographical and Optical Properties of Plasmodium
Falciparum-Infected Red Blood Cells. J Biotechnol Biomed 4 (3): 132-146
(2021). doi: 10.26502/jbb.2642-91280040 IF: 0

2. Preißinger, K., Kellermayer, M, Vértessy, B. G. Kézsmárki, I. & Török, J.
Reducing data dimension boosts neural network-based stage-specific malaria
detection. Sci. Rep. 12(1):1-14 (2022). doi: 10.1038/s41598-022-19601-x IF:
5.5

3. Preißinger, K., Kézsmárki, I. & Török, J. An automated neural network-
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A.1 T-test
T-tests are employed to show statistical significance between the mean values of two
samples (two-sample test) or the deviation of a mean value of a sample from a defined
value (one-sample test). Two-sample tests can either be dependent or independent. If
the same sample is compared in two different states, such as the mean height profiles
of RBCs before and after removing background noise, the sample are dependent. In
the other case, two different samples, such as average height profiles of stained and
unstained cells are compared. The test value for the statistical significance is called t.
Depending on the test type, t is defined as

t = x − µ0
s√
n

(A.1)

for the one-sample test, as
t = d

sd · 1√
n

(A.2)

for the dependent two-sample test, and as

t = x1 − x2√
s1
n1

+ s2
n2

(A.3)

for the independent two-sample test. The mean value of the single sample is expressed
by x, the difference between the mean values of the dependent samples by d and the
mean values of the independent samples by x1 and x2. s determines the standard
deviation of the sample, s1 and s2 the standard deviation of independent samples,
and sd the standard deviation of the difference between the dependent samples.
To determine the statistical significance, the t value calculated for the samples is
compared to the t-value distribution [148] at the degree of freedom corresponding to
the samples and the significance level chosen for the test. For a dependent test, the
degree of freedom is calculated by df = n − 1 and by

df =

(
s2

1
n1

+ s2
2

n2

)2

(
s2

1
n1

+
s2

2
n2

)
n1−1 +

(
s2

1
n1

+
s2

2
n2

)
n2−1

(A.4)

for an independent test. If the determined value for t is larger than the t-value
distribution, there is an intrinsic difference between the groups. In the other case, no
statistical significance exists between the samples [149].

In this thesis, the t-test was employed to compare the mean height hmean of the cell
and the height drop hdiff from the maximum at the cell edge to the minimum near
the centre of the average height profiles of healthy RBCs and the intra-erythrocytic
stages. Tables A.1 - A.12 show the comparison between the stages healthy (h), ring
(r), trophozoite (t), and schizont (s), stained and unstained samples, and images with
and without background noise for each microscopy technique.
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Imaging method AFM

Group stained - unstained
Stage h r t s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes

Table A.1: Results of the t-test with a significance level of 95% for the stage-wise
comparison of hmean and hdiff for stained and unstained samples.

Imaging method AFM

Group background - no background
Stage h r t s
Significant? hmean/hdiff yes/yes no/yes yes/yes no/yes

Table A.2: Results of the t-test with a significance level of 95% for the stage-wise
comparison of hmean and hdiff calculated with and without background.

Imaging method AFM

Group stained
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.3: Results of the t-test with a significance level of 95% for the comparison of
hmean and hdiff between the stages in case of stained samples.

Imaging method AFM

Group unstained
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.4: Results of the t-test with a significance level of 95% for the comparison of
hmean and hdiff between the stages in case of unstained samples.



102 A.1. T-TEST

Imaging method AFM

Group with background
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/no yes/yes yes/yes yes/yes

Table A.5: Results of the t-test with a significance level of 95% for the comparison of
hmean and hdiff between the stages in case of samples with background.

Imaging method AFM

Group without background
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.6: Results of the t-test with a significance level of 95% for the comparison of
hmean and hdiff between the stages in case of samples without background.

Imaging method Fluorescence microscopy

Group background - no background
Stage h r t s
Significant? hmean/hdiff yes/yes no/yes no/yes no/yes

Table A.7: Results of the t-test with a significance level of 95% for the stage-wise
comparison of hmean and hdiff calculated with and without background.

Imaging method Fluorescence microscopy

Group with background
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.8: Results of the t-test with a significance level of 95% for the comparison of
hmean and hdiff between the stages in case of samples with background.
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Imaging method Fluorescence microscopy

Group without background
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.9: Results of the t-test with a significance level of 95% for the comparison of
hmean and hdiff between the stages in case of samples without background.

Imaging method Light microscopy

Group background - no background
Stage h r t s
Significant? hmean/hdiff no/yes no/yes yes/yes yes/yes

Table A.10: Results of the t-test with a significance level of 95% for the stage-wise
comparison of hmean and hdiff calculated with and without background.

Imaging method Light microscopy

Group with background
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.11: Results of the t-test with a significance level of 95% for the comparison
of hmean and hdiff between the stages in case of samples with background.

Imaging method Light microscopy

Group without background
Stage h-r h-t h-s r-t r-s t-s
Significant? hmean/hdiff yes/yes yes/yes yes/yes yes/yes yes/yes yes/yes

Table A.12: Results of the t-test with a significance level of 95% for the comparison
of hmean and hdiff between the stages in case of samples without background.
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A.2 Network architecture

Figure A.1: Neural network architecture for the stage-specific classification
of RBCs of two-dimensional input images cuts.
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Figure A.2: Neural network architecture for the stage-specific classification
of RBCs of one-dimensional cuts.
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A.3 Performance parameters of the stage-specific
detection of malaria

Figure A.3: Classification performance of the NN on four cuts.
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Figure A.4: Classification performance of the NN on the parasite plus cuts.
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Figure A.5: Classification performance of the NN on the parasite cut.
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Figure A.6: Classification performance of the NN on the four cuts. The
orientation of the four cuts was calculated without removing background noise.
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Figure A.7: Classification performance of the NN on the parasite plus cuts.
The orientation of the parasite plus cuts was calculated without removing background
noise.
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Figure A.8: Classification performance of the NN on the parasite cut. The
orientation of the parasite cut was calculated without removing background noise.
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Figure A.9: Classification performance of the NN on four randomly oriented
cuts.
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Figure A.10: Classification performance of the NN on two randomly oriented
cuts.
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Figure A.11: Classification performance of the NN on one randomly oriented
cut.
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CHAPTER

ONE

MALARIA STAGE CLASSIFIER

This is the documentation of a Python package to classify RBCs in microscopy images. It includes:

• a package for the stage-specific classification of RBCs (ClassificationRBC) with four modules:

– NN.py which initialises the neural network and trains the data

– classes.py which contains classes for evaluating the properties of each RBC

– contours.py which provides functions for the detection of RBCs in an image

– extractCuts.py which provides functions for extracting the most characteristic profiles in the RBC

1
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CHAPTER

TWO

DOWNLOAD

1. Download Code folder which contains the code, the logo for the pop up windows, three pre-trained neural net-
works, sample images, and a folder for saving the evaluated data from: https://github.com/KatharinaPreissinger/
Stage_specific_classification_of_RBCs

2. If you want to retrain the neural network, please download the Datasets_for_NN (this requires at least 200 MB
of free space)

3. Install jupyter notebook on your computer https://jupyter.org/install

4. Read the documentation for more information about the classes and modules

3
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CHAPTER

THREE

HOW TO USE THE PACKAGE

1. Open the code file Classification_of_RBCs in jupyter

2. Tab Settings:

• select the file you want to analyse

• choose the type, in case of header lines in the text file choose the number of header lines

• select the folder to save your output

3. Tab Show image:

• displays the image

4. Tab Threshold image:

• use the Set threshold button to show the thresholded image

• optionally, the preset threshold value can be changed manually

5. Tab Detect cells:

• the cell detection parameters can be changed manually and set back to default

6. Tab Classify cells:

• Load NN loads the neural network

• Predict stages predicts the cell stage

• Change predictions provides the possibility to change the prediction by clicking on the cell

• Add data to NN offers the option to add new data to the NN and retrains the NN

• Save predictions saves the predictions in a text or csv file and offers the option to analyse new data

5
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CHAPTER

FOUR

MODULE FUNCTIONS

Functions have been documented using sphinx.ext.autodoc and the docstring style extension ‘sphinx.ext.napoleon’:

4.1 Module contours

ClassificationRBC.contours.al_ratio(contour_length, contour_area)
Determines ratio of contour length and area

Parameters

• contour_length (ndarray) – 1 dimensional array with type float that contains length of
contours

• contour_area (ndarray) – 1 dimensional array with type float that contains area of con-
tours

Returns
ratio – 1 dimensional array with type float that contains ratio of contour length to area

Return type
ndarray

ClassificationRBC.contours.draw_cont(img, contour, name, directory)
Draws contours and returns image

Parameters

• img (ndarray) – N dimensional array with type int that contains the image to process

• contour (contours) – Contours that contains list of coordinates of detected contours

• name (str) – The name of the returned image

• directory (str) – The directory where the image is saved

Returns
new_img – N x N dimensional array that contains the selected contours

Return type
ndarray

ClassificationRBC.contours.filter_cont(contour, index)
Selects contours by index

Parameters

• contour (contours) – Contours that contains list of coordinates of detected contours

7
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• index (ndarray) – 1 dimensional array with type int that contains index of selected contours

Returns
cnt – N x 2 dimensional array with type contours that contains selected contours

Return type
ndarray

ClassificationRBC.contours.filter_df(ind, c_length, c_area, c_ratio)
Writes new DataFrame with selected data

Parameters

• ind (ndarray) – 1 dimensional array with type int that contains the index of data selected
from other DataFrame

• c_length (ndarray) – 1 dimensional array with type float that contains the length of se-
lected contours

• c_area (ndarray) – 1 dimensional array with type float that contains the area of selected
contour

• c_ratio (ndarray) – 1 dimensional array with type float that contains the ratio of contour
length and area

Returns

• df (DataFrame) – DataFrame that contains properties of selected contours

• length (ndarray) – 1 dimensional array with type float that contains the length of each se-
lected contour

• area (ndarray) – 1 dimensional array with type float that contains the area of each selected
contour

• ratio (ndarray) – 1 dimensional array with type float that contains the length/area ratio of
each selected contour

ClassificationRBC.contours.filter_values(df, column, min_val, max_val)
Filters column in DataFrame by values

Parameters

• df (DataFrame) – DataFrame that contains contour properties

• column (string) – The name of the column

• min_val (float) – The minimum value of the data

• max_val (float) – The maximum value of the data

Returns
ind – 1 dimensional array with type int that describes values, which fulfill conditions

Return type
ndarray

ClassificationRBC.contours.find_cont(img)
Detects contours and draws them in RGB image

Parameters
img (ndarray) – N x N dimensional array with type int that contains the image to process

Returns

• canvas (ndarray) – N x N dimensional array that contains the detected contours

8 Chapter 4. Module functions
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• contour (contours) – List of coordinates of contours that were detected in the image

ClassificationRBC.contours.find_contour_img(img, img_thr, directory)
Finds contours, filters them by manually chosen values and returns filtered contours

Parameters

• img (ndarray) – N x N dimensional array with type int that contains the original image

• img_thr (ndarray) – N x N dimensional array with type int that contains the thresholded
image

• directory (str) – The directory where the image is saved

Returns
c_a – N x N x 2 array with type contours that contains selected contours

Return type
ndarray

ClassificationRBC.contours.find_extrema(img)
Finds index of max and min value in image

Parameters
img (image) – N dimensional array with type float that contains the z_values of the data

Returns

• z_min (int) – Minimum value in array

• z_max (int) – Maximum value in array

ClassificationRBC.contours.get_contarea(contour)
Determines area that is surrounded by contour and its length

Parameters
contour (contours) – Contours that contains list of coordinates of detected contours

Returns

• length (ndarray) – 1 dimensional array with type float that contains length of contours

• area (ndarray) – 1 dimensional array with type float that contains area of contours

ClassificationRBC.contours.normalise_zvalues(img)
Returns normalised grayscale image

Parameters
img (image) – N dimensional array with type float that contains the z_values of the data

Returns
imggr – N x N dimensional array with type int that contains grayscale values of the image

Return type
ndarray

ClassificationRBC.contours.RGB_2_bin(img, value)
Converts RGB image to grayscale image

Parameters

• img (image) –

• value (int) – The value, which determines if the point is True or False

4.1. Module contours 9
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Returns
img_new – N x N dimensional array that contains a binary image

Return type
ndarray

ClassificationRBC.contours.write_df(c_length, c_area, ratio)
Writes data in pandas data frame

Parameters

• c_length (ndarray) – 1 dimensional array with type float that contains list of contour
lengths

• c_area (ndarray) – 1 dimensional array with type float that contains list of contour areas

• ratio (ndarray) – 1 dimensional array with type float that contains ratio of contour length
to area

Returns
df – DataFrame that contains contour length, area and ratio length/area

Return type
DataFrame

4.2 Module extractCuts

ClassificationRBC.extractCuts.calc_asymcut(values, coord, ori, imgh, imgrh, imgw, imgrw, centre)
Determines the cross-section along the most asymmetric cut through the z_values and shifts the origin to the
geometric centre

Parameters

• values (ndarray) – N dimensional array with type float that contains the grayscale values
of the original image

• coord (ndarray) – 1 dimensional array with type (float, float), (float, float) that contains
the x- and y-coordinate left of a point and the x- and y-coordinate right of a point

• ori (str) – Orientation of the straight: parallel, perpendicular

• imgh (int) – The height of the image

• imgrh (int) – The resolution of the image in y-direction

• imgw (int) – The width of the image

• imgrw (int) – The resolution of the imag in x-direction

• centre (ndarray) – N dimensional array with type float, float that contains the x- and y-
coordinates of the geometric centre

Returns

• cxpara (ndarray) – 1 dimensional array with type float that contains the x-coordinates of the
asymmetric cut

• cypara (ndarray) – 1 dimensional array with type float that contains the y-coordinates of the
asymmetric cut

• zpara (ndarray) – 1 dimensional array with type float that contains the z-coordinates of the
asymmetric cut

10 Chapter 4. Module functions
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• cxperp (ndarray) – 1 dimensional array with type float that contains the x-coordinates of the
perpendicular asymmetric cut

• cyperp (ndarray) – 1 dimensional array with type float that contains the y-coordinates of the
perpendicular asymmetric cut

• ziperp (ndarray) – 1 dimensional array with type float that contains the z-coordinates of the
perpendicular asymmetric cut

• zipar (ndarray) – 1 dimensional array with type float that contains the z-coordinates of the
asymmetric cut

• cut (ndarray) – 1 dimensional array with type float that contains the points of the asymmetric
cut in µm

• pcut (ndarray) – 1 dimensional array with type float that contains the points of the perpen-
dicular asymmetric cut in µm

• x2cs (ndarray) – 2 dimensional array with type float that contains the x-coordinates of the
asymmetric parallel and perpendicular cut

• y2cs (ndarray) – 2 dimensional array with type float that contains the y-coordinates of the
asymmetric parallel and perpendicular cut

• z2cs (ndarray) – 2 dimensional array with type float that contains the z-coordinates of the
asymmetric parallel and perpendicular cut

• cut2 (ndarray) – 2 dimensional array with type float that contains the points of the parallel
and perpendicular asymmetric cut in µm

ClassificationRBC.extractCuts.calc_straight(circle_found, mcentre, centre, imgh, imgrh, imgw, imrw)
Determines the straight betweeen the centre of mass and the geometric centre and the values of the points on the
straight within a range of 50 pixels (much larger than cell diameter) around the geometric centre. Calculates the
perpendicular straight and the values of the points on the straight.

Parameters

• circle_found (ndarray) – 1 dimensional array with type float, float, float that contains
the x- and y-coordinate of the centre and the radius of the bounding circle

• mcentre (ndarray) – N dimensional array with type float, float that contains the x- and
y-coordinates of the centre of mass weighted by the corresponding z-values

• centre (ndarray) – N dimensional array with type float, float that contains the x- and y-
coordinates of the geometric centre

• imgh (int) – The height of the image

• imgrh (int) – The resolution of the image in y-direction

• imgw (int) – The width of the image

• imgrw (int) – The resolution of the imag in x-direction

Returns

• xrs (ndarray) – 1 dimensional array with type float that contains all x coordinates on the
straight right of the geometric centre within a range of 50 pixels

• yrs (ndarray) – 1 dimensional array with type float that contains all y coordinates on the
straight right of the geometric centre within a range of 50 pixels

• xls (ndarray) – 1 dimensional array with type float that contains all x coordinates on the
straight left of the geometric centre within a range of 50 pixels

4.2. Module extractCuts 11
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• yls (ndarray) – 1 dimensional array with type float that contains all y coordinates on the
straight left of the geometric centre within a range of 50 pixels

• xprs (ndarray) – 1 dimensional array with type float that contains all x coordinates on the
perpendicular straight right of the geometric centre within a range of 50 pixels

• yprs (ndarray) – 1 dimensional array with type float that contains all y coordinates on the
perpendicular straight right of the geometric centre within a range of 50 pixels

• xpls (ndarray) – 1 dimensional array with type float that contains all x coordinates on the
perpendicular straight left of the geometric centre within a range of 50 pixels

• ypls (ndarray) – 1 dimensional array with type float that contains all y coordinates on the
perpendicular straight left of the geometric centre within a range of 50 pixels

ClassificationRBC.extractCuts.centre_of_mass(all_coord, img)
Determines the centre of mass inside a rectangle weighted by the corresponding z-values

Parameters

• all_coord (ndarray) – 1 dimensional array with type float, float that contains all x- and
y-coordinates inside a rectangle

• img (ndarray) – N dimensional array with type float that contains the z_values of the data

Returns
centre_mass – N x 2 array with type float, float that contains the x- and y-coordinates of the
centre of mass weighted by the corresponding z-values

Return type
ndarray

ClassificationRBC.extractCuts.find_coordborder(cnt_drawn, img)
Finds points inside cell contour and returns their coordinates

Parameters

• cnt_drawn (ndarray) – 1 dimensional array with type int, int, float, float that contains the
index of a rectangle with corresponding contour, the y- and x-coordinate of the contour

• img (ndarray) – N dimensional array with type float that contains the z_values of the data

Returns
img_coord – N x 3 array with type float, float, float that contains the y-coordinate, the minimum
and maximum x-coordinate of the points inside a contour

Return type
ndarray

ClassificationRBC.extractCuts.geometric_centre(img_coord)
Determines the geometric centre of a contour (cell)

Parameters
img_coord (ndarray) – 1 dimensional array with type float, float, float that contains the y-
coordinate, the minimum and maximum x-coordinate

Returns

• centre (ndarray) – N x 2 array with type float, float that contains the x- and y-coordinate of
the centre of a rectangle

• all_coord (ndarray) – N x N x 2 array with type float, float that contains all x- and y-
coordinates inside a rectangle

12 Chapter 4. Module functions
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ClassificationRBC.extractCuts.match_coord(x_straight, y_straight, cntCell)
Finds contour points on the straight and sorts the coordinates by distance of the point from the geometric centre

Parameters

• x_straight (ndarray) – 1 dimensional array with type float that contains all x coordinates
on the straight within a range of 50 pixels

• y_straight (ndarray) – 1 dimensional array with type float that contains all x coordinates
on the straight within a range of 50 pixels

• cnt_drawn (ndarray) – 1 dimensional array with type int, int, float, float that contains the
index of a rectangle with corresponding contour, the y- and x-coordinate of the contour

Returns

• match_coord (ndarray) – N x 3 array with type float, float, float that contains the x-
coordinate, the y-coordinate and the distance of the point from the geometric centre

• sort_coord (ndarray) – N x 2 array with type float, float that contains the x- and y-coordinate
of a point

ClassificationRBC.extractCuts.points_incell(img_coord, img)
Determines the z-value of all points inside a contour

Parameters

• img_coord (ndarray) – 1 dimensional array with type float, float, float that contains the
y-coordinate, the minimum and maximum x-coordinate of the points inside a contour

• img (ndarray) – N dimensional array with type float that contains the z_values of the data

Returns
points_inside – N x N dimensional array with type float that contains all z-values inside a contour

Return type
ndarray

ClassificationRBC.extractCuts.sort_coord(coord_rmatch, coord_lmatch)
Sorts the matching coordinates by distance between left point and right point

Parameters

• coord_rmatch (ndarray) – 2 dimensional array with type float, float that contains the x-
coordinate and the y-coordinate right of the centre

• coord_lmatch (ndarray) – 2 dimensional array with type float, float that contains the x-
coordinate and the y-coordinate left of the centre

Returns
coord_sort – N x 2 dimensional array with type float, float that contains the x- and y-coordinates
of the points intersecting with the straight of highest asymmetry left and right of the centre of the
object

Return type
ndarray

4.2. Module extractCuts 13
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4.3 Module NN

ClassificationRBC.NN.format_values(name, spath)
Formats values and writes them into array

Parameters

• name (str) – Name of the txt file

• spath (str) – Name of the directory

• parameter (str) – Name of the parameter

Returns
values – 1 dimensional array with type float that contains the content of the text file

Return type
ndarray

ClassificationRBC.NN.format_NN_values(name, spath)
Formats values for NN input and writes them into array

Parameters

• name (str) – Name of the txt file

• spath (str) – Name of the directory

• parameter (str) – Name of the parameter

Returns
values – 1 dimensional array with type float that contains the content of the text file

Return type
ndarray

ClassificationRBC.NN.read_images(path)
Reads text files of characteristic cuts and labels them according to their category

Parameters
path (str) – The name of the folder that contains the characteristic cuts

Returns

• carr_form (ndarray) – N x (N x N) dimensional array with type float that contains N times
two characteristic cross-sections with 50 data points

• label_form (ndarray) – 1 dimensional array with type int that contains the labels of N cells

ClassificationRBC.NN.train_model(model, carr_form, label_form, cut_train, label_train, directory, mname,
tlabel)

Trains NN model on a combination of old and new data

Parameters

• model (Sequential) – The pre-trained neural network

• carr_form (ndarray) – N x 2 x 50 array with type float that contains N times two charac-
teristic cross-sections with 50 data points

• label_form (ndarray) – N x 1 array with type int that contains the labels of N cells

• directory (str) – The name of the network folder

• mname (str) – The name of the new network
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• tlabel (tkinter Label) – Displays the progres of the calculation

Returns
model – Sequential class that contains the trained new keras model

Return type
tf.keras.Sequential

4.3. Module NN 15
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CHAPTER

FIVE

MODULE CLASSES

Classes have been documented using sphinx.ext.autodoc and the docstring style extension ‘sphinx.ext.napoleon’:

class ClassificationRBC.classes.AFMimg(xvalues, yvalues, zvalues, filename, directory)
A class that contains the x-, y-, z-values, filename and directory of the raw AFM file

xvalues

N dimensional array with type float that contains the x-values of the igor pro height trace data

Type
ndarray

yvalues

N dimensional array with type float that contains the y-values of the igor pro height trace data

Type
ndarray

zvalues

N dimensional array with type float that contains the z-values of the igor pro height trace data

Type
ndarray

filename

String that contains the name of the .txt file

Type
str

directory

String that contains the directory of the .txt file

Type
str

create_directory(directory, name)
Creates a new directory

Parameters

• directory (str) – The directory of the new folder

• name (str) – The name of the new folder

Returns
new_dir – The directory and name of the new folder

17
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Return type
str

set_directory(new_dir)
Adds a new directory to the class

Parameters
new_dir (str) – The new directory

class ClassificationRBC.classes.contAFMimg(xvalues, yvalues, zvalues, filename, directory, propAFMimg,
rect_del, rect2_del, rect_exp, cnt_all, cnt_del, img_cnt,
img_gr, img_rgb, coord, cdrawn)

A class which inherits from AFMimg and contains the contour and the rectangles covering the objects in the
image

rect_del

1 dimensional array with type rectangle that contains rectangles around contours

Type
ndarray

rect2_del

1 dimensional array with type int, rectangle that contains rectangles around clicked coordinates

Type
ndarray

rect_exp

1 dimensional array with type rectangle that contains the not selected expanded rectangles

Type
ndarray

cnt_all

1 dimensional array with type contours that were not selected manually

Type
ndarray

cnt_del

1 dimensional array with type contours that contains all not selected contours in the loop

Type
ndarray

img_cnt

N dimensional array with type int that contains all not selected contours

Type
image

img_gr

N dimensional array with type float that contains a greyscale image of the original image

Type
ndarray

img_rgb

N dimensional array with type float that contains img_gr as rgb image with detected contours
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Type
ndarray

coord

N dimensional array with type float that contains the coordinates of points inside manually selected rect-
angles/contours

Type
ndarray

cdrawn

1 dimensional array with type int, int, float, float that contains the index of a rectangle with corresponding
contour, the x- and y-coordinate of the contour

Type
ndarray

class ClassificationRBC.classes.propAFMimg(xvalues, yvalues, zvalues, filename, directory, imgh, imgw,
imgrh, imgrw, thr)

A class which inherits from AFMimg and contains size, threshold value and the expansion factor of the rectangles
covering the objects in the image

imgh

The height of the image in µm

Type
float

imgw

The width of the image in µm

Type
float

imgrh

The resolution of the yvalues

Type
int

imgrw

The resolution of the xvalues

Type
int

thr

Manually chosen threshold value for grayscale images

Type
int

class ClassificationRBC.classes.LMimg(orig, values, val_enh, filename, directory)
A class that contains the x-, y-, z-values, filename and directory of the raw LM file

orig

N dimensional array with type int that contains the colour values of the LM image

Type
ndarray
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values

N dimensional array with type int that contains the greyscale values of the LM image

Type
ndarray

val_enh

N dimensional array with type int that contains the enhanced LM image

Type
ndarray

filename

String that contains the name of the .txt file

Type
str

directory

String that contains the directory of the .txt file

Type
str

create_directory(directory, name)
Creates a new directory

Parameters

• directory (str) – The directory of the new folder

• name (str) – The name of the new folder

Returns
new_dir – The directory and name of the new folder

Return type
str

set_directory(new_dir)
Adds a new directory to the class

Parameters
new_dir (str) – The new directory

class ClassificationRBC.classes.contLMimg(orig, values, val_enh, filename, directory, propLMimg,
rect_del, rect2_del, rect_exp, cnt_all, cnt_del, img_cnt,
img_gr, img_rgb, coord, cdrawn)

A class which inherits from LMimg and contains the contour and the rectangles covering the objects in the image

rect_del

1 dimensional array with type rectangle that contains rectangles around contours

Type
ndarray

rect2_del

1 dimensional array with type int, rectangle that contains rectangles around clicked coordinates

Type
ndarray
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rect_exp

1 dimensional array with type rectangle that contains the not selected expanded rectangles

Type
ndarray

cnt_all

1 dimensional array with type contours that were not selected manually

Type
ndarray

cnt_del

1 dimensional array with type contours that contains all not selected contours in the loop

Type
ndarray

img_cnt

N dimensional array with type int that contains all not selected contours

Type
image

img_gr

N dimensional array with type float that contains a greyscale image of the original image

Type
ndarray

img_rgb

N dimensional array with type float that contains img_gr as rgb image with detected contours

Type
ndarray

coord

N dimensional array with type float that contains the coordinates of points inside manually selected rect-
angles/contours

Type
ndarray

cdrawn

1 dimensional array with type int, int, float, float that contains the index of a rectangle with corresponding
contour, the x- and y-coordinate of the contour

Type
ndarray

class ClassificationRBC.classes.propLMimg(orig, values, val_enh, filename, directory, imgh, imgw, imgrh,
imgrw, thr)

A class which inherits from LMimg and contains size, threshold value of the LM image

imgh

The height of the image in µm

Type
float

21



Stage-specific-classification-of-RBCs, Release 0.0.1

imgw

The width of the image in µm

Type
float

imgrh

The resolution of the yvalues

Type
int

imgrw

The resolution of the xvalues

Type
int

thr

Manually chosen threshold value for grayscale images

Type
int

class ClassificationRBC.classes.Cell(img, gfimg, zcut2, label, cntCell, centre, mcentre, radius,
rectChange, offset)

A class that contains the geometric properties of a cell

img

N x N x N dimensional array that contains the extracted cell images

Type
ndarray

gfimg

N x N x N dimensional array that contains the gaussian filtered images

Type
ndarray

zcut2

N x 2 dimensional array with type float that contains two extracted cuts

Type
ndarray

label

N dimensional array with type str that contains the labels of the images

Type
ndarray

cntCell

N x N X (1, 1) dimensional array with type (int, int) that contains the contour of the cells

Type
ndarray
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centre

N x (1, 1) dimensional array with type (float, float) that contains the centre of the cell

Type
ndarray

mcentre

N x (1, 1) dimensional array with type (float, float) that contains the centre of mass of the cell

Type
ndarray

radius

N dimensional array with type float that contains the radius of the detected circle

Type
ndarray

rectChange

N x (1, 1, 1, 1, 1, 1, 1) dimensional array with type float that contains the bounding coordinates of the
bounding rectangle around a cell

Type
ndarray

offset

N x (1, 1) dimensional array with type float that contains the x and y offset of the cropped image

Type
ndarray

calc_cellCnt(circle_found, img_hc, directory)
Calculates the coordinates of the cell contour

Parameters

• circle_found (ndarray) – N x (1, 1, 1) dimensional array with type float that contains
the centre and the radius of the detected circle

• img_hc (ndarray) – N x N dimensional array that contains the normalised zvalues

calc_geomP()

Calculates the coordinates inside the cell, its centre, and its centre of mass

extract_cut(circle_found, imgh, imgw, imgrh, imgrw)
Extracts cut from cell image

Parameters

• circle_found (ndarray) – N x (1, 1, 1) dimensional array with type float that contains
the centre and the radius of the detected circle

• imgh (float) – The height of the image in µm

• imgw (float) – The width of the image in µm

• imgrh (int) – The resolution of the yvalues

• imgrw (int) – The resolution of the xvalues

class ClassificationRBC.classes.ToolTip(widget, text)
Class that defines a window upon hovering mouse event
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hideTooltip()

Hides a window, when previously shown by hovering above an icon

showTooltip()

Shows a window, when hovering above an icon
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