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We show that a skyrmion in a classical bipartite antiferromagnetic lattice can be spatially displaced in a
controlled manner by externally applied spin waves. We reveal the relation between the skyrmion motion and
the spin wave properties. To this end, we derive a classical spin wave formalism, which is tailored to the
antiferromagnetic two-dimensional square lattice. The antiferromagnetic spin waves can be classified into two
types with respect to their polarization, with two modes each. The circularly polarized spin waves oscillate
with different amplitudes in the respective sublattices and induce a skyrmion Hall effect. The two modes are
symmetric under sublattices exchange and determine the overall sign of the Hall angle. For linearly polarized
spin waves, the two sublattices oscillate elliptically in opposite direction, however, with the same amplitude.
These accelerate the skyrmion solely into their own propagation direction. The two modes are symmetric under
component x-y exchange and impact Bloch or Néel skyrmions differently. Our results indicate possible technical
applications of spin wave driven skyrmion motion. As one example we propose a racetrack where spin waves
pump skyrmions along the track in antiferromagnets.
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I. INTRODUCTION

Magnetic skyrmions are vortex-like, noncollinear two-
dimensional configurations of magnetic moments and are
presently in the focus of attention as a research topic, not
at least because of their promising technical applications as
possible information carriers. Most commonly studied up to
present are ferromagnetic skyrmions, because they are rela-
tively easy to detect in bulk solid-state materials or magnetic
thin films. Their net magnetization also allows for a rather
straightforward external manipulation by magnetic fields or
spin-polarized electric currents. A comprehensive review of
their topological and dynamical properties can be found in
Ref. [1]. Ferromagnetic skyrmions have initially been found in
MnSi [2] and in FeCoSi [3] in skyrmion lattices. In 2013, in-
dividual ultrasmall ferromagnetic skyrmions in a PdFe bilayer
grown on a (111) iridium surface have been reported [4] where
even their internal magnetic structure could be resolved [5].
Use of skyrmions as information carriers (bits) on a racetrack
is tempting because they can be moved in a controlled manner
by low-density electric currents [6].

However, ferromagnetic skyrmions are affected by the
skyrmion Hall effect (SHE), which deflects the skyrmion from
its course along the racetrack. To counter this undesired effect,
the idea came up to use antiferromagnetic (AFM) skyrmions
[7,8]. Naively, they would be expected to show no SHE due to
the two ferromagnetic sublattices of opposite magnetization,
which form the antiferromagnet (in a semiclassical picture)
and which compensate to zero net magnetization. Indeed, it
was shown theoretically that skyrmions in AFM materials
can be stabilized [7], created, and moved by electric currents,
showing no SHE [8,9]. In synthetic AFMs, the controlled
generation of skyrmions using thermal effects has recently

been reported [10]. Likewise, stable skyrmions in synthetic
AFMs have been realized at room temperature [11] and also
in ferrimagnets [12]. Yet, the realization of skyrmions (or
antiskyrmions) in bipartite AFM lattices remains elusive up
to present.

Ferromagnetic skyrmions can be created [13,14] by spin-
polarized, in-plane electric currents, or, even well controlled
[15], by rotating the magnetization at the edge of a stripe [16].
Electric currents also allow to move ferromagnetic skyrmions
[6] and steer their Hall angle by electric gate voltages [17].
Another option is to use spin waves (magnons) in ferromag-
nets to drive ferromagnetic skyrmions [18–20]. This approach
has the advantage that no electric charges flow. Spin waves
in ferromagnets can be created, for instance, by a pulse of a
spin-polarized current through the magnetic tip of an atomic
force microscope. Such a device would act as a point-like
source of magnons. Once the magnons hit a ferromagnetic
skyrmion, the latter can be moved while the spin wave ex-
periences scattering and, in general, deflection.

In this paper, we investigate the possibility of driving AFM
skyrmions by externally applied spin waves traveling through
the AFM host and interacting with a skyrmion. We consider a
basic model of a two-dimensional square lattice of classical
magnetic moments. This model is well established for de-
scribing ferromagnetic systems and we use it for the bipartite
AFM case of two ferromagnetic sublattices of opposite mag-
netization in a checkerboard arrangement. This approach is
generic to describe skyrmions, see, e.g., Ref. [8]. In particular,
we aim to illuminate the relationship between spin waves
properties and the resulting skyrmion motion. To this end, we
start with an analysis of the spin wave formalism. Although
a theoretical investigation of classical AFM spin waves is not
new [21,22], we introduce here the formalism and the notation
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as a basis of a further analysis of the specific spin wave driven
skyrmion motion by linearizing the equation of motion in
Sec. IV. The formalism is tailored to the model we use and is
derived from the Landau-Lifshitz-Gilbert equation of motion.
We obtain explicit analytical expressions for the spin wave
properties relevant for the present situation, which can directly
be compared to the numerical simulations of the full model
dynamics. Especially, we are able to separate the AFM spin
wave into components on their respective sublattices with cor-
responding amplitudes. This turns out as important regarding
skyrmion driving. The fact that AFM spin waves can move
skyrmions has been studied in Ref. [23], however, with an
ansatz different from that used in the present paper, and with
a different focus.

We consider a bipartite single layer AFM on a discrete
lattice for both an analytic description of the spin waves and
the numerical simulations. Furthermore, we use the linearized
equations of motion to describe the spin waves and consider
and simulate them to be injected at one edge of the lattice.
By this, we are able to control the spin wave properties
such as their amplitude and frequency. Here, we highlight the
importance of the sublattice spin wave amplitudes and their
symmetries for the actual skyrmion motion. In Sec. VI, we
determine the motion of the AFM skyrmions under the influ-
ence of various spin waves. In Sec. VII we also investigate
the case of nonvanishing Gilbert damping α �= 0 present in
the Landau-Lifshitz-Gilbert equation of motion. In general,
we find a much stronger impact of magnons on the skyrmion
dynamics in the AFM case as compared to the ferromagnetic
case. On the one hand, this can lead to more strongly disturbed
skyrmion motion, especially at elevated temperatures. On the
other hand, spin waves are consequently much more efficient
to steer a guided motion of the skyrmion, which would make
magnon-driven AFM skyrmions even more interesting since,
unlike the case of ferromagnets [23], they evade the SHE. Fi-
nally, in Sec. VIII we apply our findings to propose a concept
of how an AFM skyrmion racetrack could be designed using
realistically damped spin waves.

II. MODEL

We consider, as a generic model, a two-dimensional square
lattice with classical magnetic moments Mi at site i assumed
to be magnetized to saturation. The vectors representing the
magnetic moment in this model are scaled such that they have
unit length |Mi|/MS = 1. The saturation MS is absorbed in the
system parameters in the Hamiltonian

H = −J

2

∑
〈i, j〉

MiM j − D
∑
〈i, j〉

d i j[Mi × M j] − K
∑

i

(
Mz

i

)2
,

(1)

where
∑

〈i, j〉 is a summation over nearest neighbors. The first
term describes the magnetic exchange interaction of strength
J . The Dzyaloshinskii-Moriya interaction (DMI, second term)
is given here in general form. Originally, it roots in a bro-
ken symmetry of the crystal lattice [24]. We include it as a
phenomenological term, where D is a constant and the vector
d i j defines whether we use bulk DMI d i j = ri j or interfacial
DMI d i j = ri j × z. Here, ri j is the distance vector connecting

FIG. 1. Illustration of the magnetization profiles of a Néel
skyrmion (left) and a Bloch skyrmion (right).

site i with site j, while z is the unit vector in z direction,
perpendicular to the x-y plane of the lattice. The last term in
Eq. (1) describes the magnetocrystalline anisotropy in the z
direction, of strength K .

In the ferromagnetic case, with the appropriate choice
of parameters D/J and K/J , this Hamiltonian stabilizes a
skyrmion [25]. Here, we consider both types: Bloch and
Néel skyrmions. Bloch skyrmions are stabilized by bulk DMI,
which is typically found in bulk materials with inversion sym-
metry breaking, while Néel skyrmions are stabilized by the
interfacial DMI of multilayers (see Ref. [14]). Both types are
illustrated in Fig. 1.

In the case of a bipartite antiferromagnet, we assume that
the Hamiltonian in Eq. (1) still holds. Then, a change of
the parameters J → −J and D → −D stabilizes an AFM
skyrmion with the very same structure (size, chirality, etc.)
[26]. For AFM skyrmions, it is convenient to study them
in the sublattice picture. Since neighboring moments try to
align anti-parallel, the lattice becomes checkerboard like, with
the “white” fields denoted as sublattice A and the “black”
fields as sublattice B. We define a consistent notation for the
magnetic moments depending on which sublattice they belong
to, according to

Mi =
{

ai if i ∈ sublattice A,

bi if i ∈ sublattice B.
(2)

III. DYNAMICS

The dynamics in our paper is studied by the Landau-
Lifshitz-Gilbert (LLG) equation [27]

∂

∂t
M i = −M i × Heff

i + αMi × ∂

∂t
Mi. (3)

It describes the damped precession of a magnetic moment
M i around a local effective magnetic field Heff

i . We set the
gyrocoupling constant γ in such a way that the unit of time
in our simulations is t0 = 1/J . The effective magnetic field
follows from the Hamiltonian as Heff

i = −∂H/∂M i and, thus,
from Eq. (1) through

Heff
i = J

∑
r

Mi+r + 2D
∑

r

(Mi+r × d i,i+r) + 2KMz
i z, (4)

where r ∈ {±x; ±y} is the spatial vector pointing to the nearest
neighbor. In the sublattice picture of a semiclassical antiferro-
magnet, we have to consider two LLG equations of the form
of Eq. (3), one for each sublattice corresponding to the cases
in Eq. (2). Therefore, each sublattice has its own effective field
Heff

i,A (e.g., for sublattice A). Since the neighboring moments
of a spin in sublattice A belong to sublattice B and vice versa,
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the effective field consists of moments from both sublattices
and follows as

Heff
i,A = J

∑
r

bi+r + 2D
∑

r

(bi+r × d i,i+r) + 2Kaz
i z, (5)

and similar for Heff
i,B. This enables us to consider the antiferro-

magnet effectively as two separate ferromagnetic sublattices
coupled by their respective effective fields Heff

A/B [28].

IV. SPIN WAVES

A. Formalism

Before studying the spin wave-skyrmion interaction, we
first address global properties of the spin waves in the anti-
ferromagnet in the absence of Gilbert damping, α = 0. Finite
damping will be addressed in Sec. VII. To obtain results for
harmonic spin waves, we start out with the linearized dynam-
ics. The time evolution of a magnetic moment is approximated
close to a stationary state according to M(t ) ≈ M0 + δM(t ).
Inserting this decomposition in the LLG, Eq. (3), and lineariz-
ing we obtain the equation of motion

δṀi(t ) = −δM i(t ) × Heff,0
i − M0

i × δHeff
i (t ), (6)

where the terms Heff,0
i and δHeff

i (t ) are the effective fields
given in Eqs. (4) and (5) with M0

i replaced by δM i(t ). Since
we want to study spin waves around the classical AFM ground
state, we assume, a0

i = z and b0
i = −z for each lattice site i,

according to the notation of Eq. (2). Note that δai · a0
i = 0 due

to normalization. Using this we see that spin waves around the
(anti)ferromagnetic ground state are independent of the DMI:
According to Eqs. (6) and (4) two terms depend on the DMI.
The first one is Heff,0

i whose DMI-part 2D
∑

r(M
0
i+r × d i,i+r)

vanishes because the ground state M0
i = z is independent of

the lattice site. The other term is of the kind M0 × (δM × d ).
This term vanishes because both δM and d are in the xy plane
and their cross product is thus parallel to the z axis so that
M0 × z = 0. However, one should keep in mind that the spin
waves are independent of the DMI only because we consider
harmonic spin waves and a DMI perpendicular to the classical
AFM ground state as used here. Without linearization or in
the case of an in-plane antiferromagnet the DMI would affect
spin waves [29], which, however, is not the case in the present
paper. As already pointed out, in the sublattice picture we
have two LLG equations and therefore obtain a system of
two coupled linearized equations of motion for the AFM spin
waves in the form

δȧi = δai ×
(

J
∑

r

z − 2Kz

)
− z × J

∑
r

δbi+r, (7)

δḃi = −δbi ×
(

J
∑

r

z − 2Kz

)
+ z × J

∑
r

δai+r, (8)

where we omit now the DMI. As an ansatz, we consider
sublattice spin waves of the form δai = a( cos(rik −
ωt ), sin(rik − ωt ), 0)T and δbi = b( cos(rik − ωt ),
sin(rik − ωt ), 0)T with the same wave vector k but different
amplitudes a and b. Using the trigonometric equalities
cos ((ri + r)k) + cos((ri − r)k) = 2 cos(rik) cos(rk) and
sin ((ri + r)k) + sin ((ri − r)k) = 2 sin(rik) cos(rk), where

r is the relative position between two neighboring sites, we
arrive at the equations of motion

δȧi = −δai × ρz − Ckδbi × z, (9)

δḃi = δbi × ρz + Ckδai × z. (10)

Here, ρ = 2K − 4J , which coincides with the homogeneous
energy density ρ = −2E0/N of the classical AFM ground
state, and

Ck = −2J[cos(kxd ) + cos(kyd )] (11)

depends on the wave vector k = (kx, ky) and the lattice con-
stant d . With the previously mentioned assumption that δa and
δb are each circularly oscillating waves, i.e., the amplitudes
are the same for the x and y component, it is possible to
reduce the vector equation of motion of Eqs. (9) and (10) to a
system of coupled, linear differential equations regarding their
amplitudes a and b. In terms of the vector (a, b)T this system
becomes a simple eigenvalue problem,

ω

(
a
b

)
=

(−ρ −Ck

Ck ρ

)(
a
b

)
. (12)

The eigenvalues

ω(k) = ±
√

ρ2 − 4J2[cos(kxd ) + cos(kyd )]2 (13)

of the 2 × 2 matrix come in pairs, are symmetric around
zero and represent the dispersion relation. As spins oscillate
circularly, we denote the corresponding waves circularly po-
larized with two modes for the two eigenvalues [21]. The
fact that there arise two modes is a particular feature of an
antiferromagnet; there is only one mode for a ferromagnet.
Following Ref. [30] we call the +ω-mode “left-handed”, and
the −ω-mode “right-handed”.

A particularly interesting quantity is the normalized eigen-
vector ν associated with the eigenvalue ω. Its components
describe how strongly spins on the different sublattices oscil-
late. The eigenvectors obey the symmetries ν(+ω) = (ν1, ν2)
and ν(−ω) = (−ν2,−ν1), depending on the eigenvalues, with
the explicit expressions

ν1 = −Ck√
2ρ

(
ρ +

√
ρ2 − C2

k

) ,

ν2 = Ck√
2ρ

(
ρ −

√
ρ2 − C2

k

) . (14)

These two quantities can, as components of the eigenvector,
be interpreted as the normalized amplitude of the spin oscil-
lation on the respective sublattice. Since ν1 and ν2 are not
equal and both depend on k, it means that the two sublattices
oscillate not only in opposite direction but also with different
amplitudes depending on the wave vector. It is noticeable that
the right- and left-handed spin waves are antisymmetric under
sublattice exchange.

B. Superposition of spin waves

Clearly, left- and right-handed circularly polarized spin
waves can be superposed. In the following, we examine two
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kinds of superposition, namely the symmetric (+) and the
antisymmetric (−) sum of both parts.

In the derivation for the circularly polarized spin waves
above, we have assumed the form, e.g., for sublattice A,
δai = a( cos(rik − ωt ), sin(rik − ωt ), 0)T . This leads to the
two solutions for ω given in Eq. (13) and to amplitudes (eigen-
vectors) ν1 for +ω and −ν2 for −ω. A different spin wave
δa′ = a( cos(rik − ωt ),− sin(rik − ωt ), 0)T of opposite cir-
culation, also solves the equations of motion (9) and (10)
with the same two solutions. For such a spin wave, also the
amplitudes (eigenvectors) are exchanged, i.e., −ν2 for +ω

and ν1 for −ω. This is similar for the B sublattice. Due to
the exchange of the sublattice oscillation amplitude, the su-
perposition of the two differently oscillating sublattice waves
does not vanish and elliptically oscillating waves emerge,
according to

δa(ω) ± δa′(ω) =
(

[ν1 ∓ ν2] cos(rik − ωt )

[ν1 ± ν2] sin(rik − ωt )

)
, (15)

δb(ω) ± δb′(ω) =
(

[ν2 ∓ ν1] cos(rik − ωt )

[ν2 ± ν1] sin(rik − ωt )

)
. (16)

They show some peculiarities. The respective amplitudes
in x and y direction are the same for both sublat-
tices A and B. While both sublattices oscillate with the
same amplitudes and the same frequency, they oscillate
in different directions. It is convenient to define a four-
component vector ψ± = (ax, bx, ay, by), which contains the
amplitudes and its index denotes whether the superpo-
sition of the wave is symmetric (+) or antisymmetric
(−), i.e.,

ψ+ =

⎛
⎜⎜⎜⎝

ν1 − ν2

−(ν1 − ν2)
ν1 + ν2

ν1 + ν2

⎞
⎟⎟⎟⎠ and ψ− =

⎛
⎜⎜⎜⎝

ν1 + ν2

ν1 + ν2

ν1 − ν2

−(ν1 − ν2)

⎞
⎟⎟⎟⎠. (17)

Only for this special case, we recover the known results
of AFM magnons in terms of the staggered magnetization
l = (a − b)/2 and the total magnetization m = (a + b)/2,
see, e.g., Ref. [31]. One can easily see that for ψ+, the
staggered magnetization, exclusively oscillates in x direction
(and the magnetization exclusively in y direction). In anal-
ogy to electromagnetic waves, as well as to Ref. [23], we
thus denote ψ+ as linearly polarized spin waves in the x
direction. For the same reason, we denote ψ− as linearly
polarized spin waves in the y direction. Nevertheless, we
continue using the sublattice picture. In view of Eq. (17)
and ignoring the sign, it is noticeable that for the linearly
polarized spin waves the sublattices behave similarly, i.e.,
|ax| = |bx| as well as |ay| = |by|. Additionally, the spin waves
do not oscillate circularly, but elliptically. Therefore, we
may focus on the difference of the components. It turns
out that the sign of the superposition creates a component
symmetry x ↔ y. The x-polarized spin wave oscillates with
the amplitude |ν1 − ν2| in the x component and with |ν1 +
ν2| in the y-component, and vice versa for the y-polarized
spin wave.

FIG. 2. Snapshot of the components ax and bx of the spins along
the cross section in the x direction of the lattice as a function of the
distance to the left edge are plotted as colored symbols. The solid
lines are the corresponding fitted sine functions. The parameters are
K/J = 0.04 and A0/MS = 0.05. The wave is induced by rotating the
spins at the edge x = 0 of the lattice in time.

V. NUMERICAL SIMULATIONS OF THE SPIN WAVES

In order to verify the analytical results of the preceding
section, we next compare them to simulation data, based
on Eq. (1). To this end, we prepare the lattice in the clas-
sical AFM ground state and drive the magnetic moments
on the left edge of the lattice into oscillation by external
forcing. Edge spin manipulation is a common tool when
working with spin lattices [15,16]. To create circularly po-
larized spin waves, we oscillate the leftmost spins, e.g.,
a = (A0 cos(ωt ), A0 sin(ωt ),

√
1 − A2

0 )T , with a chosen fre-
quency ω and an amplitude A0/MS = 0.05. In order to create
linearly polarized waves, the spins are oscillated similarly,
however, with only one component oscillating, e.g., a =
(A0 cos(ωt ), 0,

√
1 − A2

0 cos2(ωt ))T . After a few oscillations,
the spin wave travels long enough through the lattice in order
to obtain a sufficient amount of data points to fit the compo-
nents of the spins to sine functions. In Fig. 2, the x component
of the magnetic vectors a and b along the lattice in x direction
are plotted together with the corresponding fitted sine func-
tions. Because these sine functions are along the lattice, the
fit gives the lattice vector kx as well as the amplitude for each
spin component in the simulation. Note that, in order to get
a controlled spin wave, we construct the simulations so that
ky = 0, which in turn means that the considered wave num-
ber is only in x direction k := kx. Hence, we have tuples of
data points (ω, k, ax, bx, ay, by), which we can compare to the
analytical results. All simulations were made with the system
parameter K/J = 0.04. The dispersion relation ω(k) is shown
in Fig. 3. The simulated data fit well to the analytical results
of Eq. (13). It also reproduces the well-known linear slope for
medium large k or if K → 0, as well as the gap, which is due
to the easy-axis term K in the z direction [32]. Additionally,
we calculate the normalized eigenvectors (amplitudes) for
both, linearly and circularly polarized waves, from the data
by normalizing the fitted amplitudes and interpreting them as
a normalized eigenvector

ψ± =

⎛
⎜⎜⎝

ax

bx

ay

by

⎞
⎟⎟⎠/√

a2
x + b2

x + a2
y + b2

y. (18)
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FIG. 3. Dispersion relation ω(k) in units of J of an AFM spin
wave where the dots represent the fitted data from the simulations
(fitted k to the corresponding frequency ω) and the solid line shows
the frequency calculated using Eq. (13).

These data and the comparison to the analytical results are
shown in Figs. 4 and 5. The simulations confirm the analyti-
cal calculations. They also perfectly reproduce the sublattice
symmetry of the circularly polarized spin waves and the x-y
symmetry of the linearly polarized spin waves, respectively. In
addition, we have also investigated different values of the DMI
D in the range of D/J ∈ [0; 0.15] and found no significant
impact on the spin waves, just like the theory predicted (data
not shown).

VI. SKYRMION-SPIN WAVE INTERACTION

We next consider the interaction of spin waves with AFM
skyrmions. To simulate the skyrmion-spin wave interaction,
we prepare the AFM lattice with a single, isolated and sta-
tionary skyrmion located close to the left edge of the lattice.
We consider both, skyrmions of the Bloch and of the Néel
type, and find no difference in the case of circularly polarized
spin waves. For all simulations reported below, we have used
the system parameters D/J = 0.15 and K/J = 0.04. Addi-
tionally, we also performed simulations with other system
parameters resulting in moving skyrmions with different sizes.
These results can be found in the Appendix. Then, we inject
a monochromatic spin wave into the lattice by driving the

FIG. 4. Normalized amplitudes of a circularly polarized spin
wave on sublattice A (blue) and sublattice B (red). The symbols mark
the fitted data while the solid lines are calculated from the eigenvec-
tor ν as in Eq. (14). The parameters are D/J = 0, K/J = 0.4, and
A0 = 0.05MS .

FIG. 5. Normalized amplitudes of a linearly polarized spin wave
for the x components (blue) and the y components (red) of the spin
wave. The symbols mark the fitted data while the solid lines are
calculated from the eigenvector components as in Eq. (14). The
parameters are D/J = 0, K/J = 0.4, and A0 = 0.05MS .

spins of the leftmost edge of the lattice into oscillation (see
Sec. V). The spin wave travels in positive x direction, from left
to right, over the lattice and hits the skyrmion where it scatters.
This scattering induces a net skyrmion motion, depending on
the spin wave attributes. As a most important difference to
ferromagnetic spin wave driven skyrmions, which propagate
against the spin wave propagation direction [18–20], the AFM
spin waves drive the AFM skyrmion into their propagation di-
rection. They induce a force, which accelerates the skyrmion.
This acceleration is common for AFM structures influenced
by a force [34]. In passing, we note that we have also simu-
lated ferromagnetic spin wave-skyrmion scattering and found
that this results in much slower skyrmion motion than in the
AFM case (see Appendix for more details). In Fig. 6, the

FIG. 6. Illustration of a circularly polarized AFM spin wave,
which scatters at an AFM skyrmion. Shown here is the x component
Mx of each lattice spin, cut off at ±0.12MS for the benefit of better
visibility. For this illustration we prepared the lattice by multiplying
each spin of the sublattice B by −1, so that the AFM skyrmion
is visible as a coherent patch, highlighted by the black circle. Ad-
ditionally, this preparation directly reveals the different spin wave
amplitudes of the two sublattices. The spin wave propagates in the
positive x direction, from left to right, and scatters at the skyrmion.
This scattering induces a skyrmion acceleration aSk, depicted here
by an arrow. Circularly polarized spin waves accelerate the skyrmion
with a skyrmion Hall angle 
. The parameters are D/J = 0.15,
K/J = 0.04, ω/J = 1.8, and the driving amplitude A0 = 0.05MS .
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FIG. 7. Distance traveled by the AFM skyrmion (in units of the
lattice constant d) over time (in units of t0 = 1/J) while it is under
the impact of a circularly polarized spin wave. The symbols represent
the simulated data while the solid lines are fitted square functions to
these data points. Because circularly polarized spin waves induce a
skyrmion Hall effect, the plot shows x and y directions. The data were
simulated with the system parameters D/J = 0.15 and K/J = 0.04,
and spin wave parameters ω/J = 1.8 and A0 = 0.02MS .

scattering of an AFM spin wave at the skyrmion is illustrated
for a specific example. The presentation of the data is such
that one can compare it with studies of ferromagnetic spin
wave skyrmion scattering [19]. Movies of the corresponding
scattering of circularly and linearly polarized spin waves with
skyrmions and subsequent skyrmion motion are included in
the Supplemental Material [33]. Of central interest is the
time-dependent position of the skyrmion center during the
simulation.

For a quantitative analysis of the motion of the skyrmion,
we determine its position by multiplying each sublattice B
spin by −1 to obtain a ferromagnetic skyrmion representation,
then calculate the center of mass of the topological charge
density according to Ref. [35]. Furthermore, we compare
effects of circularly and linearly polarized spin waves in the
following.

A. Circularly polarized spin waves

We find that when a circularly polarized AFM spin wave
scatters at a skyrmion of either type, Bloch or Néel, it moves
the skyrmion not only in the same direction of the spin wave
propagation (x direction), but also induces a perpendicular
motion (y direction). In Fig. 7, the distance is shown, in units
of lattice sites d , traveled by the skyrmion in x and in y
direction, respectively, over time. The symbols represent the
position of the skyrmion center at the corresponding times.
The numerical data suggest an accelerated skyrmion motion,
which is also consistent with the finding that AFM skyrmions
behave like massive particles in a mean-field picture [36].
Therefore, we fit a square function f (t ) = aSk

2 t2 + v0t + s0,
where the time t is in units of t0 = 1/J , to the data and extract
the skyrmion acceleration aSk as a quantifier for the force
acting on the skyrmion since F = meffaSk.

The magnitude of the skyrmion acceleration induced by
the spin wave strongly depends on the spin wave amplitude.
The latter is a control parameter of the external drive. To
analyze this dependence, we have simulated the spin wave-
skyrmion scattering with a variety of spin waves of same
frequency ω/J = 1.8, but different oscillation amplitudes A0.

FIG. 8. Longitudinal (x, blue circles) and transversal (y, red tri-
angles) acceleration of an AFM skyrmion due to circularly polarized
spin waves with different driving amplitudes A0. The data were
extracted from simulated trajectories of the skyrmion center for the
parameters ω/J = 1.8, D/J = 0.15, and K/J = 0.04.

For each simulation the traveled distance of the skyrmion
center over time was fitted to a square function. The resulting
accelerations in the x and y direction, respectively, are plotted
against the spin wave driving amplitude in Fig. 8. As expected,
spin waves with larger amplitudes accelerate the skyrmion
stronger. At larger skyrmion velocities or at stronger driving
it was no longer possible to fit the track of the skyrmion
center over time to a square function and thus to a constant
acceleration. Other effects start to emerge. For instance, the
Doppler effect could arise so that the moving skyrmion ex-
periences a spin wave with an effectively larger wave length.
This lowers the acceleration, see Fig. 9 below, and thus re-
duces the velocity as compared to a uniform acceleration.
Such effects leading to a nonconstant skyrmion acceleration
are not shown here since analyzing this more complicated
motion is outside the scope of this paper. We consider only
small spin wave amplitudes of at most two percent of the spin
length, so that the resulting skyrmion motion is slow enough
to be fitted against a constant acceleration. In addition, the
assumptions necessary for the linearized spin wave theory
of Sec. IV to apply are fulfilled by such small spin wave
amplitudes. Nevertheless, acceleration of skyrmions not only
depends on the spin wave driving amplitude, but also on the
wave number k of the spin wave. This is shown in Fig. 9 where
we depict the fitted skyrmion acceleration in the longitudinal

FIG. 9. Longitudinal (x, blue circles) and transversal (y, red tri-
angles) acceleration of the skyrmion due to circularly polarized spin
waves with different wave numbers k. The parameters are D/J =
0.15 and K/J = 0.04. The spin wave is generated with a driving
amplitude A0 = 0.02MS .
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FIG. 10. Skyrmion Hall angle 
SHE versus spin wave frequency
ω, shown in degrees for better comparison with Ref. [23]. We obtain
a similar behavior even though we study a bipartite AFM on a lattice
instead of a synthetic AFM in the continuum approximation. We have
used the parameters D/J = 0.15 and K/J = 0.04.

(x) and transversal (y) direction, respectively, versus k. Both
the accelerations first grow with growing wave numbers until,
however, an upper bound is reached above which the skyrmion
acceleration drops rapidly. Additionally, the dependence of
the skyrmion acceleration on the wave number is different for
the x and y direction. Hence, there exists a SHE for spin wave
driven skyrmions.

An interesting property is that the spin wave induced SHE
angle 
SHE is, similar to its ferromagnetic pendant [19], de-
pendent on the wave number k of the spin wave and thus on
the driving frequency ω. In Fig. 10, the Hall angle is shown
for different values of the driving frequency ω. We plot the
skyrmion Hall angle in degree against ω, for comparison with
Ref. [23]. There, a similar spin wave induced Hall angle is de-
termined for different driving frequencies, but for a synthetic
antiferromagnet in the continuum approximation, while we
study a bipartite AFM on a lattice. Nevertheless, the frequency
dependencies of 
SHE(ω) obtained in this paper appear as
qualitatively similar to that of Ref. [23]. In addition, we find
a nonmonotonous dependence of the skyrmion Hall angle on
the frequency in Fig. 10 in the low-frequency regime. This
effect is stronger for larger skyrmions, which we show in the
Appendix. Even though the nonmonotonous “hump” in the
SHE is visible, one should keep in mind that the absolute
acceleration of the skyrmion in this regime is rather small (cf.
Fig. 9).

Regarding the force in the longitudinal direction of the
spin wave propagation, we find the same magnitudes for left-
and right-handed circularly polarized spin waves F‖(ω) =
F‖(−ω). However, in transversal direction (perpendicular to
the direction of the spin wave propagation) the force reverses
with handedness, F⊥(ω) = −F⊥(−ω). Hence, the sign of the
skyrmion Hall angle depends on whether we consider left- or
right handed spin waves, reflecting the sublattice symmetry
(cf. Sec. IV) of AFM spin waves.

We conclude that the spin wave induced SHE roots in the
different amplitudes the spin wave exhibits on each sublattice.
Regarding each sublattice separately, they form two ferromag-
netic skyrmions with opposite topological charge QA = −QB.
It is known that the sign of the SHE in ferromagnetic skyrmion
motion (e.g., the current-induced SHE) depends on the sign
of the topological charge [13,37]. That means the skyrmion
experiences a different SHE on each of the both sublattices.

FIG. 11. Distance traveled by an AFM Bloch (blue circles) and
Néel (red triangles) skyrmion over time while being under the im-
pact of an x linearly polarized spin wave. The symbols represent
the results of the simulations while the solid lines are fitted square
functions to these data points. Because linearly polarized spin waves
accelerate skyrmions exclusively in longitudinal direction, the plot
only shows the traveled distance in the x direction. The parameters
are D/J = 0.15, K/J = 0.04, ω/J = 1.8, and A0 = 0.05MS .

This matches with the observation that an interchanging of
the sublattices {A, B} → {B, A} results in a change of the
skyrmion Hall angle 
SHE → −
SHE.

B. Linearly polarized spin waves

For the scattering of linearly polarized spin waves at
skyrmions, we find the interesting result that they only in-
duce a skyrmion motion in their propagation direction with
no SHE. This observation supports the finding that the SHE
comes from different sublattice amplitudes, because in lin-
early polarized spin waves, both amplitudes are equal on
the sublattices. Hence, we only may focus at skyrmion mo-
tions in the x direction. As another peculiarity, we observe
that linearly polarized spin waves impact Néel and Bloch
skyrmions differently, contrary to circularly polarized waves.
Both Néel and Bloch type skyrmions are topologically pro-
tected, while Bloch skyrmions are energetically favored by
a bulk DMI and Néel skyrmions are favored by an interfa-
cial DMI. Theoretically it is possible to smoothly transform
one type into the other without changing the topology by
(Mx, My, Mz ) → (−My, Mx, Mz ). In Fig. 11, as one exem-
plary simulation, we compare the distance of Bloch versus
Néel skyrmions, driven by an x-linearly polarized spin wave,
as they travel in x direction. The symbols mark the data
obtained from the numerical simulations and the solid lines
are the corresponding fits to a square function. It shows that
both types of skyrmions are accelerated, but with different
magnitude.

We may extract the magnitudes of the accelerations from
the fits and interpret them as force acting on the skyrmion.
As for the circularly polarized spin waves, this force strongly
depends on the spin wave driving amplitudes. In Fig. 12, the
skyrmion acceleration (in longitudinal direction) is plotted
against varying spin wave amplitudes for Bloch and Néel
skyrmions. We observe that the larger the amplitude is, the
larger the acceleration of each of these becomes, but also
the difference increases. As for the circularly polarized spin
waves (see the previous section), the (longitudinal) accel-
eration of skyrmions by linearly polarized spin waves also
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FIG. 12. Longitudinal acceleration of an AFM Bloch (blue cir-
cles) and Néel (red triangles) skyrmion extracted from fits of the
traveled distance of the skyrmion over time (cf. Fig. 11) for differ-
ent simulations using linearly polarized spin waves with the same
frequency ω/J = 1.8.

depends on the wave number k. We plot the acceleration
of an AFM Bloch (blue circles) and Néel (red triangles)
skyrmion as a function of the wave number in Fig. 13.
Regardless of the wave number, Bloch skyrmions are in
general accelerated stronger by x linearly polarized spin
waves than Néel skyrmions. Both skyrmion types accelerate
stronger for higher wave numbers until an upper limit, how-
ever, at which this effect drops rapidly for wave numbers
k � π/(2d ).

The previously mentioned transformation between Bloch
and Néel skyrmions is similar to the transformation from x
to y linearly polarized spin waves. Therefore, we have also
studied the impact of x and y linearly polarized spin waves on
both Bloch and Néel skyrmions and found that an x ↔ y po-
larization exchange bears the same results as a Bloch ↔ Néel
exchange (data not shown). Thus, the component symmetry
of the linearly polarized spin wave has an immediate effect on
the force it applies to the skyrmion.

VII. DAMPED SPIN WAVES AND SKYRMION MOTION

Above, we have considered the dynamics in the absence
of any damping. In this section we report on analytical calcu-
lations for damped AFM spin waves and provide numerical
results. To this end, we linearize the LLG equation (3),

FIG. 13. Longitudinal acceleration of a Bloch skyrmion (blue)
and a Néel skyrmion (red) due to linearly polarized spin waves
with different wave numbers k. The parameters are D/J = 0.15
and K/J = 0.04, where the spin wave was generated with a driving
amplitude A0 = 0.02MS .

FIG. 14. Snapshot of a circularly polarized spin wave damped
along the lattice in longitudinal direction. The symbols are the x
component of a spin wave in the sublattice A (blue circles) and
sublattice B (red triangles), respectively. The solid lines are damped
oscillation functions ∼ exp(−x/ξ ) sin(kx + ϕ0 ), fitted to this data.
The parameters are D/J = 0, K/J = 0.04, ω/J = 1.8, A0 = 0.05MS ,
and α = 0.05.

analogously to Eq. (6), and include a nonzero damping
term α > 0. First, for ferromagnetic spin waves we find that
damping has only a marginal effect on the dispersion re-
lation ω(k) = (4J + 2K − 2J[cos(kx) + cos(ky)])/(1 + α2)
while it damps the amplitude of spin waves exponentially over
time ψ = ψ0 exp(−αωt ), depending on frequency ω.

The AFM case is more involved and we only consider
small values of α � 1. The detailed calculations are given
in Appendix A. Similar to the ferromagnetic case, no sig-
nificant change of the frequency appears by weak damping.
However, we find a phase shift in the amplitudes between the
two sublattices A and B, whose magnitude depends on the
damping α. Even though this shift is linear in α for small α,
it remains too small to be directly visible in our simulation
results. Also similar to the ferromagnetic case, with time the
amplitudes show exponential damping, albeit with one im-
portant difference: In the AFM case, the damping over time
ψAFM = ψ0 exp(−αρt ) appears to be independent of the spin
wave frequency, though dependent on the system parameters,
in striking contrast to the ferromagnetic case. Since we con-
sider a lattice in real space and continuously inject a spin wave
from the left edge we need to monitor the wave damping over
the distance traveled, before it reaches, e.g., the skyrmion. In
Fig. 14, we show this amplitude along the lattice, where the
symbols mark data points obtained from the simulations for
circularly polarized spin waves and the solid lines are fits to an
exponentially damped oscillation ∼ exp(−x/ξ ) sin(kx + ϕ0).
In the simulations, we drive the edge spins into oscillation and
let the resulting spin wave traveling into the lattice. Therefore,
we consider the spin wave amplitude over space rather than
over time. To this end, we assume that the amplitude decreases
over time as described above and that the spin wave travels
with a constant velocity. This leads to a decreasing amplitude
with increasing spatial distance. To estimate the correspond-
ing decay length, we calculate the traveling time of the wave
front t = x/vg with the group velocity derived from Eq. (13)
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FIG. 15. Decay length ξ of a damped AFM spin wave plotted
against the wave number k. The circles represent the data points from
fitting the simulation results to ψ = ψ0 exp(−x/ξ ) and the solid line
is calculated using Eq. (20). We have used the parameters D/J = 0,
K/J = 0.04, and α = 0.05.

as

vg(k) = ∂ω

∂k
= 4J2d sin(kd )[cos(kd ) + 1]√

ρ2 − 4J2[cos(kd ) + 1]2
. (19)

By this, a spatial decay of the spin wave ψ = ψ0 exp(−x/ξ )
follows from ψAFM, with the spin wave decay length

ξ (k) = vg(k)

αρ
. (20)

Since the damping in time is independent of the spin wave
frequency (and thus of the wave number), the decay length is
the group velocity vg scaled by the inverse energy 1/ρ and by
the inverse damping 1/α.

To compare this result with numerical simulations, we have
simulated AFM spin waves under the impact of Gilbert damp-
ing and have fitted the data to damped oscillations. The decay
length ξ obtained from the fitted data is plotted against the
wave number k in Fig. 15 where the circles mark the fitted
data and the solid line shows the result of Eq. (20). This
illustrates the increasing complexity of spin wave driven AFM
skyrmions. For the skyrmion motion due to a constant force
we see in the simulations that the Gilbert damping acts on the
skyrmion like a friction force on a particle in classical me-
chanics. This coincides with the case of, e.g., current-driven
AFM skyrmions [36]. However, damped spin waves do not
impose a constant force. Instead, Figs. 8 and 12 show that the
acceleration of the skyrmion strongly depends on the driving
amplitude, which decreases as the skyrmion moves to the
right, in the situation of continuous spin wave injection at
the left edge. In conclusion, this results in a more involved
skyrmion motion, which slows down to zero at some point.
Hence, to accelerate skyrmions in a damped system requires
larger driving amplitudes. As an example, we show in Fig. 16
how the spin wave driven motion of a skyrmion depends on
the driving amplitude A0 for α = 0.005 for three different
values of the spin wave numbers k. The skyrmion starts 48
lattice sites away from the spin wave source (left edge) and the
traveled distance is taken after t/t0 = 600 time steps. We see
that spin waves with larger decay length ξ are able to drive the
skyrmion further in space within a given time. This observa-
tion can be expected and illustrates that the driving amplitude
plays a crucial role. Furthermore, the data in Fig. 15 show
that the spin waves are damped differently depending on their

FIG. 16. Distance traveled by the skyrmion after t/t0 = 600
induced by a damped spin wave in dependence of its driving am-
plitude A0 for the parameters D/J = 0.15, K/J = 0.04, and α =
0.005. Three different driving frequencies for the spin waves were
considered.

wave number. As a result, in systems with naturally occurring
polychromatic spin waves, some parts of the wave are more
likely to reach the skyrmion. Overall, this will combine in a
nonlinear manner the influences of spin wave amplitude and
spin wave frequency of the skyrmion motion.

VIII. APPLICATION: RACETRACK

In the following, we use the force, which magnons impose
on skyrmions in antiferromagnets, to propose an application
in a racetrack. One popular set-up are narrow racetracks for
skyrmions [6,38]. However, spin waves injected at one end
would quickly die out in amplitude with increasing distance
from the injection point due to damping, as discussed in
Sec. VII. Although AFM spin waves are, in general, able to
move skyrmions without a SHE (linearly polarized waves),
we here propose a way to exploit the SHE using circularly
polarized spin waves, injected as close as possible to the
skyrmion. To this end, we propose to apply circularly polar-
ized spin waves to the racetrack from both sides, the upper
and the lower, and use opposite chirality. The SHE induces
forces with opposite y components, but equal x components,
which ultimately drives the skyrmion in the x direction, along
the track. More specifically, a left-handed spin wave, injected
from the upper side and propagating along the negative y
direction pushes the skyrmion in the negative y, and, due to
the SHE, also in positive x direction. On the lower edge sits
a source, which injects a right-handed spin wave propagating
along the positive y direction. This wave pushes the skyrmion
in the positive y direction, and also in the positive x direction,
see Fig. 17(a). In total, the skyrmion is thus pushed in the
positive x direction. As an advantage, the opposite spin wave
forces in the y direction create a potential, which holds the
skyrmion in the center lane of the track: The farther away
from the source the smaller is the amplitude of the spin wave
[see Fig. 14]. Since the amplitude of the wave plays a crucial
role for the strength of the force acting on the skyrmion (see
Fig. 8), there exists a balanced y coordinate in the middle of
the racetrack where the forces in the positive and negative
y direction cancel each other. Then only the force in the x
direction remains from both the waves. This is sketched in
Fig. 17(b).
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FIG. 17. A possible scenario. (a) Skyrmion under the influence
of the two spin waves from the top and bottom edge. The arrows indi-
cate the direction of the forces the spin waves apply on the skyrmion.
The green arrows indicate the force induced by the clockwise rotating
spin wave ψ (−ω) and the orange arrows indicate the force induced
by the counterclockwise rotating spin wave ψ (+ω). (b) Amplitude of
the two oppositely propagating spin waves, which are damped over
their course transverse to the racetrack.

We have also explicitly simulated this concept for an anti-
ferromagnetic spin wave driven skyrmion racetrack. Figure 18
shows snapshots of the skyrmion transport over time and in
the Supplemental Material [33] a video of this process can be
found.

The skyrmion will be pushed along the racetrack at each
spin wave injection source, denoted by SW, and travels a
small distance on its own due to inertia. When it reaches, even
partially, the subsequent region of the driving spin waves it
will be accelerated into the racetrack direction. We note that
we consider a very narrow lattice since we use edge spin
manipulation. This concept would also work on a broader
lattice when it is possible to inject the spin waves anywhere.
Then the racetrack will be determined by the injection source.
With regard to possible technical realization the transport
along the racetrack does not depend on a particular spin
wave frequency, but solely on the competition of the oppos-
ing circularly spin waves with opposite chirality. Thus, our

FIG. 18. (Top to bottom) Position of the skyrmion over time in
our proposal of a racetrack. SW– and SW+ denote the injection
source of left- and right handed circularly polarized spin waves,
respectively, while the red circle is the skyrmion. A video can be
found in the Supplemental Material [33].

concept of a racetrack is robust against technical imperfec-
tions or fluctuations of the spin waves. However, it comes with
the price that the actual velocity of the skyrmion is difficult
to control.

IX. SUMMARY

We have shown that AFM spin waves scatter at skyrmions
and impose a net driving force on them, so that they start
moving. AFM spin waves offer more flexibility in the control
since, in contrast to the ferromagnetic counterpart, two lin-
early independent magnon modes exist. Circularly polarized
spin waves create a skyrmion Hall effect, which nontrivially
depends on the wave number k and is symmetric with re-
spect to the chirality of the spin wave. Linearly polarized
spin waves, on the other hand, move the skyrmion solely
in the direction of the wave propagation. Rather, they drive
Bloch and Néel skyrmions differently with the symmetry that
Bloch skyrmions driven by x polarized spin waves behave
quantitatively and qualitatively exactly like Néel skyrmions
driven by y polarized spin waves (same for a change of spin
wave polarization). This is consistent with the fact that by a
change of coordinates x → y and y → −x (rotation around
z axis) one can transform a Néel to a Bloch skyrmion and
can similarly transform an x-polarized spin wave to a y-
polarized one as well. Both insights show that symmetries of
the spin wave (sublattice symmetry for right- and left-handed
circularly polarized spin waves or component symmetry for
linearly polarized ones) have an immediate impact on the
force exerted on the skyrmion.

In contrast to the ferromagnetic spin wave-skyrmion inter-
action, AFM skyrmions react much stronger to spin waves.
Most importantly, they travel along their (longitudinal) prop-
agation direction, and not against it as in the ferromagnetic
case. Our results show that probably most of the technical
applications of the spin wave-skyrmion interaction are in-
deed promising and work probably even better, with AFM
skyrmions. We propose one specific idea for illustrative pur-
poses in this paper.

Furthermore, it is known that for ferromagnetic skyrmions
there is a competition between forces when temperature gra-
dients are involved. They flow from cold to hot regions due
to magnon forces or from hot to cold regions when entropy
forces dominate [39–41]. Thus, depending on which effect
dominates, the ferromagnetic skyrmion flows in a certain di-
rection. This competition of forces is not expected to exist
for AFM skyrmions since they flow with the magnon cur-
rent. They should always move from hot to cold regions and
should be more sensitive to temperature, which would make
them even more attractive for technical application in spin
caloritronics. In fact, Ref. [28] reports that antiferromagnetic
skyrmions are much more sensitive to temperature. Also, a
recent study found a nonmonotonic temperature dependence
of the velocities and the diffusion of current-driven skyrmion
dynamics in ferrimagnets [42].

Finally, we propose to use magnon waves to define a
skyrmion race track in bipartite antiferromagnets by injecting
right-handed circularly polarized spin waves from the side
along the track in +y direction and at the same time left-
handed circularly polarized spin waves in −y direction. Due
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to ubiquitous damping, this channels skyrmions of either type,
Néel or Bloch, to move in +x direction.
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APPENDIX A: DAMPED ANTIFERROMAGNETIC
SPIN WAVES

The first few steps of the calculation are analogous to the
case of the undamped AFM spin waves described in Sec. IV.
We linearize Eq. (3) thereby considering a small but nonzero
damping term α, so that

δṀi(t ) = − δM i(t ) × Heff,0
i − M0

i × δHeff
i (t )

+ αM0
i × δṀi(t ). (A1)

Rearranging the terms we obtain

(1 + α2)δṀ i(t ) = − δM i(t ) × Heff,0
i − M0

i × δHeff
i (t )

− α(M0
i · Heff,0

i )δM i(t ) + αδHeff
i (t ).

(A2)

In this formalism the damping can be calculated over time
where we assume that the assumptions made in Sec. IV still
hold and both sublattices experience the same damping α.
Next, we consider only terms linear in α. Thus, the linearized
equations of motion in the sublattice representation including
damping are

δȧi = −δai × ρz − Ckδbi × z − αρδai − αCkδbi, (A3)

δḃi = δbi × ρz + Ckδai × z − αρδbi − αCkδai, (A4)

cf. Eqs. (9) and (10). Again, we have assumed the sublattice
spin waves to be circularly oscillating waves with different
amplitudes. Since the spins are real valued, we assume, for
nonvanishing damping the physical spin wave to be the real
part of a complex vector δb = �(φB) rotating in the complex
plane

φB = b

⎛
⎝1

i
0

⎞
⎠ exp(−i[kr − ωt]), (A5)

and similar for the other sublattice A. With these assumptions
one can reduce Eqs. (A3) and (A4) to a system of equations re-
garding the sublattice wave amplitudes a and b, which can be
transformed to an eigenvalue equation

ω

(
a
b

)
=

(−ρ(1 − iα) −Ck(1 − iα)
Ck(1 + iα) ρ(1 + iα)

)(
a
b

)
, (A6)

cf. Eq. (12). The eigenvalues of the matrix in Eq. (A6) are

ω(k) = iαρ ±
√

ρ2 − C2
k , (A7)

FIG. 19. Longitudinal acceleration of Bloch skyrmions (solid
lines) and Néel skyrmions (dotted lines) due to linearly polarized
spin waves with different wave numbers k. The different symbols
mark the different radii R of the investigated skyrmions. We have
used the parameter K/J = 0.04 and different values of D/J in order
to get different skyrmion sizes.

neglecting terms of order O(α2). This result matches expecta-
tions that the real part of the eigenvalue resembles the left- and
right-handed oscillations of the nondamped case as in Eq. (13)
while the imaginary part describes time-dependent damping
exp(−αρt ) of the amplitudes. Analogous to Sec. IV, we may
calculate the normalized eigenvectors, which in the damped
case are complex,

ν(−ω) =
( −ν2

−ν1(1 + iα)

)
and ν(ω) =

(
ν1

ν2(1 + iα)

)
,

(A8)

with (ν1, ν2) as in Eq. (14). The consequences of these
complex entries become visible with Eq. (A5). For example
consider a clockwise rotating spin wave on the sublattice B.
By plugging in ν2(1 + iα) for b, which is the second entry of
ν(ω) from Eq. (A8), and regarding only the real part the wave
reads

δbi = ν2

(
cos(kri − ωt ) + α sin(kri − ωt )
sin(kri − ωt ) − α cos(kri − ωt )

)
e−αρt . (A9)

One can see that a π -phase shifted oscillation, which is
weighted by α is added to each component of the wave.
This can be brought into a more convenient form by
using the trigonometric properties cos(x) + α sin(x) =√

1 + α2 cos (x + arctan(−α)) and sin(x) − α cos(x) =
−√

1 + α2 cos (x + arctan(1/α)), where here x = kri − ωt .
For small α, we expand the inconvenient terms up to linear
order in α and obtain for the spin waves with ω > 0 the result

δbi(ω) = ν2

(
cos(kri − ωt − α)
sin(kri − ωt − α)

)
e−αρt . (A10)

This is a damped, clockwise rotating spin wave with a phase
shift of α relative to t = 0.

APPENDIX B: DIFFERENT SKYRMION SIZES

For the simulations of spin wave-skyrmion interactions
shown in the main text, we have used the system parameter
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FIG. 20. Skyrmion Hall angle 
SHE for skyrmions of different
radii R vs spin wave frequency ω, shown in degrees. We have used the
parameter K/J = 0.04 and different values of D/J to realize different
skyrmion radii.

D/J = 0.15 and K/J = 0.04. Thus, only skyrmions with a
radius R/d = 5.1 were considered. The radius is calculated
by

R =
∑

x,y q2
x,y[(xSk − x)2 + (ySk − y)2]∑

xy q2
xy

, (B1)

where the sum
∑

x,y goes over the whole lattice and qx,y is
the topological charge density qx,y = nx,y · (∂xnx,y × ∂ynx,y).
The vector nx,y denotes here the vector on each lattice site,
representing the magnetic moment, where each vector of sub-
lattice B was formerly multiplied by −1. To study skyrmions
of different sizes, we have performed simulations with two
other DMI parameters D resulting in different skyrmion
sizes, D/J = 0.13 → R/d = 3.1 and D/J = 0.17 → R/d =
8.6. One has to be careful when drawing conclusion between
skyrmion size and spin wave induced motion. Although the
(linearized) spin waves are independent of the DMI when
they are in the vicinity of the AFM ground state, this is
most probably not the case when they scatter at the skyrmion.
Nonetheless, we simulated the wave number k-dependent ac-
celeration of the skyrmion for different skyrmion sizes. In
Fig. 19 the acceleration of skyrmions impacted by x lin-
early polarized spin waves with an amplitude of A0 = 0.02MS

in dependence of the wave number k is shown for differ-
ent skyrmion sizes and types. The solid lines indicate a
Bloch skyrmion while the dotted lines indicate a Néel-type
skyrmion. One can clearly see that for all sizes the Bloch-type
skyrmion is accelerated stronger than the Néel one. Addition-
ally, smaller skyrmions are accelerated stronger; however, this
may also be due to the lower DMI strength D. The size of

FIG. 21. Distance traveled in x and y direction (blue and red,
respectively) by a FM skyrmion influenced by a monochromatic spin
wave. The parameters are K/J = 0.04 and D/J = 0.15 with the spin
wave parameters ω/J = 1.8 and amplitude A/MS = 0.05.

the skyrmion, or the DMI strength, also has an impact on the
skyrmion Hall angle regarding the skyrmion motion induced
by circularly polarized spin waves. In Fig. 20, the skyrmion
Hall angle in degree is plotted over the driving frequency
ω of the spin wave for different skyrmion sizes. Over the
whole frequency range the SHE is more pronounced for larger
skyrmion sizes. While for smaller skyrmions the skyrmion
Hall angle smoothly increases with increasing frequencies, it
is sensitive to small frequency changes in the low-frequency
regime for larger skyrmions. Nevertheless, it is important to
realize that in the low-frequency regime the absolute skyrmion
acceleration is low, too.

APPENDIX C: COMPARISON TO FERROMAGNETIC
SPIN WAVE DRIVEN SKYRMION

In this section, we compare the efficiency of driving
skyrmions by spin waves for AFM and FM skyrmions. We
have simulated both FM and AFM skyrmions within the same
2D lattice model and show in Fig. 21 the distance traveled
by a FM skyrmion in x and y direction (blue and red, respec-
tively) as an example. The system parameter were chosen
comparable to the simulations of the AFM case discussed
in the main text. The spin wave frequency was fixed to an
intermediate value in the spectrum to ω/J = 1.8 → k/d ≈
1.4. Noticeably, the motion shows a constant velocity as it
is typical for a FM skyrmion. Although the AFM skyrmions
realize commonly an accelerated motion, one could compare
Fig. 21 (FM) with Fig. 7 of the main text (AFM). It turns out
that the magnitude of the traveled distance in the AFM case,
even in a fraction of the time, is much larger than the distance
in the FM case.
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