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Abstract
Wilhelm Weber’s electrodynamics is an action-at-a-distance theory which has the
property that equal charges inside a critical radius become attractive. Weber’s elec-
trodynamics inside the critical radius can be interpreted as a classical Hamiltonian
system whose kinetic energy is, however, expressed with respect to a Lorentzian met-
ric. In this article we study the Schrödinger equation associated with this Hamiltonian
system, and relate it to Weyl’s theory of singular Sturm–Liouville problems.

Keywords Singular Sturm–Liouville theory · Schrödinger equation · Weyl theory:
limit circle and limit point

Mathematics Subject Classification 34B24 (SLT) · 35J10 (Schr.eq.) · 34B20 (Weyl)

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Weber electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outline and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 The classical motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Derivation of the nuclear Weber–Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Laplace-Beltrami operator on Weber plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Separation into radial and angular part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Angular equation for Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Inside critical radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Urs Frauenfelder
urs.frauenfelder@math.uni-augsburg.de

Joa Weber
joa@ime.unicamp.br

1 Universität Augsburg, Augsburg, Germany

2 Unicamp, Campinas, Brazil

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s13324-024-00891-5&domain=pdf


   31 Page 2 of 26 U. Frauenfelder, J. Weber

4.1 Radial equation for R—zero angular momentum � = 0 . . . . . . . . . . . . . . . . . . . . . .
Singular Sturm–Liouville theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Type ’limit circle’ at the origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Type ’limit circle’ at the critical radius . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Equation for R—non-zero angular momentum � �= 0 . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Type ’limit circle’ at the origin (ρ = ∞) . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Type ’limit circle’ at the critical radius . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

Weber electrodynamics

Wilhelm Weber’s electrodynamics is a today largely forgotten action-at-a-distance
theory of electrodynamics. An interesting aspect of the theory is that while opposite
charges always attract each other, equal charges are repulsing each other outside a
critical distance rc, but become attracting, too, at distances smaller than rc. This led
to Weber’s planetary atomic model which Weber published, among other models,
posthumously [17]. A detailed account of this model can be found in [4, 5].

The history of Weber’s electrodynamics indeed reminds us on a fairy tale. Wilhelm
Weber is famous for his discovery together with Rudolf Kohlrausch on the connec-
tion between electrodynamics and the velocity of light. This connection appears in
Weber’s action at a distance theory quite different from the theory of Maxwell. How
Weber’s electrodynamics leads to a complementary description of the classical electro-
dynamical phenomena is described in the book “Weber’s electrodynamics" by André
Koch Torres Assis [3]. Differences occur if one considers instead of closed circuits
as well open circuits. From Weber’s force law Ampère’s force law for current ele-
ments can be derived which allows as well transverse Ampère forces. Peter Graneau
at MIT examined experimentally such phenomena as explained in the book “Newto-
nian Electrodynamics" he wrote jointly with his son Neal Graneau. Different from the
theory of Maxwell–Lorentz in Weber’s electrodynamics fields do not carry energy.
For that reason Weber’s Lagrangian differs as well from the Darwin Lagrangian. A
phenomenon which does not have an analogon in the theory of Maxwell–Lorentz is
the occurence of a critical radius at which the force between protons changes from
attracting to repulsing. This is reminiscent of the Euler-Tricomi equation.

In this paper we treat the Weber nucleus from a mathematical point of view.
It is surprising that the complementary approach of Weber to electrodynamics got

forgotten. Wilhelm Weber and Hermann von Helmholtz didn’t get along with each
other. Helmholtz studied vortices which led to the theory of vortex atoms of Lord
Kelvin. These vortex atoms had a great impact on the development of knot theory in
mathematics but as well are the reason for one of the most absurd stories in the history
of physics. Felix Klein blamed himself in his book “Geschichte der Mathematik im
19. Jahrhundert" for having explained to Karl Friedrich Zöllner, a phanatic admirer
of Wilhelm Weber, that every knot in four dimensions can be unknotted. In order to
disprove the theory of vortex atoms Zöllner tried with the help of a spiritualist medium
to prove the existence of a fourth dimension. The elderly WilhelmWeber participated
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as well at these spiritualist sessions and his complementary theory got forgotten in
Europe soon. It was different in the US. A famous person which concerned himself
with Weber’s electrodynamics is Vannevar Bush, the Science advisor of president
Roosevelt, or the above mentioned Peter Graneau.

Given a positive charge at the center, the Weber Lagrangian, see [15, 18], for a
second positive charge influenced by the one in the center is given in polar coordinates
by the formula

LW(r , φ, vr , vφ) = 1

2
(v2r + r2v2φ)−1

r

(
1 + v2r

2c2

)

where c is the speed of light. The first term is just the usual kinetic energy, but the
second term describes a velocity dependent potential. Historically this led to a lot
of confusion, in particular, Helmholtz doubted, because of the velocity dependent
potential, that energy is preserved. That energy is preserved can easily be seen by
changing brackets

LW(r , φ, vr , vφ) = 1

2

(
1− 1

c2r

)
v2r + 1

2
r2v2φ−1

r

= 1

2

(
grr v2r + gφφ v2φ

)
− 1

r
.

(1.1)

Now the potential does not depend on the velocity any more. But the kinetic part is not
computed with respect to the flat metric. In fact, the metric gets singular at a critical
radius, the Weber radius

rc = 1/c2

where c is the speed of light. Outside the critical radius the metric is Riemannian,
while inside it becomes Lorentzian.

Although the changing of brackets is mathematically trivial, the interpretation
of Weber’s Lagrangian as a velocity independent Coulomb potential in a curved
Lorentzian or Riemannian space seems to be first discussed in our previous paper
[6]. This interpretation finally opens the door to actually write down a Schrödinger
equation for the Weber nucleus, namely by replacing the kinetic part by the Laplace-
Beltrami operator but now with respect to the Lorentzian metric. The discussion of
the properties of the Schrödinger equation is the topic of the present paper.

Outline andmain result

In Sect. 2 we study the classical motion. In particular, we see that inside the Weber
nucleus there are no periodic orbits, but instead the trajectories start spiraling into the
origin (the collision locus).

In Sect. 3 the Lorentzian interpretation of Weber’s Lagrangian, given by for-
mula (1.1), enables us to find the Schrödinger equation for Weber electrodynamics by
replacing the Lorentzian kinetic energy by its Laplace-Beltrami operator.
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In Sect. 3.2 we separate the wave function into the radial and the angular part. In
Sect. 4 we show that inside the critical radius the radial part satisfies a singular Sturm–
Liouville problem with singularities at both ends, one due to the charge at the origin
where the potential is singular, and one due to the critical radius where the Lorentz
metric is singular.

The classical study of singular Sturm–Liouville problems is due to Hermann Weyl
and his famous discovery [20] of a dichotomy between the two cases of limit circle
and limit point. Weyl’s theory was further developed in Titchmarsh’s monograph [14].
If both ends are limit point the corresponding Schrödinger operator is self-adjoint,
while in the case of limit circle an additional boundary condition has to be chosen [12,
Chap.X §3 pp448]. The main result of this article is

Theorem A The radial part of Schrödinger’s equation of the Weber nucleus is limit
circle at both ends of (0, rc), namely at the origin r = 0 and at the critical radius
r = rc.

Theorem A is proved in Sect. 4. The case of zero angular momentum � = 0 is
Proposition 4.2. The case of non-zero angular momentum � �= 0 is Proposition 4.4.

The proof of Theorem A differs greatly in the case of zero angular momentum
� = 0 and non-zero angular momentum � �= 0. This is due to the fact that for
vanishing angularmomentum the singularity at the origin r = 0 is regular and therefore
the corresponding ode Fuchsian, see e.g. [13, §4.2], while for non-vanishing angular
momentum the singularity at r = 0 is irregular. See [11, Ch.5 §4] for the notions of
regular and irregular singularities of an ode. In the irregular case the behavior close
to the singularity is described by a diverging asymptotic series and the solutions start
oscillating wildly.

Interpretation

What do we learn from Theorem A and its proof? It is interesting to compare the
quantum solutions with the classical solutions. In fact, there are no periodic orbits in
the Weber nucleus before regularization. According to Gutzwiller’s trace formula, cf.
[7], there should be a relation between the classical periodic orbits and the treatment
by Schrödinger’s equation. In view of TheoremA the Schrödinger operator is not self-
adjoint, unless one assigns adequate boundary conditions; see [12, Ch.X §3]. Here one
discovers an interesting difference between the cases of vanishing and non-vanishing
angular momentum.

If the angular momentum vanishes, the singularity at the origin is regular. In this
case it is possible to assign natural boundary conditions; see [8, Kap.3 §7]. In fact,
a similar phenomenon happened already for the classical hydrogen atom in case of
vanishing angular momentum; see [8, Kap.3 §9]. For the Weber nucleus the classical
solutions for vanishing angularmomentumare collisions.Collisions can be regularized
so that one obtains periodic orbits.

For non-vanishing angular momentum the singularity at the origin is not regular.
Close to the origin the eigenfunctions of the Schrödinger equation, for any choice
of boundary condition, start oscillating wildly. In this case it is not clear how to put



A mathematical description of the Weber nucleus... Page 5 of 26    31 

natural boundary conditions. On the classical side a similar phenomenon happens.
Namely, for non-vanishing angular momentum the classical solutions start spiraling
into the origin. In this case it is not clear how to regularize them.

It would be interesting to find a semi-classical interpretation, see [7], of this phe-
nomenon which makes the Weber nucleus an intriguing dynamical system worth of
further explorations.

2 The classical motion

Before we embark on the quantum mechanical treatment of the Weber nucleus we
discuss its classical motion, see also [16] and [4, 5, §6.4].

As we explained in the introduction the relative motion of two equal charges is
described in polar coordinates (r , φ) by the Weber Lagrangian L = LW in (1.1), that
is

L(r , φ, vr , vφ) = 1

2

(
r − rc

r
vr

2 + r2vφ
2
)

− 1

r

where c is the speed of light and the critical radius

rc := 1/c2

is called the Weber radius. Note that the metric describing the kinetic energy is Rie-
mannian above the critical radius, and Lorentz below. The conjugate momenta are

pr := ∂L

∂ ṙ
=

(
1 − 1

c2r

)
ṙ =

(
r − rc

r

)
ṙ , pφ := ∂L

∂φ̇
= r2φ̇.

The Euler-Lagrange equation d
dt

∂L
∂φ̇

= ∂L
∂φ

, namely ṗφ = 0, yields conservation of

angular momentum

� := r2φ̇ = pφ = const

while d
dt

∂L
∂ṙ = ∂L

∂r , namely d
dt

( r−rc
r

) · ṙ + ( r−rc
r

)
r̈ =, becomes

(
1

c2
− 1

)
r̈ = ṙ2

2c2r2
− �2

r3
− 1

r2
.

Note that the factor 1
c2

−1 = rc−r
r in front of r̈ is positive below the critical radius, and

negative above. The Euler-Lagrange equations are equivalent to Hamilton’s equations
for the Weber Hamiltonian

H(r , φ, pr , pφ) = pr ṙ + pφφ̇ − L = 1

2

(
(r − rc)ṙ2

r
+ �2

r2

)
+ 1

r

= 1

2

(
r p2r

r − rc
+ p2φ

r2

)
+ 1

r
.

(2.2)
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classical solutions quantum solutions

collisions non-oscillating
(regularizable) (natural boundary conditions exist)

spiraling oscillating
(not regularizable) (no natural boundary conditions exist)

� = 0

� �= 0

angular
momentum

Fig. 1 Interpretation of results—classical and quantum solution types

0 rc

finite time approach

finite time approach
∞ speed

� = 0: Bouncing C0

Collision C0

r

forbidden regionoscillation

finite time approach
∞ speed

� �= 0: Collision C0

finite speed
√
2 c

Fig. 2 Radial component case 1—Energy h ≤ 0

To determine the motions, we rewrite the conservation of energy equation

H = 1

2

(
(r − rc)ṙ2

r
+ �2

r2

)
+ 1

r
= h = const

as

ṙ2 = �2 + 2r − 2hr2

r(rc − r)
. (2.3)

In the following we only discuss the radial component r , not the angular component
φ which in case that the angular momentum � := r2φ̇ does not vanish is responsible
for the spiraling mentioned in Fig. 1.

Case 1: h ≤ 0–Fig. 2. Then the enumerator in equation (2.3) is positive, so there
are no solutions with r > rc. For r < rc equation (2.3) implies that ṙ2 > 2/rc is
bounded away from 0. Thus the solutions move in finite time between the poles at 0
and rc.

Taking advantage of the fact that the velocity at the origin and at the critical radius
even explodes, we can give a more refined analysis as follows. Consider first the
approach to rc. For r < rc close to rc we have approximately

ṙ ≈ ± k√
rc − r
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with k = √
�2/rc + 2 − 2hrc > 0. The solution of the ODE ṙ = ±k/

√
rc − r with

initial condition r(0) = r0 < rc close to rc is given by

r(t) = rc −
(

(rc − r0)
3/2 ∓ 3

2
kt

)2/3

.

Note that the solution can be continued continuously (but not C1) beyond time T , of
collision with the origin, to bounce back at rc and move toward the origin r = 0. In
contrast, it has yet not been studied if there is a geometric regularization at the origin
r = 0.

Consider next the approach to r = 0. Suppose first that � �= 0. Then for r > 0
close to 0 we have approximately

ṙ ≈ ± k√
r

(2.4)

with k = √
�2/rc > 0. The solution of ṙ = ± k√

r
with initial condition r(0) = r0 > 0

close to 0 is given by

r(t) =
(

r3/20 ± 3

2
kt

)2/3

,

which approaches 0 in finite (positive or negative) time T . Note that the solution can
be continued continuously (but not C1) beyond time T to bounce back at 0 and move
toward the critical radius rc.
If � = 0, then for r > 0 close to 0 we have approximately

ṙ ≈ ±√
2/rc = ±√

2 c,

so the solution approaches 0 in finite time with approximately constant speed
√
2 c

(the Weber constant). Note that the solution can be continued continuously (but not
C1) beyond time T , of collision with the origin,

Case 2: h > 0. Then equation (2.3) can be written as

ṙ2 = 2h(r − r+)(r − r−)

r(r − rc)
, with r±(�) = 1 ± √

1 + 2h�2

2h
. (2.5)

Since r+ > 1
h > 0 and r− ≤ 0, we need to distinguish the three subcases r+ < rc,

r+ = rc and r+ > rc. Note that r+ < rc is equivalent to h > hc for the critical energy

hc = Veff(rc) = �2

2r2c
+ 1

rc
, (2.6)

where Veff(r) = �2/2r2 + 1/r is the effective potential.
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0 r+

finite time approach

finite time

finite speed
√
2 c

speed 0

Reflection C∞

r

forbiddenoscillation

finite time approach
∞ speed

rc

Collision C0

finite time
∞ speed

∞ time
speed

√
2h

Escape

� = 0: Bouncing C0

� �= 0: Collision C0

Fig. 3 Case 2a—Energy h ≤ 0 and r+ ∈ (0, rc)

Case 2a: r+ < rc (or equivalently h > hc)–Fig. 3. Then the right hand side
in equation (2.5) is negative for r ∈ (r+, rc), so solutions cannot enter this region.
Solutions in the region (0, r+) move in finite time between 0 and r+.

To see this, consider first the approach to r+. For r < r+ close to r+ we have
approximately

ṙ ≈ ±k
√

r+ − r

with k = √
2h(r+ − r−)/r+(rc − r+) > 0. Thus the solution with initial condition

r(0) = r0 < r+ close to r+ is approximately given by

r(t) = r+ −
(

(r+ − r0)
1/2 ∓ 1

2
kt

)2

,

which approaches r+ in finite (positive or negative) time T at speed zero. Note that
the solution can be continued smoothly beyond time T to reflect back at r+ and move
toward the origin r = 0.

Consider next the approach to r = 0. Suppose first that � �= 0, and thus r− < 0.
Then for r > 0 close to 0 we have approximately, cf. (2.4),

ṙ ≈ ± k√
r

with k = √−2hr+r−/rc > 0, so the solution approaches 0 in finite time as in Case
1. If � = 0, then for r > 0 close to 0 we have approximately (Case 1 again)

ṙ ≈ ±√
2hr+/rc = ±√

2c,

so the solution reaches 0 in finite time with approximately constant speed
√
2c.

Solutions in the region (rc,∞) approach rc in finite (positive or negative) time
(similarly to the approach to rc in Case 1). In the other time direction they move to
∞ with asymptotic speed

√
2h (since the right hand side in (2.5) converges to 2h as

r → ∞).
Case 2b: r+ > rc (or equivalently h < hc)–Fig. 4. Then the right hand side

in equation (2.5) is negative for r ∈ (rc, r+), so solutions cannot enter this region.
Solutions in the region (0, rc) move in finite time between 0 and rc as in Case 1
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0 rc

finite time approach

finite time

finite speed
√
2 c

∞ speed

Collision

r

forbiddenoscillation

finite time approach
∞ speed

r+

Reflection C∞
finite time ∞ time

speed
√
2h

Escape

� = 0: Bouncing C0

� �= 0: Collision C0

speed 0

Fig. 4 Case 2b—Energy h ≤ 0 and r+ > rc

0 r+ = rc

r

finite time approach
∞ speed

∞ time
speed

√
2h

Escape

solutions pass through critical radius

finite speed
√
2h

finite time approach
� = 0: Bouncing C0

� �= 0: Collision C0

Fig. 5 Case 2c—Energy h ≤ 0 and r+ = rc

above. Solutions in the region (r+,∞) approach r+ at speed zero in finite (positive
or negative) time (where they reflect back smoothly similarly to the approach to r+
in Case 2a), while in the other time direction they again move to ∞ with asymptotic
speed

√
2h.

Case 2c: r+ = rc (or equivalently h = hc)–Fig. 5. Then (2.5) simplifies to
ṙ2 = 2h(1 − r−

r ) ≥ 2h > 0, so solutions approach 0 in finite (positive or negative)
time with infinite speed (� �= 0) or finite speed

√
2h (� = 0), while in the other time

direction they move to ∞ with asymptotic speed
√
2h. In particular, this is the only

case in which solutions pass through the critical radius.
We summarize this discussion in

Theorem 2.1 The relative motion of two equal charges in the plane under their mutual
Weber force is as follows, depending on their energy h compared to the critical energy
hc.

1 For h ≤ 0 solutions inside the critical radius rc move in finite time between 0 and
rc, and there are no solutions outside the critical radius.

2b For 0 < h < hc solutions inside the critical radius move in finite time between 0
and rc, while solutions outside the critical radius move to ∞ as t → ±∞ without
reaching rc.

2a For h > hc solutions inside the critical radius move to 0 in finite time in both time
directions without reaching rc, while solutions outside the critical radius move to
rc in finite time in one time direction and to ∞ in infinite time in the other time
direction.

2c For h = hc solutions move to 0 in finite time in one time direction and to ∞ in
infinite time in the other time direction; in particular, this is the only case in which
solutions pass through the critical radius. ��
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3 Derivation of the nuclear Weber–Schrödinger equation

Let rc = 1/c2 be the Weber radius and let

R× := (0,∞) \ {rc}, R
2× := R

2 \ {0, x2 + y2 = r2c }

be the Weber “half line” and “plane”, respectively. In polar coordinates (r , φ) ∈
R× × R/2πZ on R

2× the Weber metric and cometric are the diagonal matrizes

(
gi j

) =
( r−rc

r 0
0 r2

)
,

(
gi j

)
=

( r
r−rc

0
0 1

r2

)
. (3.7)

The entries are the coefficients in the Weber Lagrangian (1.1) and Hamiltonian (2.2),
respectively. The Weber plane is the Riemannian manifold (R2×, g).

3.1 Laplace-Beltrami operator onWeber plane

The Laplace-Beltrami operator applied to a function f is in local coordinates of any
domain manifold given by

� f = 1√|g|∂i

(√|g|gi j∂ j f
)

where |g| := |det g| and the Einstein sum convention applies.

Lemma 3.1 The Laplace-Beltrami operator in polar coordinates acts by

� f =
∂r

(
r

3
2

|r−rc|
1
2

r−rc
∂r f

)
√

r |r − rc| + 1

r2
∂φφ f

=
(
3

2

1

r − rc
− 1

2

r

(r − rc)2

)
∂r f + r

r − rc
∂rr f + 1

r2
∂φφ f

(3.8)

on functions f on the Weber plane (R2×, g).

Proof With |g| = r |r − rc| and due to the diagonal form of g we obtain

� f =
∂r

(√
r |r − rc| r

r−rc
∂r f

)
+ ∂φ

(√
r |r − rc| 1

r2
∂φ f

)
√

r |r − rc|

=
∂r

(√
r |r − rc| r

r−rc

)
· ∂r f +

(√
r |r − rc| r

r−rc

)
∂rr f

√
r |r − rc| + 1

r2
∂φφ f .
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It remains to calculate the term ∂r (. . . ), namely

∂r

(
r

3
2

|r−rc|
1
2

r−rc

)
√

r |r − rc| =
3
2 r

1
2 r−rc

|r−rc|
3
2

+ r
3
2 (− 1

2 )
1

|r−rc|
3
2

r
1
2 |r − rc| 12

= 3

2

1

r − rc
− 1

2

r

(r − rc)2

(3.9)

and this proves the lemma. ��

3.2 Separation into radial and angular part

On the Weber plane (R2×, g) with coordinates (r , φ) consider the Laplace-Beltrami
operator � given by (3.8). The Schrödinger equation is the pde

− 1

2
�ψ + 1

r
ψ = Eψ (3.10)

for complex-valued functions ψ : R2× → C and reals E . Separation of variables

ψ(r , φ) = R(r)Y (φ)

and abbreviating Ṙ := ∂r R and Y ′ := ∂φY translates Schrödinger’s equation to

− Y

2

∂r

(
r

3
2

|r−rc|
1
2

r−rc
∂r R

)
√

r |r − rc| − R

2

1

r2
Y ′′ + 1

r
RY = E RY .

Multiply this equation by r2
RY and reorder to obtain

− r2

2R

∂r

(
r

3
2

|r−rc|
1
2

r−rc
∂r R

)
√

r |r − rc| + r − r2E = 1

2

Y ′′

Y
.

(3.11)

Note that the left hand side, a function of r only, is in fact constant, because the right
hand side does not depend on r . Analogously the right hand side, a function of φ only,
is equal to a constant, say −�.

Angular equation for Y

The right hand side (RHS) of (3.11) is equal to a constant, say −�, hence

Y ′′(φ) = −2�Y (φ).
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The ode has a solution Y (φ) = cei
√
2�φ for c ∈ R. Periodicity Y (φ) = Y (φ + 2π)

tells that e2π i
√
2� = 1 or equivalently

√
2� = k ∈ N0. Thus

Y (φ) = ceikφ, c ∈ R, k = √
2� ∈ N0. (3.12)

4 Inside critical radius

4.1 Radial equation for R—zero angular momentum � = 0

The left hand side (LHS) of (3.11) is equal to a constant −� = − k2
2 where k ∈ N0.

Multiplication by −R
r2

leads to the ode

∂r

(
r

3
2

|r−rc|
1
2

r−rc
∂r R

)
2
√

r |r − rc| − 1

r
R − �

r2
R = −E R

for functions R : R× → C of the variable r and a constant E ∈ R. From now on we
focus on the region inside the critical radius, because there our two protons have the
property – spectacular when contrasted with the mainstream Coulomb law – to attract
each other thanks to theWeber force law. Because r − rc < 0 is negative, abbreviating
Ṙ := ∂r R the ode becomes

E R =
∂r

(
r
3
2√

rc−r
∂r R

)
2
√

r(rc − r)
+ 1

r
R + �

r2
R

= 1

2

r

rc − r
R̈ +

(
3

4

1

rc − r
+ 1

4

r

(rc − r)2

)
Ṙ + 1

r
R + �

r2
R

(4.13)

where � = k2/2 for any given k ∈ N0, see (3.12).Alternatively, this ode for the unkown
function R : (0, rc) → C takes on the Sturm–Liouville normal form

(
pṘ

)· + q R = wE R (4.14)

where ċ means d
dr and where in case � = 0 the functions w, q, p are given by

w = 2
√

r(rc − r), q = 2

√
rc − r

r
= w

r
, p = r

3
2√

rc − r
= 2r

q
= 2r2

w
.

Singular Sturm–Liouville theory

A Sturm–Liouville problem of the form (4.14) on a closed interval [0, rc] is called
regular if the coefficient p : [0, rc] → R is a continuous and non-vanishing function,
the coefficient w : [0, rc] → (0,∞) is continuous and positive, and q : [0, rc] → R is
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continuous. If at the boundary of the interval [0, rc] at least one of the coefficients p,
q, or w becomes infinite or p or w approach zero, then the Sturm–Liouville problem
is called singular.

For singular Sturm–Liouville problems Weyl introduced in [20] a dichotomy into
limit circle and limit point. Given an end point 0 or rc, the singular Sturm–Liouville
problem is called limit circle if all solutions of the homogeneous problem

(
pṘ

)· + q R = 0 (4.15)

close to the given end point are of class L2. Otherwise, the problem is called limit
point. For more information see e.g. [1, p. 277], [9, XII.3], or [10, III §1].

Remark 4.1 (Sturm–Liouville theory) Later, in Sect. 4.2, when we deal with the case
of non-zero angular momentum (� �= 0) we will encounter special cases of Sturm–
Liouville equations—Bessel equations. Excellent accounts of the history of Sturm–
Liouville theory, surveys, and even a catalogue can be found in the collection of papers
[1, p. 277]. We recommend these papers for further references. Without the extensive
tables and property lists in [2, §9] one would get nowhere, in finite time, in Sect. 4.2.

The main result of this Sect. 4.1 is the

Proposition 4.2 (Zero angular momentum – limit circle on (0, rc)) The singular
Sturm–Liouville problem given by the 1-dimensional Weber Schrödinger equa-
tion (4.17) on the interval (0, rc) is

a) limit circle at the left origin boundary singularity 0;
b) limit circle at the right critical radius boundary singularity rc.

Proof a) Sect. 4.1.1. b) Sect. 4.1.2. ��

4.1.1 Type ’limit circle’ at the origin

For non-zero angular momentum (� �= 0) already the classical solutions behave not
nicely inside the critical radius, they spiral into the origin singularity, cf. Theorem 2.1.
So in a first step to prove Theorem A we restrict to the case of angular momentum
� = 0. As mentioned above we consider the region inside the critical radius rc := 1

c2
,

in symbols r ∈ (0, rc).
In the following we show that for zero angular momentum (� = 0) the singular

Sturm–Liouville problem (4.13) on (0, rc), equivalently (4.14), is of type limit circle
at the boundary singularity r = 0.

Remark 4.3 The property limit circle does not depend on the choice of the constant E ;
see e.g. [9, Thm.XII.3.2] or [10, III Le. 1.1]. Thus we choose E = 0. By [10, p. 22]
limit circle at a boundary singularity r∗ is equivalent to not being limit point at r∗
which, by [10, Rmk. on p.23], is equivalent to all solutions being L2 near r∗.

Setup (Case E = 0). Equation (4.13) for � = 0, multiplied by 2(rc−r)
r , gets

R̈ +
(
3

2

1

r
+ 1

2

1

rc − r

)
Ṙ + 2

rc − r

r2
R = 0 (4.16)
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or, equivalently, after reordering1

R̈ + 3

2r
Ṙ + 2rc

r2
R = − 1

2(rc − r)
Ṙ + 2

r
R

︸ ︷︷ ︸
=:b

. (4.17)

Step 1 (Homogeneous equation). First let us solve equation (4.17) in case the
RHS b is zero: The Ansatz f (r) := rk leads to k2 + 1

2k + 2rc = 0, hence

k1 = −1

4
−

√
1

16
− 2rc

>≈ −1

2
, k2 = −1

4
+

√
1

16
− 2rc

<≈ 0.

So 2ki > −1 for i = 1, 2. Thus two solutions of (4.17) for b = 0 are given by

u(r) := rk1, v(r) := rk2

and they are L2 near 0 since 2ki > −1. It is useful to calculate the sums

k2 + k1 = −1

2
, k2 − k1 =

√
1

4
− 8rc.

and the Wronskian

W = W (r) := uv̇ − u̇v = (k2 − k1)r
k2+k1−1 = (k2 − k1)r

− 3
2 .

Observe that the product r
3
2 W (r) = k2 − k1 is a constant.

Step 2 (Inhomogeneous equation). Given constants α, β ∈ R, abbreviate r0 :=
rc/2, then the solution R to (4.17) with

R(r0) = αu(r0) + βv(r0), Ṙ(r0) = αu̇(r0) + βv̇(r0) (4.18)

1 Multiplication of (4.17) by r
3
2 provides the Sturm–Liouville normal form

(
r
3
2 Ṙ

)·
+ 2rc

r
1
2

R = − 1

2

r
3
2

rc − r
Ṙ + 2r

1
2 R

︸ ︷︷ ︸
=r

3
2 b

.
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is given by the formula (see e.g. [9, Exc. IV.5.3 p. 81])

R(r) : = αu(r) + βv(r) +
∫ r

r0

u(s)v(r) − u(r)v(s)

s3/2 W (s)
s3/2 b(s) ds

1= αrk1 + βrk2 +
∫ r

r0

sk1rk2 − rk1sk2

k2 − k1

(
−1

2

s
3
2

rc − s
Ṙ + s

1
2 2R

)
ds

2= αrk1 + βrk2 −
∫ r0

r

s−k2rk2 − rk1s−k1

k2 − k1
2R ds

+ 1

2

∫ r0

r

s−k2rk2 − rk1s−k1

k2 − k1

s

rc − s
Ṙ ds

3= αrk1 + βrk2 −
∫ r0

r

(r/s)k2 − (r/s)k1

k2 − k1
2R(s) ds

+ 1

2

(r/r0)k2 − (r/r0)k1

k2 − k1

r0
rc − r0

R(r0)

+ 1

2

∫ r0

r

k2(r/s)k2 − k1(r/s)k1

k2 − k1

1

rc − s
R(s) ds

− 1

2

∫ r0

r

(r/s)k2 − (r/s)k1

k2 − k1

rc

(rc − s)2
R(s) ds

(4.19)

for every r ∈ (0, r0]. Step 1 uses definition (4.17) of b, in step 2 we interchange limits
of integration and catch a minus sign, and step 3 is by partial integration.

Consider the L2 functions on (0, r0], where r0 := rc
2 , given by

h1(r) := α̃rk1 + β̃rk2 , h2(r) := γ rk1 + δrk2

where the constants are defined by

α̃ := |α| + r0R(r0)

2rk1
0 (k2 − k1)(rc − r0)

, β̃ := |β| + r0R(r0)

2rk2
0 (k2 − k1)(rc − r0)

and

γ := 2
r−k1
0

k2 − k1
+ 1

2

k1r−k1
0

k2 − k1

2

rc
+ 1

2

r−k1
0

k2 − k1

4

rc

and

δ := 2
r−k2
0

k2 − k1
+ 1

2

k1r−k2
0

k2 − k1

2

rc
+ 1

2

r−k2
0

k2 − k1

4

rc
.
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With the L2 functions h1 and h2 on (0, r0] we get from (4.19), using 1
rc−s ≤ 2

rc
and

Cauchy-Schwarz, the estimate

|R(r)| ≤ h1(r) + h2(r)

∫ r0

r
|R(s)| ds

= h1(r) + h2(r)‖R · 1‖1(r)

≤ h1(r) + h2(r)‖R‖2(r) · √
r0

(4.20)

for every r ∈ (0, r0], note that √r0 ≤ 1, and where

‖R‖p(r) :=
(∫ r0

r
|R(s)|p ds

) 1
p

for p ≥ 1 and r ∈ (0, r0]. Taking squares we get that

R(r)2 ≤ h1(r)2 + 2h1(r)h2(r)‖R‖2(r) + h2(r)2‖R‖2(r) 2

≤ 2h1(r)2 + 2h2(r)2‖R‖2(r) 2

for every r ∈ (0, r0]. Therefore

‖R‖2(r) 2︸ ︷︷ ︸
=:U (r)

: =
∫ r0

r
R(s)2 ds

≤ 2
∫ r0

r
h1(s)

2 ds + 2
∫ r0

r
h2(s)

2‖R‖2(s) 2 ds

= 2‖h1‖2(r) 2︸ ︷︷ ︸
≤2‖h1‖22=:α

+
∫ r0

r
2h2(s)

2︸ ︷︷ ︸
=:β(s)

‖R‖2(s) 2︸ ︷︷ ︸
=U (s)

ds

for every r ∈ (0, r0] where ‖h1‖2 := ‖h1‖L2(0,r0) < ∞. So by Gronwall’s lemma

‖R‖2(r) 2︸ ︷︷ ︸
U (r)

≤ 2‖h1‖22︸ ︷︷ ︸
α

exp

⎛
⎜⎝

∫ r0

r
2h2(s)

2︸ ︷︷ ︸
β(s)

ds

⎞
⎟⎠ ≤ 2‖h1‖22 e2‖h2‖22 =: γ

for every r ∈ (0, r0]. Thus ‖R‖22 ≤ γ . This shows that any solution R of (4.17), inde-
pendent of the choice of initial conditions (4.18), is L2 near the boundary singularity
0. By Remark 4.3 this proves part a) in Proposition 4.2.

4.1.2 Type ’limit circle’ at the critical radius

To prove Proposition 4.2 b) it suffices to treat the case E = 0 by Remark 4.3.

https://de.wikipedia.org/wiki/Gronwallsche_Ungleichung
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Setup (Case E = 0). Reordering (4.16) for singularities 1
r−rc

we get the ode

R̈ + 1

2(rc − r)
Ṙ + 3

2r
Ṙ = −rc − r

r2
2R︸ ︷︷ ︸

=:b

(4.21)

for functions R on [r0, rc) where r0 := rc
2 .

Step 1 (Homogeneous equation). First let us solve equation (4.21) in case the
RHS b = 0 is zero: Two solutions of (4.21) for b = 0 are given by2

u(r) ≡ 1, v(r) :=
∫ r

r0
s−3/2√rc − s ds (4.22)

and

W (r) := uv̇ − u̇v = v̇ = r−3/2√rc − r .

is their Wronskian. Since rc − r0 = rc/2 we get that the function

|v(r)| ≤ (rc − r0)r
−3/2
0

√
rc − r0 = 1

is bounded, hence L2, on the interval [r0, rc).
Step 2 (Inhomogeneous equation). Given constants α, β ∈ R, the solution R
to (4.21) with initial conditions

R(r0) = αu(r0) + βv(r0), Ṙ(r0) = αu̇(r0) + βv̇(r0) (4.23)

is given for r ∈ [r0, rc) by the definition in (4.19). On [r0, rc) we estimate

|R(r)| ≤ |α| · 1 + |β| · 1 +
∣∣∣∣
∫ r

r0

v(r) − v(s)

s−3/2
√

rc − s

rc − s

s2
2R(s) ds

∣∣∣∣
≤ c1 + c2

∫ r

r0
|R(s)| ds.

Here inequality one uses that ‖u‖∞ = ‖1‖∞ = 1 and ‖v‖∞ = 1. Inequality two
holds with c1 := |α| + |β| and with c2 = 1. Set I := [r0, rc) to estimate

2 sup
r∈I

(r − r0) sup
s∈I

|v(r)| + |v(s)|√
s

√
rc − s ≤ 2

rc

2

2‖v‖∞√
r0

√
rc/2 = 2rc � 1 =: c2.

Since c1, c2 are constants, a special case of Gronwall gives

|R(r)| ≤ c1ec2(r−r0) ≤ c1erc/2.

2 Constants are clearly solutions. Equation (4.21) for b = 0 and g := Ṙ takes on the form ġ = −g/2(rc −
r)− 3g/2r . The Ansatz g := f

√
rc − r gives the equation ḟ = −3 f /2r whose solution is f (r) = r−3/2.

Integrate g = r−3/2√rc − r to get the solution v of (4.21) for b = 0.

https://de.wikipedia.org/wiki/Gronwallsche_Ungleichung#Spezialfall
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for r ∈ [r0, rc). Thus any solution R of (4.21) on [r0, rc) is uniformly bounded, thus
L2. By Remark 4.3 this proves part b) of Proposition 4.2.

4.2 Equation for R—non-zero angular momentum � �= 0

For non-zero angular momentum already the classical solutions behave not nicely
inside the critical radius, they spiral into the origin singularity, cf. Theorem 2.1. In
this subsection we restrict again to the region inside the critical radius rc := 1

c2
, in

symbols r ∈ (0, rc).
Recall that separating the equal charge Schrödinger equation (3.10), Ansatz ψ =

R(r)Y (φ), leads to equation (4.13) for R, namely

E R =
∂r

(
r
3
2√

rc−r
∂r R

)
2
√

r(rc − r)
+ 1

r
R + �

r2
R

= 1

2

r

rc − r
R̈ +

(
3

4

1

rc − r
+ 1

4

r

(rc − r)2

)
Ṙ + 1

r
R + �

r2
R

(4.24)

for r ∈ (0, rc). Here � = k2/2 for k ∈ N; cf. (3.12). Alternatively, the equation is

(
pṘ

)· + q R = wE R (4.25)

for functions R on (0, rc) and where ċ denotes d
dr and with

w = 2
√

r(rc − r), q = w

r

(
1 + �

r

)
, p = r

3
2√

rc − r
.

Note that w
r = 2

√
rc−r

r .
The main result of this Sect. 4.2 is the

Proposition 4.4 (Non-zero angular momentum – limit circle on (0, rc)) The singular
Sturm–Liouville problem given by the 1-dimensional Weber Schrödinger equa-
tion (4.27) on the interval (0, rc) is

a) limit circle at the left origin boundary singularity 0;
b) limit circle at the right critical radius boundary singularity rc.

Proof a) Sect. 4.2.1. b) Sect. 4.2.2. ��

4.2.1 Type ’limit circle’ at the origin (� = ∞)

In the following we show that for non-zero angular momentum (� �= 0) the singular
Sturm–Liouville problem (4.24) on (0, rc), equivalently (4.25), is of type limit circle
at the boundary singularity x = 0. By Remark 4.3 it suffices to consider the case
E = 0.
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Setup (Case E = 0). Equation (4.24), multiplied by 2(rc−r)
r , becomes

R̈ +
(
3

2

1

r
+ 1

2

1

rc − r

)
Ṙ + 2

rc − r

r2
R + 2

�(rc − r)

r3
R = 0 (4.26)

or, equivalently, after reordering we get the ode

R̈ + 3

2r
Ṙ + 2rc

r2
R + 2rc�

r3
R = − 1

2(rc − r)
Ṙ + 2

(
1

r
+ �

r2

)
R (4.27)

for functions R on (0, rc) and where � = k2/2 for a given k ∈ N; see (3.12). It is
useful to change variables. Recall that rc := 1/c2. Suppose R satisfies (4.27). Then
in the new variable

ρ : (0, rc) → (c2,∞), r �→ 1/r

the function given by f (ρ) := R(r(ρ)) satisfies the ode3

f ′′ + 1

2ρ
f ′ + 2rc

ρ2 f + 2rc�

ρ
f = 1

2ρ2

1

(
ρ

c2
− 1)

f ′ + 2

ρ3 f + 2�

ρ2 f

︸ ︷︷ ︸
=:b(ρ)

(4.28)

for ρ ∈ (c2,∞) and where � = k2/2 for a given k ∈ N.
Step 1 (Homogeneous equation). To solve (4.28) for b = 0 suppose f is a
solution. The Ansatz f (ρ) = ραw(ρ) with α ∈ R leads to the ode

w′′ +
(
2α + 1

2

)
w′

ρ
+

(
(α(α − 1) + α

2︸ ︷︷ ︸
=α(α− 1

2 )

+2rc

)
w

ρ2 + 2�rc
w

ρ
= 0

for ρ ∈ (c2,∞). For α = − 1
4 the coefficient of w′ vanishes and we get the ode

w′′ +
(

3

16
+ 2rc

)
w

ρ2 + 2�rc
w

ρ
= 0

for functions w = w(ρ) with ρ ∈ (c2,∞). This ode is of the form

w′′ +
(

λ2

4ρ
+ 1 − ν2

4ρ2

)
w = 0, λ2 = 8�rc =

(
2k

c

)2

, ν2 = 1 − 32rc

4
(4.29)

where k ∈ N by (3.12). Solutions are given by w(ρ) = ρ
1
2 Cν(λρ

1
2 ), see [2, 9.1.51

p. 362], where for Cν one can choose e.g. Bessel functions Jν or Weber functions4 Yν ,

3 Indeed Ṙ = d
dr R(r) = d

dr f (ρ(r)) = f ′(ρ) d
dr ρ(r) = −ρ2 f ′(ρ) and R̈ = ρ4 f ′′ + 2ρ3 f ′.

4 Heinrich Martin Weber (1842–1913)
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formulas for which are given in [2, 9.1.2 and 9.1.10–11]. So

ũ := ρ
1
2 Jν(λρ

1
2 ), ṽ := ρ

1
2 Yν(λρ

1
2 )

are two solutions of (4.29).
Due to our Ansatz f = ρ− 1

4 w two solutions of (4.28) for b = 0 are given by

u := ρ
1
4 Jν(λρ

1
2 ), v := ρ

1
4 Yν(λρ

1
2 ), λ = 2k

c , ν = 1
2

√
1 − 32

c2
≈
< 1

2 (4.30)

where k ∈ N; see (3.12). The Wronskian of u and v is given by

W (ρ) := W (u, v)|ρ := uv′ − u′v = λ
2 W (Jν, Yν)|

λρ
1
2

= 1

πρ
1
2

Step one is calculation, step two uses that W (Jν, Yν)|s = 2
πs by [2, 9.1.16].

Step 2 (Inhomogeneous equation). Let ρ0 := 2c2 ∈ (c2,∞). Given constants
α, β ∈ R and from (4.30) the solutions u, v of the homogeneous (b = 0) version
of (4.28), then the solution f to equation (4.28) with initial conditions

f (1) = αu(1) + βv(1), f ′(1) = αu′(1) + βv′(1) (4.31)

is given for ρ ∈ [2c2,∞) by the formula (see e.g. [9, Exc. IV.5.3 p. 81])

f (ρ) : = αu(ρ) + βv(ρ) +
∫ ρ

ρ0

u(s)v(ρ) − u(ρ)v(s)

W (s)
b(s) ds

= αρ
1
4 Jν(λρ

1
2 ) + βρ

1
4 Yν(λρ

1
2 )

+ πρ
1
4 Yν(λρ

1
2 )

∫ ρ

ρ0

s
3
4 Jν(λs

1
2 )

(
f ′(s)

2s2( s
c2

− 1)
+ 2+2�s

s3
f (s)

)
ds

− πρ
1
4 Jν(λρ

1
2 )

∫ ρ

ρ0

s
3
4 Yν(λs

1
2 )

(
f ′(s)

2s2( s
c2

− 1)
+ 2+2�s

s3
f (s)

)
ds

= αρ
1
4 Jν(λρ

1
2 ) + βρ

1
4 Yν(λρ

1
2 )

+ 2πρ
1
4 Yν(λρ

1
2 )

∫ ρ

ρ0

(1 + �s)Jν(λs
1
2 )

s3− 3
4

f (s) ds

− 2πρ
1
4 Jν(λρ

1
2 )

∫ ρ

ρ0

(1 + �s)Yν(λs
1
2 )

s3− 3
4

f (s) ds

+ π
2 ρ

1
4

∫ ρ

ρ0

Yν(λρ
1
2 )Jν(λs

1
2 ) − Yν(λs

1
2 )Jν(λρ

1
2 )

s
5
4 ( s

c2
− 1)

f ′(s) ds

(4.32)

https://de.wikipedia.org/wiki/Besselsche_Differentialgleichung#Bessel-Funktionen
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We wish to show that every solution R of (4.27) is L2 near the origin, say on (0, r0] ⊂
(0, rc) where r0 := 1

ρ0
= 1

2rc. For r(ρ) = 1
ρ
and f (ρ) := R(r(ρ)) we get

∫ r0

0
R(r)2 dr =

∫ ∞

ρ0

f (ρ)2

ρ2 dρ =
∫ ∞

ρ0

F(ρ)2 dρ, F(ρ) := | f (ρ)|
ρ

. (4.33)

To show finiteness of the integral in (4.33) we need to estimate (4.32) and for this it
is crucial to understand boundedness and, more crucially, decay behavior of the Bessel
functions Jν and their cousins Yν . People not familiar with them might wish to have
a look at their graphs, for instance in the appropriate Wiki, to see that these resemble

cosine and sine functions with some decay factor – which actually is 1/
√

ρ = 1/ρ
2
4 .

It is this exponent of the decay factor which translates in (4.36) into a power smaller
than 1/2 in ρ1/4 which is necessary to have β(ρ) be integrable on (ρ0,∞). So in the
end γ in (4.37) is indeed finite.

Remark 4.5 (Boundedness and decay of Bessel functions) Recall that ν
<≈ 1

2 ,
see (4.30). Hence assertion (i) holds by [2, 9.1.60 p. 362].

(i) |Jν | ≤ 1 on [0,∞). As (c2,∞) is far out, |Jν | is very small by [2, 9.2.5].
(ii) |Yν | ≤ 1 on (c2,∞) = ( 1

rc
,∞)5: By [2, 9.1.2 & 9.1.62] we get that

|Yν(ρ)| =
∣∣∣∣Jν(ρ)

cos(νπ)

sin(νπ)
− J−ν(ρ)

∣∣∣∣
≤ cot(νπ) + 2ν

c2ν �(1 − ν)

≤ cot(νπ) + 1

cν
=: cY

We used for the � function that �(1−ν) ≈ �( 12 ) > 1. In fact cY > 0 is very close
to zero: Indeed cν ≈ √

3 · 104 and νπ is smaller but very close to x = π
2 where

cosine is zero and sine is one.
(iii) Asymptotic decay Jν(ρ), Yν(ρ) ∼ 1/ρ

2
4 as ρ → ∞. By [2, 9.2.1] we get

Jν(ρ) ∈
√

2
πρ

(
cos(ρ − νπ

2 − π
4 ) + O( 1

ρ
)
)

. (4.34)

For Yν use sine. By definition there are constants ρ1, C1 > 1 such that

|Jν(ρ)| ≤ C1

ρ
2
4

∣∣∣cos(ρ − νπ
2 − π

4 ) + 1
ρ

∣∣∣ ≤ C1

ρ
2
4

for every ρ ≥ ρ1 and similarly for Yν (using sine and same constant names). In
the second inequality one might have to enlarge the constants.

5 Near the origin 0 the function Yν explodes towards −∞.

https://de.wikipedia.org/wiki/Besselsche_Differentialgleichung#Bessel-Funktionen
https://de.wikipedia.org/wiki/Besselsche_Differentialgleichung#Bessel-Funktionen
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We use the bounds (i–ii), the crucial one (iii), and (4.32) to get the estimate

| f (ρ)|
ρ

≤ |α| + |β|
ρ

3
4

+ 4πC1

ρ
3
4

∫ ρ

ρ0

( | f (s)|
s
9
4

+ �| f (s)|
s
5
4+ 2

4

)
ds

+ π

2ρ
3
4

∣∣∣∣∣∣
∫ ρ

ρ0

⎛
⎝ Jν(λs

1
2 )

s
5
4 ( s

c2
− 1)

f ′(s)

⎞
⎠ ds

∣∣∣∣∣∣

+ π

2ρ
3
4

∣∣∣∣∣∣
∫ ρ

ρ0

⎛
⎝ Yν(λs

1
2 )

s
5
4 ( s

c2
− 1)

f ′(s)

⎞
⎠ ds

∣∣∣∣∣∣

(4.35)

for every ρ ∈ [ρ0,∞). Next we carry out partial integration for one of the two terms
in (4.35), say the Jν term, the Yν term being analogous and leading to exactly the same
estimate. Note that s ≥ ρ0 implies s

c2
− 1 ≥ ρ0

c2
− 1 = 2 − 1. Partial integration, the

unit bound |Jν | ≤ 1, and the crucial decay (iii) tell that

g(ρ) : =
∣∣∣∣∣∣
∫ ρ

ρ0

⎛
⎝ Jν(λs

1
2 )

s
5
4 ( s

c2
− 1)

f ′(s)

⎞
⎠ ds

∣∣∣∣∣∣

=
∣∣∣∣ Jν(λρ

1
2 ) f (ρ)

ρ
5
4 (

ρ

c2
− 1)

− Jν(λρ
1
2
0 ) f (ρ0)

ρ
5
4
0

+
∫ ρ

ρ0

Jν(λs
1
2 )

(
5
4 s

1
4 ( s

c2
− 1) + s

5
4

)

s
5
2 ( s

c2
− 1)2

f (s) ds

−
∫ ρ

ρ0

J ′
ν(λs

1
2 ) λ

2
√

s
s
5
4 ( s

c2
− 1)

s
5
2 ( s

c2
− 1)2

f (s) ds

∣∣∣∣

≤
⎛
⎜⎝ | f (ρ0|

c2
+ | f (ρ)|

ρ
5
4

+ C1

∫ ρ

ρ0

| f (s)|
s
5
4+ 2

4

ds + λ
2

∫ ρ

ρ0

|J ′
ν(λs

1
2 )|︸ ︷︷ ︸

≤2

· | f (s)|
s
7
4

ds

⎞
⎟⎠ .

Indeed, by the recurrence relation in [2, 9.1.27] and since |Jμ| ≤ 1 on [0,∞) for
μ ≥ 0 by [2, 9.1.60], we get for s ≥ ρ0 = 2c2 and with λ = 2k/c that

|J ′
ν(λs

1
2 )| =

∣∣∣∣−Jν+1(λs
1
2 ) + ν

λs
1
2

Jν(λs
1
2 )

∣∣∣∣ ≤ 1 + ν

(2k/c)
√
2c

< 1 + 1

4
.

Hence for each k ∈ N we obtain the estimate

g(ρ) ≤ | f (ρ0|
c2

+ | f (ρ)|
ρ

5
4

+
∫ ρ

ρ0

(
C1 + 2k

c

) | f (s)|
s
5
4+ 2

4

ds
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for every ρ ≥ ρ0 = 2c2 � 2π . Set γ0/2 := |α| + |β| + | f (ρ0)| to finally get

| f (ρ)|
ρ

≤ γ0

2ρ
3
4

+ 1

2

| f (ρ)|
ρ

+ 2πC1(1 + k + k2)

ρ
3
4

∫ ρ

ρ0

| f (s)|
s
5
4+ 2

4

ds

and therefore

F(ρ) := | f (ρ)|
ρ

≤ γ0

ρ
3
4

+ 12πC1k2

ρ
3
4

∫ ρ

ρ0

| f (s)|
s
5
4+ 2

4

ds

for every ρ ≥ ρ0. Set ck := (12πC1k2)2 and square the expression to obtain

F(ρ)2 ≤ 2γ 2
0

ρ
3
2

+ 2ck

ρ
3
2

(∫ ρ

ρ0

1

s
1
4+ 2

4

· F(s) ds

)2

≤ 2γ 2
0

ρ
3
2︸︷︷︸

=:h(ρ)

+ 8ck
ρ

1
4 − ρ0

1
4

ρ
3
2︸ ︷︷ ︸

=:β(ρ)

∫ ρ

ρ0

F(s)2 ds
(4.36)

for every ρ ≥ ρ0. The second inequality is by Cauchy-Schwarz. Define

‖F‖p(t) :=
(∫ t

ρ0

F(s)p ds

) 1
p

for p ≥ 1 and t ≥ ρ0. Integrate (4.36) to obtain the estimate

‖F‖2(t)2︸ ︷︷ ︸
=:U (t)

:=
∫ t

ρ0

F(ρ)2 dρ ≤ ‖h‖1(t)︸ ︷︷ ︸
≤α

+
∫ t

ρ0

β(ρ) ‖F‖2(ρ)2︸ ︷︷ ︸
U (ρ)

dρ

for every t ≥ ρ0 and where α := ‖h‖L1(ρ0,∞) < ∞. So by Gronwall’s lemma

‖F‖2(t) 2︸ ︷︷ ︸
=U (t)

≤ α exp

(∫ t

ρ0

β(s) ds

)
≤ α exp

(∫ ∞

ρ0

β(s) ds

)
:= γ < ∞ (4.37)

for any t ≥ ρ0. The constant γ is finite, because the integral
∫ ∞
ρ0

1
s5/4

ds < ∞ is. Thus

γ ≥ ‖F‖2
L2(ρ0,∞)

= ‖R‖2
L2(0,r0)

by (4.33). This proves that any solution R of (4.27)

on (0, rc), independent of the choice of initial conditions (cf. (4.31)), is L2 near the
boundary singularity 0. By Remark 4.3 this proves a) in Proposition 4.4.

4.2.2 Type ’limit circle’ at the critical radius

To prove Proposition 4.4 b) it suffices to treat the case E = 0 by Remark 4.3.

https://de.wikipedia.org/wiki/Gronwallsche_Ungleichung
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Setup (Case E = 0). Reorder (4.27) to get the ode

R̈ + 1

2(rc − r)
Ṙ + 3

2r
Ṙ = − (rc − r)(r + �)

r3
2R︸ ︷︷ ︸

=:b(r)

(4.38)

for functions R on [r0, rc) where r0 := rc
2 and where � = k2/2 for a given k ∈ N;

see (3.12). For � = 0 the ode reduces to (4.21) which we had solved for b = 0.
Step 1 (Homogeneous equation). We already solved equation (4.38) for b = 0.
Recall that solutions are u ≡ 1 and v in (4.22), that |v| ≤ 1, and that their Wronskian
is W (r) = r−3/2√rc − r .
Step 2 (Inhomogeneous equation). Given constants α, β ∈ R, the solution R
to (4.21) with initial conditions

R(r0) = αu(r0) + βv(r0), Ṙ(r0) = αu̇(r0) + βv̇(r0) (4.39)

is given for r ∈ [r0, rc) by the definition in (4.19). On [r0, rc) we estimate

|R(r)| ≤ |α| + |β| +
∣∣∣∣
∫ r

r0

v(r) − v(s)

s−3/2
√

rc − s

(rc − s)(s + �)

s3
2R(s) ds

∣∣∣∣
≤ c1 + c2

∫ r

r0
|R(s)| ds.

Here inequality one uses that ‖u‖∞ = ‖1‖∞ = 1 and ‖v‖∞ = 1. Inequality two
holds with c1 := |α| + |β| and c2 := 2rc. To get c2 let I := [r0, rc), note that

2 sup
r∈I

(r − r0) sup
s∈I

|v(r)| + |v(s)|
s3/2

√
rc − s(s + �) ≤ 2

rc

2

2‖v‖∞
r3/20

√
rc

2
(rc + �)

≤ 4(1 + �) =: c2.

Since c1, c2 are constants, a special case of Gronwall gives

|R(r)| ≤ c1ec2(r−r0) ≤ c1ec2rc/2 = c1e2(1+�)/c2 .

for r ∈ [r0, rc). Thus any solution R of (4.21) on [r0, rc) is uniformly bounded, thus
L2. By Remark 4.3 this proves part b) of Proposition 4.4.
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