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Abstract
We establish a general criterion for the existence of
convex sets of fixed shape as, for example, balls of a
given radius, of maximal probability on Banach spaces.
We also provide counterexamples, showing that their
existence may fail even in some common situations.
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1 INTRODUCTION

In this note, we address the natural question if for a (Borel) probability measure 𝜇 on a separable
Banach space 𝑋 and for a given radius, there is always a “ball of maximum probability,” that is,
if the maximum of 𝜇(𝐵) is attained among all balls 𝐵 ⊂ 𝑋 of radius 𝑟 > 0. For small radii, such a
maximizer— if existent— can be viewed as an approximation to and a regularization of a “mode”
referring to a “point of maximum probability” for the given measure 𝜇 as 𝑟 becomes small. More
generally, instead of balls of a fixed radius, our main existence theorem will also apply to the
system of all translates of a fixed convex set 𝐶.
This issue has received considerable attention recently, notably in the area of Bayesian inverse

problems (cf. [11]) where the problem arises to devise maximum a posteriori (MAP) estimators,
in particular for Gaussian (and more general) priors on infinite dimensional (separable) Banach
spaces, [1, 4–8, 10]. Indeed, seminal results in that area made implicit use of the existence of
balls of maximum likelihood (cp. the discussion in [7]), whose existence could be established
in specific situations, cf. [1, 9]. Only very recently, it has been noted that the question of their
existence can be circumvented by considering the asymptotics of almost maximizers in order
to obtain MAP estimators [7, 8]. Nevertheless, besides being a question of intrinsic interest,
the problem remains relevant as the quest for the position of a (small) ball of positive radius
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2 SCHMIDT

with maximal probability amounts to solving a regularized point optimization problem. As such
it typically enjoys improved stability properties and might even be favorable from a modeling
perspective. In particular, this will be the case in situations when, possibly due to data uncer-
tainties in the presence of noise, it is preferable to estimate parameter regions rather than single
points.
The problem is addressed for general metric spaces in some detail in [9, Sect. 4.2].

There the authors provide a collection of technical sufficient conditions for the existence
of maximum likelihood balls (“radius-𝑟 modes” in their terminology). They also give coun-
terexamples for some particular measures on specific spaces and certain ranges of 𝑟. The
farthest reaching existence result for measures on Banach spaces known to date seems to
be the following direct consequence of [9, Lem. SM1.6]: maximum likelihood balls do exist
for measures whose canonical finite-dimensional projections do not charge any sphere. In
particular, this applies to “radius-𝑟 maximum likelihood a posteriori estimators for Gaus-
sian priors” on 𝓁𝑝, 1 < 𝑝 < ∞, which are absolutely continuous with respect to a non-
degenerate Gaussian. It appears that no counterexample on a Banach space is known to
date.
The purpose of this note is twofold. First, we establish a general existence theorem for max-

imum likelihood convex shapes (and, in particular, balls of any radius) on Banach spaces. In
particular, this will apply to every separable and reflexive space (and 𝓁1), thus closing a gap in
the seminal contribution [5]. Second, by way of various examples, we also show that existence
may fail in some natural situations. In fact, we will provide a couple of counterexamples of proba-
bility measures on 𝑐0 and the classical Wiener space, which might even be absolutely continuous
with respect to a nondegenerate Gaussian measure, and which do not allow for balls of maximal
probability for any value of radius 𝑟.

2 A GENERAL EXISTENCE RESULT

Throughout we assume that 𝑋 is a separable (real) Banach space. By 𝐵𝑟 and 𝐵◦
𝑟 , we denote the

closed and, respectively, open ball of radius 𝑟 in 𝑋 centered at 0. For 𝑥 ∈ 𝑋, 𝐶 ⊂ 𝑋, we write
𝑥 + 𝐶 =∶ 𝐶(𝑥).

Theorem 2.1. Suppose that 𝑋 is the separable dual of a Banach space and 𝜇 is a Borel probability
measure on𝑋. Let𝐶 ⊂ 𝑋 be a boundedweak*-closed convex set𝐶 ⊂ 𝑋 with nonempty interior. Then,
there exists 𝑥0 ∈ 𝑋 such that

𝜇(𝐶(𝑥0)) ⩾ 𝜇(𝐶(𝑥))

for all 𝑥 ∈ 𝑋.

Remark 2.2.

1. In particular, this applies to every separable reflexive Banach space 𝑋.
2. An admissible choice for 𝐶 is 𝐶 = 𝐵𝑟 for any 𝑟 > 0.
3. As open balls have been considered in the literature as well, we notice that the result holds

true, obviously, for 𝐶 = 𝐵◦
𝑟 in case 𝜇 does not charge any sphere of radius 𝑟, while it fails in
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general. If, for example, 𝜇 is the uniform distribution on 𝜕𝐵1 in ℝ2, then 𝜇(𝐵◦
1
(𝑥)) < 1

2
for any

𝑥 ∈ ℝ2 while lim𝑥→0 𝜇(𝐵
◦
1
(𝑥)) = 1

2
.

Proof. Without loss of generality, we assume that 0 is an interior point of 𝐶. We consider a
maximizing sequence of translates 𝐶(𝑥𝑛), that is,

𝜇(𝐶(𝑥𝑛)) → 𝑚0 ∶= sup{𝜇(𝐶(𝑥)) ∶ 𝑥 ∈ 𝑋}.

Since 𝑋 is separable and 𝐶 has nonempty interior, it is easy to see that 𝑚0 > 0. Clearly, the
sequence (𝑥𝑛) is bounded. (If 𝑅 > 0 is chosen such that 𝜇(𝑋 ⧵ 𝐵𝑅) ⩽

𝑚0

2
, then 𝑥𝑛 ∈ 𝐵𝑅+diam(𝐶)

eventually.) As 𝜇 is tight (on the polish space 𝑋), also the family (𝜇𝑛) of restrictions 𝜇𝑛 = 𝜇( ⋅ ∩

𝐶(𝑥𝑛)) is tight. Thus, Prohorov’s theorem (see, e.g., [3, Thm. 8.6.2]) implies 𝜇𝑛
𝑤

⟶ 𝜇0 weakly
(in duality with 𝐶𝑏(𝑋)) for a (not relabeled) subsequence and a finite measure 𝜇0. It follows
that

𝜇0(𝑋) = lim
𝑛→∞

𝜇𝑛(𝑋) = lim
𝑛→∞

𝜇(𝐶(𝑥𝑛)) = 𝑚0.

By assumption,𝑋 has a separable predual𝑋∗, so by Alaoglu’s theorem, wemay pass to a further
subsequence (not relabeled) such that 𝑥𝑛

∗
⇀ 𝑥0 weakly* in 𝑋 for some 𝑥0 ∈ 𝑋. We will now prove

that 𝜇0 is supported on 𝐶(𝑥0). To this end, we fix any 𝑧 ∉ 𝐶(𝑥0). Since 𝐶 is weak*-closed, with the
help of the Hahn–Banach theorem for the dual pairing (𝑋, 𝑋∗) (see, e.g., [2, Thms. 5.79 & 5.93]),
we can choose an element 𝑥∗ ∈ 𝑋∗ and then an 𝜀 > 0 such that

sup{⟨𝑥∗, 𝑦⟩ ∶ 𝑦 ∈ 𝐵𝜀(𝑧)} = ⟨𝑥∗, 𝑧⟩ + 𝜀‖𝑥∗‖ < inf {⟨𝑥∗, 𝑦⟩ ∶ 𝑦 ∈ 𝐶(𝑥0)}. (1)

On the other hand, the Portmanteau theorem (see, e.g., [3, Thm. 8.2.3]) implies

𝜇0(𝐵
◦
𝜀 (𝑧)) ⩽ lim inf

𝑛→∞
𝜇𝑛(𝐵

◦
𝜀 (𝑧)) = lim inf

𝑛→∞
𝜇(𝐶(𝑥𝑛) ∩ 𝐵◦

𝜀 (𝑧)).

As a consequence, we conclude that, in case 𝜇0(𝐵
◦
𝜀 (𝑧)) > 0, we have 𝐶(𝑥𝑛) ∩ 𝐵◦

𝜀 (𝑧) ≠ ∅ for
sufficiently large 𝑛, say 𝑥𝑛 + 𝑦𝑛 ∈ 𝐶(𝑥𝑛) ∩ 𝐵◦

𝜀 (𝑧) (and so 𝑦𝑛 ∈ 𝐶). Passing to yet another sub-

sequence (not relabeled), we get 𝑦𝑛
∗
⇀ 𝑦 for some 𝑦 ∈ 𝐶. It follows that 𝑥𝑛 + 𝑦𝑛

∗
⇀ 𝑥0 +

𝑦 ∈ 𝐶(𝑥0) ∩ 𝐵𝜀(𝑧), which contradicts (1). So, we must have 𝜇0(𝐵
◦
𝜀 (𝑧)) = 0. This proves that

supp𝜇0 ⊂ 𝐶(𝑥0). It remains to observe that 𝜇0 ⩽ 𝜇, which follows from the outer regularity of
the Borel measure 𝜇 and from the fact that for any open subset 𝑈 ⊂ 𝑋 the Portmanteau theorem
gives

𝜇0(𝑈) ⩽ lim inf
𝑛→∞

𝜇𝑛(𝑈) = lim inf
𝑛→∞

𝜇(𝐶(𝑥𝑛) ∩ 𝑈) ⩽ 𝜇(𝑈).

Summarizing we find that

𝜇(𝐶(𝑥0)) ⩾ 𝜇0(𝐶(𝑥0)) = 𝜇0(𝑋) ⩾ 𝑚0,

which, by definition of𝑚0, proves 𝜇(𝐶(𝑥0)) = 𝑚0. □
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4 SCHMIDT

3 EXAMPLES OF NONEXISTENCE

We discuss a number of concrete cases, where balls of maximum likelihood do not exist. There
is a common underlying idea in all of them that would easily allow to generate further examples
along these lines.
Our first two examples are on the Banach space 𝑐0 of (real) null sequences equipped with the

sup-norm, which is separable and even has a separable dual (namely, 𝓁1), but is not a dual space
itself.

Example 3.1. On 𝑋 = 𝑐0, we let 𝜇 =
⨂

𝑘∈ℕ Exp(𝑘), where Exp(𝜆) denotes the exponential dis-
tribution on ℝ with rate parameter 𝜆 (and cumulative distribution function 𝑥 ↦ 1 − e−𝜆𝑥

+).
An application of the Borel–Cantelli lemma to ({𝑥 ∈ ℝℕ ∶ 𝑥𝑛 ⩾ 𝑛−1∕2})𝑛∈ℕ shows 𝜇(𝑋) = 1. Let
𝑟 > 0 arbitrary. For any ball 𝐵𝑟(𝑥), 𝑥 = (𝑥1, 𝑥2, …), one has

𝜇(𝐵𝑟(𝑥)) =
∏
𝑘∈ℕ

(
e−𝑘(𝑥𝑘−𝑟)

+
− e−𝑘(𝑥𝑘+𝑟)

+
)
.

Choosing 𝑘0 such that 𝑥𝑘0 < 𝑟 and setting 𝑥′
𝑘
= 𝑥𝑘 for 𝑘 ≠ 𝑘0, 𝑥′𝑘0 = 𝑟, we get𝜇(𝐵𝑟(𝑥

′)) > 𝜇(𝐵𝑟(𝑥))

if 𝜇(𝐵𝑟(𝑥)) > 0. This shows that 𝑥 ↦ 𝜇(𝐵𝑟(𝑥)) does not have a maximizer. (Its supremum is𝑚0 =∏
𝑘∈ℕ

(
1 − e−2𝑘𝑟

)
, which can be seen by maximizing each factor separately and considering the

maximizing sequence (𝑥⋅,𝑛) ⊂ 𝑐0, 𝑥𝑘,𝑛 = 𝑟 for 𝑘 ⩽ 𝑛, 𝑥𝑘,𝑛 = 0 for 𝑘 > 𝑛.)

Example 3.2. In order to give an examplewhere𝜇 is absolutely continuouswith respect to aGaus-
sian measure on 𝑋 = 𝑐0, we first let 𝜇0 =

⨂
𝑘∈ℕ  (0, 𝑘−2), where (0, 𝜎2) denotes the Gaussian

on ℝ with mean 0, variance 𝜎2, and cumulative distribution function 𝑋 ↦ Φ(𝑥∕𝜎). An applica-
tion of the Borel–Cantelli lemma to ({𝑥 ∈ ℝℕ ∶ |𝑥𝑛| ⩾ 𝑛−1∕2})𝑛∈ℕ shows 𝜇0(𝑋) = 1. We consider
the (closed) set 𝐴 ⊂ 𝑋 given by

𝐴 =
{
𝑥 ∈ 𝑋 ∶ 𝑥𝑘 ⩾ −1∕

√
𝑘 for all 𝑘 ∈ ℕ

}
,

and note that 𝜇0(𝐴) (the probability that the coordinate process does not pass the moving
boundary 𝑘 ↦ −1∕

√
𝑘) is positive since 𝜇0(𝑋 ⧵ 𝐴) ⩽

∑
𝑘∈ℕ Φ(−

√
𝑘) < 1. We then define 𝜇 by

conditioning on 𝐴, that is, we set 𝜇 = 1

𝜇0(𝐴)
𝟙𝐴𝜇0. A similar reasoning as above shows that, for

any 𝑟 > 0, balls of maximal probability do not exist (and the supremum is explicitly given as𝑚0 =
1

𝜇0(𝐴)

∏
𝑘∈ℕ[Φ((𝑘𝑟 −

√
𝑘)+ + 𝑘𝑟) − Φ((𝑘𝑟 −

√
𝑘)+ − 𝑘𝑟)]), where 𝜇0(𝐴) =

∏
𝑘∈ℕ(1 − Φ(−

√
𝑘)).

We now give some examples on the classical Wiener space 𝐶0[0, 1] = {𝜔 ∈ 𝐶[0, 1] ∶ 𝜔(0) = 0}

equipped, as usual, with the sup-norm in order to show that nonexistence of maximum likelihood
balls is encountered in common situations in a continuous time setting. They follow the similar
basic idea of the previous two examples.
In what follows we let 𝜇0 be the Wiener measure on 𝐶0[0, 1] so that the coordinate process

(𝜔(𝑡))𝑡∈[0,1] is Brownian motion.

Example 3.3. Similarly as in Example 3.1, we can consider typical processes that assume only
nonnegative values as, for example, the running maximum of Brownian motion or the reflected
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MOST LIKELY BALLS IN BANACH SPACES: EXISTENCE AND NON-EXISTENCE 5

Brownian motion:

𝜔max(𝑡) = max{𝜔(𝑠) ∶ 0 ⩽ 𝑠 ⩽ 𝑡}, respectively, |𝜔|(𝑡) = |𝜔(𝑡)|.
If 𝜇 denotes the corresponding distribution on 𝑋 = 𝐶0[0, 1], in both cases, the maximum of 𝜔 ↦

𝜇(𝐵𝑟(𝜔)) is not attained for any 𝑟 > 0. Indeed, as 𝜔(𝑡) → 0 for 𝑡 → 0 for any 𝜔 ∈ 𝑋 and so 𝜔(𝑡) < 𝑟

on [0, 𝑠] for some 0 < 𝑠 < 1, it suffices to choose any 𝜔′ ∈ 𝑋 such that 𝜔 < 𝜔′ ⩽ 𝑟 on (0, 𝑠) and
𝜔′ = 𝜔 on [𝑠, 1] to get 𝜇(𝐵𝑟(𝜔

′)) > 𝜇(𝐵𝑟(𝜔)) if 𝜇(𝐵𝑟(𝜔)) > 0.

Example 3.4. Let 𝑋 = 𝐶0[0, 1]. We choose a nonpositive 𝜌 ∈ 𝑋 such that 𝜇0({𝜔 ∶ 𝜔(𝑡) ⩾

𝜌(𝑡) for all 𝑡 ∈ [0, 1]}) > 0. Such a 𝜌 can be found with the help of Khinchin’s law of the iter-
ated logarithm: lim inf 𝑡→0 𝜔(𝑡)∕

√
2𝑡 log log(1∕𝑡) = −1 for 𝜇0-a.e. 𝜔 ∈ 𝑋, which allows to choose

0 < 𝑡0 < 1∕e such that

𝜇0

({
𝜔(𝑡) ⩾ −2

√
2𝑡 log log(1∕𝑡) for all 𝑡 ∈ [0, 𝑡0]

})
> 0.

We now define 𝜌 ∈ 𝑋 by 𝜌(𝑡) = −2
√
2𝑡 log log(1∕𝑡) for 𝑡 ⩽ 𝑡0 and then 𝜌(𝑡) = 𝜌(𝑡0) for 𝑡 > 𝑡0. The

(closed) set 𝐴 ⊂ 𝑋

𝐴 =
{
𝜔 ∈ 𝑋 ∶ 𝜔(𝑡) ⩾ 𝜌(𝑡) for all 𝑡 ∈ [0, 1]

}
⊂ 𝑋

will then have positive probability 𝜇0(𝐴) > 0. Conditioning on 𝐴, we define 𝜇 = 1

𝜇0(𝐴)
𝟙𝐴𝜇0. Let

𝑟 > 0 arbitrary. For any ball 𝐵𝑟(𝜔), we have 𝜇(𝐵𝑟(𝜔)) > 0 if and only if 𝜔 + 𝑟 > 𝜌 on [0,1]. A con-
struction as in the previous example shows that 𝜇(𝐵𝑟(𝜔

′)) > 𝜇(𝐵𝑟(𝜔)) for such 𝜔. So, again, the
supremum of these values is not attained.
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